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We prove that on a Fano manifold M admitting a Kähler–Ricci soliton
(ω, X), if the initial Kähler metric ωϕ0 is close to ω in a certain weak sense,
then the weak Kähler–Ricci flow exists globally and converges in the sense of
Cheeger and Gromov. In particular, ϕ0 is not assumed to be KX -invariant.
The methods used are based on the metric geometry of the space of the
Kähler metrics and are potentially applicable to other stability problems of
geometric flows near the corresponding critical metrics.

1. Introduction

The Ricci flow was first introduced by Hamilton [1982] and now plays an important
role in understanding the geometric and topological structure of the manifolds it
lives on. We call the Ricci flow a Kähler–Ricci flow if the underlying manifold is
a Kähler manifold. The normalized Kähler–Ricci flow is given by

(1-1)


∂

∂t
ω =−Ric+λω,

ω(0)= ωϕ0,

where ω(0) stays in the canonical class 2πC1(M) and λ is the sign of the first
Chern class. Cao [1985] first showed that the Kähler–Ricci flow (1-1) has long-
time existence. He also proved that the Kähler–Ricci flow converges to a Kähler–
Einstein metric when the first Chern class is negative or zero. Now we restrict
ourselves to the case where the first Chern class is positive. Since the Kähler–
Ricci flow preserves the Kähler class, we can rewrite the Kähler–Ricci flow in
terms of the Ricci potential:

(1-2)


∂ϕ

∂t
= log

ωn
ϕ

ωn +ϕ− hω+ a(t),

ϕ(0)= ϕ0,

where a is a function of t and the Ricci potential hω of the reference metric ω is
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defined by

√
−1 ∂∂̄hω = Ric(ω)−ω and

∫
M

ehωωn
= Vol(M).(1-3)

The convergence of the Kähler–Ricci flow has been studied by many authors.
Chen and Tian [2002; 2006] proved it for Kähler–Einstein manifolds under the
assumption of positivity of the Ricci curvature along the flow. Perelman (unpub-
lished; see detailed proof in [Sesum and Tian 2008]) obtained an estimate of the
Kähler–Ricci flow and proved that it converges to a Kähler–Einstein metric in the
sense of Cheeger–Gromov, when one exists for any initial Kähler metric. Tian and
Zhu [2007] extended this to the case of a Kähler–Ricci soliton for a KX -invariant
initial metric; a Kähler–Ricci soliton is a Kähler metric such that there is a holo-
morphic vector field X satisfying

(1-4) L Xω = Ric−ω.

Since the right side of (1-4) is real-valued, we obtain L Im Xω = 0 and Im X , the
imaginary part of X , generates a one-parameter isometry group KX . Without as-
suming that M admits a Kähler–Einstein metric or a Kähler–Ricci soliton, the
analytic and geometric conditions of the convergence of the Kähler–Ricci flow are
studied in [Phong and Sturm 2006; Phong et al. 2009, 2008; 2011, Tosatti 2010;
Székelyhidi 2010; Munteanu 2009; Pali 2009; Chen and Wang 2010; Rubinstein
2009.

In order to study the asymptotic behavior of the Kähler–Ricci flow, we consider
the flow’s stability problem. That is, on a Kähler manifold M admitting a Kähler–
Ricci soliton (ω, X), for what kind of neighborhood of ω does the Kähler–Ricci
flow with initial datum in that neighborhood converge (in some sense — maybe
exponentially) to the Kähler–Ricci soliton?

This stability problem has been investigated by many people; for references, see
[Chen and Li 2009]. That work and [Tian and Zhu 2008] consider perturbing both
the initial metric and the complex structure near a Kähler–Einstein metric.

In this paper, we focus on perturbing the initial metric near the Kähler–Ricci
soliton without changing the complex structure. The main results of this paper are
as follows, where N(ε0; B, p) is a small neighborhood of the zero function, to be
specified in Section 6.

First we will give a direct proof, based on the geometry of the space of Kähler
metrics, of long-time existence and convergence in the Cheeger–Gromov sense,
within the frame of Donaldson’s program [2004]. The result is this:

Theorem 1.1. If a Kähler manifold admits a Kähler–Ricci soliton (ω, X), there
exists a positive constant ε0 such that, if the initial potential ϕ0 stays in N(ε0; B, p),
the weak Kähler–Ricci flow exists globally and converges in the Cheeger–Gromov
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sense. If , moreover, ϕ0 is KX -invariant, the weak modified Kähler–Ricci flow con-
verges exponentially to a unique Kähler–Ricci soliton nearby.

When the Futaki invariant vanishes, it is obvious that the holomorphic vector
fields X is zero and the Kähler–Ricci soliton is a Kähler–Einstein metric.

Theorem 1.2. On a Kähler–Einstein manifold, there exists a positive constant ε0

such that, if the initial potential ϕ0 stays in N(ε0; B, p), the weak Kähler–Ricci flow
exists globally and converges exponentially to a unique Kähler–Einstein metric
nearby.

Simon [1983] studied the asymptotic behavior of the gradient flow of the varia-
tion problem via the Łojasiewicz–Simon inequality, which compares the distance
to the critical set with the norm of the gradient of the functional in the L2 space
under the condition that the functional should be analytic. The underlying idea is to
reduce the infinite-dimensional problem to a finite-dimensional problem. Perelman
[2002] introduced a new functional, called the µ functional, and pointed out that
the Ricci flow is the gradient flow of the µ functional up to a diffeomorphism.

We will not apply the Łojasiewicz–Simon inequality to the µ functional directly.
Instead, we provide a new approach to the study of the asymptotic behavior of
the flow which is merely a pseudogradient flow of some functional, since in the
Kähler setting, geometry gives us more information. To be precise, the critical
set in the space of Kähler metrics is a finite-dimensional Riemannian symmetric
space, which we will explain later.

Since the Kähler–Ricci flow is the pseudogradient flow of the K-energy, in order
to make the mechanism of our proof more clear, we first prove Theorem 1.2 under
the assumption that the C2,α norm of ϕ0 is small. Then we generalize our approach
to the case of a Kähler–Ricci soliton (Theorem 1.1).

A sketch of the proofs goes as follows. We first prove that the Kähler–Ricci
flow (1-2), after pullback by the corresponding holomorphic transformations, will
always stay in a small neighborhood of the background Kähler–Einstein metric.
When M has no nontrivial holomorphic vector field, it is not necessary to find
the transformations; Section 3 gives a proof of this. However, in general, when
M admits nontrivial holomorphic vector fields, we need a new method, developed
in Section 4A, to pick up the appropriate transformations following the trace of
the Kähler–Ricci flow in the space of normalized Kähler potential H0; see (2-2).
It has been shown by Mabuchi [1987], Donaldson [1999] and Semmes [1992]
independently that H0 is an infinite-dimensional symmetry space of negative cur-
vature. Later, Chen [2000b] proved H0 is also a metric space. Since the space E0

of potentials of Kähler–Einstein metrics is a totally geodesic submanifold in H0,
the projection ρ minimizing the distance function from the Kähler–Ricci flow to
E0 is uniquely determined. The Bando–Mabuchi uniqueness theorem [1987] on
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the Kähler–Einstein metric implies that ωρ is different from the reference Kähler–
Einstein metric by a holomorphic transformation. The projection Kähler–Einstein
metric is exactly the new reference metric we’ve acquired.

Another way to derive a holomorphic transformation (Section 7) of ϕ ∈H0 is to
minimize in E0 the I − J functional, introduced in [Bando and Mabuchi 1987] to
prove the uniqueness of the Kähler–Einstein metric. However, this method cannot
be applied in our case directly, since in general the hessian of the I − J functional
is not strictly positive; that is, the minimizer is not unique. Nevertheless, as we
observed when the C2,α norm of ϕ is small, the hessian of the I − J functional
is indeed strictly positive. Therefore, the holomorphic transformation is uniquely
determined.

In Section 5, we prove stability of the Kähler–Ricci flow near a Kähler–Ricci
soliton (ω, X), similarly to the case of Kähler–Einstein metric. We use (ω, X) as
the background metric. We first prove that the Kähler–Ricci flow (1-2) with small
C2,α initial Kähler potential will always stay in a small neighborhood of ω in the
Cheeger–Gromov sense. The key idea is to use Perelman’s µ functional [2002]
instead of the K-energy, since the hessian of the µ functional is nonnegative at a
Kähler–Ricci soliton within the canonical class [Tian and Zhu 2008]. Furthermore,
we reparametrize the Kähler–Ricci flow (1-1) by the automorphisms ς(t) generated
by the real part Re X of X such that

(1-5)


∂

∂t
ωφ =−Ric(ωφ)+ωφ + LRe Xωφ,

ωφ(0) = ωϕ0 .

It is obvious that the Kähler–Ricci soliton is the stationary solution of the modified
Kähler–Ricci flow (1-5). Since the Kähler–Ricci soliton (ω, X) is KX -invariant and
the Kähler–Ricci flow is also invariant under the holomorphic diffeomorphism, we
assume without loss of generality that the initial datum is KX -invariant. Then the
exponential convergence of the modified Kähler–Ricci flow follows from [Phong
et al. 2011].

Finally, in Section 6, at a fixed time, we show that the C2,α norm of the potential
is small when the initial value is small under certain weak conditions. The main
idea is to use the estimate introduced in [Chen et al. 2008].

As a corollary of Theorem 1.1, we deduce that the limit metric of the Kähler–
Ricci flow is unique. Let {ϕ(ti )} be a sequence of solutions of the Kähler–Ricci flow
converging to a Kähler–Einstein metric or Kähler–Ricci soliton g∞, if one exists;
then there exists some ϕ ∈ {ϕ(ti )} satisfying the stability condition of Theorem 1.1.
According to that condition, the Kähler–Ricci flow with initial value ϕ converges
exponentially to a Kähler–Einstein metric g1

∞
or Kähler–Ricci soliton, respectively.

Further, since we assume that {ϕ(ti )} → g∞, we must have g1
∞
= g∞.
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We stress that the approach used to prove Theorem 1.1 is also applicable to the
case of the general pseudogradient flow: neither the condition that the flow is the
gradient flow of some functional, nor Perelman’s deep estimate, nor a prior long-
time existence of the flow is required. It is possible that our method can be used to
solve other, similar problems of geometric flow, such as the stability of the pseudo-
Calabi flow near a constant scalar curvature Kähler metric in [Chen and Zheng
2010] and of the Calabi flow near a extremal metric in [Huang and Zheng 2010].

The paper is organized as follows: in Section 2 we review known results on the
space of Kähler metrics and the well-posedness of the pseudo-Calabi flow obtained
in [Chen and Zheng 2010] — see (2-10). In Sections 3 and 4 we prove Theorem 1.2
under the assumption that the C2,α norm of the initial Kähler potential is small.
Then we prove Theorem 1.1 under the same assumption in Section 5. Finally,
in Section 6 we explain how to weaken the initial condition to the one stated in
Theorem 1.2 and Theorem 1.1. In Section 7, we explain another method to choose
the holomorphic transformation.

2. Notation and basic results

Let M be a compact Kähler manifold of complex dimension n with positive first
Chern class C1(M) and let ω be a Kähler form representing the canonical class
2πC1(M). In a local holomorphic coordinate z1, z2, . . . , zn , the form ω is ex-
pressed by

ω =
√
−1

n∑
i=1

gi j̄ dzi
∧ dz j̄ .

The corresponding Riemannian metric is given by

g =
n∑

i=1
gi j̄ dzi

⊗ dz j̄ .

For a Kähler metric ω, the volume form is

dV = ωn
= (
√
−1)

n
det(gi j̄ )dz1

∧ dz1̄
∧ · · · ∧ dzn

∧ dzn̄.

The Ricci form

Ric=
√
−1

n∑
i=1

Ri j̄ dzi
∧ dz j̄

=−
√
−1 ∂∂̄ log detωn

is a closed real (1, 1)-form and belongs to 2πC1(M). Accordingly, the scalar
curvature satisfies

Sωn
= n Ric∧ωn−1.

A direct calculation gives the average scalar curvature:

S =
1
V

∫
M

S dV =
n
V

∫
M

Ric∧ωn−1
= n.
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Let K be the set of Kähler forms on M representing 2πC1(M) and let E be the set
of Kähler–Einstein metrics in K. According to the ∂∂̄ lemma, for any Kähler metric
ω′ in K there exists a smooth real-valued function ϕ such that ω′ =ω+

√
−1 ∂∂̄ϕ.

Then the space of Kähler potentials of K is given by

H=
{
ϕ ∈ C∞(M,R) | ω+

√
−1 ∂∂̄ϕ ∈ K

}
.

Apparently, we have an isomorphism

T H∼=H×C∞(M,R).

Mabuchi [1987], Donaldson [1999] and Semmes [1992] independently defined a
Riemannian metric on H by ∫

M
f1 f2ω

n
ϕ,

for any f1, f2 ∈ TϕH. For any path ϕ(t) (0≤ t ≤ 1) in H, the length is given by

(2-1) L(ϕ(t))=
∫ 1

0

√∫
M
ϕ′(t)2ωn

ϕ(t)dt,

and the geodesic equation is

ϕ′′(t)− 1
2 |∇tϕ

′(t)|2ϕ(t) = 0,

where ′ denotes differentiation in t and ∇t denotes the covariant derivative for
the metric gϕ(t). The geodesic equation enables us to define the connection on the
tangent bundle. For any tangent vector field ψ(t) along the path ϕ(t), the covariant
derivative along ϕ(t) is defined by

Dtψ =
∂ψ

∂t
−

1
2(∇tψ,∇tϕ

′)gϕ .

Then the connection at ϕ is given by

G(X |Y )(ψ1, ψ2)=−
1
2(∇ψ1,∇ψ2)gϕ ,

for any ψ1 and ψ2 in TϕH. G(X |Y ) is torsion-free and metric-compatible.

Theorem 2.1 [Mabuchi 1987; Donaldson 1999; Semmes 1992]. The Riemannian
manifold H is an infinite-dimensional symmetric space; it admits a Levi-Civita
connection whose curvature is covariant constant. At a point ϕ ∈H the curvature
is given by

Rϕ(δ1ϕ, δ2ϕ)δ3ϕ =−
1
4

{
{δ1ϕ, δ2ϕ}ϕ, δ3ϕ

}
ϕ
,

where { , }ϕ is the Poisson bracket on C∞(M) of the symplectic form ωϕ .
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Theorem 2.2 [Chen 2000b]. H is a metric space, and is convex by C1,1 geodesics.

Calabi and Chen [2002] proved H is negatively curved in the sense of Alexan-
droff. We denote the space of normalized Kähler potentials by

(2-2) H0 = {ϕ ∈ C∞(M, R) | ω+
√
−1 ∂∂̄ϕ > 0 and I (ϕ)= 0},

where

I (ϕ)=
1
V

n∑
p=0

1
(p+ 1)! (n− p)!

∫
M
ϕωn−p

∧ (∂∂̄ϕ)p.

In fact, H can be naturally split as

H=H0×R.

This leads to a decomposition of the tangent space:

Tϕ =
{

f
∣∣∣∣ ∫

M
f ωn

ϕ = 0
}
⊕R.

On a Kähler–Einstein manifold (M, ω), choose ω be the reference metric. It is
clear from the definition (1-3) that hω = 0. Substituting this into the potential
equation (1-2) of the Kähler–Ricci flow, we obtain

(2-3)


∂ϕ

∂t
= log

ωn
ϕ

ωn +ϕ+ a(t),

ϕ(0)= ϕ0.

If we choose the normalization constant in (2-3) appropriately, namely,

(2-4) a(t)=−
1
V

∫
M

(
log

ωn
ϕ

ωn +ϕ
)
ωn
ϕ,

we see that

(2-5) ∂t I (ϕ)=
1
V

∫
M
∂tϕω

n
ϕ = 0.

We first assume that ϕ0 ∈H0 satisfies I (ϕ0)= 0; the general case will be treated
in Section 6. Then (2-5) implies I (ϕ) = 0, which ensures that the solution ϕ of
(2-3) always stays in H0.

For any ϕ ∈H, Mabuchi [1986] defined the K-energy of (M, ω) as

(2-6) ν(ω, ωϕ)=−
1
V

∫ 1

0

∫
M
ϕ̇(τ )(Sϕ(τ)− S)ωn

ϕ(τ)dτ,
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where ϕ(τ) is an arbitrary piecewise smooth path from 0 to ϕ. An explicit expres-
sion of the K-energy is formulated in [Chen 2000a; Tian 2000] as

(2-7) νω(ϕ)=
1
V

∫
M

log
ωn
ϕ

ωn ω
n
ϕ +

Sn!
V

I (ϕ)

−
1
V

n−1∑
i=0

n!
(i + 1)!(n− i − 1)!

∫
M
ϕ Ric∧ωn−1−i

∧ (∂∂̄ϕ)i .

In later sections we will simply write ν(ϕ) instead of νω(ϕ).

Theorem 2.3 [Mabuchi 1987]. If ω is a critical point of ν(ϕ), the second variation
of the K-energy satisfies

d2

dt2 ν(θt)|t=0 ≥ 0

for every smooth path {θt | −ε ≤ t ≤ ε} in K such θ0 = ω.

Let Aut(M) be the group of holomorphic automorphisms of M and Aut0(M)
its identity component.

Theorem 2.4 [Bando and Mabuchi 1987; Bando 1987]. Assume E 6=∅.

(i) The K-energy is bounded from below on K and takes its absolute minimum
exactly on E.

(ii) E consists a single Aut0(M)-orbit.

Indeed, the normalization constant a(t) can be estimated by the K-energy.

Lemma 2.5. Let ϕ be the solution of (2-3). The relation between a(t) and the
K-energy ν(ϕ) is given by

(2-8) a(t)+ ν(ϕ)= a(0)+ ν(ϕ0).

Proof. We calculate the evolution of a(t) along the Kähler–Ricci flow directly:

V
d
dt

a(t)=−
∫

M
(4ϕ + 1)ϕ̇ωn

ϕ −

∫
M

(
log

ωn
ϕ

ωn +ϕ
)
4ϕϕ̇ω

n
ϕ.

By Stokes’ theorem and (2-5) the first term vanishes identically. Integration by
parts and the use of (2-3) gives for the second term∫

M
(Sϕ − n)ϕ̇ωn

ϕ.

Since (2-6) implies

(2-9)
d
dt
ν(t)=−

1
V

∫
M
(Sϕ − n)ϕ̇ωn

ϕ,

we obtain d
dt

a(t)=− d
dt
ν(t). We conclude by integrating both sides with respect

to t . �
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Since the K-energy is decreasing along the Kähler–Ricci flow, we immediately
conclude the following according to Theorem 2.4.

Corollary 2.6. On a Kähler–Einstein manifold, a(t) is uniformly bounded along
the Kähler–Ricci flow.

Set
X = C0([0, T ),C2+α(M, g))∩C1([0, T ),Cα(M, g)).

The following theorems asserting short-time existence, regularity and continuous
dependence on initial data for the Kähler–Ricci flow were proved by Chen and the
author, who defined a new second-order Monge–Ampère flow, called the pseudo-
Calabi flow and coinciding with the Kähler–Ricci flow when the initial datum is
restricted in the canonical Kähler class:

(2-10)


∂ϕ

∂t
=− f (ϕ),

4ϕ f (ϕ)= S(ϕ)− S.

Theorem 2.7 [Chen and Zheng 2010]. Let ϕ0 ∈ C2,α(M, g) be such that

λω ≤ ωϕ0 ≤3ω,

for two positive constants λ and 3. Then the pseudo-Calabi flow has a unique
solution ϕ(x, t) ∈ X , where T is the maximal existence time.

Theorem 2.8 [Chen and Zheng 2010]. The solution of the pseudo-Calabi flow
ϕ ∈ X is smooth for any t > 0. More precisely, if |ϕ(t)|C2,α ≤ A for any 0≤ t ≤ T ,
there exists a constant C (depending on A, g, t0 and k) such that |ϕ(t)|Ck,α ≤C for
any T − t0 ≤ t ≤ t0 < T .

Theorem 2.9 [Chen and Zheng 2010]. If φ is the solution of the pseudo-Calabi
flow for an initial datum φ0 on [0, T ], there is a neighborhood U of φ0 such that the
pseudo-Calabi flow has a solution ϕ(t) on [0, T ] for any ϕ0 ∈U and the mapping
ϕ0 7→ ϕ(t) is Ck for k = 0, 1, 2, . . . .

As a corollary of the continuous dependence on initial data we have:

Theorem 2.10 [Chen and Zheng 2010]. Suppose M admits a constant scalar cur-
vature Kähler metric ω. Let ϕ0 ∈ C2,α(M, g) be such that λω ≤ ωϕ0 ≤ 3ω for
positive constants λ and 3. Then for any T > 0 there exits a positive constant
ε0(T ) such that, if |ϕ0|C2,α(M,g) ≤ ε0(T ), the pseudo-Calabi flow has a unique
solution on [0, T ] and

|ϕ̇|Cα(M,g)+ |ϕ|C2,α(M,g) ≤ Cε0(T ) for all t ∈ [0, T ],

where C depends on M , g and T . As T goes to infinity, ε0(T ) goes to zero.
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3. No nontrivial holomorphic vector fields

Let η(M) be the set of all holomorphic vector fields on M . We start with the case
η(M)=∅. We shall prove the following proposition in this section.

Proposition 3.1 [Tian and Zhu 2008; Zhu 2009]. Assume M admits a Kähler–
Einstein metricω and has no holomorphic vector fields. There exits a small positive
constant ε0 such that, if the initial datum satisfies

|ϕ0|C2,α(M) ≤ ε0,

then the Kähler–Ricci flow gϕ converges smoothly to g.

Proof. We at first show that under the assumption of the proposition, the solution
of (2-3) always stays in some small ε1-neighborhood of the zero function.

Lemma 3.2. For any ε1 > 0, there exits a small positive constant ε0 such that, if
|ϕ0|C2,α(M) ≤ ε0, then |ϕ(t)|2,α ≤ ε1 for all t ∈ [0,+∞).

Proof. Suppose that the conclusion fails; then there exists a sequence of initial data
ϕ0

s such that

|ϕ0
s |C2,α ≤

1
s
.

By virtue of Theorem 2.10, we get a sequence of solutions ϕs(t) satisfying the flow
equations (2-3) with ϕs(0)= ϕ0

s . Let Ts be the first time such that

(3-1) |ϕs(Ts)|C2,α = ε1 and |ϕs(t)|C2,α < ε1 for 0≤ t < Ts .

According to Theorem 2.10 again, we have Ts ≥ T1 > 0. Moreover, we apply
Theorem 2.8 to (2-3) on [Ts − 2a, Ts] for fixed a such that 0 < a < Ts/2− T1/4,
then we obtain a uniform higher-order bound for the sequence of solutions:

|ϕs |Ck,α(M) ≤ C(k, ε1, a) on [Ts−a, Ts], for all k ≥ 0.

Consequently, there is a subsequence of φs = ϕs(Ts) converges smoothly to φ∞
satisfying

(3-2) |φ∞|C2,α = ε1.

It is obvious that gφ∞ is still a Kähler metric. Since the K-energy is not only well de-
fined for ϕ0

s by (2-7) but also decreasing along the Kähler–Ricci flow, Theorem 2.4
implies that

0≤ νω(φs)≤ νω(ϕs(0))≤
C
s
.

By passing the limit we obtain

lim
s→∞

νω(ϕs)= νω(ϕ∞)= 0.
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Using Theorem 2.4, we obtain that gφ∞ is a Kähler–Einstein metric. From the same
theorem we deduce that φ∞ must be a constant. Furthermore the normalization
condition I (φ∞) = 0 leads to φ∞ = 0, which contradicts to (3-2). The lemma
follows. �

According to Theorem 2.8 and Lemma 3.2, we have |ϕ(t)|Ck ≤Ck for any k ≥ 3
away from t=0. It follows that for any sequence ti there is a subsequence such that
φ(ti ) converges smoothly to a limit function ϕ∞. Moreover, since the K-energy
has a lower bound and it decays along the flow, ωϕ∞ must be a Kähler–Einstein
metric. This, together with Theorem 2.4 and the normalization condition, implies
that ϕ∞= 0. Because the ti can be chosen arbitrarily, we conclude that the Kähler–
Ricci flow converges smoothly to the original Kähler–Einstein metric. �

4. M admits nontrivial holomorphic vector fields

4A. Choice and estimate of holomorphic transformations. When M admits holo-
morphic vector fields, we need to find an appropriate holomorphic transformation.
Let E0 ⊂H0 be the space of Kähler potentials of Kähler–Einstein metrics.

Let σ ∗t ω be any curve with σ0 = id in E0. The tangent vector at ω is

d
dt
σ ∗t

∣∣
t=0ω = L Xω.

Here X = (σt)
−1
∗
∂tσt |t=0 is the real part of some holomorphic vector field. Since

C1(M) > 0 implies that M is simply connected by [Kobayashi 1961], we obtain
L Xω =

√
−1∂∂̄θX for some function θX . Hence, the finite-dimensionalness of

the space of holomorphic vector fields implies that of E0. Moreover, according
to [Mabuchi 1987], E0 is also a totally geodesic submanifold of H0. Then the
point ρ ∈ E0 realizes the shortest distance between ϕ, and E0 is uniquely deter-
mined. In fact, according to Theorem 2.4, we obtain a holomorphic diffeomor-
phism σ ∈ Aut0(M) such that σ ∗ω = ω +

√
−1∂∂̄ρ. The K-energy is invariant

under holomorphic transformations:

Lemma 4.1 [Mabuchi 1986]. ν(ω, ω(σ−1)∗(ϕ−ρ))= ν(ω, ωϕ)= ν(ωρ, ωϕ).

Proof. Since ω and ωρ are both Kähler–Einstein metrics, Lemma (5.4.1) and The-
orem (5.3) of [Mabuchi 1986] yield, respectively, the equalities

ν(ω, ω(σ−1)∗(ϕ−ρ))= ν(σ
∗ω,ωϕ)= ν(ωρ, ωϕ)

= ν(ωρ, ω)+ ν(ω, ωϕ)= ν(ω, ωϕ). �

We next state two lemmas from [Chen and Zheng 2010] regarding the metric
rephrased for economy

geometry of the space of constant scalar curvature Kähler metrics. They show that
when metrics stay close to ω, their projection metrics are uniformly bounded.
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Lemma 4.2 [Chen and Zheng 2010]. There exists a positive constant ε such that
|ρ|C3,α ≤ C2ε for any ρ satisfying d(0, ρ)≤ ε.

Proof. Since E0 is a finite-dimensional Riemannian symmetric space, a small ε
neighborhood near ρ= 0 in this submanifold can be pulled back by the exponential
map exp0 to the tangent space T0(E0) at 0. Setψ= exp−1

0 (ρ). Then the length from
ψ to 0 is ε. The norm induced by the distance on T0(E0) is equivalent to the C2,α

norm, since all norms on a finite-dimensional vector space are equivalent. Thus
| exp−1

0 (ρ)|C2,α is bounded by C1ε. Since the exponential map is a diffeomorphism
in the ε neighborhood near ρ = 0, we obtain |ρ|C2,α ≤ C2ε for some constant C2.
The lemma follows by an appropriate choice of ε. �

We can improve this conclusion for Ck for fixed k ≥ 0, not only for C3,α norm.

Lemma 4.3 [Chen and Zheng 2010]. There exists a positive constant ε1 such that
|ϕ|C2,α ≤ ε1 implies

|ρ|C3,α ≤ C4 and |σ |h ≤ C5,

where h is the left invariant metric in Aut(M).

Proof. Choose a path γt = tϕ − I (tϕ) ∈ H0 for 0 ≤ t ≤ 1. Denote d(0, ϕ) the
distance between 0 and ϕ. Using (2-1), we compute

d(0, ϕ)≤ L(γt)=

∫ 1

0

(∫
M

(
∂γt

∂t

)2

ωn
γt

)1/2

dt

=

∫ 1

0

(∫
M
(ϕ− ∂t I (tϕ))2ωn

γt

)1/2

dt ≤ C3ε1

for |ϕ|C2,α ≤ ε1. Moreover, the choice of the ρ implies

d(0, ρ)≤ d(0, ϕ)+ d(ϕ, ρ)≤ 2d(0, ϕ)≤ C3ε1,

by the triangle inequality. From Lemma 4.2, it follows that |ρ|C3,α ≤C4=C2C3ε1.
Using [Chen and Tian 2006, Lemma 4.6], we derive |σ |h ≤ C5 and the lemma
follows. �

Remark. Alternatively the holomorphic transformation can be derived by mini-
mizing the I− J functional, as in [Bando and Mabuchi 1987], which will be further
discussed in Section 7. Those authors use this minimizer to prove the uniqueness
of the Kähler–Einstein metric when the first Chern class is positive. The minimizer
of the I − J functional is not unique in general, since the second variation of this
functional is not strictly positive. However, when the potential is small enough,
the minimizer is unique. We mention also that Corollary 7.2 provides an estimate
similar to Lemma 4.3.
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4B. Long time existence and Cheeger–Gromov convergence. Set

S(ε1,C(k, ε1))=
{
ϕ
∣∣ ϕ|C2,α ≤ ε1; |ϕ|Ck,α(M) ≤ C(k, ε1)

}
.

It is obvious that 0 ∈ S. We will show that when the initial potential is small, the
solution of (2-3) always stays in S after pulling back by a sequence of holomorphic
transformations.

Lemma 4.4. For any ε > 0, there is a small positive constant o depends on ε and
S such that, for any ϕ ∈ S, if νω(ϕ)≤ o, then |(σ−1)∗(ϕ− ρ)|C2,α < ε.

Proof. If the conclusion fails, we take a positive constant ε and a sequence of
ϕs ∈ S satisfying

νω(ϕs)≤
1
s

and such that

(4-1) |(σ−1
s )∗(ϕs − ρs)|C2,α ≥ ε.

Since ϕs ∈S(ε1,C(k, ε1)), we obtain a subsequence ϕs j of ϕs converging smoothly
to ϕ∞. Let ϕ̂s = (σ

−1
s )∗(ϕs − ρs). Lemma 4.3 gives

|ρs |C3,α ≤ C4 and |σs |h ≤ C5,

which implies that there are, by the Arzelà–Ascoli theorem and the Bolzano–
Weierstrass theorem respectively, subsequences of ρs j and σs j for which (using
the same notation)

ρs j → ρ∞ in C3,β for any β < α
and

σs j → σ∞ in the left invariant metric.

Combining with Lemma 4.1, which implies that

νω(ϕ∞)= νω(ϕ̂∞)= 0,

we derive that ϕ̂s j converges to ϕ̂∞ = (σ−1
∞
)∗(ϕ∞−ρ∞) ∈ E0 in C3,β and σ ∗

∞
ω=

ω+ ∂∂̄ρ∞. Moreover, according to Theorem 2.4, we have ϕ̂∞, ϕ∞ ∈ E0.
We claim that

d(ϕ∞, ρ∞)= 0.

Otherwise, for some sufficient large N , when s j > N ,

d(ϕs j , ρs j )= d(ϕs j ,E0)

has a strictly positive lower bound. Since the distance function is at least C1 (see
[Chen 2000b]), we have d(ϕ∞,E0) > 0, contradicting ϕ∞ ∈ E0. Consequently,
the claim holds. It follows that ϕ̂∞ = 0, in contradiction with the lower bound
|ϕ̂∞|C2,α ≥ ε of (4-1). �
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Proposition 4.5. Assume M admits a Kähler–Einstein metric ω and has nontrivial
holomorphic vector fields. There is a small positive constant ε0 such that, if
|ϕ0|C2,α(M) ≤ ε0, there is a unique solution ϕ(t) and a corresponding holomorphic
transformation %(t) such that the normalization potential of %(t)∗ω(t) always stays
in S. Moreover, any sequence t j has is a subsequence (still denoted by t j ) such
that %(t j )

∗ω(t j ) converges smoothly to a Kähler–Einstein metric ω∞.

Proof. We prove this proposition by contradiction. Let ε1 be as in Lemma 4.3.
Using Theorem 2.10, we assume there is a maximal time T such that

|ϕ|C2,α < ε1 on [0, T ) and |ϕ(T )|C2,α = ε1.

According to Theorem 2.8 we obtain |ϕ(T )|Ck,α ≤C(k, ε1, t0, g) on [T − t0, T ] for
a fixed T/2≤ t0 ≤ T . Let the constant C(k, ε1) be C(k, ε1, t0, g). So we get

ϕ(T ) ∈ S(ε1,C(k, ε1)).

There are two situations. If ϕ(T ) is a Kähler–Einstein metric, the flow will stop
here and our theorem is proved. Otherwise, we will extend the flow as follows.

We first choose ε0 small enough to guarantee

νω(ϕ0)≤ o
( ε1

2
,S(ε1,C(k, ε1))

)
,

where the constant o(ε1/2,S(ε1,C(k, ε1))) is determined in Lemma 4.4. Let the
holomorphic transformation σ be the projection of ϕ(T ) in E0 with

σ ∗ω = ω+
√
−1∂∂̄ρ.

We set ϕ0
1 be the Kähler potential of the metric pulled back by σ , that is,

(σ−1)∗ωϕ(T ) = ω+
√
−1∂∂̄[(σ−1)∗(ϕ(T )− ρ)] = ω+

√
−1∂∂̄ϕ0

1 .

Since the K-energy decreases along the Kähler–Ricci flow, Lemma 4.1 yields

(4-2) νω(ϕ
0
1)≤ o

(ε1

2
,S(ε1,C(k, ε1))

)
.

Idea of the proof of Proposition 4.5: solving the equation after pulling back.
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Letting ψ = (σ−1)∗(ϕ(T )− ρ), Lemma 4.4 implies that

(4-3) |ψ |C2,α(g) =
∣∣(σ−1)∗(ϕ(T )− ρ)

∣∣
C2,α(g) <

ε1

2
.

We next show that the Kähler–Ricci flow is invariant under the transformation.
Let ϕ1 = (σ

−1)∗(ϕ(t)− ρ). We compute

∂

∂t
ϕ1 = (σ

−1)∗
[

log
ωn
ϕ

ωn +ϕ−
1
V

∫
M

(
log

ωn
ϕ

ωn +ϕ
)
ωn
ϕ

]
= (σ−1)∗

[
log

ωn
ϕ

ωn
ρ

+ϕ− ρ−
1
V

∫
M

(
log

ωn
ϕ

ωn
ρ

+ϕ− ρ
)
ωn
ϕ

]
=

[
log

ωn
ϕ1

ωn +ϕ1−
1
V

∫
M

(
log

ωn
ϕ1

ωn +ϕ1

)
ωn
ϕ1

]
.

The second equality follows form the fact that ωρ is a Kähler–Einstein metric. We
conclude that ϕ1 is the solution of an equation of the form

(4-4)


∂

∂t
ϕ1 = log

ωn
ϕ1

ωn +ϕ1+ a(t),

ϕ1(0) = ϕ0
1 = (σ

−1)∗(ϕ(T )− ρ),

where (4-3) and (4-2) hold. Again, Theorem 2.10 implies (4-4) has a solution on
[0, T1] with T1 ≥ T such that

|ϕ1(T1)|C2,α = ε1.

According to Theorem 2.8, we also obtain

|ϕ(T1)|Ck,α ≤ C(k, ε1, t0, g) on [T1− t0, T1].

So we still have ϕ(T1) ∈ S(ε1,C(k, ε1)). Moreover, if we let

ϕ(t)= σ ∗ϕ1(t − T )+ ρ on [T, T+T1),

the new ϕ(t) is the solution of (2-3) on [0, T+T1].
We repeat the same steps inductively for

ϕs−1(Ts−1) ∈ S(ε1,C(k, ε1)),

with Ts−1 ≥ T obtained in Theorem 2.10, until ϕs becomes a Kähler–Einstein at
time Ts , with Ts <∞. If this does not happen, the Kähler–Ricci flow has long-time
existence and the solution ϕ(t) for all t ≥ 0 is given by

ωϕ(t) =

s−1∏
i=0

σ ∗i ωϕs(t) on
[ s−1∑

i=0

Ti ,

s∑
i=0

Ti

)
.
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Finally, we prove the convergence of the Kähler–Ricci flow. For any sequence
{ϕt j }, there is s such that

∑s−1
i=0 Ti ≤ t j ≤

∑s
i=0 Ti . Let

% j =

( s−1∏
i=0

σi

)−1

.

We have

|%∗jωϕt j
−ω|Cα ≤ ε1 and |%∗jωϕt j

−ω|Ck ≤ C(k, ε1).

Therefore all metrics are equivalent and their derivatives are bounded. We set

ωψt j
= %∗jωϕt j

.

It follows that there is a subsequence of ωψt j
that converges to a limit metric ω∞

(which depends on the choice of the subsequence). Since the K-energy is bounded
below, we have lims→∞ ν(ω, ωψt j

)= 0. It follows from Theorem 2.4 that g∞ is a
Kähler–Einstein metric. The proposition is proved. �

Let ts =
∑s

i=0 Ti . Following the argument in [Chen and Tian 2006], we can
first connect each pair of points ϕts and ϕts+1 by a geodesic in the space of Kähler–
Einstein metrics, so

%(t)= %(s) exp((t − s)Xs) for all t ∈ [s, s+ 1],

with Xs uniformly bounded by Lemma 4.3. We then smooth the corner at each
point ts by replacing the broken line by a smooth curve in a small neighborhood
of ts without changing the value and the t derivative at the endpoints. Hence we
have extended the holomorphic transformation to all t , while ensuring Lipschitz
continuity in t .

Let ωψ(t) = %(t)∗ωϕ(t). We have already seen that the Kähler–Ricci flow con-
verges to a Kähler–Einstein metric in Cheeger–Gromov sense; i.e., for any se-
quence g(ti ), there is a subsequence g(ti j ) and a holomorphic transformation %(ti j )

such that %(ti j )
∗g(ti j ) converges smoothly to a Kähler–Einstein metric g∞. So we

have
lim

t→∞
Ric(gψt )−ωψt = 0,

which leads to the convergence of the eigenvalue. To obtain the compactness of the
sequence of holomorphic transformations %(t) and the exponential convergence of
the Kähler–Ricci flow, we use an auxiliary result:

Theorem 4.6 [Phong et al. 2009, Theorem 2 and Remark (7)]. If the Kähler–Ricci
flow converges to a Kähler–Einstein metric in Cheeger–Gromov sense. Then the
Kähler–Ricci flow must converge exponentially to a unique Kähler–Einstein metric
nearby.
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5. Kähler–Ricci solitons

In this section we generalize our argument to the Kähler–Ricci solitons. According
to [Fujiki 1978], the identity part of holomorphic transformation group Aut0(M)
is meromorphically isomorphic to a linear algebraic group L(M) and the quotient
Aut0(M)/L(M) is a complex torus. Futaki and Mabuchi [1995] used the Chevalley
decomposition to L(M) to obtain a semidirect decomposition

Aut0(M)= Autr (M)n Ru .

Here Autr (M) is the reductive algebra group, which is the complexification of a
maximal compact subgroup K , and Ru is the unipotent radical of Aut0(M). Let ηr

be the Lie algebra of Autr (M). Recall that a Kähler metric ω is called a Kähler–
Ricci soliton if there is a holomorphic vector field X such that

(5-1) L Xω = Ric−ω.

Tian and Zhu [2000] proved the uniqueness of Kähler–Ricci solitons for a fixed X
in the Lie algebra of Aut0(M).

Theorem 5.1 [Tian and Zhu 2000]. If (ω, X) and (ω′, X) are Kähler–Ricci soli-
tons, there are holomorphic transformations σ ∈ Aut0(M) and τ ∈ Autr (M) such
that σ ∗ω = τ ∗σ ∗ω′ and σ ∗X ∈ ηr .

Theorem 5.2 [Tian and Zhu 2002]. If (ω, X) and (ω′, X ′) are two Kähler–Ricci
solitons, then there is a holomorphic transformation group σ ∈Aut0(M) such that
ω = σ ∗ω′ and X = σ−1

∗
X ′.

Since L Im Xω = 0, Im X generates a one-parameter isometric group KX . We
further choose K such that K X ⊆ K . According to Proposition 2.1 of [Tian and
Zhu 2002], X lies in the center of ηr .

Now we fix a holomorphic vector field X . By the Hodge theory there is a real
value function θX such that L Xω =

√
−1∂∂̄θX with

∫
M eθXωn

= V . Then the
potential equation of the Kähler–Ricci flow (1-2) is

(5-2)


∂ϕ

∂t
= log

ωn
ϕ

ωn +ϕ− θX + a(t),

ϕ(0)= ϕ0.

We choose

a(t)=−
1
V

∫
M

(
log

ωn
ϕ

ωn +ϕ− θX

)
ωn
ϕ;

moreover I (ϕ0)= 0, so the Kähler–Ricci flow stays in H0.
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Recall the W -functional of [Perelman 2002], defined by

W(g, f, τ )= (4πτ)−n/2
∫

M

[
τ(|∇ f |2+ S)+ f − n

]
e− f dV,

and invariant under diffeomorphisms σ and scaling C :

(5-3) W(Cσ ∗g, σ ∗ f,Cτ)=W(g, f, τ ).

Recall also Perelman’s µ functional, defined by

µ(g, τ )= inf
{
W(g, f, τ )

∣∣ (4πτ)−n/2
∫

M e− f dV = 1
}
,

and also invariant under diffeomorphism. Its minimum is achieved by some smooth
function f satisfying τ [(24 f −|∇ f |2)+ S]+ f −n=µ(g, τ ). The first variation
of µ(g, τ ) at g′i j = vi j for fixed τ is

µ′(vi j , τ )= (4πτ)−n/2
∫

M

{
−τ
(
vi j ,Ric+D2 f − 1

2τ
g
)}

e− f dVg.

So the (shrinking) Kähler–Ricci soliton is the critical point of µ(g, τ = 1
2). The

gradient flow of the µ functional equals to (1-1) with λ= 1 up to a diffeomorphism
generated by ∇ f . So the µ functional is nondecreasing along the Ricci flow. The
second variation of this functional near a Kähler–Ricci soliton in the canonical
class has been calculated:

Theorem 5.3 [Tian and Zhu 2008, Proposition 2.1]. We have

(5-4) ∂2

dt2µ
(
ω+
√
−1 ∂∂̄ϕ

)
|t=0 ≤ 0,

and equality holds if and only if ϕ̇(0) is the real part of the holomorphic potential
of some holomorphic vector field.

So the only directions in which the Kähler–Ricci soliton ω in (5-4) vanishes are
those tangent to the orbit of ω under the action of Aut0(M). We thus obtain the
following local property of the µ functional:

Lemma 5.4. A Kähler–Ricci soliton is a local maximum of µ(g) in H0.

Proof. Near a Kähler–Ricci soliton g, the tangent space Tω(H0) splits as η(M)⊕N ,
where N is the orthonormal part. Due to Theorem 5.3, µ(g′) < µ(g) along any
direction in N . Moreover, since σ ∗g is still a Kähler–Ricci soliton for any σ ∈
Aut0(m), we have µ(g′)≡ µ(g) along any direction in η(M). �

As a result we deduce that a Kähler metric that achieves the maximum value of
the µ(g) functional near a Kähler–Ricci soliton must be a Kähler–Ricci soliton.

Let E0 ⊂H0 be the space of potentials of Kähler–Einstein solitons with respect
to the holomorphic vector field X . Due to Theorem 5.1, E0 is a single orbit under
the action of Autr (M).
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Lemma 5.5. E0 is a finite-dimensional totally geodesic submanifold of H0.

Proof. Analogously to the case of the extremal metric in [Calabi 1985], Lemma A.2
and Theorem A of [Tian and Zhu 2000] imply that the identity component of
the holomorphic isometric group of the Kähler–Ricci soliton (ω, X) is a maximal
compact subgroup of Autr (M) containing K X . So (Autr (M), K ) is a Riemannian
symmetric pair and E0 is Autr (M)-equivariantly diffeomorphic to the Riemannian
symmetric space Autr (M)/K . Then for any ω ∈ E0, each geodesic starting at ω in
E0 can be written in the form

γ (t)= exp(t Re Y )∗ω,

for some nonzero Y whose imagine part is a Killing vector field. Then Theorem
3.5 and Remark 3.3 in [Mabuchi 1987] show that γ (t) is also a geodesic in H0. �

Now choose ωρ =ω+∂∂̄ρ such that ρ realizes the shortest distance between ψ
and E0. Clearly, ρ is uniquely determined. In fact, due to Theorem 5.1 we obtain
a holomorphic diffeomorphism σ ∈ Autr (M) such that

σ ∗ω = ωρ = ω+
√
−1 ∂∂̄ρ,

with ρ ∈ E0. By an argument analogous to the one in Proposition 4.5, but using
the µ functional instead of the K-energy, we obtain:

Lemma 5.6. For any ε > 0, There is a small positive constant o depends on ε and
S such that for any ϕ ∈ S, if µ(ωϕ)≥ µ(ω)− o, then |(σ−1)∗(ϕ− ρ)|C2,α < ε.

Proof. If the conclusion fails, take a positive ε and a sequence of ϕs ∈S satisfying

µ(ωϕs )≥ µ(ω)−
1
s

and
∣∣(σ−1

s )∗(ϕs − ρs)
∣∣
C2,α ≥ ε.

Since ϕs ∈ S, we obtain a subsequence ϕs j of ϕs converging smoothly to ϕ∞.
Lemma 4.3 gives

|ρs |C3,α ≤ C4 and |σs |h ≤ C5,

which implies that (σ−1
s j
)∗(ϕs j − ρs j ) converges in C3,β towards

ϕ̂∞ = (σ
−1
∞
)∗(ϕ∞− ρ∞) ∈ E0, with σ ∗

∞
ω = ω+ ∂∂̄ρ∞.

Then (5-3) implies that µ(ωϕ∞) = µ(ωϕ̂∞) = µ(ω). The rest of this proof is the
same as for Lemma 4.4. �

Proposition 5.7. Assume M admits a Kähler–Ricci soliton (ω, X). There exits a
small constant ε0 such that, if |ϕ0|C2,α(M) ≤ ε0, there is a unique solution ϕ(t) and
a corresponding holomorphic transformation %(t) ∈ Autr (M) such that the nor-
malization potential of %(t)∗ωϕ(t) always stays in S. Moreover, for any sequence
ti , there is a subsequence ti j such that %(ti j )

∗gϕ(ti j )
converges smoothly to g∞.
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Proof. The proof, by contradiction, is similar to that of Proposition 4.5. Let ε1

be as in Lemma 4.3. Applying Theorem 2.10 to the potential equation (5-2), we
assume there is a maximal time T such that

|ϕ|C2,α < ε1 on [0, T ) and |ϕ(T )|C2,α = ε1.

From Theorem 2.8 we obtain |ϕ(T )|Ck,α ≤C(k, ε1, t0, g) on [T − t0, T ] for a fixed
T/2≤ t0 ≤ T . Let the constant C(k, ε1) be C(k, ε1, t0, g). So we get

ϕ(T ) ∈ S(ε1,C(k, ε1)).

There are two situations. If ϕ(T ) is a Kähler–Ricci soliton, the flow will stop
here and our theorem is proved. Otherwise, we will extend the flow as in the proof
in Proposition 4.5.

We first choose ε0 small enough to guarantee that

µ(ωϕ0)≥ µ(ω)− o
(ε1

2
,S(ε1,C(k, ε1))

)
,

where the constant o(ε1/2,S(ε1,C(k, ε1))) is determined in Lemma 4.4. Let the
holomorphic transformation σ be the projection of ϕ(T ) in E0 with

σ ∗ω = ω+
√
−1∂∂̄ρ.

Let ϕ0
1 be the Kähler potential of the metric pulled back by σ , that is,

(σ−1)∗ωϕ(T ) = ω+
√
−1∂∂̄

[
(σ−1)∗(ϕ(T )− ρ)

]
= ω+

√
−1∂∂̄ϕ0

1 .

Since the µ functional is nondecreasing along the Kähler–Ricci flow, we obtain

(5-5) µ(ω
ϕ0

1
)≥ µ(ω)− o

(ε1

2
,S(ε1,C(k, ε1))

)
.

Lemma 4.4 implies that

(5-6)
∣∣(σ−1)∗(ϕ(T )− ρ)

∣∣
C2,α(g) <

ε1

2
.

Set ϕ1(t)= (σ−1)∗(ϕ(t)−ρ). Combining (5-2) and (5-1), we obtain that ϕ1 is the
solution of an equation of the form

(5-7)


∂

∂t
ϕ1 = log

ωn
ϕ1

ωn +ϕ1− θX + a(t),

ϕ1(0)= ϕ0
1 = (σ

−1)∗(ϕ(T )− ρ),

where (5-6) and (5-5) hold.
Again, Theorem 2.10 implies that (5-7) has a solution on [0, T1], with T1 ≥ T ,

such that
|ϕ1(T1)|C2,α = ε1.
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From Theorem 2.8, we also obtain |ϕ(T1)|Ck,α ≤ C(k, ε1, t0, g) on [T1−t0, T1]. So
we still have

ϕ(T1) ∈ S(ε1,C(k, ε1)).

If we set ϕ(t) = σ ∗ϕ1(t − T )+ ρ on [T, T+T1), the new ϕ(t) is the solution of
(5-2) on [0, T+T1].

We repeat the same steps inductively for

ϕs−1(Ts−1) ∈ S(ε1,C(k, ε1)),

with Ts−1 ≥ T obtained in Theorem 2.10. We thus obtain a sequence of holomor-
phic transformations σi and the solution ϕ(t) for all t ≥ 0 given by

ωϕ(t) =

s−1∏
i=0

σ ∗i ωϕs(t) on
[ s−1∑

i=0

Ti ,

s∑
i=0

Ti

)
.

Set % j =

( s−1∏
i=0
σi

)−1
. We have

|%∗jωϕt j
−ω|Cα ≤ ε1 and |%∗jωϕt j

−ω|Ck ≤ C(k, ε1).

It follows that there is a subsequence of %∗jωϕt j
converging to a limit metric ω∞.

According to Lemma 5.4, the µ functional is bounded above and ω∞ is a Kähler–
Ricci soliton. �

Assume ς is generated by Re X :

Re X = (ς−1)∗
∂

∂t
ς.

Let % and φ satisfy ς∗ω = ω% and φ = ς∗ϕ+ %. We obtain the modified Kähler–
Ricci flow of the form

∂

∂t
ωφ =−Ric(ωφ)+ωφ + LRe Xωφ,

ωϕ(0) = ωϕ0 .

We apply [Phong et al. 2011, Theorem 1] to obtain:

Theorem 5.8. If the Kähler–Ricci flow converges to a Kähler–Ricci soliton in the
Cheeger–Gromov sense and the initial Kähler potential is K X -invariant, then the
modified Kähler–Ricci flow converges exponentially to a unique Kähler–Ricci soli-
ton nearby.

Zhu [2009] also discussed the stability of Kähler–Ricci flow near a Kähler–Ricci
soliton by using Perelman’s estimate (unpublished) and Chen and Tian’s energy
method [2002; 2006].
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6. Weak flow

In this section we weaken the initial condition. Let a(t)= 0 in (2-3); the potential
equation then reads

(6-1)


∂ϕ

∂t
= log

ωn
ϕ

ωn +ϕ,

ϕ(0)= ϕ0.

We defined ϕ0 is the limit of ϕs ∈ PSH(M, ω)∩ L∞(M) in L∞ norm. Meanwhile,
ωϕ0 ≥ 0 in the sense of currents. Let the weak solution be a limit of a sequence of
approximation solutions by

ϕ(t)= lim
s→0

ϕ(s, t).

The Kähler–Ricci flow with weak initial data was studied in [Chen and Ding 2007;
Chen and Tian 2008; 2008]. We also have:

Theorem 6.1 [Song and Tian 2009, Proposition 3.2]. If ϕ0 is defined above with
|ϕ0|L∞ ≤ A and |ωn

ϕ0
/ωn
|L p(M,ω) ≤ B for p > 1, there is a unique smooth solution

gϕ(t) of (1-1) for t > 0 such that

lim
t→0+

ϕ(t)= ϕ0.

The estimate in Song and Tian’s proof is that

(6-2) |ϕ(t)|Ck ≤ C(t, T, k, A, B) on (0, T ].

For fixed B and p, introduce the space

N(ε0; B, p)=
{
ϕ

∣∣∣∣ ϕ|L∞ ≤ ε0,

∣∣∣∣ωn
ϕ

ωn

∣∣∣∣
L p(M,ω)

≤ B for some p > 1
}
,

Here B and p should be chosen such that N(ε0; B, p) is not the empty set. Clearly,
if |ϕ0|C1,1 ≤ ε0, then ϕ0 ∈ N

(
ε0, 1+ (2n

− 1)ε0,∞
)
. Actually, we have:

Lemma 6.2. Fix t0 ∈ (0, T ]. For any ε1 > 0 there is a small ε0 such that for any
ϕ0 ∈ N(ε0; B, p) we have |ϕ(t0)|C2,α ≤ ε1.

Proof. If the conclusion fails, choose a sequence of ϕs such that

|ϕs |L∞ ≤
1
s

and
∣∣∣∣ωn

ϕs

ωn

∣∣∣∣
L p(M,ω)

≤ B.

For each corresponding solution ϕs(t) constructed by Theorem 6.1, we have

(6-3) |ϕs(t0)|C2,α > ε1.
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Setting gaϕi j̄ =
∫ t

0 (gi j̄ + aϕi j̄ )da > 0, we rewrite (6-1) as follows
∂ϕ

∂t
=4gaϕϕ+ϕ,

ϕs(0)= ϕs .

From the maximum principle we obtain

(6-4) supM |ϕs(t0)| ≤ et0 supM |ϕs |.

By (6-2), we can pass a subsequence of ϕsi (t0) such that limi→∞ ϕsi (t0)= ϕ∞(t0)
in Ck for k ≥ 0. Let s = si in (6-4). Then the limit approaches supM |ϕ∞(t0)| ≤ 0,
which contradicts (6-3). �

Now we have a C2,α small initial datum ϕ(t0); we normalize it to be ϕ0− I (ϕ0)

which is also C2,α small. Then we can solve Equation (2-3) with this initial datum.
Combining Propositions 3.1 and 4.5, Theorem 4.6, and Lemma 6.2, we obtain
Theorem 1.2. Analogously, we apply Proposition 5.7, Theorem 5.8 and Lemma 6.2
to obtain Theorem 1.1.

7. Another choice of holomorphic transformations

In this section, we follow the arguments in [Bando and Mabuchi 1987; Chen and
Tian 2002] to find a good holomorphic transformation. The I and J functionals
are defined as

I (ω, ωϕ)=
1
V

∫
M
ϕ(ωn

−ωn
ϕ),

J (ω, ωϕ)=
1
V

n−1∑
i=0

∫
M

i+1
n+1
√
−1 ∂ϕ ∧ ∂̄ϕ ∧ ωi

∧ ωn−1−i
ϕ .

From [Aubin 1998] we know that I and J are both semipositive functionals and
satisfy

(7-1) 0≤ I (ω, ωϕ)≤ (n+1)(I (ω, ωϕ)− J (ω, ωϕ))≤ nI (ω, ωϕ) for ϕ ∈H.

Fix ϕ ∈H0. Consider the functional

9(σ)= (I − J )(ωϕ, σ ∗ω)= (I − J )(ωϕ, ωρ),

which is defined for any σ in the reductive subgroup Aut(M) with σ ∗ω=ω+∂∂̄ρ.
Since ωρ is a Kähler–Einstein metric, it satisfies

(7-2) log
ωn
ρ

ωn + ρ = 0 and I (ρ)= 0.
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If ωρ is the minimal point of 9, for any u ∈31(ωρ), we have

(7-3)
∫

M
(ρ−ϕ)uωn

ρ = 0.

It is known that η(M) ∼= 31(ω) for any Kähler–Einstein metric ω [Matsushima
1957]. To prove that the minimizer of 9 is always attained, it suffices to prove:

Proposition 7.1 [Bando and Mabuchi 1987]. For all

ρ ∈
{
ρ | σ ∗ω = ωρ, σ ∈ Autr (M),9(σ)≤ r

}
,

we have
|ϕ− ρ|C2,α(gϕ) ≤ C(|ϕ|C4,α ).

Proof. Clearly,

−4ϕ(ρ−ϕ) < n and −4ρ(ρ−ϕ) >−n.

A lower bound for the Green function is given by

(7-4) Gϕ ≥−γ
D2
ϕ

Volϕ
.
=−Aϕ,

since the volume is constant in a fixed Kähler class and the diameter of gϕ is
bounded by C diam(g) when |ϕ|C2 ≤ C . Using Green’s formula and (7-4), we
obtain

(7-5) supM(ρ−ϕ)

=
1
V

∫
M
(ρ−ϕ)ωn

ϕ −
1
V

∫
M
4ϕ(ρ−ϕ)(y)(Gϕ(x, y)+ Aϕ)ωn

ϕ(y)

≤
1
V

∫
M
(ρ−ϕ)ωn

ϕ + n Aϕ.

Similarly, we deduce that

(7-6) infM(ρ−ϕ)

=
1
V

∫
M
(ρ−ϕ)ωn

ρ −
1
V

∫
M
4ρ(ρ−ϕ)(y)(Gρ(x, y)+ Aρ)ωn

ρ(y)

≥
1
V

∫
M
(ρ−ϕ)ωn

ρ − n Aρ .

Because Ric(ρ)=ωρ , we have diam(gρ)≤
√

2n− 1π Myers’ theorem. Combining
(7-5) and (7-6) we get

(7-7) OscM(ρ−ϕ)≥
1
V

∫
M
(ρ−ϕ)(ωn

ϕ −ω
n
ρ)+C(|ϕ|C2).
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From (7-1) we obtain

1
V

∫
M
(ρ−ϕ)(ωn

ϕ −ω
n
ρ)= I (ωϕ, ωρ)≤ (n+ 1)(I − J )(ωϕ, ωρ)≤ (n+ 1)r.

Since ωρ is a Kähler–Einstein metric, we have

(7-8)
(
ωϕ +

√
−1 ∂∂̄(ρ−ϕ)

)n
= e−(ρ−ϕ)+hϕωn

ϕ,

with
√
−1 ∂∂̄hϕ = Ric(ωϕ)−ωϕ and

∫
M

ehϕωn
ϕ = Vol(M).

By using the second-order estimate in [Yau 1978], we get

n+4ϕ(ρ−ϕ)≤ eC OscM (ρ−ϕ)C
(
supM(inf

i 6=k
|Rϕi īkk̄ |), infM Sϕ, supM hϕ

)
≤ eC OscM (ρ−ϕ)C(|ϕ|C4).

Then the Krylov estimate shows that ρ−ϕ has C2,α bound. �

Thus we also obtain a uniform bound for the gauge ρ. Our previous discussion
implies:

Corollary 7.2. If |ϕ|C4,α is bounded and ρ is the minimizer of 9, then |ϕ− ρ|C2,α

and |ρ|C2,α are both bounded.

This implies that gρ is equivalent to g.
We now turn to the uniqueness of the critical points of the functional 9 when ϕ

is small. The second variation of 9 at ρ is given by

(7-9) D29ρ(u, v)=
1
V

∫
M

(
1+ 1

24ρρ
)

uvωn
ρ .

Lemma 7.3. For all |ϕ|C2,α ≤ ε1 and u ∈31(ωρ), the bilinear form D29ρ(u, u) is
positive definite. Hence ρ is unique.

Proof. Note that (7-8) can be rewritten as

(7-10) (ωρ +
√
−1 ∂∂̄(ϕ− ρ))n = e−(ϕ−ρ)−hϕωn

ρ .

By definition, hϕ is given by

hϕ =− log
ωn
ϕ

ωn −ϕ− log
(

1
V

∫
M

e−ϕ
)
ωn.

We conclude that

(7-11) |hϕ|C2,α(gρ) ≤ Cε1 ≤ δ,
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by the assumption on ϕ. Let

C2,α
⊥
(M)=

{
ϕ ∈ C2,α(M)

∣∣∣∣ ∫
M
ϕuωn

ρ for all u ∈31(ωρ)

}
.

Define the operator of (7-10) by

8(a, b)= log
(ωρ +

√
−1 ∂∂̄a)n

ωn
ρ

+ a+ b, C2,α
⊥
(M)×Cα(M)→ Cα(M).

It is clear from (7-10) that 8(ϕ− ρ, hϕ)= 0. The linearized operator of (7-10) at
(a, b)= (0, 0) is given by

δa8(v)=4ρv+ v.

We infer that δa8 is invertible from C2,α
⊥
(M) to Cα

⊥
(M). The implicit function

theorem implies that there is a small δ neighborhood of 0 in Cα(M) such that
when |hϕ|C2,α(gρ) ≤ δ, we have from (7-3) that

|ϕ− ρ|C2,α(gρ) ≤ Cδ.

Then we use Corollary 7.2 and (7-11) to obtain

|ρ|C2,α ≤ |ϕ− ρ|C2,α + |ϕ|C2,α ≤ Cε1.

Hence |ρ|C2,α is small if we choose appropriate ε1 and the bilinear form D29ρ(u, u)
is positive definite. �
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