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We generalize Horrocks’ criterion for the splitting of vector bundles on
projective space by establishing an analogous splitting criterion for vector
bundles on a class of smooth complex projective varieties of dimension ≥ 4,
over which every extension of line bundles splits.

1. Introduction

Algebraic geometry has a rich history of studying when a vector bundle over a
projective space splits, that is, when it is isomorphic to a direct sum of line bundles.
Grothendieck [1957] first used cohomological methods in sheaf theory to prove his
celebrated theorem which says that every vector bundle over P1 splits as a direct
sum of line bundles. This was followed by Horrocks’ [1964] famous criterion,
which announced that a vector bundle on Pn for n ≥ 3 splits if and only if its
restriction to a hyperplane H = Pn−1

⊂ Pn splits.
Soon after came the notoriously difficult conjectures of Hartshorne [1974], which

state that all vector bundles of rank 2 on Pn with n ≥ 7 must split, though over C

no nonsplitting (indecomposable) 2-bundle over P5 is known. Over the complex
numbers, the Horrocks–Mumford [1973] bundle is the only nonsplitting 2-bundle
known on P4, and its existence is far from obvious. (There are rank-2 indecom-
posable bundles on P5 in characteristic 2 [Tango 1976] and on P4 in any positive
characteristic different from the Horrocks–Mumford bundle [Kumar 1997].)

There has been a formidable body of work dedicated to finding splitting crite-
ria and constructing indecomposable bundles over projective space, and the well-
known but out-of-print book by Okonek, Schneider, and Spindler [1980] gives an
excellent survey of progress made in this direction up until its publication. There
has also been much work since then, with many notable results [Ancona et al. 1994;
Ballico 1995; Kumar et al. 2002, 2003; Malaspina 2008; Ran 1983; Sumihiro
and Tagami 2001; Zak 1993]. In addition to splitting criteria for r -bundles on
multiprojective spaces [Ballico and Malaspina 2009; Costa and Miró-Roig 2005],
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cones over rational normal curves [Ballico 2008] and blowings up of the plane
[Ballico and Malaspina 2008], extensions of Horrocks’ criterion to Grassman-
nians and quadrics have been established [Ancona et al. 1994; Ottaviani 1989].
Furthermore, the splitting of 2-bundles on hypersurfaces in P4 and P5 has been
studied [Madonna 1998; Chiantini and Madonna 2004] and generalized in [Kumar
et al. 2007a] and [Kumar et al. 2007b], which show respectively that arithmetically
Cohen–Macaulay 2-bundles on general hypersurfaces of degree ≥ 6 in P4 and on
general hypersurfaces of degree ≥ 3 in P5 must split. Further, notions such as uni-
form vector bundles have been generalized to Fano manifolds [Wiśniewski 2002].

However, to the author’s knowledge, the literature lacks a study of when a Hor-
rocks’ type criterion occurs on arbitrary smooth projective varieties. The spirit
in which we pursue this question is similar to that of Horrocks’: when can we
reduce the splitting of a vector bundle E on a smooth projective variety X to the
splitting of the restriction E|Y for a suitable proper closed subscheme Y ⊂ X ?
Horrocks showed that as soon as the dimension of a projective space is at least
three, the splitting of a vector bundle on that projective space is equivalent to the
splitting of its restriction to a hyperplane. In this scenario, the restriction map
Pic(Pn)∼→Pic(H) is an isomorphism, so the line bundles on the subscheme H are
precisely those coming from Pn , no more, no less. Thus if E|H splits, we already
have a suitable candidate on Pn that E ought to be isomorphic to, should it split.
The dimension of the hyperplane being at least 2 is crucial, since any nonsplitting
bundle must split when restricted to a line P1 by Grothendieck’s theorem.

We remedy this issue for higher-dimensional varieties using the Grothendieck–
Lefschetz theorem on Picard groups (see [Hartshorne 1970] for an exposition),
which says that if X is a smooth complex projective variety of dimension n ≥ 4,
then given any ample effective divisor D (not necessarily reduced) on X , the natural
restriction map Pic(X)→Pic(D) is an isomorphism. In this way, we ensure that the
line bundles on our divisor D are precisely those coming from X , as in Horrocks’
situation with projective space. Then, we assume that E|D splits over D, and our
task is to try to lift a given isomorphism E|D ∼→

⊕
L i |D to one on X , or to find

the obstruction to such a lifting.
Though this lifting does not exist in general, it can be found on a certain class

of varieties. We call a scheme X a Horrocks scheme if H 1(X, L)= H 2(X, L)= 0
for every line bundle L on X . A Horrocks scheme is like projective n ≥ 3 space in
the sense that every extension of line bundles splits. Here a criterion of Horrocks
type holds.

Our main result is the following theorem.

Theorem 1.1. Let X be a smooth complex projective Horrocks variety of dimen-
sion n ≥ 4. A vector bundle E on X splits if and only if E|D splits over D, where
D is an ample effective divisor on X.
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2. Preliminaries

Nearly all of the results we use are familiar to a seasoned student of algebraic
geometry, and can be found throughout [Hartshorne 1977]. Throughout this paper
we will work over C. In this section we mention some of the deeper theorems that
are relevant to the proofs in the next section. We first state Horrocks’ criterion in
its full form.

Theorem 2.1 (Horrocks). Let E be a rank r vector bundle on Pn . Then E splits if
and only if H i (Pn, E(k))= 0 for every k ∈ Z and every i with 0< i < n.

Proof. See [Horrocks 1964] or [Okonek et al. 1980]. �

Corollary 2.2 (Horrocks). Let E be a rank r vector bundle on Pn with n≥ 3. Then
E splits if and only if its restriction E|H to a hyperplane H ∼= Pn−1

⊂ Pn splits.

Thus, by induction it suffices to find a plane P ∼= P2
⊂ Pn such that E|P splits.

Recall the formal completion of X along a closed subscheme Z defined by the
ideal I⊂ OX is the ringed space (X̂ ,OX̂ ) whose topological space is Z and whose
structure sheaf is lim

←−
(OX/I

m). Given a coherent sheaf F on X , we define the
completion of F along Z , denoted by F̂, to be the sheaf lim

←−
(F/ImF) on Z , which

has the natural structure of an OX̂ -module.
Our most important gadget is the Grothendieck–Lefschetz theorem on Picard

groups. We do not require the most general version.

Theorem 2.3 (Grothendieck). Let D be an ample, effective divisor (not necessarily
reduced) on a smooth complex projective variety X of dimension n ≥ 4. Then the
natural restriction map Pic(X)→ Pic(D) is an isomorphism.

Proof. See [Grothendieck 1968] or [Hartshorne 1970]. �

In conjunction with [Hartshorne 1977, Exercise II.9.6], we have the following
chain of natural isomorphisms for any positive integer m:

Pic(X) ∼→ Pic(X̂) ∼→ lim
←−

Pic(m D) ∼→ Pic(m D) ∼→ Pic(D)

whose composition is the natural restriction map isomorphism mentioned in the
theorem.

3. Arbitrary varieties

We first study the splitting behavior of a vector bundle restricted to the formal
completion of a projective manifold along an ample effective divisor, and show
this is equivalent to the splitting of the bundle itself.

Proposition 3.1. Let X be a smooth complex projective variety of dimension n≥4,
and let E be a vector bundle of rank r on X. Then E splits over X if and only if Ê
splits over X̂ , where X̂ is the completion of X along an ample effective divisor D.
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Proof. For the forward direction, suppose E splits over X , that is, E ∼=
⊕

L i . Then
Ê ∼=

⊕
L̂ i , and each L̂ i is a line bundle on X̂ .

For the other direction, suppose Ê splits as a direct sum of line bundles on X̂ .
Then since

Pic(X)∼= Pic(X̂)∼= lim
←−

Pic(m D)∼= Pic(m D)∼= Pic(D),

we must have Ê∼=
⊕

L̂ i , for some line bundles L i on X . Set F :=
⊕

L i . Tensoring
the short exact sequence

0→ OX (−m D)→ OX → Om D→ 0

with F∗⊗ E ∼=Hom(F, E) we obtain

0→ OX (−m D)⊗ F∗⊗ E→ F∗⊗ E→ F∗
|m D ⊗ E|m D→ 0.

Choosing m� 0 and using Serre duality plus the fact that OX (D) is ample, we can
force H 1(X,OX (−m D)⊗ F∗⊗ E)= 0, and we get a surjection

Hom(F, E)→→ Hom(F|m D, E|m D).

We can lift a given isomorphism ϕ : F|m D
∼
→E|m D (this is just our original isomor-

phism F̂ ∼→Ê restricted to a finite thickening m D) to a homomorphism ψ : F→ E
on X . The bundles E and F have the same rank and first Chern class, the lat-
ter because Om D ∼= det E|m D ⊗ det F∗

|m D
∼= OX (c1(E) − c1(F))|m D implies that

OX (c1(E)) ∼= OX (c1(F)) on X since the restriction map Pic(X)∼→Pic(m D) is an
isomorphism. Thus,

detψ ∈ Hom(det F, det E)∼= H 0(X,OX (c1(E)− c1(F))
)
∼= H 0(X,OX )∼= C

is a nonzero constant since ψ restricts to an isomorphism on m D. Hence ψ is
invertible. �

Remark 3.2. This proposition illustrates that, in the setting above, if E|D splits
on a sufficiently positive divisor D on X , then E must split over X . One possible
approach is to make positivity assumptions on D in terms of the Chern classes
of E .

4. Horrocks schemes

We begin with the definition of a splitting scheme and a Horrocks scheme, which
capture a cohomological feature of line bundles on projective spaces, and we give
some examples.

Definition 4.1. A scheme X is called a splitting scheme if H 1(X, L) = 0 for any
line bundle L on X . Equivalently, Ext1(L ,M) = 0 for any line bundles L , M on
X , that is, any extension of line bundles splits.
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Definition 4.2. A scheme X is called a Horrocks scheme if H i (X, L) = 0 for
i = 1, 2 and any line bundle L on X .

Remark 4.3. For a smooth projective variety to be a splitting scheme, its dimen-
sion must be at least two. For a curve, we would have by Serre duality that

H 1(C,L−1)∼= H 0(C, L ⊗ωC) 6= 0

for a sufficiently ample line bundle L on C . Similarly a smooth projective variety
must be of dimension at least three in order to be a Horrocks scheme, and for
threefolds these notions are equivalent.

The following are examples of Horrocks schemes. It is clear how to adjust the
constructions to obtain splitting schemes.

Example 4.4. Clearly projective space Pn with n ≥ 3 is a Horrocks scheme.

Example 4.5. If X and Y are projective Horrocks varieties, then

Pic(X × Y )∼= Pic(X)×Pic(Y ),

since H 1(X,OX ) = 0; see [Hartshorne 1977, Exercise III.12.6]. Using the Kün-
neth formula, we see that the fiber product X × Y remains a Horrocks variety. In
particular, multiprojective spaces P = Pn1 × · · · × Pnk are Horrocks schemes if
each ni ≥ 3.

Example 4.6. Weighted projective spaces W = P(a0, . . . , an) with n ≥ 3 are sin-
gular Horrocks schemes; see [Dolgachev 1982, § 2].

Example 4.7. Any global complete intersection X ⊂ PN of dimension n ≥ 3
is necessarily a Horrocks scheme, since the Lefschetz theorem on Picard groups
implies that Pic(X) ∼= Z and we know that H i (X,OX (m)) = 0 for 0 < i < dim X
and every m ∈ Z; see [Hartshorne 1970, Chapter IV, § 3] and [Hartshorne 1977,
Exercise III.5.5(c)].

Example 4.8. Any Grassmannian G of dimension n ≥ 3 is a Horrocks scheme.
Since Pic(G)∼=Z, let O(1) denote the ample generator. Then H i (G,O(m))= 0 for
i = 1, 2 and m < 0 by Kodaira vanishing, and for m ≥ 0, we have

H i (G,O(m))∼= H n−i (G,O(−m)⊗ωG)= 0

for i = 1, 2 by Serre duality, Kodaira vanishing, and the fact that G is Fano.

Example 4.9. Let X be a smooth projective Horrocks variety. Let E be a direct
sum of r ≥ 4 line bundles on X , and consider the projectivized space bundle

P := P(E) π→ X,

where P(E)= Proj(Sym(E)). We claim that P is a Horrocks scheme as well. We
already know that P is a smooth projective variety with Pic(P)∼=Z·OP(1)⊕Pic(X).
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Thus, any line bundle on P is isomorphic to one of the form M := OP(m)⊗π∗L ,
where m ∈ Z and L is a line bundle on X . Since the fibers of π are all isomorphic
to Pr−1 with r − 1≥ 3, we have

Riπ∗M = 0 for i = 1, 2.

For m < 0 we have π∗OP(m) = 0, and for m ≥ 0 we have π∗OP(m) = Sm(E),
which is each isomorphic to a direct sum of line bundles on X since E is a direct
sum of line bundles on X . Since X is a Horrocks scheme, we have

H i (X, π∗M)= H i (X, Sm(E)⊗ L)= 0 for i = 1, 2.

The Leray spectral sequence implies immediately that

H 1(P,M)= H 1(X, π∗M)= 0,

and it also follows that H 2(P,M)= E0,2
∞
⊕ E1,1

∞
⊕ E2,0

∞
, where

E p,q
2 = H p(X, Rqπ∗M)

abuts to H p+q(P,M). But each E p,q
2 with p+q = 2 is 0 by the vanishings above,

hence the infinity pages vanish also. Thus P = P(E) is also a Horrocks scheme.

Remark 4.10. In the previous example, we do not actually need E to be a direct
sum of line bundles, provided it has a sufficiently short resolution by direct sums
of line bundles. For example, on Pn the Euler sequence gives

0→ O→ O(1)⊕(n+1)
→ TPn → 0,

so we still have H i (Pn, Sm(TPn )(k))= 0 for i = 1, . . . , n−2 and m, k ∈Z. Hence,
P(TPn ) is a splitting scheme for n ≥ 3 and a Horrocks scheme for n ≥ 4.

Proposition 4.11. Let X be a smooth projective splitting variety of dimension n≥4.
Then a vector bundle E on X splits if and only if

(1) there exists an ample effective divisor D on X such that E|D splits over D,
and

(2) H 1(X, E ⊗ L)= 0 for every line bundle L on X.

Proof. To show necessity, suppose that E ∼=
⊕

L i on X , where L i are line bundles
on X . Then for any closed subscheme, Z ⊂ X , E|Z ∼=

⊕
L i |Z splits as well,

showing (1). The assumption that X is a splitting scheme gives (2).
We show sufficiency. By (1) we have an isomorphism ϕ :

⊕
Mi
∼
→E|D , where

Mi are line bundles on D. The Grothendieck–Lefschetz theorem tells us that the
restriction map gives an isomorphism Pic(X)∼→Pic(D) of Picard groups. Lift each
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Mi on D uniquely (up to isomorphism) to L i on X and set F :=
⊕

L i . Now tensor
the short exact sequence

0→ OX (−D)→ OX → OD→ 0

with F∗⊗ E ∼=Hom(F, E) and take cohomology to get an exact sequence

H 0(X, F∗⊗ E)→ H 0(Y, F∗
|D ⊗ E|D)→ H 1(X, F∗⊗ E ⊗OX (−D))= 0,

where the third vector space vanishes by (2). Thus we have a surjection

Hom(F, E)→→ Hom(F|D, E|D),

so we may lift our isomorphism ϕ to a homomorphism ψ : F→ E , and we claim
that ψ is an isomorphism. First, E and F have the same rank and the same first
Chern class since OX (c1(E)− c1(F))|D ∼= OD implies that

det(F)∼= OX (c1(F))∼= OX (c1(E))∼= det(E)

because of the aforementioned isomorphism on Picard groups. Then ψ induces
det(ψ) : det(F)→ det(E), which gives a section

det(ψ) ∈ H 0(X, det(F)−1
⊗ det(E))∼= H 0(X,OX (c1(E)− c1(F))

)
∼= H 0(X,OX )∼= C,

which means that det(ψ) is multiplication by a constant. But det(ψ) restricts to an
isomorphism det(ϕ) on D, hence it must be a nonzero constant and hence invertible,
thus showing that ψ is indeed an isomorphism. �

Remark 4.12. From the proof, the sufficiency holds for arbitrary smooth projective
varieties of dimension ≥ 4, but the assumption that X is a splitting scheme gives
necessity.

The following proposition was pointed out to the author by N. Mohan Kumar.

Proposition 4.13. Let X be a smooth projective variety of dimension ≥ 4. The
following are equivalent:

(1) X is a Horrocks scheme.

(2) Every ample effective divisor D on X is a splitting scheme.

(3) There exists an ample effective divisor D on X which is a splitting scheme.

Proof. (1)⇒ (2): Tensoring the short exact sequence

0→ OX (−D)→ OX → OD→ 0

with a line bundle L on X and taking cohomology, we get

· · · → H 1(X, L)→ H 1(D, L |D)→ H 2(X, L ⊗OX (−D))→ · · · .
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The outside terms vanish by assumption, and every line bundle on D is isomorphic
to one of the form L |D , for some line bundle L on X by the Grothendieck–Lefschetz
theorem. Hence D is a splitting scheme by definition.

(2)⇒ (3): Trivial.
(3)⇒ (1): Given D ⊂ X , an ample effective codimension-1 splitting scheme,

consider the short exact sequence

0→ L ⊗OX ((k− 1)D)→ L ⊗OX (k D)→ L |D ⊗OX (k D)|D→ 0

for every k∈Z. Since D is a splitting scheme, we have H 1(D, L |D⊗OX (k D)|D)=0
for every k ∈ Z, which after taking cohomology gives surjections

H 1(X, L ⊗OX ((k− 1)D)
)
→→ H 1(X, L ⊗OX (k D))

and injections

H 2(X, L ⊗OX ((k− 1)D)
)
↪→ H 2(X, L ⊗OX (k D))

for every k ∈ Z. Since D is ample, we may take k� 0 and k� 0 respectively and
use Serre vanishing to see that H 1(X, L) = H 2(X, L) = 0 for any line bundle L
on X . �

The following corollary is a generalization of Horrocks’ criterion for projective
n ≥ 3 space.

Corollary 4.14. Let X be a smooth projective Horrocks variety of dimension n≥4.
A vector bundle E on X splits if and only if its restriction E|D to an ample effective
divisor D ⊂ X splits.

Proof. We show the nontrivial direction. Assuming E|D splits over D, we see that
condition (1) of Proposition 4.11 is immediately satisfied, so it suffices to check
condition (2). Let L be any line bundle on X , and tensor the short exact sequence

0→ OX (−D)→ OX → OD→ 0

with E ⊗ L ⊗OX (m D), and take cohomology to get

H 1(X, E ⊗ L ⊗OX ((m− 1)D)
)
→ H 1(X, E ⊗ L ⊗OX (m D))

→ H 1(D, E|D ⊗ L |D ⊗OX (m D)|D)

exact. By the previous proposition, D is a splitting scheme, hence the third term
vanishes for any m ∈ Z since E|D splits as a sum of line bundles. So we have
surjections

H 1(X, E ⊗ L ⊗OX ((m− 1)D)
)
→→ H 1(X, E ⊗ L ⊗OX (m D))

for every m ∈ Z. Taking m� 0 and using Serre duality, we can make the left hand
side zero since D is ample, and the surjections above imply that the cohomology
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must vanish for all integers m. In particular, taking m=0, we have H 1(X,E⊗L)=0.
Since L was arbitrary, we have shown condition (2), which completes the proof. �

There is a natural extension of this result using induction:

Corollary 4.15. Let X be a smooth projective variety of dimension n ≥ 4 such
that H i (X, L) = 0 for i = 1, . . . , d − 1 and every line bundle L , where d ≥ 3.
Suppose H1, . . . , Hn−d are ample divisors such that H1 ∩ · · · ∩ Hl is smooth for
each l = 1, . . . , n− d. Set Y = H1 ∩ · · · ∩ Hn−d , which by assumption is a smooth
global complete intersection in X of dimension d ≥ 3. Then a vector bundle E on
X splits if and only if its restriction E|Y splits.

We finish with two examples whose details are easy to check.

Example 4.16. Consider the quadric surface S := P1
×P1 ↪→ P3

=: X inside P3

via the Segre embedding. This is an ample surface with

OX (S)= OX (2), OS(−S)= OS(−1,−1),

and �S ∼= OS(−2, 0)⊕ OS(0,−2). Taking E := �X to be the rank 3 cotangent
bundle on X = P3, we have the exact sequence

0→ OS(−1,−1)→�X |S→ OS(−2, 0)⊕OS(0,−2)→ 0.

The obstruction to this short exact sequence splitting lies in

Ext1OS
(OS(−2, 0)⊕OS(0,−2),OS(−1,−1))∼= H 1(S,OS(1,−1))⊕ H 1(S,OS(−1, 1))= 0

by the Künneth formula. Hence

E|S =�X |S
∼= OS(−2, 0)⊕OS(−1,−1)⊕OS(0,−2)

splits on a smooth ample surface S in X = P3, but E = �P3 itself does not split
over P3 since H 1(P3, �P3)∼= C 6= 0.

Example 4.17. Take Y :=P1
×P2
⊂P2
×P2
=: X defined by the ideal OX (−1, 0),

and denote by p1 and q1 the projection to the first factor of X and Y , respectively.
Then OX (Y )=OX (1, 0) is nef but not ample. Letting E := p∗1�P2 , we see that E is a
nonsplitting rank 2 vector bundle on X , since by the Künneth formula H 1(X, L)=0
for any line bundle L on X , so if E were to split, we must have H 1(X, E) = 0.
However, by the same formula, we see that H 1(X, E)∼=C 6= 0, so E does not split
over X . But

E|Y ∼= q∗1 (�P2 |P1)∼= OY (−2, 0)⊕OY (−1, 0)

splits over Y .
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