ON INTRINSICALLY KNOTTED OR COMPLETELY 3-LINKED GRAPHS

RYO HANAKI, RYO NIKKUNI, KOUKI TANIYAMA AND AKIKO YAMAZAKI

We say that a graph is intrinsically knotted or completely 3-linked if every embedding of the graph into the 3-sphere contains a nontrivial knot or a 3-component link each of whose 2-component sublinks is nonsplittable. We show that a graph obtained from the complete graph on seven vertices by a finite sequence of \(\Delta Y \)-exchanges and \(Y \Delta \)-exchanges is a minor-minimal intrinsically knotted or completely 3-linked graph.

1. Introduction

Throughout this paper we work in the piecewise linear category. Let \(f \) be an embedding of a finite graph \(G \) into the 3-sphere. Then \(f \) is called a spatial embedding of \(G \) and \(f(G) \) is called a spatial graph. We denote the set of all spatial embeddings of \(G \) by \(SE(G) \). We call a subgraph \(\gamma \) of \(G \) that is homeomorphic to the circle a cycle of \(G \). For a positive integer \(n \), let \(\Gamma^{(n)}(G) \) denote the set of all cycles of \(G \) if \(n = 1 \) and the set of all unions of \(n \) mutually disjoint cycles of \(G \) if \(n \geq 2 \). For simplicity, we also write \(\Gamma(G) \) for \(\Gamma^{(1)}(G) \). For an element \(\lambda \) in \(\Gamma^{(n)}(G) \) and a spatial embedding \(f \) of \(G \), \(f(\lambda) \) is a knot if \(n = 1 \) and an \(n \)-component link if \(n \geq 2 \).

A graph \(G \) is said to be intrinsically linked (IL) if for every spatial embedding \(f \) of \(G \), \(f(G) \) contains a nonsplittable 2-component link. Conway and Gordon [1983] and Sachs [1984] showed that \(K_6 \) is IL, where \(K_m \) denotes the complete graph on \(m \) vertices. Also, IL graphs have been completely characterized as follows. For a graph \(G \) and an edge \(e \) of \(G \), we denote the subgraph \(G \setminus \text{int } e \) by \(G - e \). Let \(e = uv \) be an edge of \(G \) that is not a loop. We call the graph obtained from \(G - e \) by identifying the end vertices \(u \) and \(v \) the edge contraction of \(G \) along \(e \), and denote it by \(G/e \). A graph \(H \) is called a minor of a graph \(G \) if there exists a subgraph \(G' \) of \(G \) and edges \(e_1, e_2, \ldots, e_m \) of \(G' \) such that \(H \) is obtained from \(G' \) by a

Nikkuni was partially supported by Grant-in-Aid for Young Scientists (B) (No. 21740046), Japan Society for the Promotion of Science. Taniyama was partially supported by Grant-in-Aid for Scientific Research (C) (No. 21540099), Japan Society for the Promotion of Science.

Keywords: spatial graph, intrinsic knottedness, \(\Delta Y \)-exchange, \(Y \Delta \)-exchange.
sequence of edge contractions along e_1, e_2, \ldots, e_m. A minor H of G is called a proper minor if H does not equal G. Let \mathcal{P} be a property for graphs that is closed under minor reductions; that is, for any graph G that does not have \mathcal{P}, all minors of G also do not have \mathcal{P}. A graph G is said to be minor-minimal with respect to \mathcal{P} if G has \mathcal{P} but all proper minors of G do not have \mathcal{P}. Note that G has \mathcal{P} if and only if G has a minor-minimal graph with respect to \mathcal{P} as a minor. By the famous theorem of Robertson and Seymour [2004], there are finitely many minor-minimal graphs with respect to \mathcal{P}. Nešetřil and Thomas [1985] showed that IL is closed under minor reductions, and Robertson, Seymour and Thomas [Robertson et al. 1995] showed that the set of all minor-minimal graphs with respect to IL equals the Petersen family, which is the set of all graphs obtained from K_6 by a finite sequence of $\triangle Y$-exchanges and $Y\triangle$-exchanges. A $\triangle Y$-exchange is the left-to-right operation shown here:

That is, a graph G_\triangle containing a three-edge cycle \triangle is changed into a new graph G_Y by removing the edges of the cycle and adding a new vertex x connected to each of the vertices of the deleted cycle, thus forming a Y. A $Y\triangle$-exchange is the reverse of this operation. $\triangle Y$- and $Y\triangle$-exchanges preserve IL: if G_\triangle is IL, so is G_Y [Motwani et al. 1988], and if G_Y is IL, so is G_\triangle [Robertson et al. 1995].

The Petersen family contains seven graphs, including the Petersen graph P_{10}:

(An arrow between two graphs indicates the application of a single $\triangle Y$-exchange.)

A graph G is said to be intrinsically knotted (IK) if for every spatial embedding f of G, $f(G)$ contains a nontrivial knot. Conway and Gordon [1983] showed that K_7 is IK. Fellows and Langston [1988] showed that IK is closed under minor
reductions. Motwani, Raghunathan, and Saran [Motwani et al. 1988] showed that K_7 is a minor-minimal IK graph, and additional minor-minimal IK graphs were given in [Kohara and Suzuki 1992] and [Foisy 2002; 2003].

IK graphs have not been completely characterized yet. If G_Δ is IK then G_∇ is also IK [Motwani et al. 1988], but if G_∇ is IK then G_Δ may not always be IK. That is, the $\nabla \Delta$-exchange does not preserve IK in general. Flapan and Naimi [2008] showed that there exists a graph G_{FN} obtained from K_7 by five ∇Y-exchanges and two $Y \Delta$-exchanges that is not IK. We call the set of all graphs obtained from K_7 by a finite sequence of ∇Y and $Y \Delta$-exchanges the Heawood family.\(^1\) This family contains exactly twenty graphs, as illustrated in Figure 1; of these, C_{14} is the Heawood graph (Remark 4.7).

Kohara and Suzuki [1992] showed that a graph G in the Heawood family is a minor-minimal IK graph if G is obtained from K_7 by a finite sequence of ΔY-exchanges, that is, if G is one of fourteen graphs K_7, H_8, H_9, \ldots, H_{12}, F_9, F_{10}, E_{10}, E_{11} and C_{11}, C_{12}, \ldots, C_{14}.\(^2\) On the other hand, N_{10}' is isomorphic to G_{FN}, that is, N_{10}' is not IK. Our first purpose in this paper is to determine completely when a graph in the Heawood family is IK.

Theorem 1.1. For a graph G in the Heawood family, the following are equivalent:

1. G is IK.
2. G is obtained from K_7 by a finite sequence of ΔY-exchanges.
3. $\Gamma^{(3)}(G)$ is the empty set.

Hence the members N_9, N_{10}, N_{11}, N_{10}', N_{11}' and N_{12}' of the Heawood family are not IK, and only they contain a union of three mutually disjoint cycles.

Our second purpose is to show that any of the graphs in the Heawood family is a minor-minimal graph with respect to a certain kind of intrinsic nontriviality even if it is not IK. We say that a graph G is *intrinsically knotted or completely 3-linked*—I(K or C3L) for short—if for every spatial embedding f of G, $f(G)$ contains a nontrivial knot or a 3-component link all of whose 2-component sublinks are nonsplittable. An IK graph is I(K or C3L). As we show in Proposition 2.2, I(K or C3L) is closed under minor reductions.

Theorem 1.2. All graphs in the Heawood family are minor-minimal I(K or C3L) graphs.

As we have seen, N_9, N_{10}, N_{11}, N_{10}', N_{11}' and N_{12}' are not IK, but they are but I(K or C3L) and are minor-minimal with respect to I(K or C3L).

\(^1\)Van der Holst [2006] calls the set of all graphs obtained from K_7 or $K_{3,3,1,1}$ by a finite sequence of ΔY-exchanges and $Y \Delta$-exchanges the Heawood family, where $K_{3,3,1,1}$ is the complete 4-partite graph on $3+3+1+1$ vertices.

\(^2\)One edge of F_{10} in [Kohara and Suzuki 1992, Figure 5] is wanting.
Figure 1. The Heawood family. An arrow between two graphs indicates the application of a single ΔY-exchange.

Remark 1.3. A graph G is said to be intrinsically n-linked (InL) if for every spatial embedding f of G, $f(G)$ contains a nonsplittable n-component link [Flapan et al. 2001a; 2001b]. I2L coincides with IL. Let G be a graph in the Heawood family.
that is not IK. Then we show in Example 4.6 that there exists a spatial embedding f of G such that $f(G)$ does not contain a nonsplittable 3-component link. That is, G is neither IK nor I3L.

Remark 1.4. A graph G is called *intrinsically knotted* or *3-linked*—I(K or 3L) for short—if for every spatial embedding f of G, $f(G)$ contains a nontrivial knot or a nonsplittable 3-component link. Clearly I(K or C3L) implies I(K or 3L), but the converse is not true: [Foisy 2006] exhibits an I(K or 3L) graph G and a spatial embedding f of G such that $f(G)$ contains no nontrivial knot and all nonsplittable 3-component links contained in $f(G)$ have split 2-component sublinks.

The rest of this paper is organized as follows. Section 2 contains general results about graph minors, ΔY-exchanges and spatial graphs. We prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4.

2. Graph minors, ΔY-exchanges and spatial graphs

Let H be a minor of a graph G. Then there exists a natural injection

$$
\Psi(n) = \Psi_{H,G}^{(n)} : \Gamma(n)(H) \rightarrow \Gamma(n)(G)
$$

for any positive integer n. We write Ψ for $\Psi(1)$. Let f be a spatial embedding of G and e an edge of G that is not a loop. Then by contracting $f(e)$ into one point, we obtain a spatial embedding $\psi(f)$ of G/e. Similarly, we can also obtain a spatial embedding $\psi(f)$ of H from f. Thus we obtain a map

$$
\psi = \psi_{G,H} : \text{SE}(G) \rightarrow \text{SE}(H).
$$

Then we immediately have:

Proposition 2.1. For a spatial embedding f of G and an element λ in $\Gamma(n)(H)$, $\psi(f)(\lambda)$ is ambient isotopic to $f(\Psi(n)(\lambda))$. \hfill \Box

Proposition 2.2. I(K or C3L) is closed under minor reductions.

Proof. Let G be a graph that is not I(K or C3L), and H be a minor of G. Let f be a spatial embedding of G that contains neither a nontrivial knot nor a 3-component link all of whose 2-component sublinks are nonsplittable. Then by Proposition 2.1, $\psi(f)$ has the same property. This implies that H is not I(K or C3L). \hfill \Box

Remark 2.3. Proposition 2.1 also implies that IK, InL and I(K or 3L) are closed under minor reductions.

Let G_Δ and G_Y be two graphs such that G_Y is obtained from G_Δ by a single ΔY-exchange, as in the previous section. Let λ be an element in $\Gamma(n)(G_\Delta)$ that does not contain Δ. Then there exists an element $\Phi(n)(\lambda)$ in $\Gamma(n)(G_Y)$ such that
\(\lambda \setminus \Delta = \Phi^{(n)}(\lambda) \setminus Y \). Thus we obtain a map

\[
\Phi^{(n)} = \Phi^{(n)}_{G_\Delta, G_Y} : \{ \lambda \in \Gamma^{(n)}(G_\Delta) \mid \lambda \not\supset \Delta \} \to \Gamma^{(n)}(G_Y),
\]

for any positive integer \(n \). We denote \(\Phi^{(1)} \) by \(\Phi \). Note that \(\Phi^{(n)} \) is surjective and the inverse image of \(\lambda \) by \(\Phi^{(n)} \) contains at most two elements in \(\Gamma^{(n)}(G_\Delta) \) for any element \(\lambda \) in \(\Gamma^{(n)}(G_Y) \). The surjectivity of \(\Phi^{(n)} \) implies Proposition 2.4.

Proposition 2.4. For \(n \geq 2 \), if \(\Gamma^{(n)}(G_\Delta) = \emptyset \), then \(\Gamma^{(n)}(G_Y) = \emptyset \). \(\square \)

Let \(f \) be a spatial embedding of \(G_Y \), and let \(D \) be a 2-disk in the 3-sphere such that \(D \cap f(G_\Delta) = f(Y) \) and \(\partial D \cap f(G_\Delta) = \{ f(u), f(v), f(w) \} \). (Throughout the paper we use \(u, v, w, x \) for the vertices of the Y of interest, as in the first figure on page 408.) Let \(\varphi(f) \) be a spatial embedding of \(G_\Delta \) such that \(\varphi(f)(x) = f(x) \) for \(x \in G_Y \setminus Y \) and \(\varphi(f)(G_\Delta) = (f(G_Y) \setminus f(Y)) \cup \partial D \). Then we obtain a map

\[\varphi = \varphi_{G_Y, G_\Delta} : \text{SE}(G_Y) \to \text{SE}(G_\Delta), \]

and we immediately have Proposition 2.5.

Proposition 2.5. For a spatial embedding \(f \) of \(G_Y \) and an element \(\lambda \) in \(\Gamma^{(n)}(G_Y) \), \(f(\lambda) \) is ambient isotopic to \(\varphi(f)(\lambda') \) for each element \(\lambda' \) in the inverse image of \(\lambda \) by \(\Phi^{(n)}. \) \(\square \)

Lemma 2.6. If \(G_\Delta \) is \(I(K \text{ or } C3L) \), then \(G_Y \) is also \(I(K \text{ or } C3L) \).

Proof. Assume that \(G_Y \) is not \(I(K \text{ or } C3L) \), that is, there exists a spatial embedding \(f \) of \(G_Y \) that contains neither a nontrivial knot nor a 3-component link all of whose 2-component sublinks are nonsplittable. We show that \(\varphi(f)(G_\Delta) \) also has the same property.

Let \(\gamma \) be an element in \(\Gamma(G_\Delta) \). If \(\gamma \) is not \(\Delta \), then \(\varphi(f)(\gamma) \) is ambient isotopic to \(f(\Phi(\gamma)) \) by Proposition 2.5, and \(f(\Phi(\gamma)) \) is a trivial knot by the assumption. Since \(\varphi(f)(\Delta) \) is also a trivial knot, it follows that \(\varphi(f)(G_\Delta) \) does not contain a nontrivial knot. Let \(\lambda \) be an element in \(\Gamma^{(3)}(G_\Delta) \). If \(\lambda \) does not contain \(\Delta \), then \(\varphi(f)(\lambda) \) is ambient isotopic to \(f(\Phi^{(3)}(\lambda)) \) by Proposition 2.5, and \(f(\Phi^{(3)}(\lambda)) \) is a 3-component link that contains a split 2-component sublink by the assumption. If \(\lambda \) contains \(\Delta \), then \(\varphi(f)(\lambda) \) is a split 3-component link. Thus we see that \(\varphi(f)(G_\Delta) \) does not contain a 3-component link with a nonsplittable 2-component sublink. \(\square \)

Lemma 2.7. If \(G_Y \) is minor-minimal for \(I(K \text{ or } C3L) \), then \(G_\Delta \) is also minor-minimal for \(I(K \text{ or } C3L) \).

Proof. (This lemma has already been proven in more general form [Ozawa and Tsutsumi 2007, Lemma 3.1, Exercise 3.2], but we prove it here for convenience.)
We show that for any edge \(e \) of \(G_\Delta \) that is not a loop, there exist a spatial embedding \(f \) of \(G_\Delta - e \) and a spatial embedding \(g \) of \(G_\Delta/e \) such that each of \(f(G_\Delta - e) \) and
\[g(G_\Delta/e) \text{ contains neither a nontrivial knot nor a 3-component link all of whose 2-component sublinks are nonsplittable. If } e \text{ is not one of the edges } \overline{uv}, \overline{vw} \text{ or } \overline{wu} \text{ of the } \Delta \text{ then there exist a spatial embedding } f' \text{ of } G_Y - e \text{ and a spatial embedding } g' \text{ of } G_Y/e \text{ such that both } f'(G_Y - e) \text{ and } g'(G_Y/e) \text{ contain neither a nontrivial knot nor a 3-component link all of whose 2-component sublinks are nonsplittable.} \]

The graph \(G_Y - e \) is obtained from \(G_\Delta - e \), and likewise \(G_Y/e \) from \(G_\Delta/e \), by a single \(\Delta Y \)-exchange at the same \(\Delta \). Then we see that each of \(\varphi(f')(G_\Delta - e) \) and \(\varphi(g')(G_\Delta/e) \) contains neither a nontrivial knot nor a 3-component link having only nonsplittable 2-component sublinks, in a way similar to the proof of Lemma 2.6. If \(e \) is one of \(uv, vw \) and \(wu \), we may assume that \(e = uv \) without loss of generality. Now there exists a spatial embedding \(g' \) of \(G_Y/\overline{uv} \) such that \(g'(G_Y/\overline{uw}) \) contains neither a nontrivial knot nor a 3-component link having only nonsplittable 2-component sublinks. Then we can see that \(G_\Delta - uv = G_Y/\overline{uv} \).

On the other hand, there exists a spatial embedding \(g' \) of \(G_Y/\overline{uv}/\overline{wu} \) such that \(g'(G_Y/\overline{uw}) \) contains neither a nontrivial knot nor a 3-component link having only nonsplittable 2-component sublink. Take a 2-disk \(D' \) in the 3-sphere such that \(D' \cap g'(G_Y/\overline{uv}/\overline{wu}) = g'(\overline{uw}) \) and \(\partial D' \cap g'(G_Y/\overline{uw}/\overline{wu}) = \{g'(u), g'(w))\}. \)

Then \((g'(G_Y/\overline{uw}) \setminus \text{int } g'(\overline{uw})) \cup \partial D' \) may be regarded as the image of a spatial embedding of \(G_\Delta/\overline{uv} \), denoted by \(g \). Clearly \(g(G_\Delta/\overline{uv}) \) contains neither a nontrivial knot nor a 3-component link having only nonsplittable 2-component sublink. \(\square \)

3. Proof of Theorem 1.1

Lemma 3.1. Each of the graphs \(N_9, N_{10}, N_{11}, N'_ {10}, N'_{11} \) and \(N'_{12} \) in the Heawood family is not IK.

Proof. For \(N'_{10} \), see [Flapan and Naimi 2008]. We show that \(N_9, N_{10}, N_{11}, N'_{11} \) and \(N'_{12} \) are not IK. Let \(f_9 \) be the spatial embedding of \(N_9 \) illustrated in Figure 2. It can be checked directly that \(f_9(N_9) \) does not contain a nontrivial knot. Thus \(N_9 \) is
not IK. Let f_{10} be the spatial embedding of N_{10} illustrated in Figure 2. Let φ_{N_{10},N_9} be the map from $\text{SE}(N_{10})$ to $\text{SE}(N_9)$ induced by the $Y\Delta$-exchange from N_{10} to N_9 at the Y-fork marked * in Figure 2. Then clearly $\varphi(f_{10}) = f_9$. Since $f_9(N_9)$ does not contain a nontrivial knot, by Proposition 2.5 it follows that $f_{10}(N_{10})$ also does not contain a nontrivial knot. Thus, N_{10} is not IK. By repeating this argument, we can see that each of the graphs N_{11}, N'_{11} and N'_{12} is also not IK; see Figure 2. \[\square \]

Proof of Theorem 1.1. First we show that (1) and (2) are equivalent. Since we already know that (2) implies (1), we show that (1) implies (2). If G is IK, then by Lemma 3.1 we see that G is not one of N_9, N_{10}, N_{11}, N'_{10}, N'_{11} or N'_{12}. Thus G is obtained from K_7 by a finite sequence of ΔY-exchanges. Next we show that (2) and (3) are equivalent. Assume that G is obtained from K_7 by a finite sequence of ΔY-exchanges. $\Gamma^{(3)}(K_7)$ is the empty set. Thus, by Proposition 2.4, we see that $\Gamma^{(3)}(G)$ is the empty set. Conversely, if G is one of N_9, N_{10}, N_{11}, N'_{10}, N'_{11}, and N'_{12}, then $\Gamma^{(3)}(G)$ is not the empty set. This completes the proof. \[\square \]

Remark 3.2. Let f'_{11} be the spatial embedding of N'_{11} illustrated in Figure 2, and let f'_{10} be the spatial embedding of N'_{10} illustrated in the figure below. Let $\varphi_{N'_{11},N'_{10}}$ be the map from $\text{SE}(N'_{11})$ to $\text{SE}(N'_{10})$ induced by the $Y\Delta$-exchange from N'_{11} to N'_{10} at the Y-fork marked **. Then clearly $\varphi(f'_{11}) = f'_{10}$. Also, we can see that f'_{10} coincides with Flapan and Naimi’s example [2008] of a spatial embedding of N'_{10} whose image does not contain a nontrivial knot, as illustrated in the leftmost diagram:

\[\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{diagram1.png}}
\end{align*} \]

4. Proof of Theorem 1.2

Lemma 4.1 [Conway and Gordon 1983; Taniyama and Yasuhara 2001]. Let G be a graph in the Petersen family and f a spatial embedding of G. Then there exists an element λ in $\Gamma^{(2)}(G)$ such that $\text{lk}(f(\lambda))$ is odd, where lk denotes the linking number in the 3-sphere.

Let D_4 be the graph illustrated on the right. We denote the set of all cycles of D_4 with exactly four edges by $\Gamma_4(D_4)$. For a spatial embedding f of D_4, we define

\[\alpha(f) \equiv \sum_{\gamma \in \Gamma_4(D_4)} a_2(f(\gamma)) \pmod{2}, \]
where a_2 denotes the second coefficient of the Conway polynomial. Note that $a_2(K)$ of a knot K is congruent to the Arf invariant modulo 2 [Kauffman 1983].

Lemma 4.2 [Taniyama and Yasuhara 2001]. Let f be a spatial embedding of D_4 and λ, λ' all elements in $\Gamma^{(2)}(D_4)$. If both $\text{lk}(f(\lambda))$ and $\text{lk}(f(\lambda'))$ are odd, then $\alpha(f) = 1$.

Let G be a graph that contains D_4 as a minor and f a spatial embedding of G. Then we define

$$\alpha(f) \equiv \sum_{\gamma \in \Gamma_4(D_4)} a_2(f(\Psi_{D_4,G}(\gamma))) \pmod{2}.$$

Lemma 4.3. Let G be a graph that contains D_4 as a minor and let f be a spatial embedding of G. For two elements μ and μ' in $\Psi^{(2)}_{D_4,G}(\Gamma^{(2)}(D_4))$, if both $\text{lk}(f(\mu))$ and $\text{lk}(f(\mu'))$ are odd, then $\alpha(f) = 1$.

Proof. For two elements λ and λ' in $\Gamma^{(2)}(D_4)$, we see that both $\text{lk}(f(\Psi^{(2)}_{D_4,G}(\lambda)))$ and $\text{lk}(f(\Psi^{(2)}_{D_4,G}(\lambda')))$ are odd by the assumption. Then by Proposition 2.1, it follows that $\text{lk}(\psi_{G,D_4}(f)(\lambda))$ and $\text{lk}(\psi_{G,D_4}(f)(\lambda'))$ are also odd. Therefore, by Lemma 4.2, we have that

$$\alpha(f) \equiv \sum_{\gamma \in \Gamma_4(D_4)} a_2(f(\Psi_{D_4,G}(\gamma))) \equiv \sum_{\gamma \in \Gamma_4(D_4)} a_2(\psi_{G,D_4}(f)(\gamma)) \equiv 1 \pmod{2}. \quad \square$$

The next theorem is the most important part of the proof of Theorem 1.2.

Theorem 4.4. Let G be N_9 or N'_9. For every spatial embedding f of G, there exists an element γ in $\Gamma(G)$ such that $a_2(f(\gamma))$ is odd, or there exists an element λ in $\Gamma^{(3)}(G)$ such that each 2-component sublink of $f(\lambda)$ has an odd linking number.

Proof. We will denote by $[i_1 i_2 \ldots i_k]$ the cycle $i_1 i_2 \cup i_2 i_3 \cup \ldots \cup i_{k-1} i_k \cup i_k i_1$ of G. We label each vertex of G as follows:

![Graphs N_9 and N'_9](image)

First we show the case of $G = N_9$. Let f be a spatial embedding of N_9. Note that N_9 contains K_6 as the proper minor

$$(((N_9 - 78) - 89) - 97)/47/58/69.$$

By Lemma 4.1, there is thus an element v in $\Gamma^{(2)}(K_6)$ such that $\text{lk}(\psi_{N_9,K_6}(f)(v))$ is odd. Hence, by Proposition 2.1, there exists an element μ in $\Psi^{(2)}_{K_6,N_9}(\Gamma^{(2)}(K_6))$ such that $\text{lk}(f(\mu))$ is odd. $\Psi^{(2)}_{K_6,N_9}(\Gamma^{(2)}(K_6))$ consists of ten elements, and by the
symmetry of N_9, we may assume that $\mu = [1 7 4 3] \cup [2 6 5 8]$ or $[1 2 3] \cup [4 5 6]$ without loss of generality.

Case 1. Let $\mu = [1 7 4 3] \cup [2 6 5 8]$. Note that N_9 contains P_7 as the proper minor

$$(((N_9 - \overline{61}) - \overline{62}) - \overline{64}) - \overline{65} - \overline{69})/39.$$

Thus, by Lemma 4.1, there is an element ν' in $\Gamma (2)(P_7)$ such that $\text{lk}(\psi_{N_9,P_7}(f)(\nu'))$ is odd. Hence, by Proposition 2.1, there exists an element μ' in $\Psi_{P_7,N_9}(\Gamma (2)(P_7))$ such that $\text{lk}(f(\mu'))$ is odd. $\Psi_{P_7,N_9}(\Gamma (2)(P_7))$ consists of the nine elements

$$\begin{align*}
\mu'_1 &= [3 4 5] \cup [1 2 8 7], & \mu'_2 &= [1 5 4 7] \cup [2 3 9 8], & \mu'_3 &= [2 8 5 4] \cup [3 1 7 9], \\
\mu'_4 &= [1 2 4 7] \cup [3 5 8 9], & \mu'_5 &= [1 2 3] \cup [4 7 8 5], & \mu'_6 &= [1 2 8 5] \cup [3 4 7 9], \\
\mu'_7 &= [2 3 4] \cup [1 5 8 7], & \mu'_8 &= [7 8 9] \cup [1 2 4 5], & \mu'_9 &= [1 5 3] \cup [2 8 7 4].
\end{align*}$$

For $i = 1, 2, \ldots, 9$, let J^i be the subgraph of N_9 that is $\mu \cup \mu'_i \cup \overline{69}$ if $i = 3, 6$ and $\mu \cup \mu'_i$ if $i \neq 3, 6$. Assume that $\text{lk}(f(\mu'_i))$ is odd for some $i \neq 8$. Then it can be easily seen that J^i contains a graph D^i as a minor, such that D^i is isomorphic to D_4 and $\{\mu, \mu'_i\} = \Psi_{D^i,\mu}((\Gamma (2)(D^i))$. Since both $\text{lk}(f(\mu))$ and $\text{lk}(f(\mu'_i))$ are odd, by Lemma 4.3 there exists an element γ in $\Gamma (J^i)$ such that $a_2(f(\gamma))$ is odd. Next assume that $\text{lk}(f(\mu'_8))$ is odd. We denote two elements $[7 8 9] \cup [1 2 6 5]$ and $[7 8 9] \cup [4 2 6 5]$ in $\Gamma (2)(J^8)$ by $\mu'_{8,1}$ and $\mu'_{8,2}$, respectively. We denote the subgraph $\mu \cup \mu'_{8,j}$ of J^8 by $J^{8,j}$ $(j = 1, 2)$. Then it can be easily seen that $J^{8,j}$ contains a graph $D^{8,j}$ as a minor, such that $D^{8,j}$ is isomorphic to D_4 and $\{\mu, \mu'_{8,j}\} = \Psi_{D^{8,j},\mu}(\Gamma (2)(D^{8,j})) (j = 1, 2)$. Note that

$$[1 2 4 5] = [1 2 6 5] + [4 2 6 5]$$

in $H_1(J^8; \mathbb{Z}_2)$, where $H_n(\cdot ; \mathbb{Z}_2)$ denotes the homology group with \mathbb{Z}_2-coefficients. Then, by the homological property of the linking number, we have that

$$1 \equiv \text{lk}(f(\mu'_8)) \equiv \text{lk}(f(\mu'_{8,1})) + \text{lk}(f(\mu'_{8,2})) \pmod{2}.$$

Thus we see that $\text{lk}(f(\mu'_{8,j}))$ is odd or $\text{lk}(f(\mu'_{8,2}))$ is odd. In either case, by Lemma 4.3 there exists an element γ in $\Gamma (J^{8,j})$ such that $a_2(f(\gamma))$ is odd.

Case 2. Let $\mu = [1 2 3] \cup [4 5 6]$. Note that N_9 contains P_9 as the proper minor

$$(((N_9 - \overline{12}) - \overline{23}) - \overline{45}) - \overline{56} - 64.$$

Thus, by Lemma 4.1, there is an element ν' in $\Gamma (2)(P_9)$ such that $\text{lk}(\psi_{N_9,P_9}(f)(\nu'))$ is odd. Hence by Proposition 2.1, there exists an element μ' in $\Psi_{P_9,N_9}(\Gamma (2)(P_9))$ such that $\text{lk}(f(\mu'))$ is odd. $\Psi_{P_9,N_9}(\Gamma (2)(P_9))$ consists of seven elements, and by the symmetry of N_9, we may assume, without loss of generality, that $\mu' = [1 5 8 7] \cup [2 6 9 3 4]$ or $[7 8 9] \cup [1 5 3 4 2 6]$. Denote by J the subgraph $\mu \cup \mu'$ of N_9. Assume
that \(\mu' = [1 5 8 7] \cup [2 6 9 3 4] \). We denote the two elements \([1 5 8 7] \cup [4 3 2]\) and \([1 5 8 7] \cup [6 9 3 2]\) in \(\Gamma^{(2)}(J) \) by \(\mu'_1 \) and \(\mu'_2 \), respectively. We denote the subgraph \(\mu \cup \mu'_i \) of \(J \) by \(J^i \) (\(i = 1, 2 \)). Then \(J^i \) contains a graph \(D^i \) as a minor such that \(D^i \) is isomorphic to \(D_4 \) and

\[
\{\mu, \mu'_i\} = \Psi^{(2)}_{D^i, J^i}(\Gamma^{(2)}(D^i)) \quad (i = 1, 2).
\]

Since \([2 6 9 3 4] = [4 3 2] \cup [6 9 3 2] \) in \(H_1(J; Z_2) \), it follows that

\[
1 \equiv \text{lk}(f(\mu')) \equiv \text{lk}(f(\mu'_1)) + \text{lk}(f(\mu'_2)) \pmod{2}.
\]

This implies that \(\text{lk}(f(\mu'_1)) \) is odd or \(\text{lk}(f(\mu'_2)) \) is odd. In both cases, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J^i) \) such that \(a_2(f(\gamma)) \) is odd. Next assume that \(\mu' = [7 8 9] \cup [1 5 3 4 2 6] \). We denote four elements \([7 8 9] \cup [3 4 5], [7 8 9] \cup [4 5 6], [7 8 9] \cup [1 5 6] \) and \([7 8 9] \cup [2 4 6] \) in \(\Gamma^{(2)}(J) \) by \(\mu'_1, \mu'_2, \mu'_3 \) and \(\mu'_4 \), respectively. Since \([1 5 3 4 2 6] = [3 4 5] + [4 5 6] + [1 5 6] + [2 4 6] \) in \(H_1(J; Z_2) \), we get

\[
1 \equiv \text{lk}(\mu') \equiv \text{lk}(\mu'_1) + \text{lk}(\mu'_2) + \text{lk}(\mu'_3) + \text{lk}(\mu'_4) \pmod{2}.
\]

This implies that \(\text{lk}(\mu'_i) \) is odd for some \(i = 1, 2, 3 \) or 4. Moreover, by the symmetry of \(J \), we may assume that \(\text{lk}(\mu'_i) \) is odd or \(\text{lk}(\mu'_2) \) is odd without loss of generality. Assume that \(\text{lk}(\mu'_i) \) is odd. We denote the subgraph \(\mu \cup \mu'_1 \cup 1 7 \cup 6 9 \) of \(N_9 \) by \(J^1 \). Then \(J^1 \) contains a graph \(D^1 \) as a minor such that \(D^1 \) is isomorphic to \(D_4 \) and \(\{\mu, \mu'_1\} = \Psi^{(2)}_{D^1, J^1}(\Gamma^{(2)}(D^1)) \). Since both \(\text{lk}(f(\mu)) \) and \(\text{lk}(f(\mu'_1)) \) are odd, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J^1) \) such that \(a_2(f(\gamma)) \) is odd. Next assume that \(\text{lk}(\mu'_2) \) is odd. We denote four elements \([7 8 9] \cup [1 2 6], [7 8 9] \cup [1 2 3], [7 8 9] \cup [2 3 4] \) and \([7 8 9] \cup [1 3 5] \) in \(\Gamma^{(2)}(J) \) by \(\mu'_5, \mu'_6, \mu'_7 \) and \(\mu'_8 \), respectively. Since \([1 5 3 4 2 6] = [1 2 6] + [1 2 3] + [2 3 4] + [1 3 5] \) in \(H_1(J; Z_2) \), we have

\[
1 \equiv \text{lk}(\mu') \equiv \text{lk}(\mu'_5) + \text{lk}(\mu'_6) + \text{lk}(\mu'_7) + \text{lk}(\mu'_8) \pmod{2}.
\]

Thus we see that \(\text{lk}(\mu'_i) \) is odd for some \(i = 5, 6, 7 \) or 8. Moreover, by the symmetry of \(J \), we may assume that \(\text{lk}(\mu'_5) \) is odd or \(\text{lk}(\mu'_6) \) is odd without loss of generality. Assume that \(\text{lk}(\mu'_5) \) is odd. We denote the subgraph \(\mu \cup \mu'_5 \cup 4 7 \cup 3 9 \) of \(N_9 \) by \(J^5 \). Then \(J^5 \) contains a graph \(D^5 \) as a minor such that \(D^5 \) is isomorphic to \(D_4 \) and \(\{\mu, \mu'_5\} = \Psi^{(2)}_{D^5, J^5}(\Gamma^{(2)}(D^5)) \). Since both \(\text{lk}(f(\mu)) \) and \(\text{lk}(f(\mu'_5)) \) are odd, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J^5) \) such that \(a_2(f(\gamma)) \) is odd. Finally, assume that \(\text{lk}(\mu'_6) \) is odd. Let us consider the 3-component link \(L = f([1 2 3] \cup [4 5 6] \cup [7 8 9]) \). Since all 2-component sublinks of \(L \) are \(f(\mu), f(\mu'_5) \) and \(f(\mu'_6) \), each of the 2-component sublinks of \(L \) has an odd linking number.

Now we show the case of \(G = N'_{10} \). Let \(f \) be a spatial embedding of \(N'_{10} \). Note that \(N'_{10} \) contains \(P_7 \) as the proper minor

\[
(((N'_{10} - 78) - 89) - 97)/47/58/69.
\]
Thus by Lemma 4.1, there is an element v in $\Gamma^{(2)}(P_7)$ such that $\text{lk}(\psi_{N'_{10}, P_7}(f)(v))$ is odd. Hence by Proposition 2.1, there exists an element μ in $\Psi_{P_7, N'_{10}}^{(2)}(\Gamma^{(2)}(P_7))$ such that $\text{lk}(f(\mu))$ is odd. $\Psi_{P_7, N'_{10}}^{(2)}(\Gamma^{(2)}(P_7))$ consists of nine elements, and by the symmetry of N'_{10}, we may assume that $\mu = [1\ 7\ 4\ 5\ 1\ 2\ 10\ 3\ 9\ 6\ 2\ 4\ 5\ 8\ 1\ 10\ 3\ 9\ 6\ 3\ 1\ 0\ 8\ 5\ 1\ 6\ 2\ 4\ 7\ 3\ 4\ 5\ 1\ 10\ 2\ 6\ 0\ 2\ 4\ 1\ 8\ 9\ 3\ 4\ 7\ 3\ 0\ 1\ 6\ 9\ 3\ 4\ 7]$ without loss of generality.

Case 1. Let $\mu = [1\ 7\ 4\ 5\ 1\ 2\ 10\ 3\ 9\ 6]$. Note that N'_{10} contains P_9 as the proper minor

$$(((N'_{10} - 5\ 1) - 5\ 3) - 5\ 4) - 5\ 6) - 5\ 8) - 7\ 9).$$

Thus by Lemma 4.1, there is an element v' in $\Gamma^{(2)}(P_9)$ such that $\text{lk}(\psi_{N'_{10}, P_9}(f)(v'))$ is odd. Hence by Proposition 2.1, there exists an element μ' in $\Psi_{P_9, N'_{10}}^{(2)}(\Gamma^{(2)}(P_9))$ such that $\text{lk}(f(\mu'))$ is odd. $\Psi_{P_9, N'_{10}}^{(2)}(\Gamma^{(2)}(P_9))$ consists of seven elements

$$\mu_1' = [3\ 1\ 0\ 8\ 9\ 1\ 6\ 2\ 4\ 7], \quad \mu_2' = [1\ 7\ 8\ 10\ 1\ 2\ 4\ 3\ 9\ 6],$$

$$\mu_3' = [1\ 1\ 0\ 2\ 6\ 1\ 3\ 4\ 7\ 8\ 9], \quad \mu_4' = [2\ 4\ 3\ 1\ 0\ 1\ 7\ 8\ 9\ 6],$$

$$\mu_5' = [2\ 4\ 7\ 8\ 1\ 1\ 0\ 3\ 9\ 6], \quad \mu_6' = [2\ 8\ 9\ 6\ 1\ 1\ 0\ 3\ 4\ 7],$$

$$\mu_7' = [2\ 8\ 10\ 1\ 1\ 6\ 9\ 3\ 4\ 7].$$

For $i = 1, 2, \ldots, 7$, let J^i be the subgraph of N'_{10} that is $\mu \cup \mu_i' \cup 5\ 8$ if $i = 1, 6, 7$ and $\mu \cup \mu_i'$ if $i = 2, 3, 4, 5$. Assume that $\text{lk}(f(\mu_i'))$ is odd for some i. Then J^i contains a graph D^i as a minor such that D^i is isomorphic to D_4 and $\{\mu, \mu_i'\} = \Psi_{D_i, J}(\Gamma^{(2)}(D^i))$. Because both $\text{lk}(f(\mu))$ and $\text{lk}(f(\mu_i'))$ are odd, by Lemma 4.3 there exists an element γ in $\Gamma(J^i)$ such that $a_2(f(\gamma))$ is odd.

Case 2. Let $\mu = [2\ 4\ 5\ 8\ 1\ 1\ 0\ 3\ 9\ 6]$. Note that N'_{10} contains another P_9 as the proper minor

$$(((N'_{10} - 8\ 2) - 8\ 5) - 8\ 7) - 8\ 9) - 8\ 10) - 3\ 4.$$

Thus by Lemma 4.1, there is an element v' in $\Gamma^{(2)}(P_9)$ such that $\text{lk}(\psi_{N'_{10}, P_9}(f)(v'))$ is odd. Hence by Proposition 2.1, there exists an element μ' in $\Psi_{P_9, N'_{10}}^{(2)}(\Gamma^{(2)}(P_9))$ such that $\text{lk}(f(\mu'))$ is odd. $\Psi_{P_9, N'_{10}}^{(2)}(\Gamma^{(2)}(P_9))$ consists of the seven elements

$$\mu_1' = [1\ 6\ 9\ 7\ 1\ 2\ 4\ 5\ 3\ 1\ 0], \quad \mu_2' = [1\ 7\ 4\ 5\ 1\ 2\ 10\ 3\ 9\ 6],$$

$$\mu_3' = [3\ 5\ 6\ 9\ 1\ 1\ 0\ 2\ 4\ 7], \quad \mu_4' = [1\ 5\ 3\ 1\ 0\ 1\ 2\ 4\ 7\ 9\ 6],$$

$$\mu_5' = [1\ 1\ 0\ 2\ 6\ 1\ 3\ 9\ 7\ 4\ 5], \quad \mu_6' = [1\ 5\ 6\ 1\ 2\ 4\ 7\ 9\ 3\ 10],$$

$$\mu_7' = [2\ 4\ 5\ 6\ 1\ 1\ 0\ 3\ 9\ 7].$$

For $i = 1, 2, \ldots, 7$, let J^i be the subgraph of N'_{10} that is $\mu \cup \mu_i' \cup 7\ 8$ if $i = 1, 7$ and $\mu \cup \mu_i'$ if $i \neq 1, 7$. Assume that $\text{lk}(f(\mu_i'))$ is odd for some i. Then J^i contains
a graph D^i as a minor such that D^i is isomorphic to D_4 and

$$\{\mu, \mu'_i\} = \Psi^{(2)}_{D_i, J_i}(\Gamma^{(2)}(D^i)).$$

Since both $\text{lk}(f(\mu))$ and $\text{lk}(f(\mu'_i))$ are odd, by Lemma 4.3 there exists an element γ in $\Gamma(J^i)$ such that $a_2(f(\gamma))$ is odd.

Case 3. Let $\mu = [3 \ 10 \ 8 \ 5] \cup [1 \ 6 \ 2 \ 4 \ 7]$. Let P_9 be the proper minor of N'_{10} and μ'_i the element in

$$\Psi^{(2)}_{P_9, N'_{10}}(\Gamma^{(2)}(P_9)) \quad (i = 1, 2, \ldots, 7)$$

as in Case 2. For $i = 1, 2, \ldots, 7$, let J^i be the subgraph of N'_{10} that is $\mu \cup \mu'_i \cup \overline{\mathbf{9}}$ if $i = 1, 4$ and $\mu \cup \mu'_i$ if $i \neq 1, 4$. Assume that $\text{lk}(f(\mu'_i))$ is odd for some i. Then J^i contains a graph D^i as a minor such that D^i is isomorphic to D_4 and $\{\mu, \mu'_i\} = \Psi^{(2)}_{D_i, J_i}(\Gamma^{(2)}(D^i))$. Because both $\text{lk}(f(\mu))$ and $\text{lk}(f(\mu'_i))$ are odd, by Lemma 4.3 there exists an element γ in $\Gamma(J^i)$ such that $a_2(f(\gamma))$ is odd.

Case 4. Let $\mu = [3 \ 4 \ 5] \cup [1 \ 10 \ 2 \ 6]$. Note that N'_{10} contains another P_7 as the proper minor

$$(((N'_{10} - 3 4) - 4 5) - 5 3) / 39 / 47 / 58.$$

Thus by Lemma 4.1, there is an element ν' in $\Gamma^{(2)}(P_7)$ such that $\text{lk}(\Psi^{(2)}_{N'_{10}, P_7}(f)(\nu'))$ is odd. Hence by Proposition 2.1, there exists an element μ' in $\Psi^{(2)}_{P_7, N'_{10}}(\Gamma^{(2)}(P_7))$ such that $\text{lk}(f(\mu'))$ is odd. $\Psi^{(2)}_{P_7, N'_{10}}(\Gamma^{(2)}(P_7))$ consists of the nine elements

- $\mu'_1 = [5 \ 6 \ 9 \ 8] \cup [1 \ 10 \ 2 \ 4 \ 7], \quad \mu'_2 = [3 \ 10 \ 8 \ 9] \cup [1 \ 6 \ 2 \ 4 \ 7],$
- $\mu'_3 = [1 \ 5 \ 8 \ 10] \cup [2 \ 4 \ 7 \ 9 \ 6], \quad \mu'_4 = [7 \ 8 \ 9] \cup [1 \ 10 \ 2 \ 6],$
- $\mu'_5 = [2 \ 8 \ 10] \cup [1 \ 6 \ 9 \ 7], \quad \mu'_6 = [2 \ 8 \ 5 \ 6] \cup [1 \ 10 \ 3 \ 9 \ 7],$
- $\mu'_7 = [1 \ 7 \ 8 \ 5] \cup [2 \ 1 \ 0 \ 3 \ 9 \ 6], \quad \mu'_8 = [1 \ 5 \ 6] \cup [2 \ 4 \ 7 \ 9 \ 3 \ 10],$
- $\mu'_9 = [2 \ 4 \ 7 \ 8] \cup [1 \ 10 \ 3 \ 9 \ 6].$

For $i = 1, 2, \ldots, 9$, let J^i be the subgraph of N'_{10} that is $\mu \cup \mu'_i \cup 47 \cup 58$ if $i = 5$ and $\mu \cup \mu'_i$ if $i \neq 5$. Assume that $\text{lk}(f(\mu'_i))$ is odd for some $i \neq 4, 8$. Then J^i contains a graph D^i as a minor such that D^i is isomorphic to D_4 and $\{\mu, \mu'_i\} = \Psi^{(2)}_{D_i, J_i}(\Gamma^{(2)}(D^i))$. Since both $\text{lk}(f(\mu))$ and $\text{lk}(f(\mu'_i))$ are odd, by Lemma 4.3 there exists an element γ in $\Gamma(J^i)$ such that $a_2(f(\gamma))$ is odd. Next assume that $\text{lk}(f(\mu'_8))$ is odd. We denote two elements $[1 \ 5 \ 6] \cup [2 \ 4 \ 3 \ 10]$ and $[1 \ 5 \ 6] \cup [3 \ 4 \ 7 \ 9]$ in $\Gamma^{(2)}(J^8)$ by $\mu'_{8,1}$ and $\mu'_{8,2}$, respectively. We denote the subgraph $\mu \cup \mu'_{8,1}$ of J^8 by $J^{8,1}$ and the subgraph $\mu \cup \mu'_{8,2} \cup 89 \cup 10$ of N'_{10} by $J^{8,2}$. Then $J^{8,j}$ contains a graph $D^{8,j}$ as a minor such that $D^{8,j}$ is isomorphic to D_4 and $\{\mu, \mu'_{8,j}\} = \Psi^{(2)}_{D^{8,j}, J^{8,j}}(\Gamma^{(2)}(D^{8,j}))$ ($j = 1, 2$). Since $[2 \ 4 \ 7 \ 9 \ 3 \ 10] = [2 \ 4 \ 3 \ 10] + [3 \ 4 \ 7 \ 9]$ in $H_1(J^{8}; \mathbb{Z}_2)$, it follows that

$$1 \equiv \text{lk}(f(\mu'_8)) \equiv \text{lk}(f(\mu'_{8,1})) + \text{lk}(f(\mu'_{8,2})) \pmod{2}.$$
This implies that \(\text{lk}(f(\mu_{8,1}')) \) is odd or \(\text{lk}(f(\mu_{8,2}')) \) is odd. In either case, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(\mathcal{P}^8, f) \) such that \(a_2(f(\gamma)) \) is odd. Finally assume that \(\text{lk}(f(\mu_{4}')) \) is odd. Note that \(N'_{10} \) contains another \(P_9 \) as the proper minor

\[
(((N'_{10} - 24) - 26) - 28) - 210) - 5T) - 53.
\]

Thus by Lemma 4.1, there is an element \(\nu'' \) in \(\Gamma(2)(P_9) \) such that \(\text{lk}(\Psi_{P_9,N'_{10}}(\Gamma(2)(P_9))) \) is odd. Hence by Proposition 2.1, there exists an element \(\mu'' \) in \(\Psi_{P_9,N'_{10}}(\Gamma(2)(P_9)) \) such that \(\text{lk}(f(\mu'')) \) is odd. \(\Psi_{P_9,N'_{10}}(\Gamma(2)(P_9)) \) consists of the seven elements

\[
\mu'_{1} = [5698] \cup [110347], \quad \mu'_{2} = [4587] \cup [110396],
\mu'_{3} = [17810] \cup [34569], \quad \mu'_{4} = [31089] \cup [17456],
\mu'_{5} = [1697] \cup [345810], \quad \mu'_{6} = [3974] \cup [110856],
\mu'_{7} = [789] \cup [1103456].
\]

For \(j = 1, 2, \ldots, 7 \), let \(J^{4,j} \) be the subgraph of \(N'_{10} \) which is \(\mu'_{4} \cup \mu'_{j} \cup 24 \) if \(j = 2, 6 \) and \(\mu'_{4} \cup \mu'_{j} \) if \(j \neq 2, 6 \). Assume that \(\text{lk}(f(\mu'_{j})) \) is odd for some \(j \neq 7 \). Then \(J^{4,j} \) contains a graph \(D^{4,j} \) as a minor such that \(D^{4,j} \) is isomorphic to \(D_{4} \) and \(\{\mu'_{4}, \mu''_{j}\} = \Psi_{D^{4,j}, f}(\Gamma(2)(D^{4,j})) \). Since both \(\text{lk}(f(\mu'_{4})) \) and \(\text{lk}(f(\mu''_{j})) \) are odd, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(4, J) \) such that \(a_2(f(\gamma)) \) is odd. Next assume that \(\text{lk}(f(\mu'_{j})) \) is odd. We denote three elements \([789] \cup [15310], [789] \cup [156] \) and \([789] \cup [345] \) in \(\Gamma(2)(N'_{10}) \) by \(\mu''_{1}, \mu''_{2}, \mu''_{3} \). We denote the subgraph \(\mu \cup \mu''_{k} \cup 24 \cup 28 \) of \(N'_{10} \) by \(J^{4,k} \) \((k = 1, 2) \). Then \(J^{4,k} \) contains a graph \(D^{4,k} \) as a minor such that \(D^{4,k} \) is isomorphic to \(D_{4} \) and \(\{\mu, \mu''_{k}\} = \Psi_{D^{4,k}, f}(\Gamma(2)(D^{4,k})) \) \((k = 1, 2) \). Since \([1103456] = [15310] + [156] + [345] \) in \(H_{1}(N'_{10}; \mathbb{Z}_2) \), it follows that

\[
1 \equiv \text{lk}(f(\mu_{7,1})) \equiv \text{lk}(f(\mu_{7,1}')) + \text{lk}(f(\mu_{7,2}')) + \text{lk}(f(\mu_{7,3}')) \pmod{2}.
\]

This implies that \(\text{lk}(f(\mu_{7,k})) \) is odd for some \(k \). If \(\text{lk}(f(\mu_{7,1})) \) is odd or \(\text{lk}(f(\mu_{7,2})) \) is odd, then by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(4, J) \) such that \(a_2(f(\gamma)) \) is odd. If \(\text{lk}(f(\mu_{7,3})) \) is odd, let us consider the 3-component link

\[
L = f([345] \cup [789] \cup [11026]).
\]

Since all 2-component sublinks of \(L \) are \(f(\mu), f(\mu'_{4}) \) and \(f(\mu'_{7,3}) \), each of the 2-component sublinks of \(L \) has an odd linking number.

Case 5. Let \(\mu = [2810] \cup [169347] \). We denote two elements \([2810] \cup [1697] \) and \([2810] \cup [3974] \) in \(\Gamma(2)(N'_{0}) \) by \(\mu_{1} \) and \(\mu_{2} \), respectively. Since \([169347] = [1697] + [3974] \) in \(H_{1}(N'_{0}; \mathbb{Z}_2) \), it follows that

\[
1 \equiv \text{lk}(f(\mu)) \equiv \text{lk}(f(\mu_{1})) + \text{lk}(f(\mu_{2})) \pmod{2}.
\]
This implies that \(\text{lk}(f(\mu_1)) = \text{odd} \) or \(\text{lk}(f(\mu_2)) = \text{odd} \). By the symmetry of \(N'_{10} \),
we may assume that \(\text{lk}(f(\mu_1)) = \text{odd} \). Note that \(N'_{10} \) contains another \(P_7 \) as the proper minor

\(((N'_{10} - 28) - 810) - 102)/260/310/58.\)

Thus by Lemma 4.1, there is an element \(v' \) in \(\Gamma^{(2)}(P_7) \) such that \(\text{lk}(\psi_{N'_{10}, P_7}(f)(v')) = \text{odd} \). Hence by Proposition 2.1, there exists an element \(\mu' \) in \(\Psi^{(2)}_{P_7, N'_{10}}(\Gamma^{(2)}(P_7)) \) such that \(\text{lk}(f(\mu')) = \text{odd} \). \(\Psi_{P_7, N'_{10}}^{(2)}(\Gamma^{(2)}(P_7)) \) consists of the nine elements

\[
\begin{align*}
\mu'_1 &= [3589] \cup [16247], & \mu'_2 &= [1785] \cup [24396], \\
\mu'_3 &= [156] \cup [3974], & \mu'_4 &= [345] \cup [1697], \\
\mu'_5 &= [5698] \cup [110347], & \mu'_6 &= [4587] \cup [110396], \\
\mu'_7 &= [15310] \cup [24796], & \mu'_8 &= [2456] \cup [110397], \\
\mu'_9 &= [789] \cup [1103426].
\end{align*}
\]

For \(i = 1, 2, \ldots, 9 \), let \(J^i \) be the subgraph of \(N'_{10} \) that is \(\mu_1 \cup \mu'_3 \cup 310 \cup 58 \) if \(i = 3 \) and \(\mu_1 \cup \mu'_i \) if \(i \neq 3 \). Assume that \(\text{lk}(f(\mu'_i)) = \text{odd} \) for some \(i \neq 4, 9 \). Then \(J^i \) contains a graph \(D^i \) as a minor such that \(D^i \) is isomorphic to \(D_4 \) and \(\{ \mu_1, \mu'_i \} = \Psi_{D^i, J^i}^{(2)}(\Gamma^{(2)}(D^i)) \). Since both \(\text{lk}(f(\mu_1)) \) and \(\text{lk}(f(\mu'_i)) \) are odd, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J^i) \) such that \(a_2(\gamma) = \text{odd} \). Next assume that \(\text{lk}(f(\mu'_9)) = \text{odd} \). We denote two elements \([789] \cup [16210]\) and \([789] \cup [24310]\) in \(\Gamma^{(2)}(J^9) \) by \(\mu'_{9,1} \) and \(\mu'_{9,2} \), respectively. We denote the subgraph \(\mu_1 \cup \mu'_{9,1} \) of \(J^9 \) by \(J'^{9,1} \) and the subgraph \(\mu_1 \cup \mu'_{9,2} \cup 33 \cup 51 \) of \(N'_{10} \) by \(J'^{9,2} \). Then \(J'^{9,j} \) contains a graph \(D^{9,j} \) as a minor such that \(D^{9,j} \) is isomorphic to \(D_4 \) and

\[
\{ \mu_1, \mu'_{9,j} \} = \Psi_{D^{9,j}, J'^{9,j}}^{(2)}(\Gamma^{(2)}(D^{9,j})) \quad (j = 1, 2).
\]

Since \([1103426] = [16210] + [24310] \) in \(H_1(J^9; \mathbb{Z}_2) \), it follows that

\[
1 \equiv \text{lk}(f(\mu'_9)) \equiv \text{lk}(f(\mu'_{9,1})) + \text{lk}(f(\mu'_{9,2})) \pmod{2}.
\]

This implies that \(\text{lk}(f(\mu'_{9,1})) = \text{odd} \) or \(\text{lk}(f(\mu'_{9,2})) = \text{odd} \). In either case, by
Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J'^{9,j}) \) such that \(a_2(\gamma) = \text{odd} \). Finally assume that \(\text{lk}(f(\mu'_j)) = \text{odd} \). \(N'_{10} \) contains another \(P_9 \) as the proper minor

\(((N'_{10} - 61) - 62) - 65) - 69) - 87) - 810.\)

Thus, by Lemma 4.1, there is \(v'' \) in \(\Gamma^{(2)}(P_9) \) such that \(\text{lk}(\psi_{N'_{10}, P_9}(f)(v'')) = \text{odd} \). Hence by Proposition 2.1, there exists \(\mu'' \in \Psi_{P_9, N'_{10}}^{(2)}(\Gamma^{(2)}(P_9)) \) such that \(\text{lk}(f(\mu'')) \)
is odd. The set \(\Psi_{P_9, N_9'}(\Gamma(2)(P_9)) \) consists of the seven elements
\[
\begin{align*}
\mu_1'' &= [3589] \cup [10247], \\
\mu_2'' &= [3974] \cup [158210], \\
\mu_3'' &= [1745] \cup [289310], \\
\mu_4'' &= [2458] \cup [10397], \\
\mu_5'' &= [24310] \cup [15897], \\
\mu_6'' &= [15310] \cup [24798], \\
\mu_7'' &= [345] \cup [1102897].
\end{align*}
\]
For \(j = 1, 2, \ldots, 7 \), let \(J^{4,j} \) be the subgraph of \(N_9' \) that is \(\mu_4' \cup \mu_7'' \cup 26 \) if \(j = 4, 5 \) and \(\mu_4' \cup \mu_7'' \) if \(j \neq 4, 5 \). Assume that \(\text{lk}(f(\mu_7'')) \) is odd for some \(j \neq 7 \). Then \(J^{4,j} \) contains a graph \(D^{4,j} \) as a minor such that \(D^{4,j} \) is isomorphic to \(D_4 \) and \(\{ \mu_4', \mu_7'' \} = \Psi_{D_4, J^{4,j}}(\Gamma(2)(D^{4,j})) \). Since both \(\text{lk}(f(\mu_4')) \) and \(\text{lk}(f(\mu_7'')) \) are odd, by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J^{4,j}) \) such that \(\alpha_2(f(\gamma)) \) is odd. Next assume that \(\text{lk}(f(\mu_7'')) \) is odd. We denote two elements \([345] \cup [110897] \) and \([345] \cup [2810] \) in \(\Gamma(2)(N_9') \) by \(\mu_{7,1}'' \) and \(\mu_{7,2}'' \), respectively. We denote the subgraph \(\mu_1 \cup \mu_{7,1}'' \cup 24 \cup 56 \) of \(N_7 \) by \(J^{4,7} \). Then \(J^{4,7} \) contains a graph \(D^{4,7} \) as a minor such that \(D^{4,7} \) is isomorphic to \(D_4 \) and
\[
\{ \mu_1, \mu_{7,1}'' \} = \Psi_{D_4, J^{4,7}}(\Gamma(2)(D^{4,7})).
\]
Since \([1102897] = [110897] \cup [2810] \) in \(H_1(N_9'; \mathbb{Z}_2) \), it follows that
\[
1 \equiv \text{lk}(f(\mu_{7,1}'')) \equiv \text{lk}(f(\mu_{7,1}'')) + \text{lk}(f(\mu_{7,2}'')) \pmod{2}.
\]
This implies that \(\text{lk}(f(\mu_{7,1}'')) \) is odd or \(\text{lk}(f(\mu_{7,2}'')) \) is odd. If \(\text{lk}(f(\mu_{7,1}'')) \) is odd, then by Lemma 4.3 there exists an element \(\gamma \) in \(\Gamma(J^{4,7}) \) such that \(\alpha_2(f(\gamma)) \) is odd. If \(\text{lk}(f(\mu_{7,2}'')) \) is odd, let us consider the 3-component link
\[
L = f([345] \cup [2810] \cup [1697]).
\]
Since all 2-component sublinks of \(L \) are \(f(\mu_1), f(\mu_4') \) and \(f(\mu_{7,2}'') \), each of the 2-component sublinks of \(L \) has an odd linking number. This completes the proof.

Proof of Theorem 1.2. A graph in the Heawood family is obtained from one of \(K_7, N_9 \) and \(N_9' \) by a finite sequence of \(\Delta Y \)-exchanges. Thus by Lemma 2.6, Theorem 4.4, and the fact that \(K_7 \) is IK — and thus I(K or C3L) — it follows that every graph in the Heawood family is I(K or C3L). On the other hand, a graph in the Heawood family is obtained from one of \(H_{12} \) and \(C_{14} \) by a finite sequence of \(\gamma^\Delta \)-exchanges. Since each of \(H_{12} \) and \(C_{14} \) is a minor-minimal IK graph and \(\Gamma(3)(H_{12}) \) and \(\Gamma(3)(C_{14}) \) are the empty sets, it follows that \(H_{12} \) and \(C_{14} \) are minor-minimal I(K or C3L) graphs. By Lemma 2.7, we have the desired conclusion.

Remark 4.5. A graph is said to be 2-apex if it can be embedded in the 2-sphere after the deletion of at most two vertices and all of their incidental edges. It is not hard to see that any 2-apex graph may have a spatial embedding whose image
contains neither a nontrivial knot nor a 3-component link all of whose 2-component sublinks are nonsplittable. Thus any 2-apex graph is not I(K or C3L). It is known that every graph of at most twenty edges is 2-apex [Mattman 2011] (see also [Johnson et al. 2010]). Since the number of all edges of every graph in the Heawood family is twenty-one, we see that any proper minor of a graph in the Heawood family is 2-apex, and thus not I(K or C3L). This also implies that any graph in the Heawood family is minor-minimal for I(K or C3L).

Example 4.6. Let g_9 be the spatial embedding of N_9 and g_{10}' the spatial embedding of N_{10}' illustrated here:

Then it can be checked directly that both $g_9(N_9)$ and $g_{10}'(N_{10}')$ do not contain a nonsplittable 3-component link. Thus neither N_9 nor N_{10}' is I3L. Also, we can see that $N_{10}, N_{11}, N_{11}', N_{12}'$ are not I3L in a similar way as the proof of Lemma 3.1 (see figure above).

Remark 4.7. The Heawood graph is IK. The Heawood graph H is the dual graph of K_7, which is embedded in a torus. It is known that there exists a unique graph C_{14} obtained from K_7 by seven applications of △Y-exchanges [Kohara and Suzuki 1992]. The seven triangles correspond to the black triangles of a black-and-white coloring of the torus by K_7. Then C_{14} and H are mapped to each other by a translation of the torus:

Thus they are isomorphic. Since C_{14} is IK, we have the result.
Remark 4.8. It is known that all twenty-six graphs obtained from the complete four-partite graph $K_{3,3,1,1}$ by a finite sequence of ΔY-exchanges are minor-minimal IK graphs [Kohara and Suzuki 1992; Foisy 2002]. There exist thirty-two graphs that are obtained from $K_{3,3,1,1}$ by a finite sequence of ΔY-exchanges and $Y \Delta$-exchanges but that cannot be obtained from $K_{3,3,1,1}$ by a finite sequence of ΔY-exchanges. Recently, Goldberg, Mattman, and Naimi [2011] announced that these thirty-two graphs are also minor-minimal IK graphs.

References

Received August 10, 2010. Revised January 20, 2011.

RYO HANAKI
DEPARTMENT OF MATHEMATICS
NARA UNIVERSITY OF EDUCATION
TAKABATAKE
NARA 630-8305
JAPAN
hanaki@nara-edu.ac.jp

RYO NIKKUNI
DEPARTMENT OF MATHEMATICS, SCHOOL OF ARTS AND SCIENCES
TOKYO WOMAN’S CHRISTIAN UNIVERSITY
2-6-1 ZEMPUKUJI, SUGINAMI-KU
TOKYO 167-8585
JAPAN
nick@lab.twcu.ac.jp

KOUKI TANIYAMA
DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION
WASEDA UNIVERSITY
NISHI-WASEDA 1-6-1, SHINJUKU-KU
TOKYO 169-8050
JAPAN
taniyama@waseda.jp

AKIKO YAMAZAKI
DIVISION OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE
TOKYO WOMAN’S CHRISTIAN UNIVERSITY
2-6-1 ZEMPUKUJI, SUGINAMI-KU
TOKYO 167-8585
JAPAN
smilebimoch@khc.biglobe.ne.jp
Remarks on a Künneth formula for foliated de Rham cohomology
MÉLANIE BERTELSON

K-groups of the quantum homogeneous space $q(n)/q(n - 2)$
PARTHA SARATHI CHAKRABORTY and S. SUNDAR

A class of irreducible integrable modules for the extended baby TKK algebra
XUEWU CHANG and SHAOBIN TAN

Duality properties for quantum groups
SOPHIE CHEMLA

Representations of the category of modules over pointed Hopf algebras over \mathbb{S}_3 and \mathbb{S}_4
AGUSTÍN GARCÍA IGLESIAS and MARTÍN MOMBELLI

(p, p)-Galois representations attached to automorphic forms on \mathfrak{G}
EKNATH GHATE and NARASIMHA KUMAR

On intrinsically knotted or completely 3-linked graphs
RYO HANAKI, RYO NIKKUNI, KOUKI TANIYAMA and AKIKO YAMAZAKI

Connection relations and expansions
MOUARAD E. H. ISMAIL and MIZAN RAHMAN

Characterizing almost Prüfer ν-multiplication domains in pullbacks
QING LI

Whitney umbrellas and swallowtails
TAKASHI NISHIMURA

The Koszul property as a topological invariant and measure of singularities
HAL SADOFSKY and BRAD SHELTON

A completely positive map associated with a positive map
ERLING STØRMER

Classification of embedded projective manifolds swept out by rational homogeneous varieties of codimension one
KIWAMU WATANABE

Note on the relations in the tautological ring of \mathcal{M}_g
SHENGMAO ZHU