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We study the existence of periodic solutions for a second order nonautono-
mous dynamical system. We make no assumptions on the gradient other
than continuity. This allows both sublinear and superlinear problems. We
also study the existence of nonconstant solutions.

1. Introduction

We consider the following problem. One wishes to solve

(1-1) −ẍ(t)=∇x V (t, x(t)),

where

(1-2) x(t)= (x1(t), . . . , xn(t))

is a map from I =[0, T ] to Rn such that each component x j (t) is a periodic function
in H 1 with period T , and the function V (t, x) = V (t, x1, . . . , xn) is continuous
from Rn+1 to R with

(1-3) ∇x V (t, x)= (∂V/∂x1, . . . , ∂V/∂xn) ∈ C(Rn+1,Rn).

For each x ∈ Rn , the function V (t, x) is periodic in t with period T .
We shall study this problem under several sets of assumptions. First, we make

no assumption on ∇x V (t, x) other than (1-3). This allows both sublinear and su-
perlinear problems.

Theorem 1.1. Assume:

(1) The function V satisfies

0≤
∫ T

0
V (t, x) dt→∞ as |x | →∞, x ∈ Rn.
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(2) There are positive constants α,m such that∫ T

0
V (t, x) dt ≤ α, |x | ≤ m, x ∈ Rn.

Then the system

(1-4) −ẍ(t)= β∇x V (t, x(t))

has a solution for almost all values of β satisfying β ≤ 6m2/αT . If , in addition,
there are a constant γ > 0 and a function W (t) ∈ L1(I ) such that

V (t, x)≥ γ |x |2−W (t),

then the system (1-4) has a nonconstant solution for almost all β satisfying

2π2

γ T 2 ≤ β ≤
6m2

αT
.

Corollary 1.2. Assume:

(1) The function V satisfies

0≤
∫ T

0
V (t, x) dt→∞ as |x | →∞, x ∈ Rn.

(2) There are positive constants α,m such that

V (t, x)≤ α, |x | ≤ m, x ∈ Rn.

Then the system (1-4) has a solution for almost all values of β satisfying 0 ≤ β ≤
6m2/αT 2.

Theorem 1.3. Assume:

(1) The function V satisfies

0≤
∫ T

0
V (t, x) dt→∞ as |x | →∞, x ∈ Rn.

(2) There is a constant q > 2 such that

V (t, x)≤ C(|x |q + 1), t ∈ I, x ∈ Rn.

(3) there are constants m > 0, α > 0 such that

V (t, x)≤ α|x |2, |x | ≤ m, t ∈ I, x ∈ Rn.

Then the system (1-4) has a solution for almost all β satisfying 0≤ β ≤ 2π2/αT 2.
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Theorem 1.4. Assume:

(1) The function V satisfies

0≤
∫ T

0
V (t, x) dt→∞ as |x | →∞, x ∈ Rn.

(2) There are a constant α > 0 and a function W (t) ∈ L1(I ) such that

V (t, x)≤ α|x |2+W (t), t ∈ I, x ∈ Rn.

Then the system (1-4) has a solution for almost all 0≤ β ≤ 2π2/αT 2. If we assume

B :=
∫

I
W (t) dt < 0,

then (1-4) has a nonconstant solution for almost all such β.

Theorem 1.5. The conclusions of Theorem 1.4 are valid if we replace condition
(2) with:

(2′) There is a constant α > 0 such that

sup
|x |<m

∫ T

0
V (t, x) dt ≤ αm2

+ B for every m > 0,

and require 0≤ β ≤ 6/αT .

The advantage of these theorems is that we obtain solutions under very weak
hypotheses. In fact, we make no assumption on ∇x V (t, x) other than (1-3). The
disadvantage is that we do not obtain a solution for any particular value of β. If
we wish to prove existence for every such β, we will have to make assumptions
concerning ∇x V (t, x) as well. We now present additional hypotheses which guar-
antee existence of solutions for all values of β in the given intervals. We do this
for Theorems 1.1 and 1.3. The hypotheses are:

(1) 0≤ V (t, x)/|x |2→∞ as |x | →∞.

(2) There are a constant C and a function W (t) ∈ L1(I ) such that

H(t, θx)≤ C(H(t, x)+W (t)), 0≤ θ ≤ 1, t ∈ I, x ∈ Rn,

where
H(t, x) := ∇x V (t, x) · x − 2V (t, x).

Theorem 1.6. Assume:

(1) 0≤ V (t, x)/|x |2→∞ as |x | →∞.

(2) There are positive constants α,m such that∫ T

0
V (t, x) dt ≤ α, |x | ≤ m, x ∈ Rn.
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(3) There are a constant C and a function W (t) ∈ L1(I ) such that

H(t, θx)≤ C(H(t, x)+W (t)), 0≤ θ ≤ 1, t ∈ I, x ∈ Rn.

Then the system (1-4) has a solution for all values of β satisfying 0<β < 6m2/αT .

Theorem 1.7. Assume:

(1) 0≤ V (t, x)/|x |2→∞ as |x | →∞.

(2) There is a constant q > 2 such that

V (t, x)≤ C(|x |q + 1), t ∈ I, x ∈ Rn.

(3) There are constants m > 0, α > 0 such that

V (t, x)≤ α|x |2, |x | ≤ m, t ∈ I, x ∈ Rn.

(4) There are a constant C and a function W (t) ∈ L1(I ) such that

H(t, θx)≤ C(H(t, x)+W (t)), 0≤ θ ≤ 1, t ∈ I, x ∈ Rn.

Then the system (1-4) has a solution for all β satisfying 0< β < 2π2/αT 2.

The periodic nonautonomous problem

(1-5) ẍ(t)=∇x V (t, x(t))

has an extensive history in the case of singular systems (see, for example, [Am-
brosetti and Coti Zelati 1993]). The first to consider it for potentials satisfying
(1-3) were Berger and the author [1977]. We proved the existence of solutions to
(1-4) under the condition that

V (t, x)→∞ as |x | →∞

uniformly for a.e. t ∈ I . Subsequently, Willem [1981], Mawhin [1987], Mawhin
and Willem [1989], Tang [1995; 1998], Tang and Wu [1999; 2001; 2002] and
others (see the references therein) proved existence under various conditions.

The periodic problem (1-1) was studied by Mawhin and Willem [1986; 1989],
Long [1995], Tang and Wu [2003] and others. Tang and Wu [2003] proved exis-
tence of solutions of problem (1-1) under the following hypotheses:

(I) V (t, x)→∞ as |x | →∞ uniformly for a.e. t ∈ I .

(II) There exist a ∈ C(R+,R+), b ∈ L1(0, T,R+) such that

|V (t, x)| + |∇V (t, x)| ≤ a(|x |)b(t) for all x ∈ Rn and a.e. t ∈ [0, T ].

and the superquadraticity condition:

(III) There exist 0< µ< 2, M > 0 such that

V (t, x)>0, Hµ :=∇V (t, x)·x−µV (t, x)≤0 for all |x | ≥ M and a.e. t ∈ [0, T ].
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Rabinowitz [1980] proved existence under stronger hypotheses. In particular, in
place of (I), he assumed:

(I′) There exist constants a1, a2 > 0, µ0 > 1 such that

V (t, x)≥ a1|x |µ0 + a2 for all x ∈ Rn and a.e. t ∈ [0, T ]

In place of (III), he assumed:

(III′) There exist 0< µ< 2, M > 0 such that

0< ∇V (t, x) · x ≤ µV (t, x) for all |x | ≥ M and a.e. t ∈ [0, T ].

Mawhin and Willem [1986] proved existence for the case of convex potentials,
while Long [1995] studied the problem for even potentials. They assumed that
V (t, x) is subquadratic in the sense that

there exist a3 < (2π/T )2 and a4 such that
|V (t, x)| ≤ a3|x |2+ a4 for all x ∈ Rn and a.e. t ∈ [0, T ].

Mawhin and Willem [1989] also studied the problem for a bounded nonlinearity.
Tang and Wu [2003] also proved existence of solutions if one replaces (I) with∫ T

0
V (t, x) dt→∞ as |x | →∞

and V (t, x) is γ -subadditive with γ > 0 for a.e. t ∈ [0, T ]. All of these authors
studied only the existence of solutions.

All of the results mentioned above concerned the existence of solutions, which
might be constants. Little was done concerning nonconstant solutions of problem
(1-1). For the homogeneous case, Ben-Naoum, Troestler and Willem [Ben-Naoum
et al. 1994] proved the existence of a nonconstant solution. For the case T = 2π ,
Theorem 1.7, with substantially stronger hypotheses, was proved by Nirenberg;
see [Ekeland and Ghoussoub 2002]. Among other things, they assumed

V (t, x)≤ 3
2π2 , |x | ≤ 1, t ∈ R, x ∈ Rn,

and the superquadraticity condition

V (t, x) > 0, Hµ(t, x)≤ 0, |x | ≥ C, t ∈ R, x ∈ Rn,

for some µ > 2, which implies our hypotheses, and

V (t, x)≥ C |x |µ−C ′, x ∈ Rn,C > 0,

among other things. These results were generalized in [Schechter 2006a; 2006b].
Further results, involving some of the hypotheses used in these last two papers,
were obtained in [Wang et al. 2009].
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We shall prove Theorems 1.1–1.5 in Section 5, and Theorems 1.6 and 1.7 in
Section 7. We use linking and sandwich methods of critical point theory and
then apply the monotonicity trick introduced by Struwe [1988; 1996] for mini-
mization problems. (This trick was also used by others to solve Landesman–Lazer
type problems, for bifurcation problems, for Hamiltonian systems and Schrödinger
equations.)

Jeanjean [1999] shows that for a specific class of functionals having a mountain-
pass (MP) geometry, almost every functional in this class has a bounded Palais–
Smale sequence at the (MP) level. This theorem is used to obtain, for a given
functional, a special Palais–Smale sequence possessing extra properties that help
to ensure its convergence. Subsequently, these abstract results are applied to prove
the existence of a positive solution for a problem of the form (P) −1u + K u =
f (x, u), u ∈ H 1(RN ), K > 0. He assumed that the functional associated to (P) has
an (MP) geometry. His results cover the case where the nonlinearity f satisfies
(i) f (x, s)s−1

→ a ∈ (0,∞] as s→+∞ and (ii) f (x, s)s−1 is nondecreasing as
a function of s ≥ 0, a.e. x ∈ RN .

Here, we obtain a bounded Palais–Smale sequences for functionals that need
not have (MP) geometry. We then apply the theory to situations in which the (MP)
geometry is not present. In particular, we apply it to situations where there is
linking without the (MP) geometry. We also apply it to situations in which there
are sandwich pairs which do not link.

The theory of sandwich pairs began in [Silva 1991; Schechter 1992; 1993] and
was developed in subsequent publications such as [Schechter 2008; 2009].

2. Flows

Let E be a Banach space, and let 6 be the set of all continuous maps σ = σ(t)
from E ×[0, 1] to E such that

(1) σ(0) is the identity map,

(2) for each t ∈ [0, 1], σ(t) is a homeomorphism of E onto E ,

(3) σ ′(t) is piecewise continuous on [0,1] and satisfies

(2-1) ‖σ ′(t)u‖ ≤ constant, u ∈ E .

The mappings in 6 are called flows.

Remark 2.1. If σ1, σ2 are in 6, define σ3 = σ1 ◦ σ2 by

σ3(s)=
{
σ1(2s) if 0≤ s ≤ 1

2 ,

σ2(2s− 1)σ1(1) if 1
2 < s ≤ 1.

Then σ1 ◦ σ2 ∈6.
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3. Sandwich systems

Let E be a Banach space. Define a nonempty collection K of nonempty subsets
K ⊂ E to be a sandwich system if K has the following property:

σ(1)K ∈ K, σ ∈6, K ∈ K.

Theorem 3.1. Let K be a sandwich system, and let G(u) be a C1 functional on E.
Define

(3-1) a := inf
K∈K

sup
K

G,

and assume that a is finite. Assume, in addition, that there is a constant C0 such
that for each δ > 0 there is a K ∈ K satisfying

(3-2) supK G ≤ a+ δ,

such that the inequality

(3-3) G(u)≥ a− δ, u ∈ K ,

implies ‖u‖ ≤ C0. Then there is a bounded sequence {uk} ⊂ E such that

(3-4) G(uk)→ a, ‖G ′(uk)‖→ 0.

Theorem 3.2. Let K be a sandwich system, and let G(u) be a C1 functional on E.
Assume that there are subsets A, B of E such that

(3-5) a0 := supA G <∞, b0 := infB G >−∞,

A ∈ K and

(3-6) B ∩ K 6=∅, K ∈ K.

Assume, in addition, that there is a constant C0 such that for each δ > 0 there is
a K ∈ K satisfying (3-2) such that the inequality (3-3) implies ‖u‖ ≤ C0. Then
the value a given by (3-1) satisfies b0 ≤ a ≤ a0 and there is a bounded sequence
{uk} ⊂ E such that

(3-7) G(uk)→ a, ‖G ′(uk)‖→ 0.

Definition 3.3. We shall say that sets A, B in E form a sandwich pair if A is a
member of a sandwich system K and B satisfies (3-6).

Theorem 3.4. Let N be a finite dimensional subspace of a Banach space E , and
let p be any point of N . Let F be a continuous map of E onto N such that F = I
on N. Then A = N and B = F−1(p) form a sandwich pair.
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Corollary 3.5. Let N be a closed subspace of a Hilbert space E and let M = N⊥.
Assume that at least one of the subspaces M, N is finite dimensional. Then M, N
form a sandwich pair.

Corollary 3.6. Let N be a finite dimensional subspace of a Hilbert space E with
complement M ′= M⊕{v0}, where v0 is an element in E having unit norm, and let
δ be any positive number. Let ϕ(t) ∈ C1(R) be such that

0≤ ϕ(t)≤ 1, ϕ(0)= 1 and ϕ(t)= 0, |t | ≥ 1.
Let

(3-8) F(v+w+ sv0)= v+
(
s+ δ− δϕ(‖w‖2/δ2)

)
v0, v ∈ N , w ∈ M, s ∈ R.

Then A = N ′ = N ⊕{v0} and B = F−1(δv0) form a sandwich pair.

Proof. One checks that the mapping F given by (3-8) satisfies the hypotheses of
Theorem 3.4 for N ′. �

4. The parameter problem

Let E be a reflexive Banach space with norm ‖·‖, and let A, B be two closed subsets
of E . Suppose that G ∈C1(E,R) is of the form G(u) := I (u)− J (u), u ∈ E , where
I, J ∈ C1(E,R) map bounded sets to bounded sets. Define

Gλ(u)= λI (u)− J (u), λ ∈3,

where 3 is an open interval contained in (0,+∞). Assume one of the following
alternatives holds.

(H1) I (u)≥ 0 for all u ∈ E and I (u)+ |J (u)| →∞ as ‖u‖→∞.

(H2) I (u)≤ 0 for all u ∈ E and |I (u)| + |J (u)| →∞ as ‖u‖→∞.

Furthermore, we suppose that K is a sandwich system satisfying

(H3) a(λ) := infK∈K supK Gλ is finite for each λ ∈3.

Theorem 4.1. Assume that (H1) (or (H2)) and (H3) hold.

(1) For almost all λ∈3 there exists a constant k0(λ) := k0 (depending only on λ)
such that for each δ > 0 there exists a K ∈ K such that

supK Gλ ≤ a(λ)+ δ,

‖u‖ ≤ k0 whenever u ∈ K and Gλ(u)≥ a(λ)− δ.(4-1)

(2) For almost all λ ∈3 there exists a bounded sequence uk(λ) ∈ E such that

‖G ′λ(uk)‖→ 0, Gλ(uk)→ a(λ) := inf
K∈K

supK Gλ as k→∞.
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Corollary 4.2. The conclusions of Theorem 4.1 hold if we replace Hypothesis (H3)
with:

(H ′3) There is a sandwich pair A, B such that for each λ ∈3,

(4-2) a0 := supA Gλ <∞, b0 := infB Gλ >−∞.

Corollary 4.3. The conclusions of Theorem 4.1 hold if we replace Hypothesis (H3)
with:

(H ′′3 ) There are sets A, B such that A links B and for each λ ∈3,

(4-3) a0 := supA Gλ ≤ b0 := infB Gλ.

5. Proofs of the theorems

We now give the proof of Theorem 1.4.

Proof. Let X be the set of vector functions x(t) described above. It is a Hilbert
space with norm satisfying

‖x‖2X =
n∑

j=1

‖x j‖
2
H1 .

We also write

‖x‖2 =
n∑

j=1

‖x j‖
2,

where ‖ · ‖ is the L2(I ) norm.
Let

N = {x(t) ∈ X : x j (t)≡ constant for 1≤ j ≤ n},

and set M = N⊥. The dimension of N is n, and X = M ⊕ N . See, for example,
[Mawhin and Willem 1989, Proposition 1.3] for details on the following lemma.

Lemma 5.1. If x ∈ M , then

‖x‖2
∞
≤

T
12
‖ẋ‖2 and ‖x‖ ≤ T

2π
‖ẋ‖.

Define

(5-1) G(x)= ‖ẋ‖2− 2
∫

I
V (t, x(t)) dt, x ∈ X.

For each x ∈ X write x = v+w, where v ∈ N , w ∈ M . For convenience, we shall
follow [Mawhin and Willem 1989] and use the equivalent norm for X :

‖x‖2X = ‖ẇ‖
2
+‖v‖2.
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Let
I (x)= ‖ẋ‖2, J (x)= 2

∫
I

V (t, x(t)) dt.

By Hypothesis (1),

J (v)→∞ as ‖v‖→∞, v ∈ N .

Hence,

I (x)+ |J (x)| →∞ as ‖x‖X →∞.

Let

(5-2) Gλ(x)= λ‖ẋ‖2− 2
∫

I
V (t, x(t)) dt = λI (x)− J (x), x ∈ X.

Hypothesis (1) implies

(5-3) supN Gλ(v)=− infN J (v) <∞.

If x ∈ M , we have by Hypothesis (2) and Lemma 5.1 that

Gλ(x)≥ λ‖ẋ‖2− 2
∫
α|x(t)|2 dt − B(5-4)

≥

(4π2λ

T 2 − 2α
)
‖x‖2− B ≥−B,

provided

(5-5) λ≥ αT 2/2π2.

By Corollary 3.5, M and N form a sandwich pair. Then by Corollary 4.2, for
almost every λ satisfying (5-5) there is a bounded sequence {x (k)} ⊂ X such that

Gλ(x (k))= λ‖ẋ (k)‖2− 2
∫

I
V (t, x (k)(t)) dt→ c ≥−B,(5-6)

(G ′λ(x
(k)), z)/2= λ(ẋ (k), ż)−

∫
I
∇x V (t, x (k)) · z(t) dt→ 0, z ∈ X,(5-7)

(G ′λ(x
(k)), x (k))/2= λ‖ẋ (k)‖2−

∫
I
∇x V (t, x (k)) · x (k) dt→ 0.(5-8)

Since
ρk = ‖x (k)‖X ≤ C,

there is a renamed subsequence such that x (k) converges to a limit x ∈ X weakly
in X and uniformly on I . From (5-7) we see that

(G ′λ(x), z)/2= λ(ẋ, ż)−
∫

I
∇x V (t, x(t)) · z(t) dt = 0, z ∈ X,
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from which we conclude easily that x is a solution of (1-4) with β = 1/λ, proving
the first statement of the theorem. To prove the second, note that (5-4) implies

Gλ(x)≥−B, x ∈ M.

Consequently, if B < 0, we see that

b0 = inf
M

Gλ(x) > 0.

Thus, the solution x satisfies Gλ(x)≥ b0 > 0. If x were a constant, we would have
Gλ(x)=−J (x)≤ 0, a contradiction. This gives the result. �

The proof of Theorem 1.5 is similar to that of Theorem 1.4 with the exception
of the inequality (5-4) resulting from Hypothesis (2). In its place we reason as
follows: If x ∈ M and ‖ẋ‖2 = 12m2/T , then |x | ≤ m by Lemma 5.1. Thus, we
have by Hypothesis (2′),

Gλ(x)≥ λ‖ẋ‖2− 2αm2
− B

≥ (12λ− 2αT )m2/T − B ≥−B,

provided λ≥ αT/6. The remainder of the proof is essentially the same.
In proving Theorem 1.1, we follow the proof of Theorem 1.4. Hypothesis (1)

implies

(5-9) Gλ(v)≤ 0, v ∈ N .

If x ∈ M and
‖ẋ‖2 = ρ2

=
12
T

m2,

then Lemma 5.1 implies that ‖x‖∞ ≤ m, and we have by Hypothesis (2) that∫ T
0 V (t, x) dt ≤ α. Hence,

Gλ(x)≥ λ‖ẋ‖2− 2
∫ T

0
V (t, x) dt(5-10)

≥ λρ2
− 2α ≥ 0,

provided λ≥ αT/6m2.
If we take

A = M ∩ Bρ, B = N ,

then A links B by [Schechter 1999, Corollary 13.5]. Thus, we see that Hypoth-
esis (H ′′3 ) of Corollary 4.3 holds with Gλ replaced with −Gλ. By that corollary,
there is a bounded sequence satisfying (5-6)–(5-8). The first result now follows as
before. To prove the second, let

y(t)= v+ sw0,
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where v ∈ N , s ≥ 0, and

w0 = (sin(2π t/T ), 0, . . . , 0).

Then w0 ∈ M , and

‖w0‖
2
= T/2, ‖ẇ0‖

2
= 2π2/T .

Note that

‖y‖2 = ‖v‖2+ s2T/2= T |v|2+ T s2/2.

Consequently,

Gλ(y)= λs2
‖ẇ0‖

2
− 2

∫
I

V (t, y(t)) dt ≤ 2λπ2s2/T − 2γ
∫

I
|y(t)|2 dt + B

≤ 2λπ2s2/T − 2γ (‖v‖2+ T s2/2)+ B

≤ (2λπ2
− γ T 2)s2/T − 2T γ |v|2+ B→−∞ as s2

+ |v|2→∞.

Take

A = {v ∈ N : |v‖ ≤ R} ∪ {sw0+ v : v ∈ N , s ≥ 0, ‖sw0+ v‖ = R},

B = ∂Bρ ∩M, 0< ρ < R,

where
Bσ = {x ∈ X : ‖x‖X < σ }.

By [Schechter 1999, Example 3, page 38], A links B. Moreover, if R is sufficiently
large,

(5-11) supA Gλ ≤ 0≤ infB Gλ.

Hence, we may apply [Schechter 1999, Corollary 2.8.2] and Corollary 4.3 to con-
clude that there is a sequence {x (k)} ⊂ X such that

Gλ(x (k))= λ‖ẋ (k)‖2− 2
∫

I
V (t, x (k)(t)) dt→ c ≥ 0,(5-12)

(G ′λ(x
(k)), z)/2= λ(ẋ (k), ż)−

∫
I
∇x V (t, x (k)) · z(t) dt→ 0, z ∈ X,(5-13)

(G ′λ(x
(k)), x (k))/2= λ‖ẋ (k)‖2−

∫
I
∇x V (t, x (k)) · x (k) dt→ 0.(5-14)

Since
ρk = ‖x (k)‖X ≤ C,

there is a renamed subsequence such that x (k) converges to a limit x ∈ X weakly
in X and uniformly on I . From (5-13) we see that

(G ′λ(x), z)/2= λ(ẋ, ż)−
∫

I
∇x V (t, x(t)) · z(t) dt = 0, z ∈ X,
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from which we conclude easily that x is a solution of (1-1). By (5-12) we see that

Gλ(x)≥ c ≥ 0,

showing that x(t) is not a constant. For if c > 0 and x ∈ N , then

Gλ(x)=−2
∫

I
V (t, x(t)) dt ≤ 0.

If c= 0, we know that d(x (k), B)→ 0 by [Schechter 1999, Theorem 2.1.1]. Hence,
there is a sequence {y(k)} ⊂ B such that x (k)− y(k)→ 0 in X . If v ∈ N , then

(x, v)= (x − x (k), v)+ (x (k)− y(k), v)→ 0,

since y(k) ∈ M . Thus x ∈ M . This completes the proof.
To prove Theorem 1.3, note that Hypothesis (1) implies

(5-15) Gλ(v)≤ 0, v ∈ N .

If x ∈ M , we have by Hypothesis (2)

Gλ(x)≥ λ‖ẋ‖2− 2
∫
|x |<m

α|x(t)|2 dt −C
∫
|x |>m

(|x |q + 1) dt

≥ λ‖ẋ‖2− 2α‖x‖2−C(1+m2−q
+m−q)

∫
|x |>m
|x |q dt

≥ ‖ẋ‖2
(
λ− (2αT 2/4π2)

)
−C ′

∫
|x |>m
|x |q dt

≥
(
λ− (αT 2/2π2)

)
‖x‖2X −C ′′

∫
I
‖x‖qX dt

≥
(
λ−(αT 2/2π2)

)
‖x‖2X−C ′′′‖x‖qX =

(
λ−(αT 2/2π2)−C ′′′‖x‖q−2

X

)
‖x‖2X .

Hence,

(5-16) Gλ(x)≥ ε‖x‖2X , ‖x‖X ≤ ρ, x ∈ M

for ρ > 0 sufficiently small, where ε < λ− (αT 2/2π2) is positive. If we take

A = M ∩ Bρ, B = N ,

then A links B by [Schechter 1999, Corollary 13.5]. Thus, Hypothesis (H ′′3 ) of
Corollary 4.3 holds with Gλ replaced with −Gλ. By that corollary, there is a
bounded sequence satisfying (5-6)–(5-8). The result now follows as before.
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6. Finding the sequences

Proof of Theorem 3.1. Let M = C0+ 1. Then

‖σ(1)v‖ ≤ M

whenever σ ∈6 satisfies ‖σ ′(t)‖ ≤ 1 and v ∈ E satisfies ‖v‖ ≤C0. If the theorem
were false, then there would be a δ > 0 such that

(6-1) ‖G ′(u)‖ ≥ 3δ

when

(6-2) u ∈ {u ∈ E : ‖u‖ ≤ M + 1, |G(u)− a| ≤ 3δ}.

Take δ < 1/3. Since G ∈ C1(E,R), for each θ < 1 there is a locally Lipschitz
continuous mapping Y (u) of Ê = {u ∈ E : G ′(u) 6= 0} into E such that

(6-3) ‖Y (u)‖ ≤ 1, θ‖G ′(u)‖ ≤ (G ′(u), Y (u)), u ∈ Ê

(see, for example, [Schechter 1999]). Take θ > 2/3. Let

Q0 = {u ∈ E : ‖u‖ ≤ M + 1, |G(u)− a| ≤ 2δ},

Q1 = {u ∈ E : ‖u‖ ≤ M, |G(u)− a| ≤ δ},

Q2 = E \ Q0,

η(u)= d(u, Q2)/
(
d(u, Q1)+ d(u, Q2)

)
.

It is easily checked that η(u) is locally Lipschitz continuous on E and satisfies

(6-4)


η(u)= 1 if u ∈ Q1,

η(u)= 0 if u ∈ Q2,

η(u) ∈ (0, 1) otherwise.

Let
W (u)=−η(u)Y (u).

Then
‖W (u)‖ ≤ 1, u ∈ E .

By [Schechter 2009, Theorem 4.5], for each v ∈ E there is a unique solution σ(t)v
of the system

(6-5) σ ′(t)=W (σ (t)), t ∈ R+, σ (0)= v.

We have

dG(σ (t)v)/dt =−η(σ (t)v)(G ′(σ (t)v), Y (σ (t)v))(6-6)

≤ −θη(σ )‖G ′(σ )‖ ≤ −3θδη(σ ).
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Let K ∈K satisfy the hypotheses of the theorem. Let v be any element of K ∩Q1.
Then ‖v‖ ≤ C0. If there is a t1 ≤ 1 such that σ(t1)v /∈ Q1, then

(6-7) G(σ (1)v) < a− δ,

since ‖σ(1)v‖ ≤ M,
G(σ (1)v)≤ G(σ (t1)v)

and the right hand side cannot be greater than a+ δ by (6-6). On the other hand,
if σ(t)v ∈ Q1 for all t ∈ [0, 1], then we have by (6-6)

G(σ (1)v)≤ a+ δ− 3δθ < a− δ.

If v ∈ K\Q1, then we must have

G(σ (1)v)≤ G(v) < a− δ,

since G(v)≥ a− δ would put v into Q1. Hence

(6-8) G(σ (1)v) < a− δ, v ∈ K .

By hypothesis, K̃ = σ(1)K ∈ K. This means that

(6-9) G(w) < a− δ, w ∈ K̃ .

But this contradicts the definition (3-1) of a. Hence (6-1) cannot hold for u satis-
fying (6-2). This proves the theorem. �

Proof of Theorem 3.2. Since A ∈ K, clearly a ≤ a0. Moreover, for any K ∈ K, we
have

b0 = inf
B

Gλ ≤ inf
B∩K

Gλ ≤ sup
B∩K

Gλ ≤ supK Gλ.

Hence, b0 ≤ a. Apply Theorem 3.1. �

Proof of Theorem 3.4. Define

K= {σ(1)A : σ ∈6}.

Then K is a sandwich system. To see this, let K = σ̃ (1)A be a set in K. If σ ∈6,
then σ ◦ σ̃ is also in 6. Thus, K is a sandwich system. Let B = F−1(p). If we
can show that B satisfies (3-6), then the result will follow from Theorem 3.2. Now
(3-6) is equivalent to

F−1(p)∩ σ(1)N 6=∅, σ ∈6.

Let �R(p) be a ball in N with radius R and center p, and let σ(t) be any flow
in 6. Since

(6-10) σ(t)u− u =
∫ t

0
σ ′(τ )u dτ,
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we have

‖σ(t)u− σ(s)u‖ ≤ C |t − s|.

If u ∈ AR = ∂�R(p), and v ∈ B, we have

h(s) := d(σ (s)u, B)≤ ‖σ(s)u− v‖ ≤ ‖σ(t)u− v‖+C |t − s|.

This implies

(6-11) h(s)≤ h(t)+C |t − s|.

Moreover, by [Schechter 2009, Lemmas 4.3 and 4.8], h(s) satisfies

h(s)≥ m(R)→∞ as R→∞, 0≤ s ≤ 1, u ∈ ∂�R(p).

Thus,

‖σ(s)u− F−1(p)‖ ≥ h(s)≥ m(R)→∞, u ∈ AR.

Consequently,

(6-12) F−1(p)∩ σ(1)AR =∅, σ ∈6,

for R sufficiently large. Now AR links B; see, for example, [Schechter 1999]. For
0 ∈8, define

01(s)=
{
σ(2s) if 0≤ s ≤ 1

2 ,

σ (1)0(2s− 1) if 1
2 < s ≤ 1.

Clearly, 01 ∈8. Consequently, there is a t0 ∈ [0, 1] such that

01(t0)AR ∩ B 6=∅.

If t0 ≤ 1
2 , then

σ(2t0)AR ∩ B 6=∅,

contradicting (6-12). If t0 > 1
2 , then

σ(1)0(2t0− 1)AR ∩ B 6=∅.

Take 0(s)u = (1− s)u. Then 0 ∈8 and 0(2t0− 1)AR ⊂ N . Hence,

σ(1)N ∩ B 6=∅.

Thus (3-6) holds, and the theorem is proved. �
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7. The monotonicity trick

Proof of Theorem 4.1. We prove conclusion (1) assuming the first of the alternative
hypotheses, (H1).

By (H1), the map λ 7→ a(λ) is nondecreasing. Hence, a′(λ) := da(λ)/dλ exists
for almost every λ∈3. From this point on, we consider those λ where a′(λ) exists.
For fixed λ ∈ 3, let λn ∈ (λ, 2λ)∩3, λn → λ as n→∞. Then there exists n(λ)
such that

(7-1) a′(λ)− 1≤ a(λn)−a(λ)
λn−λ

≤ a′(λ)+ 1 for n ≥ n(λ).

Next, there exist Kn ∈ KQ, k0 := k0(λ) > 0 such that

(7-2) ‖u‖ ≤ k0 whenever Gλ(u)≥ a(λ)− (λn − λ).

In fact, by the definition of a(λn), there exists Kn such that

(7-3) sup
Kn

Gλ(u)≤ sup
Kn

Gλn (u)≤ a(λn)+ (λn − λ).

If Gλ(u)≥ a(λ)−(λn−λ) for some u ∈ Kn , then, by (7-1) and (7-3), we have that

I (u)= Gλn ( u)−Gλ(u)
λn−λ

(7-4)

≤
a(λn)+(λn−λ)−a(λ)+(λn−λ)

λn−λ

≤ a′(λ)+ 3,

and it follows that

J (u)= λn I (u)−Gλn (u)(7-5)

≤ λn(a′(λ)+ 3)−Gλ(u)

≤ λn(a′(λ)+ 3)− a(λ)+ (λn − λ)

≤ 2λ(a′(λ)+ 3)− a(λ)+ λ.

On the other hand, by (H1), (7-1), and (7-3),

J (u)= λn I (u)−Gλn (u)(7-6)

≥ −Gλn (u)

≥ −(a(λn)+ (λn − λ))

≥ −(a(λ)+ (λn − λ)(a′(λ)+ 2))

≥ −a(λ)− λ|a′(λ)+ 2|.

Combining (7-4)–(7-7) and (H1), we see that there exists k0(λ) := k0 (depending
only on λ) such that (7-2) holds.
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By the choice of Kn and (7-1), we see that

Gλ(u)≤ Gλn (u)≤ supKn
Gλn (u)

≤ a(λn)+ (λn − λ)

≤ (a′(λ)+ 1)(λn − λ)+ a(λ)+ (λn − λ)

≤ a(λ)+ (a′(λ)+ 2)(λn − λ)

for all u ∈ Kn . Take n sufficiently large to ensure that |a′(λ)+2|(λn−λ)< δ. This
proves conclusion (1). Conclusion (2) now follows from Theorem 3.1. The proof
under Hypothesis (H2) is similar, and is omitted. �

In proving Corollary 4.3, we shall make use of the following results of linking.
Let E be a Banach space. The set 8 of mappings 0(t) ∈ C(E × [0, 1], E) is to
have following properties:

(a) For each t ∈ [0, 1), 0(t) is a homeomorphism of E onto itself and 0(t)−1 is
continuous on E ×[0, 1).

(b) 0(0)= I .

(c) For each 0(t) ∈ 8 there is a u0 ∈ E such that 0(1)u = u0 for all u ∈ E and
0(t)u→ u0 as t→ 1 uniformly on bounded subsets of E .

(d) For each t0 ∈ [0, 1) and each bounded set A ⊂ E we have

sup
0≤t≤t0

u∈A

{‖0(t)u‖+‖0−1(t)u‖}<∞.

A subset A of E links a subset B of E if A∩ B =∅ and, for each 0(t) ∈8, there
is a t ∈ (0, 1] such that 0(t)A∩ B 6=∅.

Theorem [Schechter 1999, Theorem 2.1.1]. Let G be a C1-functional on E , and
let A, B be subsets of E such that A links B and

a0 := sup
A

G ≤ b0 := inf
B

G.

Assume that
a := inf

0∈8
sup

0≤s≤1
u∈A

G(0(s)u)

is finite. Then there is a sequence {uk} ⊂ E such that

G(uk)→ a, G ′(uk)→ 0.

If a = b0, then we can also require that

d(uk, B)→ 0.



NONAUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS 449

Proof of Corollary 4.3. Let

K= {0(s)A : 0 ∈8, s ∈ I }.

Then K is a sandwich system. In fact, if σ ∈6 and 0 ∈8, define

01(s)=
{
σ(2s) if 0≤ s ≤ 1

2 ,

σ (1)0(2s− 1) if 1
2 < s ≤ 1.

Then 01 ∈8. Thus,

σ(1)K ∈ K, σ ∈6, K ∈ K.

Since A links B, we have for each 0(t) ∈ 8, there is a t ∈ (0, 1] such that
0(t)A∩ B 6=∅. Consequently,

(7-7) B ∩ K 6=∅, K ∈ K.

Thus, A, B form a sandwich pair. Let

a(λ) := inf
0∈8

sup
0≤s≤1

u∈A

Gλ(0(s)u).

Then a(λ) := infK∈K supK Gλ is finite for any λ ∈ 3. This shows that Hypothe-
sis (H ′′3 ) implies Hypothesis (H3). We can now apply Theorem 4.1. �

Proof of Theorem 1.6. Take λ = 1/β. Let λ0 = αT/6m2, and let ν < ∞. By
Theorem 1.1, for a.e. λ ∈ (λ0, ν), there exists uλ such that G ′λ(uλ)= 0, Gλ(uλ)=
a(λ) ≥ a(λ0). Let λ satisfy λ0 < λ < ν. Choose λn → λ, λn > λ. Then there
exists xn such that

G ′λn
(xn)= 0, Gλn (xn)= a(λn)≥ a(λ0).

Therefore, ∫
�

2V (t, xn)

‖xn‖
2
X

dt ≤ C.

Now we prove that {xn} is bounded. If ‖xn‖X →∞, let wn = xn/‖xn‖X . Then
there is a renamed subsequence such thatwn→w weakly in X , strongly in L∞(�)
and a.e. in �.

Let�0 be the set where w 6= 0. Then |xn(t)|→∞ for t ∈�0. If�0 had positive
measure, then we would have

C ≥
∫
�

2V (t, xn)

‖xn‖
2
X

dt =
∫
�

2V (t, xn)

x2
n
|wn|

2 dt ≥
∫
w 6=0

2V (t, xn)

x2
n
|wn|

2 dt→∞,

showing that w = 0 a.e. in �. Hence, wn→ 0. Since

‖ẇn‖
2
+‖wn‖

2
= 1,
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we have ‖ẇn‖→ 1. Define θn ∈ [0, 1] by

Gλn (θnxn)= max
θ∈[0,1]

Gλn (θxn).

For any c > 0 and wn = cwn , we have∫
�

V (t, wn) dt→ 0

(see, for example, [Schechter 2008, page 64]). Thus,

Gλn (θnxn)≥ Gλn (cwn)= c2λn‖ẇn‖
2
− 2

∫
�

V (t, wn) dt→ λc2, n→∞.

Hence, Gλn (θnxn) ≥ λc2/2 for n sufficiently large. That is, limn→∞ Gλn (θnxn) =

∞. If there is a renamed subsequence such that θn = 1, then

(7-8) Gλn (xn)→∞.

If 0≤ θn < 1 for all n, then we have (G ′λn
(θnxn), xn)≤ 0. Therefore,∫

�

H(t, θnxn) dt =
∫
�

(
∇x V (t, θnxn)θnxn − 2V (t, θnxn)

)
dt

= Gλn (θnxn)− (G ′λn
(θnxn), θnxn)

≥ Gλn (θnxn)→∞.

By hypothesis,

Gλn (xn)=

∫
�

H(t, xn) dx ≥
∫
�

H(t, θnxn) dt/C −
∫
�

W (t) dt→∞.

Thus, (7-8) holds in any case. But

Gλn (xn)= a(λn)≤ a(ν) <∞,

Thus, ‖xn‖X ≤ C . It now follows that for a renamed subsequence,

G ′λ(xn)→ 0, Gλ(xn)→ a(λ)≥ a(λ0).

Applying [Schechter 1999, Theorem 3.4.1, page 64] gives the desired solution. �

Proof of Theorem 1.7. This time we take λ0 = αT 2/2π2, apply Theorem 1.3 and
follow the proof of Theorem 1.6. �
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