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A Dirichlet fundamental polygon for a Fuchsian group is said to be generic
if its combinatorial shape is stable under any small permutation of the cen-
ter of the polygon. Almost all points in the hyperbolic plane are known to be
centers of generic fundamental polygons. We prove that the same property
holds for points in the boundary of the hyperbolic plane.

1. Introduction

For a given topological space with a group action, a fundamental region is a subset
consisting of representatives of the orbits of a given point by the action. In general,
it is chosen to be connected. Such regions are used for the study of groups and their
actions on spaces; they give tessellation of the spaces, which imply presentations
of the groups.

When a metric is given to the space and the group is discrete, the Dirichlet
domain (also known as the Voronoi cell) is an example of a fundamental region;
for a point p free under the group action, the Dirichlet domain for p is the set of
all points closer to p than any other point in the orbit of p. For discrete groups
acting on the hyperbolic plane, such domains are also called Dirichlet fundamen-
tal polygons with center p. We simply call them fundamental polygons in what
follows.

One interesting question about fundamental polygons is how many different
combinatorial shapes of such polygons are obtained from a given hyperbolic sur-
face. This problem was considered for closed surfaces of genus two by Fricke
and Klein [1897], and, independently, by Jørgensen and Näätänen [1982]. They
showed that there were exactly eight types of “generic” fundamental polygons.
Though the precise definition will be given in Section 3, a generic fundamental
polygon has a property of stability of its combinatorial shape under any small
perturbation of its center. Generic fundamental polygons are therefore in a sense
far from the so-called canonical polygons of Fricke [Fricke and Klein 1897; Keen
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1966]. For closed surfaces of genus two, each generic fundamental polygon has
18 edges, while each canonical polygon has 8 edges.

Besides genus two, there are known facts about numbers of combinatorial shapes
of admissible generic fundamental polygons for closed surfaces. The complete list
of generic fundamental polygons of genus three was obtained in [Nakamura 2004].
Each such polygon has 30 edges. The formula to calculate possible numbers of
combinatorial shapes of generic fundamental polygons for closed surfaces of any
genus was obtained in [Bacher and Vdovina 2002]. Counting number of possible
types is related to the study of extremal discs in a surface. For further results on
this subject, see [Girondo and Nakamura 2007; Vdovina 2008].

Once we have known the number of combinatorial shapes of admissible generic
fundamental polygons for a surface, it is also interesting to think about how these
fundamental polygons are related to each other. Such a question was proposed in
[Näätänen and Penner 1991] as follows: what kind of decomposition is given on a
surface by a relation that two points on the surface are equivalent if they are centers
of the fundamental polygon with the same combinatorial shape.

A local figure of such a decomposition of a closed surface of genus two was
given in [Näätänen 1985]. In this figure, the set of points corresponding to non-
generic fundamental polygons seems to have measure zero. Beardon proved [1983,
Theorem 9.4.5] that this is true for any Fuchsian group; for any given such group,
almost all points in the hyperbolic plane are centers of generic fundamental poly-
gons. A corresponding result for three-dimensional hyperbolic geometry, that is,
for Kleinian groups, was proposed in [Jørgensen and Marden 1988]. However, the
proof of Lemma 3.1 in that article, which plays an important role in the proof of
the main result, is incomplete.

As a first try to give a complete proof of Jørgensen and Marden’s result, we
applied their strategy to the case for Fuchsian groups in [Díaz and Ushijima 2009].
We obtained an alternative proof of the result of Beardon there.

The idea of fundamental polygons can be generalized to the case where the
center lies on the boundary of the hyperbolic plane. The main purpose of this paper
is to show, again following the strategy of Jørgensen and Marden, that Beardon’s
result holds even when the centers lie in the boundary of the hyperbolic plane.

2. Preliminaries

Let H2
:= {z ∈C | Im z > 0} be the upper half-plane model of the two-dimensional

hyperbolic space. It is given as a subset of the complex plane C, but it is also
regarded as contained in the Riemann sphere Ĉ := C∪{∞}, where∞ denotes the
point at infinity. The boundary ∂H2 of H2 is considered in Ĉ so that it consists of
the real axis R plus∞. We set H2 := H2

∪ ∂H2.
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A circle in Ĉ means either a Euclidean circle in C or a Euclidean line in C,
as a circle through ∞. Hyperbolic lines in H2 (resp. in H2) are obtained as the
intersection of H2 (resp. H2) and circles in Ĉ which are perpendicular to R. For
two distinct points z and w in H2, we denote by [z, w] the hyperbolic line segment
with endpoints z and w in H2.

The orientation-preserving isometry group of H2 is known to be isomorphic to
the following projective special linear group:

PSL2(R) :=

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R, ad − bc = 1
}/
{± I },

where I denotes the identity matrix. The action of an element T in PSL2(R) on Ĉ

is a Möbius transformation

T (z) :=
az+ b
cz+ d

, z ∈ Ĉ.

The restriction of this action on H2 is orientation-preserving and isometric with
respect to the hyperbolic metric. We denote the set of the fixed points of T in H2 by
Fix(T ). Any nontrivial element of PSL2(R) is classified into three types according
to the number of elements in Fix(T ); a nontrivial element T in PSL2(R) is said to
be elliptic if Fix(T ) coincides with Fix(T )∩H2 that is a one point set, parabolic
if Fix(T ) coincides with Fix(T ) ∩ ∂H2 that is a one point set, and hyperbolic if
Fix(T ) coincides with Fix(T )∩∂H2 that consists of two points. For hyperbolic T ,
the axis Ax(T ) is defined to be the hyperbolic line whose endpoints are the fixed
points of T .

For an element T in PSL2(R) and a point z in H2
−Fix(T ), let

B(z; T ) :=
{
w ∈ H2

| d(w, z)= d(w, T (z))
}

be the set of points in H2 that are equidistant from z and T (z) with respect to
the hyperbolic distance d( · , · ). It is a hyperbolic line, the perpendicular bisector
of [z, T (z)]. We remark that our definition of B(z; T ), as in [Díaz and Ushijima
2009], differs from the one given in [Jørgensen and Marden 1988]; there B(z; T )
was defined as the perpendicular bisector of [z, T−1(z)].

The definition of B(z; T ) generalizes to the case that the point z lies in ∂H2. For
a point p in ∂H2

− Fix(T ), a hyperbolic line B(p; T ) is defined to be the limit of
B(z; T ) as z converges to p. In particular, if p is taken to be∞, then B(∞; T ) is
the isometric semicircle for T−1.

We denote by B(z; T ) the closure of B(z; T ) in H2. For further properties and
a proof of the following proposition [Jørgensen and Marden 1988, Section 2].

Proposition 1. Let T be a nontrivial element in PSL2(R).
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(1) If T is elliptic, then B(z; T ) contains the fixed point of T for any point z in
H2−Fix(T ).

(2) If T is parabolic, then B(z; T ) contains the fixed point of T for any point z in
H2− Fix(T ). If the point z approaches the fixed point ζ of T conically, then
B(z; T ) converges to ζ .

(3) If T is hyperbolic, then B(z; T ) does not contain any fixed point of T for any
point z in H2−Fix(T ). Furthermore it intersects perpendicularly with Ax(T ).
If the point z approaches a fixed point ζ of T , then B(z; T ) converges to ζ .

Fuchsian groups are discrete subgroups of the orientation-preserving isometry
group of H2. We regard them as subgroups of PSL2(R) in what follows. For a
given Fuchsian group 0 and a point w in H2, we define a subset P0(w) in H2 as
follows:

P0(w) :=
{
z ∈ H2 ∣∣ d(z, w)≤ d(z, T (w)) for all T ∈ 0

}
when w is in H2, and

P0(w) :=

{
z ∈ H2

∣∣∣∣ for any T ∈ 0−{I }, the point z lies in the closure of
the component of H2

−B(w; T ) that is adjacent to w

}
when w is in ∂H2. The subset P0(w) is a fundamental polygon for 0 when w is
taken from H2

−
⋃

T∈0 Fix(T ). Then P0(w) is called a (Dirichlet) fundamental
polygon for 0. For a point w in ∂H2, on the other hand, the subset P0(w) is not
always a fundamental polygon. Let�(0) be the ordinary set for 0 in Ĉ. It is shown
in [Beardon 1983, Theorem 9.5.2] that P0(w) is a fundamental polygon when w
is taken from �(0). When such w is taken to be ∞, the fundamental polygon
P0(w) is known as the Ford fundamental region. Set P(w) := P0(w) ∩ �(0),
where P0(w) means the closure of P(w) in H2. The point w is called the center
of P0(w), or of P(w).

3. Generic fundamental polygons and the main result

Since the polygon P(w) is defined to be the intersection of P0(w) with �(0), the
vertices of P0(w), or the endpoints in �(0) of edges of P0(w), are vertices of
P(w). Fixed points of elliptic elements of order two on edges of P0(w) are also
called vertices of P(w). Vertices in H2 are called inner vertices, and those in�(0)
are called boundary vertices.

A cusp of P(w) is a parabolic fixed point lying in P(w). Cusps are not bound-
ary vertices, since any parabolic fixed point belongs to the limit set, which is the
complement of �(0) in Ĉ.

The edges of P(w) are either those of P0(w) or closed segments in P(w)∩∂H2.
An edge of P0(w) as a hyperbolic polygon is decomposed into two edges of P(w)
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if it has a vertex corresponding to the fixed point of an elliptic element of order
two. The edges of P(w) which come from those of P0(w) are also called inner
edges. We denote by `(e) the hyperbolic line containing an inner edge e of P0(w).

An inner vertex v of P(w) said to have a vertex cycle of length k if there is
a sequence T1 = I , T2, T3, . . . , Tk , Tk+1 = T1 = I of elements in 0 such that
the sequence T1(P(w))=P(w), T2(P(w)), . . . , Tk(P(w)) of polygons is a cyclic
arrangement around v in the 0-orbit of P(w). In other words, the length of a vertex
cycle is the number of disjoint vertices of P0(w) that are equivalent to v under 0
if v is not fixed by elliptic elements in 0. The sequence T1, T2, . . . , Tk is called
the vertex cycle of v.

Definition. For a Fuchsian group 0, the fundamental polygon P(w) centered at w
in H2

∪�(0) is said to be generic if it satisfies the following conditions:

(1) For an inner vertex, if the length of its vertex cycle is greater than three, then
the vertex is the fixed point of an elliptic element in 0.

(2) For an inner edge e, if `(e) contains the fixed point of an elliptic or a parabolic
element in 0, the element of 0 defining `(e) as the bisector is an elliptic or
a parabolic element fixing the point in question. Similarly, if `(e) intersects
perpendicularly with the axis of a hyperbolic element in 0, the element of 0
defining `(e) as the bisector is a hyperbolic element fixing the axis in question.

(3) Every boundary vertex is an endpoint of exactly one inner edge.

(4) If two inner edges share an endpoint on ∂H2, then the endpoint is a cusp that
is the fixed point of a parabolic element gluing these inner edges.

Analogous notions have been studied before. Our definition of generic funda-
mental polygons is the two-dimensional counterpart of the definition of generic
fundamental polyhedra in [Jørgensen and Marden 1988]. Our Conditions (1), (3),
and (4) correspond to those defining Dirichlet polygons in [Beardon 1983, Theo-
rem 9.4.5].

The conditions for generic fundamental polygons have geometric interpreta-
tions. Condition (1) and (2) together imply that, if a vertex v is fixed by an elliptic
element in 0, its vertex cycle coincides with the cyclic elliptic subgroup with fixed
point v. Another interpretation is that any cone singularity of the surface H2/0 is
cut by the image of exactly one inner edge. Similarly, Conditions (2) and (3) mean
that any border (open end) of H2/0 is also cut by the image of exactly one inner
edge, and Condition (4) means that any cusp of H2/0 is also cut by the image of
exactly one inner edge.

Theorem. For a Fuchsian group 0, there is a subset N0 in ∂H2 of measure zero
such that, for any point w in (�(0)∩ ∂H2)−N0, the fundamental polygon P(w)

is generic.
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Proof. To obtain the subset N0, we define three families of subsets in ∂H2. For
T1, T2, T3 in PSL2(R), define a subset VT1,T2,T3 in ∂H2 as

VT1,T2,T3 :=
{

p ∈ ∂H2 ∣∣ B(p; T1)∩B(p; T2)∩B(p; T3) 6=∅
}
.

For T1, T2 in PSL2(R), define TT1,T2 as

TT1,T2 :=
{

p ∈ ∂H2 ∣∣ B(p; T1)∩B(p; T2)∩ ∂H2
6=∅

}
.

For T1, T2 in PSL2(R), define FT1,T2 as

FT1,T2 :=
{

p ∈ ∂H2 ∣∣ Fix(T1)∩B(p; T2) 6=∅
}

when T1 is elliptic or parabolic, and

FT1,T2 :=
{

p ∈ ∂H2 ∣∣ B(p; T2) intersects perpendicularly with the axis of T1
}

when T1 is hyperbolic.
Using these subsets, we define

N0 :=

( ⋃
{T1,T2,T3}

VT1,T2,T3

)
∪

( ⋃
{T4,T5}

TT4,T5

)
∪

( ⋃
(T6,T7)

FT6,T7

)
,

where {T1, T2, T3} runs over all triples in 0 that are mutually distinct, nontrivial
and neither elliptic with a common fixed point nor parabolic with a common fixed
point, {T4, T5} runs over all pairs in 0 that are distinct, nontrivial and not parabolic
with a common fixed point, and (T6, T7) runs over all ordered pairs of nontrivial
elements in 0 such that Fix(T7) and Fix(T6) are different.

Each of the indexes in the definition of N0 runs over countably many triples
and pairs, because 0 is a discrete group (see [Beardon 1983, Exercise 2.3.3], for
example,). To see that N0 has measure zero, it is thus enough to see that the subsets
VT1,T2,T3 , TT4,T5 and FT6,T7 have measure zero. These are shown in Propositions 5,
7 and 9, respectively.

We next use case analysis to show that the fundamental polygon P(w) is generic
for any w in (�(0)∩ ∂H2)−N0.

For Condition (1), take a vertex v of P0(w). Let Sv be the vertex cycle of v, and
kv the length of Sv. Suppose kv > 3. Then there are at least three nontrivial and
distinct elements, say Ta , Tb and Tc, in Sv. Though w is not in

⋃
{T1,T2,T3}

VT1,T2,T3 ,
the bisectors B(w; Ta), B(w; Tb) and B(w; Tc) contain v. This means that the three
elements Ta , Tb and Tc are either elliptic with a common fixed point or parabolic
with a common fixed point. If they are parabolic, then B(w; Ta), B(w; Tb) and
B(w; Tc) contain a common fixed point in ∂H2. This contradicts the assumption
that v is in H2. If they are elliptic with a common fixed point, Sv is in a cyclic
subgroup of 0 by the discreteness of 0. Then the cyclic subgroup is generated by
an elliptic element, which fixes v.
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For Condition (2), take an inner edge e of P(w). Let Te be an element in 0 such
that `(e) coincides with B(w; Te). Suppose that an endpoint of `(e) coincided with
the fixed point of a parabolic element, say T . This means that Fix(T )∩B(w; Te) is
nonempty. Since w is not in

⋃
(T6,T7)

FT6,T7 , the set Fix(Te) coincides with Fix(T ).
The same argument is applied to the cases that Te is either elliptic or hyperbolic.

For Conditions (3), and (4), take a vertex (in the ordinary sense) v∗ of P(w)

that is in ∂H2. Suppose that v∗ is the endpoint of two inner edges, say a and b,
of P0(w). Let Ta and Tb are elements in 0 such that `(a) and `(b) coincide with
B(w; Ta) and B(w; Tb) respectively. Since w is not in

⋃
{T4,T5}

TT4,T5 , the elements
Ta and Tb are parabolic with a common fixed point. Then v∗ is their common fixed
point so that it is a cusp of P(w) given as the endpoint of a and b that are glued
together by Ta = Tb

−1.
Furthermore, the argument above implies that a vertex v∗ in�(0) is an endpoint

of exactly one inner edge, for any parabolic fixed point is not in �(0). Such a
vertex is a boundary vertex by definition.

We have thus shown that P(w) is generic for any w in (�(0)∩ ∂H2)−N0. �

This theorem is a generalization of [Beardon 1983, Theorem 9.4.5] and [Díaz
and Ushijima 2009, Corollary 3.11]. The algebraic equations defining VT1,T2,T3 ,
TT4,T5 and FT6,T7 can be regarded as defined on C, so the set N0 can be extended
to one in H2. Both N0 and its extension have measure zero, so their complements
are dense in ∂H2 and H2. The fundamental polygon P(w) is thus generic for almost
every point w in H2 and �(0)∩ ∂H2.

4. Propositions

To prove the propositions used in the proof of the theorem, we use the projective
disc model D2 of two-dimensional hyperbolic space. As a set it is the open unit disc
centered at the origin in two-dimensional real projective space RP2. We choose
the isometry from H2 to D2 so that 0, 1,∞ ∈ ∂H2 are mapped, respectively, to
(0,−1), (1, 0), (0, 1) in RP2.

Given an element T =
(a

c
b
d

)
in PSL2(R) and a point z in H2−Fix(T ), let C(z; T )

be the pole in RP2 of the projective line containing the image of B(z; T ) in D2.
For a point p ∈R⊂ ∂H2, a formula in [Jørgensen and Marden 1988, §2.9] tells us
the coordinate of C(p; T ):

(*) C(p; T )=
1

(ap+b)2+(cp+d)2− p2−1

×
(
2((ap+b)(cp+d)− p), (ap+b)2−(cp+d)2− p2

+1
)
.

Using this formula, we have the following proposition, which is a key in proving
others.
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Proposition 2. For distinct and nontrivial elements T1, T2 and T3 in PSL2(R), the
following two conditions are equivalent:

(1) The three points C(p; T1), C(p; T2) and C(p; T3) are collinear in RP2 for any
point p in ∂H2

−
⋃3

i=1 Fix(Ti ).

(2) The elements T1, T2 and T3 either

(a) have the same fixed point set, or
(b) up to conjugation by an element of PSL2(R), satisfy

T1(z)= az, T2(z)= bz+ 1− b, T3(z)=
az

(a− b)z+ b
,

for some a, b in R−{0, 1}.

Proof. This result is closely related to Theorem 4.3 in [Díaz and Ushijima 2009],
which says that Condition (2) of the proposition holds if and only if, for any z ∈H2,
the points z, T1(z), T2(z) and T3(z) are cocyclic in Ĉ. We will see in Proposition 3
that this condition is equivalent to C(z; T1), C(z; T2) and C(z; T3) being collinear
for any z ∈ H2

−
⋃3

i=1 Fix(Ti ). This shows the implication (2)⇒ (1).
Moreover the collinearity of C(z; T1), C(z; T2) and C(z; T3) is an algebraic con-

dition (see proof of the theorem just cited). If T1, T2 and T3 are not one of the triples
listed in Condition (2), the algebraic equation is proper, that is, the solution set is
nowhere dense in C. This, however, does not guarantee that R is not contained in
the solution set. Thus the implication (1)⇒ (2) is not proved yet.

Let T1, T2, T3 be distinct nontrivial elements of PSL2(R) satisfying (1). Then
the determinant 1(p) of the 2× 2 matrix with columns C(p; T1)−C(p; T2) and
C(p; T1)−C(p; T3) vanishes wherever it is defined — that is, for any p ∈ R such
that the points C(p; T1),C(p; T2),C(p; T3) are not on the line at infinity of RP2.
(Here of course the C(p; Ti ) are given by the formula (*).)

Now, as p runs over ∂H, each B(p; Ti ) describes a projective line; we can as-
sume without loss of generality that none of these three lines is the line at infinity.
(If it is, we conjugate T1, T2, T3 by an element of PSL2(R), which is allowed since
desired conclusion, Condition (2), is insensitive to conjugation.) Thus the determi-
nant 1(p) is defined — and, by assumption, vanishes — for all but finitely many
values of p. Hence, in any expression N (p)/D(p) of 1(p) as a rational function
of p, the numerator N (p) is the zero polynomial. We will show, by analyzing the
possible cases, that this implies the desired conclusion.

Case 1. One of Ti (say T1) is hyperbolic and another (say T2) is not elliptic.
We first consider the case that the set Fix(T1) ∩ Fix(T2) is not empty. By

conjugation, we can assume that T1 fixes 0 and ∞, and T2 fixes ∞. The matrix
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presentations in SL2(R) of these elements are

T1 =

(
a1 0
0 1/a1

)
, T2 =

(
a2 b2

0 1/a2

)
, T3 =

(
a3 b3

c3 d3

)
.

The constant term of N is then 4a2b2b3(a2b2d3 − b3). Since a2 is not zero, we
have either b2 = 0, b3 = 0 or a2b2d3 = b3.

When b2 = 0, the coefficient of p2 is −4b3d3(a1
2
− a2

2)(a2
2
− 1). We have

T1 = T2 in PSL2(R) when a1
2
= a2

2, we have T1 is trivial when a2
2
= 1, and

the case that b3 = 0 will be discussed later. So d3 is to be 0, which together with
det T3 = 1 implies −b3c3 = 1. The coefficient of p3 is then 8(a1

2
− a2

2)(a2
2
− 1).

All of the possible cases when it is zero have already been discussed.
When b3 = 0, we have d3 = 1/a3, for det T3 = 1. The coefficient of p3 is then

8a2b2c3(a2
2a3

2
− a1

2)/a3. It is a straightforward calculation that there will be no
new possible cases when either b2 or c3 is zero. We thus assume a3=a1/a2 without
loss of generality. The polynomial N is then expressed as

N (p)= 4
a2

(
(a1

2
− a2

2)(a2
2
− 1)+ a1a2

2b2c3
)
(b2− a1c3z2)p2.

We thus have c3 = (a1
2
− a2

2)(1− a2
2)/(a1a2

2b2). The point a2b2/(1− a2
2) is

fixed by T2. After normalizing this fixed point to be 1, three elements T1, T2 and
T3 coincide with the ones in (2b).

When a2b2d3 = b3, we have c3 = (a3d3 − 1)/(a2b2d3), for det T3 = 1. The
coefficient of p is then 8a2

2b2
2(a2

2d3
2
− 1), which implies T2 = T3, contrary to

assumption.
We next consider the case that Fix(T1)∩ Fix(T2) is the empty set; here T1 can

be assumed to fix 0 and∞, and T2 to fix 1. The matrix presentations in SL2(R) of
these elements are

T1 =

a1 0

0 1
a1

 , T2 =

a2
1

a2−c2
− a2

c2
1

a2−c2
− c2

 , T3 =

a3
a3d3−1

c3

c3 d3

 .
The coefficient of p6 is then −4a1

2c2c3
3(a2− c2)

2(a2c3− a3c2). When it is zero,
we have a2c3 − a3c2 = 0, otherwise we are in the case already considered. This
implies T2 = T3.

Case 2. Two of Ti (say T1 and T2) are parabolic.
We first consider the case that Fix(T1) coincides with Fix(T2); the common fixed

point of T1 and T2 is assumed to be∞. The matrix presentations in SL2(R) of these
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elements are

T1 =

(
1 b1

0 1

)
, T2 =

(
1 b2

0 1

)
, T3 =

(
a3 b3

c3 d3

)
,

where a3d3 − b3c3 = 1. It is then a straightforward calculation that there will be
no new possible cases.

We next consider the case that the set Fix(T1)∩Fix(T2) is empty; T1 is assumed
to fix∞ and T2 is assumed to fix 0. The matrix presentations in SL2(R) of these
elements are

T1 =

(
1 b1

0 1

)
, T2 =

(
1 0
c2 1

)
, T3 =

 a3 b3

a3d3−1
b3

d3

 .
The constant term is then 8b3

3(b1d3− b3), which implies T1 = T3.

Case 3. Two of the Ti are elliptic.
We assume T1 fixes

√
−1 and T2 fixes h

√
−1, for some h > 0. The matrix

presentations in SL2(R) of these elements are

T1 =

(
cos θ1 sin θ1

− sin θ1 cos θ1

)
, T2 =

(
cos θ2 h sin θ2

−
1
h sin θ2 cos θ2

)
, T3 =

(
a b
c d

)
,

where θ1, θ2 ∈ R and ad− bc = 1. Recall sin θi 6= 0 for i = 1, 2 since both T1 and
T2 are not trivial.

Let p2 1 := h(−1+cos θ2)/ sin θ2 and p2 2 := h(1+cos θ2)/ sin θ2. These points
satisfy

√
−1 ∈ B(p2 i ; T2) for i = 1, 2. Since we are assuming (1), we also have

√
−1 ∈ B(p2 i ; T3) for i = 1, 2, which means C(p2 i ; T3) 6∈ R2

⊂ RP2.
Let Di be the denominator of C(p2 i ; T3) for i = 1, 2. They then satisfy

D1− D2 =
−4h

sin2 θ2
d1, D1+ D2 =

4h cos θ2

sin2 θ2
d1+ 2d2,

where d1 := (ab+ cd) sin θ2+ h(a2
+ c2
− 1) cos θ2 and d2 := h2(a2

+ c2
− 1)+

(b2
+ d2
− 1). Since C(p2 i ; T3) 6∈ R2, we have D1 = D2 = 0. This implies, by the

equations above, d1 = d2 = 0.
Similarly, there are points p1 i in ∂H2 satisfying h

√
−1∈B(p1 i ; T1) for i =1, 2.

Let

H :=
(√

h 0
0 1/

√
h

)
.

We then have Fix(H−1T1 H)= {
√
−1/h} and Fix(H−1T2 H)= {

√
−1}. Applying

similar calculations as before we have d3 = d4 = 0, where
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d3 := (ab+ cdh) sin θ1+ (a2
+ c2h2

− 1) cos θ1,

d4 := (a2
+ b2
− 1)+ (c2

+ d2
− 1)h2.

When c = 0, we have a = 1/d and b = h(d2
− 1) cos θ2/(d sin θ2). Substitute

them for both d2 and d4 and we have d4 − d2 = (d4
− 1)(h2

− 1) sin2 θ2. The
condition d4− d2 = 0 implies that T3 is trivial.

When c 6= 0, we have b = (ad − 1)/c. Substitute it for both d2 and d4 and we
have d2 − d4 = c2(a2

− d2)(h2
− 1). When h2

= 1 or a = d , a straightforward
calculation shows that T1, T2 and T3 have a common fixed point. When a = −d,
we have the following expression of d1:

d1 =−a(a2
+ c2
+ 1) sin θ2+ ch(a2

+ c2
− 1) cos θ2.

Suppose a2
+ c2
−1 6= 0, otherwise we have no new triple. Then h is expressed as

h =
a(a2
+ c2
+ 1) sin θ2

c(a2+ c2− 1) cos θ2
.

Substitute them for d2 and we have the expression of sin2 θ2 as

sin2 θ2 =
(a2
+ c2
− 1)

(
(a2
+ c2
− 1)(a2

− 1)+ 4a2
)

4c2− (a2+ c2+ 1)
.

Similarly, substitute them for d3 and we have the expression of sin2 θ1 as

sin2 θ1 =
(2ac)2

(a2+ c2+ 1)− 4c2 .

These expressions imply, after a few more calculations, that there will be no new
triple in this case. This concludes the proof of Proposition 2. �

Proposition 3. For i = 1, 2, let Bi be the perpendicular bisector of the hyperbolic
line segment [z0, zi ] with endpoints z0 and zi in H2, and Ci the pole in RP2 of
the projective line containing the image of Bi . In each of the following triples of
statement, the three conditions are equivalent:

(1-1) The points z0, z1 and z2 are on a hyperbolic circle with center w ∈ H2.

(1-2) The projective lines B1 and B2 intersect at w ∈ H2.

(1-3) The projective line in RP2 through C1 and C2 does not intersect D2, and its
pole corresponds to w ∈ H2.

(2-1) The points z0, z1 and z2 are on a horocycle with center w ∈ ∂H2.

(2-2) The projective lines B1 and B2 intersect at w ∈ ∂H2.

(2-3) The projective line in RP2 through C1 and C2 touches ∂D2, and the tangen-
tial point corresponds to w ∈ ∂H2.
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(3-1) The points z0, z1 and z2 are on an equidistant point set whose axis is `.

(3-2) The projective lines B1 and B2 intersect perpendicularly with `.

(3-3) The projective line in RP2 through C1 and C2 intersects with D2, and it
contains the image of `.

Proof. For j = 1, 2, 3, the equivalence between ( j-2) and ( j-3) comes from the
duality for the pole and the projective line in RP2.

Suppose that (1-1) holds. Since any point on B1 is equidistant from z0 and z1,
the center w lies on B1, and so does on B2. Thus (1-3) holds, and the converse is
also true by the same argument. The equivalence between (2-1) and (2-2) comes
by a continuity argument from the equivalence above. The equivalence between
(3-1) and (3-2) comes from Proposition 1 (3). �

Lemma 4. Let T1, T2 and T3 be mutually distinct and nontrivial elements in a
Fuchsian group. Suppose that three points C(p; T1), C(p; T2) and C(p; T3) are
collinear in RP2 for any p in ∂H2

−
⋃3

i=1 Fix(Ti ), and that there is a point p0 in
∂H2
−
⋃3

i=1 Fix(Ti ) such that the set

B(p0; T1)∩B(p0; T2)∩B(p0; T3) (resp. B(p0; T1)∩B(p0; T2)∩B(p0; T3))

is not empty. Then T1, T2 and T3 belong to a cyclic elliptic (resp. parabolic) sub-
group.

Proof. Suppose that C(p; T1), C(p; T2) and C(p; T3) are collinear in RP2 for any
p in ∂H2

−
⋃3

i=1 Fix(Ti ). Since Proposition 2(2b) does not occur from elements
in a Fuchsian group, the elements T1, T2 and T3 have the same fixed point set.
Furthermore, they belong to a cyclic subgroup generated by, say T , since they
come from a Fuchsian group.

We first consider the case that T is hyperbolic; in particular, the axis of T is
assumed to be contained in the imaginary axis of C. The circle in Ĉ through
p, T1(p), T2(p) and T3(p) is a Euclidean line through the origin for any p in
∂H2
−{0,∞}. Then the hyperbolic lines B(p; Ti ) are ultraparallel by Proposition 3

so that there is no such point p0 in question.
We next consider the case that T is parabolic; in particular, T is assumed to

fix∞. For each i = 1, 2, 3, the hyperbolic line B(p; Ti ) is contained in a vertical
Euclidean line for any p in ∂H2

−{∞}. The set

B(p; T1)∩B(p; T2)∩B(p; T3)

then coincides with {∞}.
Finally, if T is elliptic, then the four points are on a hyperbolic circle centered

at the fixed point of T for any p in ∂H2. �
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Proposition 5. Let T1, T2 and T3 be elements in a Fuchsian group. Suppose that
they are mutually distinct, nontrivial and neither elliptic with a common fixed point
nor parabolic with a common fixed point. Then VT1,T2,T3 has measure zero.

Proof. We first consider the case that T1, T2 and T3 belong to a cyclic subgroup
of a given Fuchsian group 0. By the assumption, the subgroup is generated by a
hyperbolic element T . By Proposition 1, the set VT1,T2,T3 coincides with the fixed
point set Fix(T ) of T , which consists of two points. So VT1,T2,T3 has measure zero.

We next consider the case that T1, T2 and T3 do not belong to any cyclic subgroup
of 0. Define

V′T1,T2,T3
:=
{

p ∈ ∂H2 ∣∣ C(p; T1),C(p; T2) and C(p; T3) are collinear in RP2}.
As is mentioned in the proof of Proposition 2, the set V′T1,T2,T3

is the solution set
of a real algebraic equation with variable p. By the assumption together with
Proposition 2, the equation is proper. So V′T1,T2,T3

has measure zero in ∂H2. By
Proposition 3 the set VT1,T2,T3 is contained in V′T1,T2,T3

; when the projective line
through C(p; T1), C(p; T2) and C(p; T3) intersects with D2, the point p is not
contained in VT1,T2,T3 . The set VT1,T2,T3 then has measure zero in ∂H2 as well. �

Lemma 6. Let T1 and T2 be distinct and nontrivial elements in PSL2(R). Suppose
that they are not parabolic with a common fixed point. Then there is a point p0

in ∂H2
− (Fix(T1)∪Fix(T2)) such that B(p0; T1) and B(p0; T2) do not share their

endpoints.

Proof. We first consider the case that both T1 and T2 are elliptic. Take the hyper-
bolic line ` through their fixed points (choose any hyperbolic line which contains
the fixed point if their fixed points are identical). Then there is a point p0 in ∂H2

such that ` coincides with B(p0; T1). On the other hand, B(p0; T2) always contains
the fixed point of T2 by Proposition 1. So B(p0; T2) intersects with B(p0; T1)=` at
the fixed point of T2. If ` happen to coincide with B(p0; T2), then take another point
p0 satisfying the same condition, or switch T1 and T2 and do the same argument.
Then you can find a point in question on ∂H2 since T1 and T2 are different.

We next consider the case that T1 is elliptic and that T2 is either parabolic or
hyperbolic. For any point in H2

− Fix(T2), there is p in ∂H2
− Fix(T2) such that

B(p; T2) contains the point. So there is a point p0 in ∂H2 such that B(p0; T2)

contains the fixed point of T1, which is on B(p0; T1) since T1 is elliptic.
We then consider the case that both T1 and T2 are not elliptic. Suppose first

that their fixed point sets are different. Let p1 be a fixed point of T1 which is not
fixed by T2, for example. Since T1 and T2 are not elliptic, B(p; T1) converges to
p1 when p approaches to p1. A point p close enough to p1 is mapped to another
point T2(p) by T2, which is not close to p1. Then the endpoints of B(p; T2) are
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not close to p1 as well, which means that B(p; T1) and B(p; T2) do not share their
endpoints.

If T1 and T2 are not elliptic and their fixed point sets coincide with each other,
then they are hyperbolic by the assumption. Then B(p; T1) and B(p; T2) are ul-
traparallel for any p in ∂H2

− (Fix(T1)∪Fix(T2)) by Proposition 3. �

Proposition 7. Let T1 and T2 be distinct and nontrivial elements in PSL2(R).
Suppose that they are not parabolic with a common fixed point. Then TT1,T2 has
measure zero.

Proof. The set TT1,T2 is defined as the solution set of an algebraic equation. Actu-
ally it is given by calculating the Euclidean distance between the origin in D2 and
the projective line through C(p; T1) and C(p; T2). See [Jørgensen and Marden
1988, Lemma 3.3]. Lemma 6 means that the equation is proper. So TT1,T2 has
measure zero. �

Lemma 8. Let T be a nontrivial element in PSL2(R). If there is a point w in H2

such that B(p; T ) contains w for any p in ∂H2
− Fix(T ), then T is either elliptic

or parabolic and w is its fixed point. Similarly, for a hyperbolic line `, if B(p; T )
intersects perpendicularly with ` for any p in ∂H2

− Fix(T ), then T is hyperbolic
and ` is its axis.

Proof. Suppose that T fixes w. Then the statement holds only if T is elliptic or
parabolic by Proposition 1.

Suppose that T does not fix w. If T is elliptic, there is a point p0 in ∂H2 such
that B(p0; T ) does not contain w, for the fixed point of T is the unique point that
lies in B(p; T ) for any p in ∂H2. If T is parabolic, then B(p; T ) does not contain
w for any point p close enough to the fixed point of T , for B(p; T ) converges to
the fixed point. The same argument holds when T is hyperbolic.

For a hyperbolic line `, consider its image in D2. Let C` be the pole of the
image of `. Then we interpret the assumption as the projective line L p containing
the image of B(p; T ) contains C` for any p in ∂H2

− Fix(T ). If T is elliptic or
parabolic, then L p contains the image of its fixed point for any p in ∂H2

−Fix(T ).
If T is hyperbolic, then L p contains the pole of the image of its axis for any p
in ∂H2

− Fix(T ). This implies that, if the assumption holds, then T is hyperbolic
with axis `. �

Proposition 9. Let T1 and T2 be distinct and nontrivial elements in PSL2(R). Sup-
pose that Fix(T1) and Fix(T2) are different. Then FT1,T2 has measure zero.

Proof. Let z1 be a point in RP2 which corresponds to the fixed point of T1 if it is
elliptic or parabolic, or to the pole of the axis of T1 if it is hyperbolic. We denote
by `2 the projective line in RP2 containing the image of B(p; T2). Then FT1,T2 is
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interpreted as
FT1,T2 = {p ∈ ∂H2

| `2 contains z1}.

Using this interpretation, the set FT1,T2 is defined as the solution set of an alge-
braic equation. To see it, use the Minkowski space model. The equation is given by
the Minkowski inner product of p1 and the normal vector of `2. Lemma 8 means
that this algebraic equation is proper. So the set FT1,T2 has measure zero. �
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