Pacific

 Journal of Mathematics
NONAUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS

MARTIN SCHECHTER

NONAUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS

Martin Schechter

Abstract

We study the existence of periodic solutions for a second order nonautonomous dynamical system. We make no assumptions on the gradient other than continuity. This allows both sublinear and superlinear problems. We also study the existence of nonconstant solutions.

1. Introduction

We consider the following problem. One wishes to solve

$$
\begin{equation*}
-\ddot{x}(t)=\nabla_{x} V(t, x(t)), \tag{1-1}
\end{equation*}
$$

where

$$
\begin{equation*}
x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right) \tag{1-2}
\end{equation*}
$$

is a map from $I=[0, T]$ to \mathbb{R}^{n} such that each component $x_{j}(t)$ is a periodic function in H^{1} with period T, and the function $V(t, x)=V\left(t, x_{1}, \ldots, x_{n}\right)$ is continuous from \mathbb{R}^{n+1} to \mathbb{R} with

$$
\begin{equation*}
\nabla_{x} V(t, x)=\left(\partial V / \partial x_{1}, \ldots, \partial V / \partial x_{n}\right) \in C\left(\mathbb{R}^{n+1}, \mathbb{R}^{n}\right) \tag{1-3}
\end{equation*}
$$

For each $x \in \mathbb{R}^{n}$, the function $V(t, x)$ is periodic in t with period T.
We shall study this problem under several sets of assumptions. First, we make no assumption on $\nabla_{x} V(t, x)$ other than (1-3). This allows both sublinear and superlinear problems.

Theorem 1.1. Assume:
(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

[^0](2) There are positive constants α, m such that
$$
\int_{0}^{T} V(t, x) d t \leq \alpha, \quad|x| \leq m, x \in \mathbb{R}^{n}
$$

Then the system

$$
\begin{equation*}
-\ddot{x}(t)=\beta \nabla_{x} V(t, x(t)) \tag{1-4}
\end{equation*}
$$

has a solution for almost all values of β satisfying $\beta \leq 6 \mathrm{~m}^{2} / \alpha T$. If, in addition, there are a constant $\gamma>0$ and a function $W(t) \in L^{1}(I)$ such that

$$
V(t, x) \geq \gamma|x|^{2}-W(t)
$$

then the system (1-4) has a nonconstant solution for almost all β satisfying

$$
\frac{2 \pi^{2}}{\gamma T^{2}} \leq \beta \leq \frac{6 m^{2}}{\alpha T}
$$

Corollary 1.2. Assume:
(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

(2) There are positive constants α, m such that

$$
V(t, x) \leq \alpha, \quad|x| \leq m, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for almost all values of β satisfying $0 \leq \beta \leq$ $6 m^{2} / \alpha T^{2}$.

Theorem 1.3. Assume:
(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

(2) There is a constant $q>2$ such that

$$
V(t, x) \leq C\left(|x|^{q}+1\right), \quad t \in I, x \in \mathbb{R}^{n}
$$

(3) there are constants $m>0, \alpha>0$ such that

$$
V(t, x) \leq \alpha|x|^{2}, \quad|x| \leq m, t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for almost all β satisfying $0 \leq \beta \leq 2 \pi^{2} / \alpha T^{2}$.

Theorem 1.4. Assume:

(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

(2) There are a constant $\alpha>0$ and a function $W(t) \in L^{1}(I)$ such that

$$
V(t, x) \leq \alpha|x|^{2}+W(t), \quad t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for almost all $0 \leq \beta \leq 2 \pi^{2} / \alpha T^{2}$. If we assume

$$
B:=\int_{I} W(t) d t<0,
$$

then (1-4) has a nonconstant solution for almost all such β.
Theorem 1.5. The conclusions of Theorem 1.4 are valid if we replace condition (2) with:
(2') There is a constant $\alpha>0$ such that

$$
\sup _{|x|<m} \int_{0}^{T} V(t, x) d t \leq \alpha m^{2}+B \quad \text { for every } m>0
$$

and require $0 \leq \beta \leq 6 / \alpha T$.
The advantage of these theorems is that we obtain solutions under very weak hypotheses. In fact, we make no assumption on $\nabla_{x} V(t, x)$ other than (1-3). The disadvantage is that we do not obtain a solution for any particular value of β. If we wish to prove existence for every such β, we will have to make assumptions concerning $\nabla_{x} V(t, x)$ as well. We now present additional hypotheses which guarantee existence of solutions for all values of β in the given intervals. We do this for Theorems 1.1 and 1.3. The hypotheses are:
(1) $0 \leq V(t, x) /|x|^{2} \rightarrow \infty$ as $|x| \rightarrow \infty$.
(2) There are a constant C and a function $W(t) \in L^{1}(I)$ such that

$$
H(t, \theta x) \leq C(H(t, x)+W(t)), \quad 0 \leq \theta \leq 1, t \in I, x \in \mathbb{R}^{n},
$$

where

$$
H(t, x):=\nabla_{x} V(t, x) \cdot x-2 V(t, x)
$$

Theorem 1.6. Assume:
(1) $0 \leq V(t, x) /|x|^{2} \rightarrow \infty$ as $|x| \rightarrow \infty$.
(2) There are positive constants α, m such that

$$
\int_{0}^{T} V(t, x) d t \leq \alpha, \quad|x| \leq m, x \in \mathbb{R}^{n}
$$

(3) There are a constant C and a function $W(t) \in L^{1}(I)$ such that

$$
H(t, \theta x) \leq C(H(t, x)+W(t)), \quad 0 \leq \theta \leq 1, t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for all values of β satisfying $0<\beta<6 \mathrm{~m}^{2} / \alpha T$.
Theorem 1.7. Assume:
(1) $0 \leq V(t, x) /|x|^{2} \rightarrow \infty$ as $|x| \rightarrow \infty$.
(2) There is a constant $q>2$ such that

$$
V(t, x) \leq C\left(|x|^{q}+1\right), \quad t \in I, x \in \mathbb{R}^{n}
$$

(3) There are constants $m>0, \alpha>0$ such that

$$
V(t, x) \leq \alpha|x|^{2}, \quad|x| \leq m, t \in I, x \in \mathbb{R}^{n}
$$

(4) There are a constant C and a function $W(t) \in L^{1}(I)$ such that

$$
H(t, \theta x) \leq C(H(t, x)+W(t)), \quad 0 \leq \theta \leq 1, t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for all β satisfying $0<\beta<2 \pi^{2} / \alpha T^{2}$.
The periodic nonautonomous problem

$$
\begin{equation*}
\ddot{x}(t)=\nabla_{x} V(t, x(t)) \tag{1-5}
\end{equation*}
$$

has an extensive history in the case of singular systems (see, for example, [Ambrosetti and Coti Zelati 1993]). The first to consider it for potentials satisfying (1-3) were Berger and the author [1977]. We proved the existence of solutions to (1-4) under the condition that

$$
V(t, x) \rightarrow \infty \quad \text { as }|x| \rightarrow \infty
$$

uniformly for a.e. $t \in I$. Subsequently, Willem [1981], Mawhin [1987], Mawhin and Willem [1989], Tang [1995; 1998], Tang and Wu [1999; 2001; 2002] and others (see the references therein) proved existence under various conditions.

The periodic problem (1-1) was studied by Mawhin and Willem [1986; 1989], Long [1995], Tang and Wu [2003] and others. Tang and Wu [2003] proved existence of solutions of problem (1-1) under the following hypotheses:
(I) $V(t, x) \rightarrow \infty$ as $|x| \rightarrow \infty$ uniformly for a.e. $t \in I$.
(II) There exist $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left(0, T, \mathbb{R}^{+}\right)$such that

$$
|V(t, x)|+|\nabla V(t, x)| \leq a(|x|) b(t) \quad \text { for all } x \in \mathbb{R}^{n} \text { and a.e. } t \in[0, T] .
$$

and the superquadraticity condition:
(III) There exist $0<\mu<2, M>0$ such that $V(t, x)>0, H_{\mu}:=\nabla V(t, x) \cdot x-\mu V(t, x) \leq 0 \quad$ for all $|x| \geq M$ and a.e. $t \in[0, T]$.

Rabinowitz [1980] proved existence under stronger hypotheses. In particular, in place of (I), he assumed:
(I') There exist constants $a_{1}, a_{2}>0, \mu_{0}>1$ such that

$$
V(t, x) \geq a_{1}|x|^{\mu_{0}}+a_{2} \quad \text { for all } x \in \mathbb{R}^{n} \text { and a.e. } t \in[0, T]
$$

In place of (III), he assumed:
(III') There exist $0<\mu<2, M>0$ such that

$$
0<\nabla V(t, x) \cdot x \leq \mu V(t, x) \quad \text { for all }|x| \geq M \text { and a.e. } t \in[0, T] .
$$

Mawhin and Willem [1986] proved existence for the case of convex potentials, while Long [1995] studied the problem for even potentials. They assumed that $V(t, x)$ is subquadratic in the sense that

$$
\begin{aligned}
& \text { there exist } a_{3}<(2 \pi / T)^{2} \text { and } a_{4} \text { such that } \\
& |V(t, x)| \leq a_{3}|x|^{2}+a_{4} \text { for all } x \in \mathbb{R}^{n} \text { and a.e. } t \in[0, T] .
\end{aligned}
$$

Mawhin and Willem [1989] also studied the problem for a bounded nonlinearity. Tang and Wu [2003] also proved existence of solutions if one replaces (I) with

$$
\int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty
$$

and $V(t, x)$ is γ-subadditive with $\gamma>0$ for a.e. $t \in[0, T]$. All of these authors studied only the existence of solutions.

All of the results mentioned above concerned the existence of solutions, which might be constants. Little was done concerning nonconstant solutions of problem (1-1). For the homogeneous case, Ben-Naoum, Troestler and Willem [Ben-Naoum et al. 1994] proved the existence of a nonconstant solution. For the case $T=2 \pi$, Theorem 1.7, with substantially stronger hypotheses, was proved by Nirenberg; see [Ekeland and Ghoussoub 2002]. Among other things, they assumed

$$
V(t, x) \leq \frac{3}{2 \pi^{2}}, \quad|x| \leq 1, t \in \mathbb{R}, x \in \mathbb{R}^{n}
$$

and the superquadraticity condition

$$
V(t, x)>0, \quad H_{\mu}(t, x) \leq 0, \quad|x| \geq C, t \in \mathbb{R}, x \in \mathbb{R}^{n}
$$

for some $\mu>2$, which implies our hypotheses, and

$$
V(t, x) \geq C|x|^{\mu}-C^{\prime}, \quad x \in \mathbb{R}^{n}, C>0
$$

among other things. These results were generalized in [Schechter 2006a; 2006b]. Further results, involving some of the hypotheses used in these last two papers, were obtained in [Wang et al. 2009].

We shall prove Theorems 1.1-1.5 in Section 5, and Theorems 1.6 and 1.7 in Section 7. We use linking and sandwich methods of critical point theory and then apply the monotonicity trick introduced by Struwe [1988; 1996] for minimization problems. (This trick was also used by others to solve Landesman-Lazer type problems, for bifurcation problems, for Hamiltonian systems and Schrödinger equations.)

Jeanjean [1999] shows that for a specific class of functionals having a mountainpass (MP) geometry, almost every functional in this class has a bounded PalaisSmale sequence at the (MP) level. This theorem is used to obtain, for a given functional, a special Palais-Smale sequence possessing extra properties that help to ensure its convergence. Subsequently, these abstract results are applied to prove the existence of a positive solution for a problem of the form (P) $-\Delta u+K u=$ $f(x, u), u \in H^{1}\left(R^{N}\right), K>0$. He assumed that the functional associated to (P) has an (MP) geometry. His results cover the case where the nonlinearity f satisfies (i) $f(x, s) s^{-1} \rightarrow a \in(0, \infty]$ as $s \rightarrow+\infty$ and (ii) $f(x, s) s^{-1}$ is nondecreasing as a function of $s \geq 0$, a.e. $x \in R^{N}$.

Here, we obtain a bounded Palais-Smale sequences for functionals that need not have (MP) geometry. We then apply the theory to situations in which the (MP) geometry is not present. In particular, we apply it to situations where there is linking without the (MP) geometry. We also apply it to situations in which there are sandwich pairs which do not link.

The theory of sandwich pairs began in [Silva 1991; Schechter 1992; 1993] and was developed in subsequent publications such as [Schechter 2008; 2009].

2. Flows

Let E be a Banach space, and let Σ be the set of all continuous maps $\sigma=\sigma(t)$ from $E \times[0,1]$ to E such that
(1) $\sigma(0)$ is the identity map,
(2) for each $t \in[0,1], \sigma(t)$ is a homeomorphism of E onto E,
(3) $\sigma^{\prime}(t)$ is piecewise continuous on $[0,1]$ and satisfies

$$
\begin{equation*}
\left\|\sigma^{\prime}(t) u\right\| \leq \text { constant }, \quad u \in E \tag{2-1}
\end{equation*}
$$

The mappings in Σ are called flows.
Remark 2.1. If σ_{1}, σ_{2} are in Σ, define $\sigma_{3}=\sigma_{1} \circ \sigma_{2}$ by

$$
\sigma_{3}(s)= \begin{cases}\sigma_{1}(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \sigma_{2}(2 s-1) \sigma_{1}(1) & \text { if } \frac{1}{2}<s \leq 1\end{cases}
$$

Then $\sigma_{1} \circ \sigma_{2} \in \Sigma$.

3. Sandwich systems

Let E be a Banach space. Define a nonempty collection \mathscr{K} of nonempty subsets $K \subset E$ to be a sandwich system if \mathscr{K} has the following property:

$$
\sigma(1) K \in \mathscr{K}, \quad \sigma \in \Sigma, K \in \mathscr{K} .
$$

Theorem 3.1. Let \mathscr{K} be a sandwich system, and let $G(u)$ be a C^{1} functional on E. Define

$$
\begin{equation*}
a:=\inf _{K \in \mathscr{K}} \sup _{K} G, \tag{3-1}
\end{equation*}
$$

and assume that a is finite. Assume, in addition, that there is a constant C_{0} such that for each $\delta>0$ there is a $K \in \mathscr{K}$ satisfying

$$
\begin{equation*}
\sup _{K} G \leq a+\delta \tag{3-2}
\end{equation*}
$$

such that the inequality

$$
\begin{equation*}
G(u) \geq a-\delta, \quad u \in K \tag{3-3}
\end{equation*}
$$

implies $\|u\| \leq C_{0}$. Then there is a bounded sequence $\left\{u_{k}\right\} \subset E$ such that

$$
\begin{equation*}
G\left(u_{k}\right) \rightarrow a, \quad\left\|G^{\prime}\left(u_{k}\right)\right\| \rightarrow 0 \tag{3-4}
\end{equation*}
$$

Theorem 3.2. Let \mathscr{K} be a sandwich system, and let $G(u)$ be a C^{1} functional on E. Assume that there are subsets A, B of E such that

$$
\begin{equation*}
a_{0}:=\sup _{A} G<\infty, \quad b_{0}:=\inf _{B} G>-\infty, \tag{3-5}
\end{equation*}
$$

$A \in \mathscr{K}$ and

$$
\begin{equation*}
B \cap K \neq \varnothing, \quad K \in \mathscr{K} . \tag{3-6}
\end{equation*}
$$

Assume, in addition, that there is a constant C_{0} such that for each $\delta>0$ there is a $K \in \mathscr{K}$ satisfying (3-2) such that the inequality (3-3) implies $\|u\| \leq C_{0}$. Then the value a given by (3-1) satisfies $b_{0} \leq a \leq a_{0}$ and there is a bounded sequence $\left\{u_{k}\right\} \subset E$ such that

$$
\begin{equation*}
G\left(u_{k}\right) \rightarrow a, \quad\left\|G^{\prime}\left(u_{k}\right)\right\| \rightarrow 0 \tag{3-7}
\end{equation*}
$$

Definition 3.3. We shall say that sets A, B in E form a sandwich pair if A is a member of a sandwich system \mathscr{K} and B satisfies (3-6).

Theorem 3.4. Let N be a finite dimensional subspace of a Banach space E, and let p be any point of N. Let F be a continuous map of E onto N such that $F=I$ on N. Then $A=N$ and $B=F^{-1}(p)$ form a sandwich pair.

Corollary 3.5. Let N be a closed subspace of a Hilbert space E and let $M=N^{\perp}$. Assume that at least one of the subspaces M, N is finite dimensional. Then M, N form a sandwich pair.

Corollary 3.6. Let N be a finite dimensional subspace of a Hilbert space E with complement $M^{\prime}=M \oplus\left\{v_{0}\right\}$, where v_{0} is an element in E having unit norm, and let δ be any positive number. Let $\varphi(t) \in C^{1}(\mathbb{R})$ be such that

$$
0 \leq \varphi(t) \leq 1, \varphi(0)=1 \quad \text { and } \quad \varphi(t)=0,|t| \geq 1
$$

Let

$$
\begin{equation*}
F\left(v+w+s v_{0}\right)=v+\left(s+\delta-\delta \varphi\left(\|w\|^{2} / \delta^{2}\right)\right) v_{0}, \quad v \in N, w \in M, s \in \mathbb{R} \tag{3-8}
\end{equation*}
$$

Then $A=N^{\prime}=N \oplus\left\{v_{0}\right\}$ and $B=F^{-1}\left(\delta v_{0}\right)$ form a sandwich pair.
Proof. One checks that the mapping F given by (3-8) satisfies the hypotheses of Theorem 3.4 for N^{\prime}.

4. The parameter problem

Let E be a reflexive Banach space with norm $\|\cdot\|$, and let A, B be two closed subsets of E. Suppose that $G \in \mathscr{C} 1(E, \mathbb{R})$ is of the form $G(u):=I(u)-J(u), u \in E$, where $I, J \in \mathscr{C}^{1}(E, \mathbb{R})$ map bounded sets to bounded sets. Define

$$
G_{\lambda}(u)=\lambda I(u)-J(u), \quad \lambda \in \Lambda,
$$

where Λ is an open interval contained in $(0,+\infty)$. Assume one of the following alternatives holds.
$\left(H_{1}\right) \quad I(u) \geq 0$ for all $u \in E$ and $I(u)+|J(u)| \rightarrow \infty$ as $\|u\| \rightarrow \infty$.
$\left(H_{2}\right) \quad I(u) \leq 0$ for all $u \in E$ and $|I(u)|+|J(u)| \rightarrow \infty$ as $\|u\| \rightarrow \infty$.
Furthermore, we suppose that \mathscr{K} is a sandwich system satisfying
$\left(H_{3}\right) a(\lambda):=\inf _{K \in \mathscr{K}} \sup _{K} G_{\lambda}$ is finite for each $\lambda \in \Lambda$.
Theorem 4.1. Assume that $\left(H_{1}\right)\left(\right.$ or $\left.\left(H_{2}\right)\right)$ and $\left(H_{3}\right)$ hold.
(1) For almost all $\lambda \in \Lambda$ there exists a constant $k_{0}(\lambda):=k_{0}$ (depending only on λ) such that for each $\delta>0$ there exists a $K \in \mathscr{K}$ such that

$$
\begin{equation*}
\|u\| \leq k_{0} \quad \text { whenever } \quad u \in K \quad \text { and } \quad G_{\lambda}(u) \geq a(\lambda)-\delta . \tag{4-1}
\end{equation*}
$$

(2) For almost all $\lambda \in \Lambda$ there exists a bounded sequence $u_{k}(\lambda) \in E$ such that

$$
\left\|G_{\lambda}^{\prime}\left(u_{k}\right)\right\| \rightarrow 0, \quad G_{\lambda}\left(u_{k}\right) \rightarrow a(\lambda):=\inf _{K \in \mathscr{K}} \sup _{K} G_{\lambda} \quad \text { as } k \rightarrow \infty
$$

Corollary 4.2. The conclusions of Theorem 4.1 hold if we replace Hypothesis $\left(H_{3}\right)$ with:
(H_{3}^{\prime}) There is a sandwich pair A, B such that for each $\lambda \in \Lambda$,

$$
\begin{equation*}
a_{0}:=\sup _{A} G_{\lambda}<\infty, \quad b_{0}:=\inf _{B} G_{\lambda}>-\infty \tag{4-2}
\end{equation*}
$$

Corollary 4.3. The conclusions of Theorem 4.1 hold if we replace Hypothesis $\left(H_{3}\right)$ with:
$\left(H_{3}^{\prime \prime}\right)$ There are sets A, B such that A links B and for each $\lambda \in \Lambda$,

$$
\begin{equation*}
a_{0}:=\sup _{A} G_{\lambda} \leq b_{0}:=\inf _{B} G_{\lambda} \tag{4-3}
\end{equation*}
$$

5. Proofs of the theorems

We now give the proof of Theorem 1.4.
Proof. Let X be the set of vector functions $x(t)$ described above. It is a Hilbert space with norm satisfying

$$
\|x\|_{X}^{2}=\sum_{j=1}^{n}\left\|x_{j}\right\|_{H^{1}}^{2}
$$

We also write

$$
\|x\|^{2}=\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}
$$

where $\|\cdot\|$ is the $L^{2}(I)$ norm.
Let

$$
N=\left\{x(t) \in X: x_{j}(t) \equiv \text { constant for } 1 \leq j \leq n\right\}
$$

and set $M=N^{\perp}$. The dimension of N is n, and $X=M \oplus N$. See, for example, [Mawhin and Willem 1989, Proposition 1.3] for details on the following lemma.

Lemma 5.1. If $x \in M$, then

$$
\|x\|_{\infty}^{2} \leq \frac{T}{12}\|\dot{x}\|^{2} \quad \text { and } \quad\|x\| \leq \frac{T}{2 \pi}\|\dot{x}\| .
$$

Define

$$
\begin{equation*}
G(x)=\|\dot{x}\|^{2}-2 \int_{I} V(t, x(t)) d t, \quad x \in X \tag{5-1}
\end{equation*}
$$

For each $x \in X$ write $x=v+w$, where $v \in N, w \in M$. For convenience, we shall follow [Mawhin and Willem 1989] and use the equivalent norm for X :

$$
\|x\|_{X}^{2}=\|\dot{w}\|^{2}+\|v\|^{2} .
$$

Let

$$
I(x)=\|\dot{x}\|^{2}, \quad J(x)=2 \int_{I} V(t, x(t)) d t
$$

By Hypothesis (1),

$$
J(v) \rightarrow \infty \quad \text { as }\|v\| \rightarrow \infty, v \in N
$$

Hence,

$$
I(x)+|J(x)| \rightarrow \infty \quad \text { as }\|x\|_{X} \rightarrow \infty
$$

Let

$$
\begin{equation*}
G_{\lambda}(x)=\lambda\|\dot{x}\|^{2}-2 \int_{I} V(t, x(t)) d t=\lambda I(x)-J(x), \quad x \in X \tag{5-2}
\end{equation*}
$$

Hypothesis (1) implies

$$
\begin{equation*}
\sup _{N} G_{\lambda}(v)=-\inf _{N} J(v)<\infty \tag{5-3}
\end{equation*}
$$

If $x \in M$, we have by Hypothesis (2) and Lemma 5.1 that

$$
\begin{align*}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \int \alpha|x(t)|^{2} d t-B \tag{5-4}\\
& \geq\left(\frac{4 \pi^{2} \lambda}{T^{2}}-2 \alpha\right)\|x\|^{2}-B \geq-B
\end{align*}
$$

provided

$$
\begin{equation*}
\lambda \geq \alpha T^{2} / 2 \pi^{2} \tag{5-5}
\end{equation*}
$$

By Corollary 3.5, M and N form a sandwich pair. Then by Corollary 4.2, for almost every λ satisfying (5-5) there is a bounded sequence $\left\{x^{(k)}\right\} \subset X$ such that

$$
\begin{align*}
G_{\lambda}\left(x^{(k)}\right) & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-2 \int_{I} V\left(t, x^{(k)}(t)\right) d t \rightarrow c \geq-B, \tag{5-6}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), z\right) / 2 & =\lambda\left(\dot{x}^{(k)}, \dot{z}\right)-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot z(t) d t \rightarrow 0, \quad z \in X, \tag{5-7}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), x^{(k)}\right) / 2 & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot x^{(k)} d t \rightarrow 0 . \tag{5-8}
\end{align*}
$$

Since

$$
\rho_{k}=\left\|x^{(k)}\right\|_{X} \leq C
$$

there is a renamed subsequence such that $x^{(k)}$ converges to a limit $x \in X$ weakly in X and uniformly on I. From (5-7) we see that

$$
\left(G_{\lambda}^{\prime}(x), z\right) / 2=\lambda(\dot{x}, \dot{z})-\int_{I} \nabla_{x} V(t, x(t)) \cdot z(t) d t=0, \quad z \in X
$$

from which we conclude easily that x is a solution of (1-4) with $\beta=1 / \lambda$, proving the first statement of the theorem. To prove the second, note that (5-4) implies

$$
G_{\lambda}(x) \geq-B, \quad x \in M .
$$

Consequently, if $B<0$, we see that

$$
b_{0}=\inf _{M} G_{\lambda}(x)>0
$$

Thus, the solution x satisfies $G_{\lambda}(x) \geq b_{0}>0$. If x were a constant, we would have $G_{\lambda}(x)=-J(x) \leq 0$, a contradiction. This gives the result.

The proof of Theorem 1.5 is similar to that of Theorem 1.4 with the exception of the inequality (5-4) resulting from Hypothesis (2). In its place we reason as follows: If $x \in M$ and $\|\dot{x}\|^{2}=12 m^{2} / T$, then $|x| \leq m$ by Lemma 5.1. Thus, we have by Hypothesis (2^{\prime}),

$$
\begin{aligned}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \alpha m^{2}-B \\
& \geq(12 \lambda-2 \alpha T) m^{2} / T-B \geq-B
\end{aligned}
$$

provided $\lambda \geq \alpha T / 6$. The remainder of the proof is essentially the same.
In proving Theorem 1.1, we follow the proof of Theorem 1.4. Hypothesis (1) implies

$$
\begin{equation*}
G_{\lambda}(v) \leq 0, \quad v \in N \tag{5-9}
\end{equation*}
$$

If $x \in M$ and

$$
\|\dot{x}\|^{2}=\rho^{2}=\frac{12}{T} m^{2}
$$

then Lemma 5.1 implies that $\|x\|_{\infty} \leq m$, and we have by Hypothesis (2) that $\int_{0}^{T} V(t, x) d t \leq \alpha$. Hence,

$$
\begin{align*}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \int_{0}^{T} V(t, x) d t \tag{5-10}\\
& \geq \lambda \rho^{2}-2 \alpha \geq 0
\end{align*}
$$

provided $\lambda \geq \alpha T / 6 m^{2}$.
If we take

$$
A=M \cap B_{\rho}, \quad B=N
$$

then A links B by [Schechter 1999, Corollary 13.5]. Thus, we see that Hypothesis $\left(H_{3}^{\prime \prime}\right)$ of Corollary 4.3 holds with G_{λ} replaced with $-G_{\lambda}$. By that corollary, there is a bounded sequence satisfying (5-6)-(5-8). The first result now follows as before. To prove the second, let

$$
y(t)=v+s w_{0}
$$

where $v \in N, s \geq 0$, and

$$
w_{0}=(\sin (2 \pi t / T), 0, \ldots, 0)
$$

Then $w_{0} \in M$, and

$$
\left\|w_{0}\right\|^{2}=T / 2, \quad\left\|\dot{w}_{0}\right\|^{2}=2 \pi^{2} / T
$$

Note that

$$
\|y\|^{2}=\|v\|^{2}+s^{2} T / 2=T|v|^{2}+T s^{2} / 2
$$

Consequently,

$$
\begin{aligned}
G_{\lambda}(y) & =\lambda s^{2}\left\|\dot{w}_{0}\right\|^{2}-2 \int_{I} V(t, y(t)) d t \leq 2 \lambda \pi^{2} s^{2} / T-2 \gamma \int_{I}|y(t)|^{2} d t+B \\
& \leq 2 \lambda \pi^{2} s^{2} / T-2 \gamma\left(\|v\|^{2}+T s^{2} / 2\right)+B \\
& \leq\left(2 \lambda \pi^{2}-\gamma T^{2}\right) s^{2} / T-2 T \gamma|v|^{2}+B \rightarrow-\infty \text { as } s^{2}+|v|^{2} \rightarrow \infty
\end{aligned}
$$

Take

$$
\begin{aligned}
& A=\{v \in N: \mid v \| \leq R\} \cup\left\{s w_{0}+v: v \in N, s \geq 0,\left\|s w_{0}+v\right\|=R\right\} \\
& B=\partial B_{\rho} \cap M, 0<\rho<R
\end{aligned}
$$

where

$$
B_{\sigma}=\left\{x \in X:\|x\|_{X}<\sigma\right\} .
$$

By [Schechter 1999, Example 3, page 38], A links B. Moreover, if R is sufficiently large,

$$
\begin{equation*}
\sup _{A} G_{\lambda} \leq 0 \leq \inf _{B} G_{\lambda} \tag{5-11}
\end{equation*}
$$

Hence, we may apply [Schechter 1999, Corollary 2.8.2] and Corollary 4.3 to conclude that there is a sequence $\left\{x^{(k)}\right\} \subset X$ such that

$$
\begin{align*}
G_{\lambda}\left(x^{(k)}\right) & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-2 \int_{I} V\left(t, x^{(k)}(t)\right) d t \rightarrow c \geq 0, \tag{5-12}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), z\right) / 2 & =\lambda\left(\dot{x}^{(k)}, \dot{z}\right)-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot z(t) d t \rightarrow 0, \quad z \in X, \tag{5-13}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), x^{(k)}\right) / 2 & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot x^{(k)} d t \rightarrow 0 . \tag{5-14}
\end{align*}
$$

Since

$$
\rho_{k}=\left\|x^{(k)}\right\|_{X} \leq C,
$$

there is a renamed subsequence such that $x^{(k)}$ converges to a limit $x \in X$ weakly in X and uniformly on I. From (5-13) we see that

$$
\left(G_{\lambda}^{\prime}(x), z\right) / 2=\lambda(\dot{x}, \dot{z})-\int_{I} \nabla_{x} V(t, x(t)) \cdot z(t) d t=0, \quad z \in X
$$

from which we conclude easily that x is a solution of (1-1). By (5-12) we see that

$$
G_{\lambda}(x) \geq c \geq 0
$$

showing that $x(t)$ is not a constant. For if $c>0$ and $x \in N$, then

$$
G_{\lambda}(x)=-2 \int_{I} V(t, x(t)) d t \leq 0
$$

If $c=0$, we know that $d\left(x^{(k)}, B\right) \rightarrow 0$ by [Schechter 1999, Theorem 2.1.1]. Hence, there is a sequence $\left\{y^{(k)}\right\} \subset B$ such that $x^{(k)}-y^{(k)} \rightarrow 0$ in X. If $v \in N$, then

$$
(x, v)=\left(x-x^{(k)}, v\right)+\left(x^{(k)}-y^{(k)}, v\right) \rightarrow 0
$$

since $y^{(k)} \in M$. Thus $x \in M$. This completes the proof.
To prove Theorem 1.3, note that Hypothesis (1) implies

$$
\begin{equation*}
G_{\lambda}(v) \leq 0, \quad v \in N \tag{5-15}
\end{equation*}
$$

If $x \in M$, we have by Hypothesis (2)

$$
\begin{aligned}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \int_{|x|<m} \alpha|x(t)|^{2} d t-C \int_{|x|>m}\left(|x|^{q}+1\right) d t \\
& \geq \lambda\|\dot{x}\|^{2}-2 \alpha\|x\|^{2}-C\left(1+m^{2-q}+m^{-q}\right) \int_{|x|>m}|x|^{q} d t \\
& \geq\|\dot{x}\|^{2}\left(\lambda-\left(2 \alpha T^{2} / 4 \pi^{2}\right)\right)-C^{\prime} \int_{|x|>m}|x|^{q} d t \\
& \geq\left(\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)\right)\|x\|_{X}^{2}-C^{\prime \prime} \int_{I}\|x\|_{X}^{q} d t \\
& \geq\left(\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)\right)\|x\|_{X}^{2}-C^{\prime \prime \prime}\|x\|_{X}^{q}=\left(\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)-C^{\prime \prime \prime}\|x\|_{X}^{q-2}\right)\|x\|_{X}^{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
G_{\lambda}(x) \geq \varepsilon\|x\|_{X}^{2}, \quad\|x\|_{X} \leq \rho, \quad x \in M \tag{5-16}
\end{equation*}
$$

for $\rho>0$ sufficiently small, where $\varepsilon<\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)$ is positive. If we take

$$
A=M \cap B_{\rho}, \quad B=N
$$

then A links B by [Schechter 1999, Corollary 13.5]. Thus, Hypothesis $\left(H_{3}^{\prime \prime}\right)$ of Corollary 4.3 holds with G_{λ} replaced with $-G_{\lambda}$. By that corollary, there is a bounded sequence satisfying (5-6)-(5-8). The result now follows as before.

6. Finding the sequences

Proof of Theorem 3.1. Let $M=C_{0}+1$. Then

$$
\|\sigma(1) v\| \leq M
$$

whenever $\sigma \in \Sigma$ satisfies $\left\|\sigma^{\prime}(t)\right\| \leq 1$ and $v \in E$ satisfies $\|v\| \leq C_{0}$. If the theorem were false, then there would be a $\delta>0$ such that

$$
\begin{equation*}
\left\|G^{\prime}(u)\right\| \geq 3 \delta \tag{6-1}
\end{equation*}
$$

when

$$
\begin{equation*}
u \in\{u \in E:\|u\| \leq M+1,|G(u)-a| \leq 3 \delta\} \tag{6-2}
\end{equation*}
$$

Take $\delta<1 / 3$. Since $G \in C^{1}(E, \mathbb{R})$, for each $\theta<1$ there is a locally Lipschitz continuous mapping $Y(u)$ of $\hat{E}=\left\{u \in E: G^{\prime}(u) \neq 0\right\}$ into E such that

$$
\begin{equation*}
\|Y(u)\| \leq 1, \quad \theta\left\|G^{\prime}(u)\right\| \leq\left(G^{\prime}(u), Y(u)\right), \quad u \in \hat{E} \tag{6-3}
\end{equation*}
$$

(see, for example, [Schechter 1999]). Take $\theta>2 / 3$. Let

$$
\begin{aligned}
Q_{0} & =\{u \in E:\|u\| \leq M+1,|G(u)-a| \leq 2 \delta\} \\
Q_{1} & =\{u \in E:\|u\| \leq M,|G(u)-a| \leq \delta\} \\
Q_{2} & =E \backslash Q_{0}, \\
\eta(u) & =d\left(u, Q_{2}\right) /\left(d\left(u, Q_{1}\right)+d\left(u, Q_{2}\right)\right)
\end{aligned}
$$

It is easily checked that $\eta(u)$ is locally Lipschitz continuous on E and satisfies

$$
\begin{cases}\eta(u)=1 & \text { if } u \in Q_{1} \tag{6-4}\\ \eta(u)=0 & \text { if } u \in \bar{Q}_{2} \\ \eta(u) \in(0,1) & \text { otherwise }\end{cases}
$$

Let

$$
W(u)=-\eta(u) Y(u)
$$

Then

$$
\|W(u)\| \leq 1, \quad u \in E
$$

By [Schechter 2009, Theorem 4.5], for each $v \in E$ there is a unique solution $\sigma(t) v$ of the system

$$
\begin{equation*}
\sigma^{\prime}(t)=W(\sigma(t)), t \in \mathbb{R}^{+}, \quad \sigma(0)=v \tag{6-5}
\end{equation*}
$$

We have

$$
\begin{align*}
d G(\sigma(t) v) / d t & =-\eta(\sigma(t) v)\left(G^{\prime}(\sigma(t) v), Y(\sigma(t) v)\right) \tag{6-6}\\
& \leq-\theta \eta(\sigma)\left\|G^{\prime}(\sigma)\right\| \leq-3 \theta \delta \eta(\sigma)
\end{align*}
$$

Let $K \in \mathscr{K}$ satisfy the hypotheses of the theorem. Let v be any element of $K \cap Q_{1}$. Then $\|v\| \leq C_{0}$. If there is a $t_{1} \leq 1$ such that $\sigma\left(t_{1}\right) v \notin Q_{1}$, then

$$
\begin{equation*}
G(\sigma(1) v)<a-\delta \tag{6-7}
\end{equation*}
$$

since $\|\sigma(1) v\| \leq M$,

$$
G(\sigma(1) v) \leq G\left(\sigma\left(t_{1}\right) v\right)
$$

and the right hand side cannot be greater than $a+\delta$ by (6-6). On the other hand, if $\sigma(t) v \in Q_{1}$ for all $t \in[0,1]$, then we have by (6-6)

$$
G(\sigma(1) v) \leq a+\delta-3 \delta \theta<a-\delta
$$

If $v \in K \backslash Q_{1}$, then we must have

$$
G(\sigma(1) v) \leq G(v)<a-\delta
$$

since $G(v) \geq a-\delta$ would put v into Q_{1}. Hence

$$
\begin{equation*}
G(\sigma(1) v)<a-\delta, \quad v \in K \tag{6-8}
\end{equation*}
$$

By hypothesis, $\widetilde{K}=\sigma(1) K \in \mathscr{K}$. This means that

$$
\begin{equation*}
G(w)<a-\delta, \quad w \in \widetilde{K} \tag{6-9}
\end{equation*}
$$

But this contradicts the definition (3-1) of a. Hence (6-1) cannot hold for u satisfying (6-2). This proves the theorem.
Proof of Theorem 3.2. Since $A \in \mathscr{K}$, clearly $a \leq a_{0}$. Moreover, for any $K \in \mathscr{K}$, we have

$$
b_{0}=\inf _{B} G_{\lambda} \leq \inf _{B \cap K} G_{\lambda} \leq \sup _{B \cap K} G_{\lambda} \leq \sup _{K} G_{\lambda}
$$

Hence, $b_{0} \leq a$. Apply Theorem 3.1.
Proof of Theorem 3.4. Define

$$
\mathscr{K}=\{\sigma(1) A: \sigma \in \Sigma\} .
$$

Then \mathscr{K} is a sandwich system. To see this, let $K=\widetilde{\sigma}(1) A$ be a set in \mathscr{K}. If $\sigma \in \Sigma$, then $\sigma \circ \widetilde{\sigma}$ is also in Σ. Thus, \mathscr{K} is a sandwich system. Let $B=F^{-1}(p)$. If we can show that B satisfies (3-6), then the result will follow from Theorem 3.2. Now (3-6) is equivalent to

$$
F^{-1}(p) \cap \sigma(1) N \neq \varnothing, \quad \sigma \in \Sigma
$$

Let $\Omega_{R}(p)$ be a ball in N with radius R and center p, and let $\sigma(t)$ be any flow in Σ. Since

$$
\begin{equation*}
\sigma(t) u-u=\int_{0}^{t} \sigma^{\prime}(\tau) u d \tau \tag{6-10}
\end{equation*}
$$

we have

$$
\|\sigma(t) u-\sigma(s) u\| \leq C|t-s|
$$

If $u \in A_{R}=\partial \Omega_{R}(p)$, and $v \in B$, we have

$$
h(s):=d(\sigma(s) u, B) \leq\|\sigma(s) u-v\| \leq\|\sigma(t) u-v\|+C|t-s|
$$

This implies

$$
\begin{equation*}
h(s) \leq h(t)+C|t-s| . \tag{6-11}
\end{equation*}
$$

Moreover, by [Schechter 2009, Lemmas 4.3 and 4.8], $h(s)$ satisfies

$$
h(s) \geq m(R) \rightarrow \infty \quad \text { as } R \rightarrow \infty, \quad 0 \leq s \leq 1, u \in \partial \Omega_{R}(p)
$$

Thus,

$$
\left\|\sigma(s) u-F^{-1}(p)\right\| \geq h(s) \geq m(R) \rightarrow \infty, \quad u \in A_{R}
$$

Consequently,

$$
\begin{equation*}
F^{-1}(p) \cap \sigma(1) A_{R}=\varnothing, \quad \sigma \in \Sigma \tag{6-12}
\end{equation*}
$$

for R sufficiently large. Now A_{R} links B; see, for example, [Schechter 1999]. For $\Gamma \in \Phi$, define

$$
\Gamma_{1}(s)= \begin{cases}\sigma(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \sigma(1) \Gamma(2 s-1) & \text { if } \frac{1}{2}<s \leq 1\end{cases}
$$

Clearly, $\Gamma_{1} \in \Phi$. Consequently, there is a $t_{0} \in[0,1]$ such that

$$
\Gamma_{1}\left(t_{0}\right) A_{R} \cap B \neq \varnothing
$$

If $t_{0} \leq \frac{1}{2}$, then

$$
\sigma\left(2 t_{0}\right) A_{R} \cap B \neq \varnothing
$$

contradicting (6-12). If $t_{0}>\frac{1}{2}$, then

$$
\sigma(1) \Gamma\left(2 t_{0}-1\right) A_{R} \cap B \neq \varnothing .
$$

Take $\Gamma(s) u=(1-s) u$. Then $\Gamma \in \Phi$ and $\Gamma\left(2 t_{0}-1\right) A_{R} \subset N$. Hence,

$$
\sigma(1) N \cap B \neq \varnothing
$$

Thus (3-6) holds, and the theorem is proved.

7. The monotonicity trick

Proof of Theorem 4.1. We prove conclusion (1) assuming the first of the alternative hypotheses, $\left(H_{1}\right)$.

By $\left(H_{1}\right)$, the map $\lambda \mapsto a(\lambda)$ is nondecreasing. Hence, $a^{\prime}(\lambda):=d a(\lambda) / d \lambda$ exists for almost every $\lambda \in \Lambda$. From this point on, we consider those λ where $a^{\prime}(\lambda)$ exists. For fixed $\lambda \in \Lambda$, let $\lambda_{n} \in(\lambda, 2 \lambda) \cap \Lambda, \lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. Then there exists $\bar{n}(\lambda)$ such that

$$
\begin{equation*}
a^{\prime}(\lambda)-1 \leq \frac{a\left(\lambda_{n}\right)-a(\lambda)}{\lambda_{n}-\lambda} \leq a^{\prime}(\lambda)+1 \quad \text { for } n \geq \bar{n}(\lambda) \tag{7-1}
\end{equation*}
$$

Next, there exist $K_{n} \in \mathscr{K}_{Q}, k_{0}:=k_{0}(\lambda)>0$ such that

$$
\begin{equation*}
\|u\| \leq k_{0} \quad \text { whenever } \quad G_{\lambda}(u) \geq a(\lambda)-\left(\lambda_{n}-\lambda\right) . \tag{7-2}
\end{equation*}
$$

In fact, by the definition of $a\left(\lambda_{n}\right)$, there exists K_{n} such that

$$
\begin{equation*}
\sup _{K_{n}} G_{\lambda}(u) \leq \sup _{K_{n}} G_{\lambda_{n}}(u) \leq a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right) \tag{7-3}
\end{equation*}
$$

If $G_{\lambda}(u) \geq a(\lambda)-\left(\lambda_{n}-\lambda\right)$ for some $u \in K_{n}$, then, by (7-1) and (7-3), we have that

$$
\begin{align*}
I(u) & =\frac{G_{\lambda_{n}}(u)-G_{\lambda}(u)}{\lambda_{n}-\lambda} \tag{7-4}\\
& \leq \frac{a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right)-a(\lambda)+\left(\lambda_{n}-\lambda\right)}{\lambda_{n}-\lambda} \\
& \leq a^{\prime}(\lambda)+3,
\end{align*}
$$

and it follows that

$$
\begin{align*}
J(u) & =\lambda_{n} I(u)-G_{\lambda_{n}}(u) \tag{7-5}\\
& \leq \lambda_{n}\left(a^{\prime}(\lambda)+3\right)-G_{\lambda}(u) \\
& \leq \lambda_{n}\left(a^{\prime}(\lambda)+3\right)-a(\lambda)+\left(\lambda_{n}-\lambda\right) \\
& \leq 2 \lambda\left(a^{\prime}(\lambda)+3\right)-a(\lambda)+\lambda .
\end{align*}
$$

On the other hand, by $\left(H_{1}\right),(7-1)$, and (7-3),

$$
\begin{align*}
J(u) & =\lambda_{n} I(u)-G_{\lambda_{n}}(u) \tag{7-6}\\
& \geq-G_{\lambda_{n}}(u) \\
& \geq-\left(a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right)\right) \\
& \geq-\left(a(\lambda)+\left(\lambda_{n}-\lambda\right)\left(a^{\prime}(\lambda)+2\right)\right) \\
& \geq-a(\lambda)-\lambda\left|a^{\prime}(\lambda)+2\right| .
\end{align*}
$$

Combining (7-4)-(7-7) and $\left(H_{1}\right)$, we see that there exists $k_{0}(\lambda):=k_{0}$ (depending only on λ) such that (7-2) holds.

By the choice of K_{n} and (7-1), we see that

$$
\begin{aligned}
G_{\lambda}(u) & \leq G_{\lambda_{n}}(u) \leq \sup _{K_{n}} G_{\lambda_{n}}(u) \\
& \leq a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right) \\
& \leq\left(a^{\prime}(\lambda)+1\right)\left(\lambda_{n}-\lambda\right)+a(\lambda)+\left(\lambda_{n}-\lambda\right) \\
& \leq a(\lambda)+\left(a^{\prime}(\lambda)+2\right)\left(\lambda_{n}-\lambda\right)
\end{aligned}
$$

for all $u \in K_{n}$. Take n sufficiently large to ensure that $\left|a^{\prime}(\lambda)+2\right|\left(\lambda_{n}-\lambda\right)<\delta$. This proves conclusion (1). Conclusion (2) now follows from Theorem 3.1. The proof under Hypothesis $\left(H_{2}\right)$ is similar, and is omitted.

In proving Corollary 4.3, we shall make use of the following results of linking. Let E be a Banach space. The set Φ of mappings $\Gamma(t) \in C(E \times[0,1], E)$ is to have following properties:
(a) For each $t \in[0,1), \Gamma(t)$ is a homeomorphism of E onto itself and $\Gamma(t)^{-1}$ is continuous on $E \times[0,1)$.
(b) $\Gamma(0)=I$.
(c) For each $\Gamma(t) \in \Phi$ there is a $u_{0} \in E$ such that $\Gamma(1) u=u_{0}$ for all $u \in E$ and $\Gamma(t) u \rightarrow u_{0}$ as $t \rightarrow 1$ uniformly on bounded subsets of E.
(d) For each $t_{0} \in[0,1)$ and each bounded set $A \subset E$ we have

$$
\sup _{\substack{0 \leq t \leq t_{0} \\ u \in A}}\left\{\|\Gamma(t) u\|+\left\|\Gamma^{-1}(t) u\right\|\right\}<\infty
$$

A subset A of E links a subset B of E if $A \cap B=\varnothing$ and, for each $\Gamma(t) \in \Phi$, there is a $t \in(0,1]$ such that $\Gamma(t) A \cap B \neq \varnothing$.

Theorem [Schechter 1999, Theorem 2.1.1]. Let G be a C^{1}-functional on E, and let A, B be subsets of E such that A links B and

$$
a_{0}:=\sup _{A} G \leq b_{0}:=\inf _{B} G .
$$

Assume that

$$
a:=\inf _{\Gamma \in \Phi} \sup _{\substack{0 \leq s \leq 1 \\ u \in A}} G(\Gamma(s) u)
$$

is finite. Then there is a sequence $\left\{u_{k}\right\} \subset E$ such that

$$
G\left(u_{k}\right) \rightarrow a, \quad G^{\prime}\left(u_{k}\right) \rightarrow 0
$$

If $a=b_{0}$, then we can also require that

$$
d\left(u_{k}, B\right) \rightarrow 0
$$

Proof of Corollary 4.3. Let

$$
\mathscr{K}=\{\Gamma(s) A: \Gamma \in \Phi, s \in I\} .
$$

Then \mathscr{K} is a sandwich system. In fact, if $\sigma \in \Sigma$ and $\Gamma \in \Phi$, define

$$
\Gamma_{1}(s)= \begin{cases}\sigma(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \sigma(1) \Gamma(2 s-1) & \text { if } \frac{1}{2}<s \leq 1\end{cases}
$$

Then $\Gamma_{1} \in \Phi$. Thus,

$$
\sigma(1) K \in \mathscr{K}, \quad \sigma \in \Sigma, K \in \mathscr{K} .
$$

Since A links B, we have for each $\Gamma(t) \in \Phi$, there is a $t \in(0,1]$ such that $\Gamma(t) A \cap B \neq \varnothing$. Consequently,

$$
\begin{equation*}
B \cap K \neq \varnothing, \quad K \in \mathscr{K} . \tag{7-7}
\end{equation*}
$$

Thus, A, B form a sandwich pair. Let

$$
a(\lambda):=\inf _{\Gamma \in \Phi} \sup _{\substack{0 \leq s \leq 1 \\ u \in A}} G_{\lambda}(\Gamma(s) u)
$$

Then $a(\lambda):=\inf _{K \in \mathscr{K}} \sup _{K} G_{\lambda}$ is finite for any $\lambda \in \Lambda$. This shows that Hypothesis $\left(H_{3}^{\prime \prime}\right)$ implies Hypothesis $\left(H_{3}\right)$. We can now apply Theorem 4.1.
Proof of Theorem 1.6. Take $\lambda=1 / \beta$. Let $\lambda_{0}=\alpha T / 6 m^{2}$, and let $v<\infty$. By Theorem 1.1, for a.e. $\lambda \in\left(\lambda_{0}, \nu\right)$, there exists u_{λ} such that $G_{\lambda}^{\prime}\left(u_{\lambda}\right)=0, G_{\lambda}\left(u_{\lambda}\right)=$ $a(\lambda) \geq a\left(\lambda_{0}\right)$. Let λ satisfy $\lambda_{0}<\lambda<\nu$. Choose $\lambda_{n} \rightarrow \lambda, \lambda_{n}>\lambda$. Then there exists x_{n} such that

$$
G_{\lambda_{n}}^{\prime}\left(x_{n}\right)=0, \quad G_{\lambda_{n}}\left(x_{n}\right)=a\left(\lambda_{n}\right) \geq a\left(\lambda_{0}\right)
$$

Therefore,

$$
\int_{\Omega} \frac{2 V\left(t, x_{n}\right)}{\left\|x_{n}\right\|_{X}^{2}} d t \leq C
$$

Now we prove that $\left\{x_{n}\right\}$ is bounded. If $\left\|x_{n}\right\|_{X} \rightarrow \infty$, let $w_{n}=x_{n} /\left\|x_{n}\right\|_{X}$. Then there is a renamed subsequence such that $w_{n} \rightarrow w$ weakly in X, strongly in $L^{\infty}(\Omega)$ and a.e. in Ω.

Let Ω_{0} be the set where $w \neq 0$. Then $\left|x_{n}(t)\right| \rightarrow \infty$ for $t \in \Omega_{0}$. If Ω_{0} had positive measure, then we would have

$$
C \geq \int_{\Omega} \frac{2 V\left(t, x_{n}\right)}{\left\|x_{n}\right\|_{X}^{2}} d t=\int_{\Omega} \frac{2 V\left(t, x_{n}\right)}{x_{n}^{2}}\left|w_{n}\right|^{2} d t \geq \int_{w \neq 0} \frac{2 V\left(t, x_{n}\right)}{x_{n}^{2}}\left|w_{n}\right|^{2} d t \rightarrow \infty
$$

showing that $w=0$ a.e. in Ω. Hence, $w_{n} \rightarrow 0$. Since

$$
\left\|\dot{w}_{n}\right\|^{2}+\left\|w_{n}\right\|^{2}=1
$$

we have $\left\|\dot{w}_{n}\right\| \rightarrow 1$. Define $\theta_{n} \in[0,1]$ by

$$
G_{\lambda_{n}}\left(\theta_{n} x_{n}\right)=\max _{\theta \in[0,1]} G_{\lambda_{n}}\left(\theta x_{n}\right)
$$

For any $c>0$ and $\bar{w}_{n}=c w_{n}$, we have

$$
\int_{\Omega} V\left(t, \bar{w}_{n}\right) d t \rightarrow 0
$$

(see, for example, [Schechter 2008, page 64]). Thus,

$$
G_{\lambda_{n}}\left(\theta_{n} x_{n}\right) \geq G_{\lambda_{n}}\left(c w_{n}\right)=c^{2} \lambda_{n}\left\|\dot{w}_{n}\right\|^{2}-2 \int_{\Omega} V\left(t, \bar{w}_{n}\right) d t \rightarrow \lambda c^{2}, \quad n \rightarrow \infty
$$

Hence, $G_{\lambda_{n}}\left(\theta_{n} x_{n}\right) \geq \lambda c^{2} / 2$ for n sufficiently large. That is, $\lim _{n \rightarrow \infty} G_{\lambda_{n}}\left(\theta_{n} x_{n}\right)=$ ∞. If there is a renamed subsequence such that $\theta_{n}=1$, then

$$
\begin{equation*}
G_{\lambda_{n}}\left(x_{n}\right) \rightarrow \infty \tag{7-8}
\end{equation*}
$$

If $0 \leq \theta_{n}<1$ for all n, then we have $\left(G_{\lambda_{n}}^{\prime}\left(\theta_{n} x_{n}\right), x_{n}\right) \leq 0$. Therefore,

$$
\begin{aligned}
\int_{\Omega} H\left(t, \theta_{n} x_{n}\right) d t & =\int_{\Omega}\left(\nabla_{x} V\left(t, \theta_{n} x_{n}\right) \theta_{n} x_{n}-2 V\left(t, \theta_{n} x_{n}\right)\right) d t \\
& =G_{\lambda_{n}}\left(\theta_{n} x_{n}\right)-\left(G_{\lambda_{n}}^{\prime}\left(\theta_{n} x_{n}\right), \theta_{n} x_{n}\right) \\
& \geq G_{\lambda_{n}}\left(\theta_{n} x_{n}\right) \rightarrow \infty
\end{aligned}
$$

By hypothesis,

$$
G_{\lambda_{n}}\left(x_{n}\right)=\int_{\Omega} H\left(t, x_{n}\right) d x \geq \int_{\Omega} H\left(t, \theta_{n} x_{n}\right) d t / C-\int_{\Omega} W(t) d t \rightarrow \infty
$$

Thus, (7-8) holds in any case. But

$$
G_{\lambda_{n}}\left(x_{n}\right)=a\left(\lambda_{n}\right) \leq a(v)<\infty
$$

Thus, $\left\|x_{n}\right\|_{X} \leq C$. It now follows that for a renamed subsequence,

$$
G_{\lambda}^{\prime}\left(x_{n}\right) \rightarrow 0, \quad G_{\lambda}\left(x_{n}\right) \rightarrow a(\lambda) \geq a\left(\lambda_{0}\right)
$$

Applying [Schechter 1999, Theorem 3.4.1, page 64] gives the desired solution.
Proof of Theorem 1.7. This time we take $\lambda_{0}=\alpha T^{2} / 2 \pi^{2}$, apply Theorem 1.3 and follow the proof of Theorem 1.6.

References

[Ambrosetti and Coti Zelati 1993] A. Ambrosetti and V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differentials Equations and their Appl. 10, Birkhäuser, Boston, 1993. MR 95b:58054 Zbl 0785.34032
[Ben-Naoum et al. 1994] A. K. Ben-Naoum, C. Troestler, and M. Willem, "Existence and multiplicity results for homogeneous second order differential equations", J. Differential Equations 112:1 (1994), 239-249. MR 95g:58036 Zbl 0808.58013
[Berger and Schechter 1977] M. S. Berger and M. Schechter, "On the solvability of semilinear gradient operator equations", Advances in Math. 25:2 (1977), 97-132. MR 58 \#17997 Zbl 0354.47025
[Ekeland and Ghoussoub 2002] I. Ekeland and N. Ghoussoub, "Selected new aspects of the calculus of variations in the large", Bull. Amer. Math. Soc. (N.S.) 39:2 (2002), 207-265. MR 2003b:35048 Zbl 1064.35054
[Jeanjean 1999] L. Jeanjean, "On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbf{R}^{N ", ~ P r o c . ~ R o y . ~ S o c . ~ E d i n b u r g h ~ S e c t . ~ A ~ 129: 4 ~(1999), ~}$ 787-809. MR 2001c:35034 Zbl 0935.35044
[Long 1995] Y. M. Long, "Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials", Nonlinear Anal. 24 (1995), 1665-1671. MR 96h:34079 Zbl 0824.34042
[Mawhin 1987] J. Mawhin, "Semicoercive monotone variational problems", Acad. Roy. Belg. Bull. Cl. Sci. (5) 73:3-4 (1987), 118-130. MR 89e:49005 Zbl 0647.49007
[Mawhin and Willem 1986] J. Mawhin and M. Willem, "Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance", Ann. Inst. H. Poincaré Anal. Non Linéaire 3:6 (1986), 431-453. MR 88a:35023 Zbl 0678.35091
[Mawhin and Willem 1989] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Math. Sciences 74, Springer, New York, 1989. MR 90e:58016 Zbl 0676.58017
[Rabinowitz 1980] P. H. Rabinowitz, "On subharmonic solutions of Hamiltonian systems", Comm. Pure Appl. Math. 33:5 (1980), 609-633. MR 81k:34032 Zbl 0425.34024
[Schechter 1992] M. Schechter, "A generalization of the saddle point method with applications", Ann. Polon. Math. 57:3 (1992), 269-281. MR 94c:58028 Zbl 0780.35001
[Schechter 1993] M. Schechter, "New saddle point theorems", pp. 213-219 in Generalized functions and their applications (Varanasi, 1991), edited by R. S. Pathak, Plenum, New York, 1993. MR 94i:58034 Zbl 0846.46027
[Schechter 1999] M. Schechter, Linking methods in critical point theory, Birkhäuser, Boston, 1999. MR 2001f:58032 Zbl 0915.35001
[Schechter 2006a] M. Schechter, "Periodic nonautonomous second-order dynamical systems", J. Differential Equations 223:2 (2006), 290-302. MR 2007d:34081 Zbl 1099.34042
[Schechter 2006b] M. Schechter, "Periodic solutions of second-order nonautonomous dynamical systems", Bound. Value Probl. 2006 (2006), Art. ID 25104. MR 2007g:34085 Zbl 1140.34366
[Schechter 2008] M. Schechter, "Sandwich pairs in critical point theory", Trans. Amer. Math. Soc. 360:6 (2008), 2811-2823. MR 2008k:35090 Zbl 1143.35061
[Schechter 2009] M. Schechter, Minimax systems and critical point theory, Birkhäuser, Boston, 2009. MR 2010e:58009 Zbl 1186.35043
[Silva 1991] E. A. d. B. e. Silva, "Linking theorems and applications to semilinear elliptic problems at resonance", Nonlinear Anal. 16:5 (1991), 455-477. MR 92d:35108 Zbl 0731.35042
[Struwe 1988] M. Struwe, "The existence of surfaces of constant mean curvature with free boundaries", Acta Math. 160:1-2 (1988), 19-64. MR 89a:53012 Zbl 0646.53005
[Struwe 1996] M. Struwe, Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, 2nd ed., Ergebnisse der Math. und ihrer Grenzgebiete (3) 34, Springer, Berlin, 1996. MR 98f:49002 Zbl 0864.49001
[Tang 1995] C. Tang, "Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential", J. Math. Anal. Appl. 189:3 (1995), 671-675. MR 96a:34090 Zbl 0824.34043
[Tang 1998] C.-L. Tang, "Periodic solutions for nonautonomous second order systems with sublinear nonlinearity", Proc. Amer. Math. Soc. 126 (1998), 3263-3270. MR 99a:34122 Zbl 0902.34036
[Tang and Wu 2001] C.-L. Tang and X.-P. Wu, "Periodic solutions for second order systems with not uniformly coercive potential", J. Math. Anal. Appl. 259:2 (2001), 386-397. MR 2002e:34070 Zbl 0999.34039
[Tang and Wu 2002] C.-L. Tang and X.-P. Wu, "Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems", J. Math. Anal. Appl. 275:2 (2002), 870-882. MR 2003j:37092 Zbl 1043.34045
[Tang and Wu 2003] C.-L. Tang and X.-P. Wu, "Notes on periodic solutions of subquadratic second order systems", J. Math. Anal. Appl. 285:1 (2003), 8-16. MR 2004g:34074 Zbl 1054.34075
[Wang et al. 2009] Z. Wang, J. Zhang, and Z. Zhang, "Periodic solutions of second order nonautonomous Hamiltonian systems with local superquadratic potential", Nonlinear Anal. 70:10 (2009), 3672-3681. MR 2010b:37168 Zbl 1179.34037
[Willem 1981] M. Willem, "Oscillations forcées systèmes hamiltoniens", Public. Sémin. Analyse Non Linéarie, University of Besançon, 1981.
[Wu and Tang 1999] X.-P. Wu and C.-L. Tang, "Periodic solutions of a class of nonautonomous second order systems", J. Math. Anal. Appl. 236 (1999), 227-235. MR 2000g:34069 Zbl 0971.34027

Received May 4, 2010.
Martin Schechter
Department of Mathematics
University of California, Irvine
IRVINE CA 92697-3875

United States

mschecht@math.uci.edu

PACIFIC JOURNAL OF MATHEMATICS

http://www.pjmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS
V. S. Varadarajan (Managing Editor)

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Robert Finn

Department of Mathematics Stanford University Stanford, CA 94305-2125
finn@math.stanford.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Darren Long
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk
Alexander Merkurjev
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu
Jonathan Rogawski
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
jonr@math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu
Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.
The subscription price for 2011 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.
The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\text {TM }}$ from Mathematical Sciences Publishers.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Pacific Journal of Mathematics

PACIFIC JOURNAL OF MATHEMATICS

Volume 251 No. $2 \quad$ June 2011
Two Kazdan-Warner-type identities for the renormalized volume coefficients 257and the Gauss-Bonnet curvatures of a Riemannian metricBin Guo, Zheng-Chao Han and Haizhong Li
Gonality of a general ACM curve in P^{3} 269
Robin Hartshorne and Enrico Schlesinger
Universal inequalities for the eigenvalues of the biharmonic operator on 315 submanifoldsSaïd Ilias and Ola Makhoul
Multigraded Fujita approximation 331
Shin-Yao Jow
Some Dirichlet problems arising from conformal geometry 337
Qi-Rui Li and Weimin Sheng
Polycyclic quasiconformal mapping class subgroups 361
Katsuhiko Matsuzaki
On zero-divisor graphs of Boolean rings 375
Ali Mohammadian
Rational certificates of positivity on compact semialgebraic sets 385
Victoria Powers
Quiver grassmannians, quiver varieties and the preprojective algebra 393
Alistair Savage and Peter Tingley
Nonautonomous second order Hamiltonian systems 431
Martin Schechter
Generic fundamental polygons for Fuchsian groups 453
AKIRA UshiJima
Stability of the Kähler-Ricci flow in the space of Kähler metrics 469
Kai Zheng
The second variation of the Ricci expander entropy 499
Meng Zhu

[^0]: MSC2000: 35J20, 35J25, 47J30, 49J40, 58E05.
 Keywords: Hamiltonian, second order, nonautonomous, critical point, linking, dynamical system, periodic solution.

