We give new proofs of the evaluation of the connection relation for the Askey–Wilson polynomials and for expressing the Askey–Wilson basis in those polynomials using q-Taylor series. This led to some inverse relations. We also evaluate the coefficients in the expansions of $(x + b)^n$ in various q-orthogonal polynomials, including the Askey–Wilson polynomials, which leads to explicit expressions for the moments of the Askey–Wilson weight function. We generalize the q-plane wave expansion by expanding $\mathcal{E}_q(x; \alpha)$ in Askey–Wilson polynomials. Further, we prove a bibasic extension of the Nassrallah–Rahman integral and establish a recently conjectured identity of George Andrews.

1. Introduction

Richard Askey and James Wilson introduced the polynomials that bear their names in their memoir [1985], where they derived, among other properties, the connection relation between Askey–Wilson polynomials with different parameters. One fundamental result of theirs is the evaluation of the Askey–Wilson q-beta integral,

\begin{equation}
\int_{0}^{\pi} \frac{(e^{2i\theta}, e^{-2i\theta}; q)_\infty}{\prod_{j=1}^{4} (t_j e^{i\theta}, t_j e^{-i\theta}; q)_\infty} \, d\theta = \frac{2\pi (t_1 t_2 t_3 t_4; q)_\infty}{(q; q)_\infty \prod_{1 \leq j < k \leq 4} (t_j t_k; q)_\infty}.
\end{equation}

All this work was done in the late 1970s and the results were made available to researchers in the area, but the writing took a long time. In the mean time, Nassrallah and Rahman [1985] generalized the Askey–Wilson integral to

\begin{equation}
\int_{0}^{\pi} \frac{(e^{2i\theta}, e^{-2i\theta}; q)_\infty (t_6 e^{i\theta}, t_6 e^{-i\theta}; q)_\infty}{\prod_{j=1}^{5} (t_j e^{i\theta}, t_j e^{-i\theta}; q)_\infty} \, d\theta = \frac{2\pi (t_1 t_2 t_3 t_4 t_5 / t_6; q)_\infty \prod_{j=1}^{5} (t_j t_6; q)_\infty}{(q, t_6^2; q)_\infty \prod_{1 \leq j < k \leq 5} (t_j t_k; q)_\infty} \times 8 W_7(t_6^2 / q; t_6 / t_1, t_6 / t_2, t_6 / t_3, t_6 / t_4, t_6 / t_5; q, t_1 t_2 t_3 t_4 t_5 / t_6).
\end{equation}

MSC2000: primary 05A19, 33D15; secondary 33D70.

Keywords: connection relations, bibasic integrals, moments of the Askey–Wilson and q-ultraspherical distributions, q-plane wave expansions, bibasic integrals, Andrews conjecture.
Remark. The preceding equation is (6.3.9) in [Gasper and Rahman 2004]. As in that reference and in [Ismail 2009], we follow the notation of [Andrews et al. 1999] for q-shifted factorials and basic hypergeometric series, and that of [Koekoek and Swarttouw 1998] for orthogonal polynomials.

The Askey–Wilson and Nassrallah–Rahman integrals play a fundamental role in the derivation of the results of this article, which is laid out as follows. **Section 2** contains many of the formulas needed, other than (1-1) and (1-2). In particular, the Askey–Wilson polynomials are defined in (2-14).

In **Section 3**, we first solve the connection-coefficient problem of expanding an Askey–Wilson basis element

$$(ae^{i\theta}, ae^{-i\theta}; q)_n$$

in Askey–Wilson polynomials. The proof utilizes the q-integration by parts technique of [Brown et al. 1996]. One application of this expansion is to give a new derivation of a q-analogue of the plane wave expansion [Ismail 2009, (4.8.3)]

$$(1-3) \quad e^{ixy} = (2/y)^v \Gamma(v) \sum_{n=0}^{\infty} (n+v) i^n J_{n+v}(y) C_n^v(x),$$

a result first proved in [Ismail and Zhang 1994]. More importantly, we generalize the q-plane wave expansion to expand the Ismail–Zhang q-exponential function $\mathcal{E}_q(x; \alpha)$ in Askey–Wilson polynomials, which is a new result. The aforementioned connection-coefficient problem is also used to give a new proof of the connection relation of the Askey–Wilson polynomials. Each connection relation may be used to discover an inverse relation of the form $y_n = \sum_{k=0}^{n} Y_{n,k} x_k$ if and only if $x_n = \sum_{k=1}^{n} X_{n,k} y_k$. Inverse relations play a fundamental role in combinatorial-enumeration problems, as discussed in Riordan’s classic [1968]. In the 1970s, interpretations of inverse relations involving q-shifted factorials and q-binomial coefficients were shown to be instances of Möbius inversion [Rota 1964] and of counting problems involving vector spaces over a finite field [Goldman and Rota 1970]. More recently, very general inverse relations were derived in [Krattenthaler 1989, 1996; Krattenthaler and Schlosser 1999].

Section 4 contains expansions of x^n and $(1\pm x)^\rho$ in q-ultraspherical polynomials.

Section 5 contains the evaluation of two bibasic integrals which extend the Nassrallah–Rahman integral. They are stated as Theorems 5.1 and 5.2; the latter contains as a special case the evaluation of the moments of the Askey–Wilson weight function. [Corteel and Williams 2007] recently found a beautiful combinatorial expression for the n-th moment of the Askey–Wilson measure; this is also part of the results announced in [Corteel and Williams 2010]. Our analytic expression of the moments of the Askey–Wilson weight function is a double sum.
George Andrews [2011] studied identities involving the Catalan numbers he introduced in [Andrews 1987]. One of his identities was motivated by earlier work of L. Shapiro. Andrews’ investigations led him to two summation theorems. One summation theorem is

\[(1-4) \quad \phi_3 (q^{-2n}, a/b, q^{-2n}/ab, q^2, q^2) = \frac{q^{-n}(a, b, -q; q)_n (a; q^2)_n}{(ab; q)_n (a, b; q^2)_n}, \]

which he proved. He conjectured the validity of the other summation theorem,

\[(1-5) \quad \phi_3 (q^{-2n}, a/b, q^{-2n}/ab, q^2, q^2) = \frac{q^{-n}(a, b/q, -q; q)_n (q - ab)}{(1 - b/q)(q - a^2)(1 - abq^{2n-1})} \times \frac{(ab/q^2; q^2)_n}{(ab; q)_n (a, b/q^2; q^2)_n} \]

Andrews verified (1-5) for \(1 \leq n \leq 6\). In Section 6, we give basic hypergeometric-series proofs of both (1-4) and the conjectured identity (1-5). We show that both (1-4) and (1-5) follow from a limiting case of the \(5\phi_4\) to \(12\phi_{11}\) transformation stated in [Gasper and Rahman 2004, (2.8.4)].

2. Preliminaries

The expansions of \(x^n\) and \((1 - x)^\rho\) in ultraspherical polynomials are

\[(2-1) \quad \frac{(2x)^n}{n!} = \sum_{k=0}^{[n/2]} \frac{v+n-2k}{k!(v+1-k)} C_{n-2k}^v(x) \]

[Rainville 1960, (36), p. 283], and

\[(2-2) \quad (1 - x)^\rho = \Gamma(v) \Gamma(v + \rho + 1/2) \frac{2^{2v+\rho}}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(k + v)(-\rho)_k}{\Gamma(k + 2v + \rho + 1)} C_k^v(x), \]

valid for \(-1 < x < 1\), \(-\rho < \frac{1}{2}(v+1)\) if \(v \geq 0\), and \(-\rho < v + \frac{1}{2}\) if \(-\frac{1}{2} < v \leq 0\) [Erdélyi et al. 1953, (10.20.6)]. The Chebyshev polynomials are the special cases

\[(2-3) \quad T_n(x) = \lim_{v \to 0} \frac{n + 2v}{2v} C_n^v(x) \quad \text{and} \quad U_n(x) = C_n^1(x). \]

The Chebyshev polynomials are also special cases of the continuous \(q\)-ultrasphe-rical polynomials, since

\[(2-4) \quad T_n(x) = \lim_{\beta \to 1} \frac{1 - \beta q^n}{1 - \beta^2} C_n^v(x; \beta | q) \quad \text{and} \quad U_n(x) = C_n(x; q | q). \]
The Rogers connection relation for the q-ultraspherical polynomials is

\[(2-5) \quad C_n(x; \gamma \mid q) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{\beta^k (\gamma / \beta; q)_k (\gamma ; q)_{n-k}}{(q; q)_k (q\beta; q)_{n-k}} \frac{1 - \beta q^{n-2k}}{1 - \beta} C_{n-2k}(x; \beta \mid q)\]

[Ismail 2009, (13.3.1)]. The Ismail–Zhang q-exponential function is

\[(2-6) \quad \mathcal{E}_q(\cos \theta; \alpha) = \frac{(\alpha^2; q^2)_{\infty}}{(q\alpha^2; q^2)_{\infty}} \sum_{n=0}^{\infty} (-ie^{i\theta} q^{(1-n)/2}, -ie^{-i\theta} q^{(1-n)/2}; q)_n \frac{(-i\alpha)^n}{(q; q)_n} q^{n^2/4}\]

[Ismail 2009, §14.1].

We shall always use the notation

\[(2-7) \quad x = \cos \theta, \quad z = e^{i\theta}, \quad f(x) = \tilde{f}(z)\]

The set of polynomials $\{(ae^{i\theta}, ae^{-i\theta}; q)_n : n = 0, 1, \ldots\}$ is a basis for the space of all polynomials, and is called the Askey–Wilson basis. The connection formula for the Askey–Wilson basis is

\[(2-8) \quad \frac{(be^{i\theta}, be^{-i\theta}; q)_n}{(q, ab; q)_n} = \sum_{k=0}^{n} \frac{(ae^{i\theta}, ae^{-i\theta}; q)_k (b/a; q)_{n-k}}{(q, ab; q)_k} \left(\frac{b}{a}\right)^k\]

[Ismail 1995]; see also the proof of Theorem 12.2.3 in [Ismail 2009].

We recall the definition of the Askey–Wilson operator,

\[(2-9) \quad (\mathcal{D}_q f)(x) = \frac{\tilde{f}(q^{1/2}z) - \tilde{f}(q^{-1/2}z)}{(q^{1/2} - q^{-1/2})(z - 1/z)/2}\]

It is easy to see that

\[(2-10) \quad \mathcal{D}_q (ae^{i\theta}, ae^{-i\theta}; q)_n = -\frac{2a(1 - q^n)}{1 - q} (aq^{1/2} e^{i\theta}, aq^{1/2} e^{-i\theta}; q)_{n-1}\]

[Ismail 2009, (12.2.2)]. We shall use the inner product

\[(2-11) \quad \langle f, g \rangle := \int_{-1}^{1} f(x) g(x) \frac{dx}{\sqrt{1 - x^2}}\]

Let

\[(2-12) \quad H_v := \{ f : f((z + 1/z)/2) \text{ is analytic for } q^v \leq |z| \leq q^{-v} \}\]

The following theorem — an analogue of integration by parts — is due to Brown, Evans and Ismail [Brown et al. 1996]; see also [Ismail 2009, §16.1].
Theorem 2.1. The Askey–Wilson operator \mathcal{D}_q satisfies, for $f, g \in H_{1/2}$,

$$\langle \mathcal{D}_q f, g \rangle = \frac{\pi \sqrt{q}}{1 - q} \left[f \left(\frac{q^{1/2} + q^{-1/2}}{2} \right) g(1) - f \left(-\frac{q^{1/2} + q^{-1/2}}{2} \right) g(-1) \right]$$

$$- \left(f, \sqrt{1 - x^2} \mathcal{D}_q (g(x)(1 - x^2)^{-1/2}) \right).$$

The Askey–Wilson polynomials have the basic hypergeometric representation

$$p_n(x; t | q) = t_1^{-n} (t_1 t_2, t_1 t_3, t_1 t_4; q)_n \Phi_3 \left(q^{-n}, t_1 t_2 t_3 t_4 q^{n-1}; t_1 e^{i\theta}, t_1 e^{-i\theta} \middle| q, q \right),$$

where t stands for the ordered quadruple (t_1, t_2, t_3, t_4). Their weight function is

$$w(x, t | q) = \frac{(e^{2i\theta}, e^{-2i\theta}; q)_\infty}{\prod_{j=1}^4 (t_j e^{i\theta}, t_j e^{-i\theta}; q)_\infty} \frac{1}{\sqrt[2]{1 - x^2}}, \quad x = \cos \theta \in (-1, 1),$$

The Askey–Wilson polynomials satisfy the orthogonality relation

$$\int_{-1}^1 p_m(x; t | q) p_n(x; t | q) w(x; t | q) \, dx = h_n(t) \delta_{m,n}$$

$$= \frac{2\pi (t_1 t_2 t_3 t_4 q^{2n}; q)_\infty (t_1 t_2 t_3 t_4 q^{n-1}; q)_n}{(q^{n+1}; q)_\infty \prod_{1 \leq j < k \leq 4} (t_j t_k q^n; q)_\infty} \delta_{m,n},$$

for $\max\{|t_1|, |t_2|, |t_3|, |t_4|\} < 1$. The Askey–Wilson polynomials also satisfy the Rodrigues-type formula

$$w(x; t | q) p_n(x; t | q) = \left(\frac{q - 1}{2} \right)^n q^{n(n-1)/4} \mathcal{D}_q^n w(x; q^{n/2} t | q).$$

The Chebyshev polynomials are also special Askey–Wilson polynomials; indeed,

$$p_n(x; q, -q, \sqrt{q}, -\sqrt{q} | q) = (q^{n+2}; q)_n U_n(x),$$

$$p_0(x; t | q) = T_0(x) = 1,$$

$$p_n(x; 1, -1, \sqrt{q}, -\sqrt{q} | q) = 2 (q^n; q)_n T_n(x) \quad \text{for } n > 0.$$

We shall also use the q-Taylor expansion stated next.

Theorem 2.2 [Ismail 1995]. Let

$$x_n = (aq^{n/2} + q^{-n/2}/a)/2 \quad \text{for } 0 < q < 1, \; 0 < a < 1,$$
If \(f(x) \) is a polynomial, then
\[
f(x) = \sum_{k=0}^{\infty} f_k (ae^{i\theta}, ae^{-i\theta}; q)_k,
\]
with
\[
f_k = \frac{(q - 1)^k}{(2a)^k (q; q)_k} q^{-k(k-1)/4} (\overline{\varphi}_k^q f)(x_k).
\]
For a proof and details, see [Ismail 2009, Theorem 12.2.2].

3. Connection formulas and expansions

Lemma 3.1. We have the integral evaluation
\[
(3-1) \quad \int_{-1}^{1} (ae^{i\theta}, ae^{-i\theta}; q)_n w(x; t \mid q) \, dx = \frac{2\pi (t_1 a, a/t_1; q)_n (t_1 t_2 t_3 t_4; q)_\infty}{(q; q)_\infty \prod_{1 \leq j < m \leq 4} (t_j t_m; q)_\infty} \, 4\varphi_3 \left(\begin{array}{c} q^{-n}, t_1 t_2, t_1 t_3, t_1 t_4 \\ t_1 a, t_1 t_2 t_3 t_4, q^{1-n} t_1 / a \end{array} \bigg| q, q \right).
\]

This integral can be evaluated by writing
\[
(ae^{i\theta}, ae^{-i\theta}; q)_n = \frac{(ae^{i\theta}, ae^{-i\theta}; q)_\infty}{(aq^n e^{i\theta}, aq^n e^{-i\theta}; q)_\infty},
\]
then using the Nassrallah–Rahman integral (1-2) and the Watson transformation [Gasper and Rahman 2004, (III.18)]. It also follows by expanding \((ae^{i\theta}, ae^{-i\theta}; q)_n\) in \(\{t_1 e^{i\theta}, t_1 e^{-i\theta}; q\}_k : 0 \leq k \leq n\) by using (2-8), and then applying the Askey–Wilson integral (1-1); see also [Ismail and Stanton 1998, Thm. 3].

Our first result is the next expansion of \((be^{i\theta}, be^{-i\theta}; q)_n\) in Askey–Wilson polynomials.

Theorem 3.2.
\[
(3-2) \quad (be^{i\theta}, be^{-i\theta}; q)_n = \sum_{k=0}^{n} f_{n,k}(b, t) p_k(x; t \mid q),
\]
where
\[
(3-3) \quad f_{n,k}(b, t) = \frac{(-b)^k \varphi^{(k)}_n (q; q)_n (b/t_4, bt_4 q^k; q)_{n-k}}{(q, t_1 t_2 t_3 t_4 q^{k-1}; q)_k (q; q)_{n-k}} \times 4\varphi_3 \left(\begin{array}{c} q^{k-n}, t_1 t_4 q^k, t_2 t_4 q^k, t_3 t_4 q^k \\ bt_4 q^k, t_1 t_2 t_3 t_4 q^{2k}, q^{1-n+k} t_4 / b \end{array} \bigg| q, q \right).
\]

Proof. It is clear that
\[
f_{n,k} h_k(t) = \langle p_k(x; t \mid q) w(x; t \mid q), \sqrt{1 - x^2 (be^{i\theta}, be^{-i\theta}; q)_n} \rangle
\]
\[\frac{1-\theta}{2} = \left(\frac{q-1}{2} \right)^k q^{k(k-1)/4} \left(\sum_q^k w(x; q^{k/2} t \mid q) \right) \]

\[= \left(\frac{1-q}{2} \right)^k q^{k(k-1)/4} \int_{-1}^1 w(x; q^{k/2} t \mid q) \sum_q^k (be^{i\theta}, be^{-i\theta}; q)_n dx \]

\[= \frac{(-b)^k (q; q)_n}{(q; q)_{n-k}} q^{(k-3)/2} \int_{-1}^1 (bq^{k/2} e^{i\theta}, bq^{k/2} e^{-i\theta}; q)_{n-k} w(x; q^{k/2} t \mid q) dx. \]

In these steps we used the Rodrigues formula (2-17), as well as (2-13) and (2-10). The result follows from a slight variation of Lemma 3.1.

Our first application of Theorem 3.2 is the connection relation for the Askey–Wilson polynomials.

Corollary 3.3. We have the connection relation

\[p_n(x; b) = \sum_{k=0}^n c_{n,k}(b, a) p_k(x; a), \]

where

\[c_{n,k}(b, a) = \frac{b_4^{k-n} (b_1 b_2 b_3 b_4 q^{n-1}; q)_k (q, b_1 b_4, b_2 b_4, b_3 b_4; q)_n}{(q; q)_{n-k} (q, a_1 a_2 a_3 a_4 q^{k-1}; q)_k (b_1 b_4, b_2 b_4, b_3 b_4; q)_n} \]

\[\times q^{k(k-n)} \sum_{j,l\geq0} \frac{(q^{k-n}, b_1 b_2 b_3 b_4 q^{n+k-1}, a_4 b_4 q^k; q)_{j+l} (q; q)_j (q; q)_l}{(b_1 b_4 q^k, b_2 b_4 q^k, b_3 b_4 q^k; q)_{j+l} (q; q)_j (q; q)_l} \]

\[\times \frac{(a_1 a_4 q^k, a_2 a_4 q^k, a_3 a_4 q^k; q)_l (b_4/a_4; q)_j (b_4/a_4)\, _1} {(a_4 b_4 q^k, a_1 a_2 a_3 a_4 q^{2k}; q)_l} \]

Proof. The follows by expanding the left-hand side of (3-4) in the Askey–Wilson basis \{(a_1 e^{i\theta}, a_1 e^{-i\theta}; q)_k\}, then applying Theorem 3.2.

Corollary 3.3 is Theorem 14.4.2 in [Ismail 2009]. When \(a_4 = b_4\), the double series in (3-4) reduces to a \(_5\phi_4\) and we get a result of [Askey and Wilson 1985]. See also [Gasper and Rahman 2004, (7.6.2)–(7.6.3)]. For another proof, see [Ismail and Zhang 2005], which also uses (2-13). Note that, in view of the orthogonality relation (2-16), Corollary 3.3 is equivalent to Theorem 3.2.

The special case \(b = t_3\) of Theorem 3.2 is interesting. The result, after interchanging \(t_1\) and \(t_3\), is

\[(t_1 e^{i\theta}, t_1 e^{-i\theta}; q)_n = \sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array} \right) (-1)^k q^{\frac{k(k-1)}{2}} \frac{(t_1 t_2, t_1 t_3, t_1 t_4; q)_n 1 - t_1 t_2 t_3 t_4 q^{2k-1}}{(t_1 t_2, t_1 t_3, t_1 t_4; q)_k 1 - t_1 t_2 t_3 t_4} \]

\[\times \frac{(t_1 t_2 t_3 t_4; q)_k}{(t_1 t_2 t_3 t_4; q)_{n+k}} p_k(x; t \mid q). \]
Theorem 3.4. The following relations are equivalent:

\begin{equation}
B_n = \frac{(t_1 t_2, t_1 t_3, t_1 t_4; q)_n}{t_1^n} \sum_{k=0}^{n} \frac{(q^{-n}, t_1 t_2 t_3 t_4 q^{n-1}; q)_k}{(q; q)_k \prod_{j=2}^{4} (t_1 t_j; q)_k} q^k A_k
\end{equation}

\begin{equation}
A_n = \sum_{k=0}^{n} t_1^k q^{\binom{k}{2}} (t_1 t_2 q^k, t_1 t_3 q^k, t_1 t_4 q^k; q)_{n-k} B_k \tag{3-8}
\end{equation}

Proof. We set $b = t_1$ in (3-2) and take (2-14) into account. The $4\phi_3$ in (3-3) becomes a $3\phi_2$, and can be summed by the q-analogue of the Pfaff–Saalschütz theorem. \qed

Theorem 3.4 is known [Krattenthaler 1989; 1996]. An interesting question is to explore where such inverse pair lives from the point of view of the Möbius function on lattices [Rota 1964], because the lattices which will lead to such a deep result will be very interesting. It is also interesting to explore the concept of Bailey pairs [Andrews 1986] from the Möbius-inversion point of view.

The q-ultraspherical polynomials are special Askey–Wilson polynomials, since

\begin{equation}
p_n(x; \sqrt{\beta}, -\sqrt{\beta}, \sqrt{q}\beta, -\sqrt{q}\beta \mid q) = \frac{(q, \beta^2 q^n; q)_n}{(\beta; q)_n} C_n(x; \beta \mid q).
\end{equation}

The q-plane wave expansion in q-ultraspherical polynomials is

\begin{equation}
\mathcal{E}_q(x; i\alpha) = \frac{(\alpha)^{-v} (q; q)_\infty}{(-q \alpha^2; q^2)_\infty (q^{v+1}; q)_\infty} \sum_{n=0}^{\infty} \frac{(1 - q^{n+v})}{(1 - q^v)} q^{n^2/4} i^n \times J_{v+n}^{(2)}(2\alpha; q) C_n(x; q^v \mid q);
\end{equation}

see [Ismail and Zhang 1994].

Another application of Theorem 3.2 is this generalization of (3-10):

Theorem 3.5. We have the following generalization of the q-plane wave expansion function:

\begin{equation}
\mathcal{E}_q(x; \alpha) = \frac{(\alpha^2; q^2)_\infty}{(q \alpha^2; q)_\infty} \sum_{n=0}^{\infty} \frac{\alpha^n q^{n^2/4} p_n(x; t)}{(q, t_1 t_2 t_3 t_4 q^{n-1}; q)_n} \times \sum_{k=0}^{\infty} \frac{(-\alpha/t_4)^k}{(q; q)_k} (-q^{1+n-k} t_4^2, q^2)_k q^{k(k-2n)/4} \times 4\phi_3\left(\begin{array}{c}
q^{-k}, t_1 t_4 q^n, t_2 t_4 q^n, t_3 t_4 q^n
\end{array}; q, q \right).
\end{equation}

Proof. Expand the \mathcal{E}_q in the Askey–Wilson basis via (2-6), then apply (3-2). \qed
Another proof of Theorem 3.5. Since \(\mathcal{E}_q(x; \alpha) \in L_2[-1, 1, w(x; t)] \), we set
\[
\mathcal{E}_q(x; \alpha) = \sum_{n=0}^{\infty} c_n p_n(x; t).
\]
Using (2-17), the divided-difference relation \(\mathcal{D}_q \mathcal{E}_q(x; \alpha) = 2\alpha q^{1/4}/(1-q) \mathcal{E}_q(x; \alpha) \) and the \(q \)-integration by parts (2-13), we find that
\[
c_n h_n(t) = \int_{-1}^{1} \mathcal{E}_q(x; \alpha) p_n(x; t) w(x; t) \, dx
= (\frac{q-1}{2})^n q^{(\frac{3}{2})/2} \int_{-1}^{1} \mathcal{E}_q(x; \alpha) \mathcal{D}_q^n w(x; q^{n/2} t) \, dx
= \alpha^n q^{n^2/4} \int_{-1}^{1} \mathcal{E}_q(x; \alpha) w(x; q^{n/2} t) \, dx
= \frac{(\alpha^2; q^2)_{\infty}}{(q^2; q^2)_{\infty}} \alpha^n q^{n^2/4} \sum_{k=0}^{\infty} (-i\alpha)^k (q; q)_k
\times \int_{0}^{\pi} w(\cos \theta; q^{n/2} t) \left(-i q^{(1-k)/2} e^{i\theta}, -i q^{(1-k)/2} e^{-i\theta}; q \right)_k \sin \theta \, d\theta.
\]
The integral above is
\[
2\pi (-i t_4 q^{(1+n-k)/2}, -i t_4 q^{(1-n-k)/2} / t_4; q)_k (t_1 t_2 t_3 t_4 q^{2n}; q)_{\infty} (q; q)_{\infty} \prod_{1 \leq j < m \leq 4} (t_j t_m q^n; q)_{\infty}
\times _4 \Phi_3 \left(\begin{array}{c}
q^{-k}, -i t_4 q^{n}, t_2 t_4 q^n, t_3 t_4 q^n
\end{array} \right| q, q).
\]
The result now follows from (2-16). \(\square \)

In the case of \(q \)-ultraspherical polynomials, the \(_4 \Phi_3 \) in (3-11) can be summed by Andrews’ \(q \)-analogue of Watson’s \(_3 F_2 \) sum [Gasper and Rahman 2004, (II.17)]. Thus, the \(_4 \Phi_3 \) is zero for \(k \) odd and, when \(k \) is replaced by \(2k \), the \(_4 \Phi_3 \) is
\[
\beta^{2k} q^{2nk+k} \frac{(q, q^{1-n-2k} / \beta; q^2)_k}{(q^{n+2-2k}, \beta^2 q^{2n+2}; q^2)_k}.
\]
Thus, the \(k \)-sum in (3-11) is \(_2 \Phi_1 (-\beta q^{n+2}, -\beta q^{n+1}; \beta^2 q^{2n+2}; q^2, \alpha^2) \). Therefore,
\[
(3-12) \quad \mathcal{E}_q(x; \alpha) = \frac{(\alpha^2; q^2)_{\infty}}{(q \alpha^2; q^2)_{\infty}} \sum_{n=0}^{\infty} \alpha^n q^{n^2/4}
\times _2 \Phi_1 \left(\begin{array}{c}
-\beta q^{n+2}, -\beta q^{n+1}
\end{array} \right| q^2, \alpha^2 C_n(x; \beta \mid q).
\]
By equating the left sides of (3-12) and (3-10), we establish the identity

\[
J_\nu^{(2)}(2\alpha; q) = \frac{\alpha^\nu(-\alpha^2; q^2)_\infty}{(q^\nu+1; q)_\infty} 2\phi_1\left(\begin{array}{c|c}
-q^{\nu+2}, -q^{\nu+1} \\
q^{2\nu+2}
\end{array}\mid q^2, -\alpha^2\right)
\]

\[
= \frac{\alpha^\nu(q^{\nu+1}\alpha^2; q^2)_\infty}{(q^{\nu+1}; q)_\infty} 2\phi_2\left(\begin{array}{c|c}
-q^{\nu+2}, -q^{\nu+1} \\
q^{2\nu+2}, q^{\nu+2}\alpha^2
\end{array}\mid q^2, q^{\nu+1}\alpha^2\right),
\]

after applying the \(2\phi_1\) to \(2\phi_2\) transformation [Gasper and Rahman 2004, (III.4)]. The representation of \(J\) after applying the \(\phi\)-continuous \(q\)-Jacobi polynomials, \(t_2 = t_1q^{1/2}\) and \(t_4 = t_3q^{1/2}\), yielding a result in [Ismail et al. 1996]. The details however are not lengthy and will be omitted.

4. Expansions of \(x^n\) and \((1 \pm x)^\rho\)

Theorem 4.1. The expansion

\[
(4-1) \quad (1 - x)^\rho = \frac{4}{\sqrt{\pi}} 2^\rho \Gamma(\rho + 3/2)
\times \sum_{k=0}^{\infty} \frac{1 - \beta q^k}{1 - \beta} \left(\sum_{j=0}^{\infty} \frac{(k+2j+1)(-\rho)_{k+2j} \beta^j(q/\beta; q)_{j} (q; q)_{k+j}}{(q, q)_j (q^2, q)_{k+j} \Gamma(k+2j+\rho+3)}\right) C_k(x; \beta \mid q)
\]

holds for \(-1 < x < 1\), \(\rho > -1\) and \(\beta \in (0, 1)\). The expansion for \((1 + x)^\rho\) is similar, since \(C_n(-x; \beta \mid q) = (-1)^n C_n(x; \beta \mid q)\).

Proof. Apply (2-2) with \(\nu = 1\), then expand \(C_k^1(x) = U_k(x) = C_k(x; q \mid q)\) in \(C_j(x; \beta \mid q)\) by using (2-5), then rearrange the series. The expansion (2-2) holds for \(\rho > -1\). The rearrangement is valid because the double series in the theorem converges absolutely for \(\rho > -1\), in view of the asymptotic formula [Ismail 2009, (13.4.5)] and the well-known fact that \(n^{b-a} \Gamma(n+a)/\Gamma(n+b) \to 1\) as \(n \to +\infty\). \(\Box\)

It is interesting to note that, as \(q \to 1\), the expansion (4-1) should reduce to (2-2). Indeed with \(\beta = q^\nu\) the \(q \to 1\) limit of the quantity in square brackets is a well-poised \(5F_4\) at \(x = 1\), which can be summed, see Slater [Slater 1966, (III.12)]. So we could have discovered the abovementioned sum if it was not already known.

Theorem 4.2. For nonnegative integers \(n\) we have the \(q\)-ultraspherical expansion

\[
(4-2) \quad x^n = \frac{n!}{2^n} \sum_{m=0}^{\lfloor n/2 \rfloor} \frac{1 - \beta q^{n-2m}}{1 - \beta} C_{n-2m}(x; \beta \mid q)
\times \sum_{k=0}^{m} \frac{n + 1 - 2k}{k!(n + 1 - k)!} \frac{\beta^{m-k}(q/\beta; q)_{m-k}(q; q)_{n-m-k}}{(q; q)_{m-k}(q^2; q)_{n-m-k}}.
\]
Proof. The expansion (4-2) follows immediately from letting \(\nu = 1 \) in (2-1) then use (2-5) with \(\gamma = 1 \).

Note that
\[
\frac{n!(n+1-2k)}{k!(n+1-k)!} = \binom{n}{k} - \binom{n}{k-1}.
\]

With \(\beta = q^\nu \), the limit of the \(k \)-sum in (4-2) as \(q \to 1 \) is a very well-poised \({}_4F_3 \) at \(x = -1 \), which can be summed [Slater 1966, (III.11)].

5. Two bibasic integrals

In this section we give evaluations of the integral (5-2) and the more general integral (5-3). The proof uses the bibasic expansion

(5-1) \[
\frac{(q, qa^2; q)_\infty}{(qae^{i\theta}, qae^{-i\theta}; q)_\infty} (be^{i\theta}, be^{-i\theta}; p)_\infty \quad = \quad \sum_{k=0}^{\infty} \frac{1-a^2 q^{2k}}{1-a^2} \frac{(a^2, a^2 e^{i\theta}, ae^{-i\theta}; q)_k}{(q, qae^{i\theta}, aqe^{-i\theta}; q)_k} (-1)^k q^{(k+1)\frac{1}{2}} (abq^k, bq^{-k}/a; p)_\infty,
\]

which is valid for \(0 < p < q \), or \(p = q \) and \(|b| < |a| \) [Ismail and Stanton 2003].

Theorem 5.1. We have the bibasic integral evaluation

(5-2) \[
\int_0^\pi \frac{e^{2i\theta} - e^{-2i\theta}}{\prod_{j=1}^{\infty} (a_j e^{i\theta}, a_j e^{-i\theta}; q)_\infty} d\theta \quad = \quad \frac{2\pi (a_2 a_3 a_4 a_5/q; q)_\infty}{(q; q)_\infty \prod_{2 \leq r < s \leq 5} (a_r a_s; q)_\infty} \frac{1}{(q, qa^2_1; q)_\infty} \times \\
\times 8 W_7 \left(a_1^2 q^{2k+1}; q, q^{k+1} a_1/a_2, q^{k+1} a_1/a_3, q^{k+1} a_1/a_4, q^{k+1} a_1/a_5; q, a_2 a_3 a_4 a_5/q \right) \quad = \quad \frac{2\pi \prod_{j=2}^{\infty} (a_1 a_2 a_3 a_4 a_5/a_j; q)_\infty}{(q, a_1^2 a_2 a_3 a_4 a_5; q)_\infty \prod_{1 \leq r < s \leq 5} (a_r a_s; q)_\infty} \times \\
\times \sum_{k=0}^{\infty} \frac{(a^2_1; q)_k (a_1^2 a_2 a_3 a_4 a_5; q)_{2k}}{(q; q)_k (a^2_1; q)_{2k}} \times \\
\times \prod_{j=2}^{5} \frac{(a_1 a_j; q)_k}{(a_1 a_2 a_3 a_4 a_5/a_j; q)_k} (-1)^k q^{(k+1)\frac{1}{2}} \left(abq^k, bq^{-k}/a; p \right)_\infty \times \\
\times 8 W_7 \left(a_1^2 a_2 a_3 a_4 a_5 q^{-2k-1}; a_1 a_2 q^k, a_1 a_3 q^k, a_1 a_4 q^k, a_1 a_5 q^k, a_2 a_3 a_4 a_5; q, q \right).
\]
Proof. In view of (5-1), the left-hand side of (5-2) is

\[
\frac{1}{(q, qa_1^2; q)\infty} \sum_{k=0}^{\infty} \frac{1 - a_1^2 q^{2k}}{1 - a_1^2} \frac{(a_1^2; q)_k}{(q; q)_k} (-1)^k q^{\ell+1} (a_1 b q^k, bq^{-k}/a_1; p)\infty
\]

\[
\times \int_0^\pi \frac{(e^{2i\theta}, e^{-2i\theta}; q)\infty (a_1 q^{k+1} e^{i\theta}, a_1 q^{k+1} e^{-i\theta}; q)\infty}{(a_1 q^k e^{i\theta}, a_1 q^k e^{-i\theta}; q)\infty \prod_{j=2}^5 (a_j e^{i\theta}, a_j e^{-i\theta}; q)\infty} d\theta.
\]

The first equality in (5-2) follows from (1-2). The second equality follows from the form of the Nassrallah–Rahman integral stated in [Gasper and Rahman 2004, (6.3.7)] with

\[f = a_1 q^k.\]

When \(p = q\), Theorem 5.1 should reduce to the Nassrallah–Rahman integral (1-2). This is not obvious, so we will indicate how it works. When \(p = q\),

\[(-1)^k q^{\ell+1} (a_1 b q^k, bq^{-k}/a_1; p)\infty = (a_1 b, b/a_1; q)\infty \frac{b^k (qa_1/b; q)_k}{a^k (a_1 b; q)_k}.
\]

We use the second equation in (5-2) and write the \(8W_7\) as a sum over \(j\). With \(\ell = j + k\), the left-hand side of (5-2) becomes

\[
\frac{2\pi (a_1 b, b/a_1; q)\infty \prod_{s=2}^5 (a_1 a_2 a_3 a_4 a_5/a_s; q)\infty}{(q, a_1^2 a_2 a_3 a_4 a_5; q)\infty \prod_{1 \leq r < s \leq 5} (a_r a_s; q)\infty}
\]

\[
\times \sum_{\ell=0}^{\infty} \frac{1 - a_1^2 a_2 a_3 a_4 a_5 q^{2\ell-1}}{1 - a_1^2 a_2 a_3 a_4 a_5/q} \frac{(a_2 a_3 a_4 a_5/q, a_1^2 a_2 a_3 a_4 a_5/q; q)_\ell}{(q, qa_1^2; q)_\ell}
\]

\[
\times \prod_{r=2}^5 \frac{(a_1 a_r; q)_\ell}{(a_1 a_2 a_3 a_4 a_5/a_r; q)_\ell}
\]

\[
\times 6W_5(q^2; qa_1/b, a_1^2 a_2 a_3 a_4 a_5 q^{\ell-1}, q^{-\ell}; q, qb/a_1^2 a_2 a_3 a_4 a_5).
\]

The \(6W_5\) can be summed by [Gasper and Rahman 2004, (II.20)], and the expression above reduces to the integral evaluation [Gasper and Rahman 2004, (6.3.7)].

The next theorem generalizes the evaluation of the moments of the Askey–Wilson weight function.

Theorem 5.2. We have the integral evaluation

\[
(5-3) \int_0^\pi \frac{(e^{2i\theta}, e^{-2i\theta}; q)\infty (be^{i\theta}, be^{-i\theta}; q)_n}{\prod_{j=1}^4 (a_j e^{i\theta}, a_j e^{-i\theta}; q)\infty} d\theta
\]
So, we have

\[
\frac{2\pi (a_1a_2a_3_4; q) \infty}{(q; q) \infty \prod_{1 \leq j < k \leq 4} (a_j a_k; q) \infty (q, qa_1^2, a_1a_2a_3a_4; q)_n}
\times \sum_{k=0}^{n} \frac{1 - a_1^2 q^{2k}}{1 - a_1^2} \frac{(a_1^2, q^{-n}; q)_k}{(q, a_1^2 q^{n+1}; q)_k} \frac{(a_1 b q^k, b q^{-k}/a_1; p)_n}{(a_1 b q^k, b q^{-k}/a_1; p)_n}
\times q^{k(n+1)} \frac{(1 - a_1 a_3)(1 - a_1 a_4)}{(1 - a_1 a_3 q^k)(1 - a_1 a_4 q^k)}
\times 4\phi_3 \left(\begin{array}{l}
q^{-k-n}, a_3 a_4, a_1 q^{k+1}/a_2 \\
\end{array} \right)
\left(\begin{array}{l}
a_1 a_3 q^{k+1}, a_1 a_4 q^{k+1}, q^{-1-n}/a_1 a_2 \\
\end{array} \right) q, q \right).
\]

Proof. Observe that

\[
(ab q^k, b q^{-k}/a; p)_n
= (ab; p)_n \prod_{j=0}^{n-1} (1 - ap^{-j}/b) q^{-kn}(-b/a) \prod_{j=0}^{n-1} \frac{(ab p^j; q)_{k} (a q p^{-j}/b; q)_{k}}{(ab p^j; q)_{k} (a q p^{-j}/b; q)_{k}}
= (ab, b/a; p)_n q^{-kn} \prod_{j=0}^{n-1} \frac{(ab p^j; q)_{k} (a q p^{-j}/b; q)_{k}}{(a q p^{-j}/b, ab p^j; q)_{k}}.
\]

Hence,

\[
\sum_{k=0}^{n} \frac{1 - a_1^2 q^{2k}}{1 - a_1^2} \frac{(a_1^2, a_1 e^{i \theta}, a_1 e^{-i \theta}, q^{-n}; q)_k}{(q, qa_1 e^{-i \theta}, qa_1 e^{i \theta}, a_1^2 q^{n+1}; q)_k} q^{k(n+1)} \frac{(a_1 b q^k, b q^{-k}/a_1; p)_n}{(a_1 b q^k, b q^{-k}/a_1; p)_n}
\times \prod_{j=0}^{n-1} \frac{(a_1 p^{-j}/b, qa_1 b p^j; q)_k}{(a_1 b p^j, a_1 p^{-j}/b; q)_k}
= (a_1 b, b/a_1; p)_n \frac{(qa_1^2, q; q)_n (be^{i \theta}, be^{-i \theta}; p)_n}{(qa_1 e^{i \theta}, qa_1 e^{-i \theta}; q)_n (a_1 b, b/a_1; p)_n}
= \frac{(q, qa_1^2; q)_n (be^{i \theta}, be^{-i \theta}; p)_n}{(qa_1 e^{i \theta}, qa_1 e^{-i \theta}; q)_n}.
\]

So, we have

\[
\frac{(q, qa_1^2; q)_n (be^{i \theta}, be^{-i \theta}; p)_n}{(qa_1 e^{i \theta}, qa_1 e^{-i \theta}; q)_n}
= \sum_{k=0}^{n} \frac{1 - a_1^2 q^{2k}}{1 - a_1^2} \frac{(a_1^2, a_1 e^{i \theta}, a_1 e^{-i \theta}, q^{-n}; q)_k}{(q, qa_1 e^{-i \theta}, qa_1 e^{i \theta}, a_1^2 q^{n+1}; q)_k} q^{k(n+1)} \frac{(a_1 b q^k, b q^{-k}/a_1; p)_n}{(a_1 b q^k, b q^{-k}/a_1; p)_n}.
\]
Therefore,
\[
\int_0^\pi \frac{(e^{2i\theta}, e^{-2i\theta}; q)_\infty (be^{i\theta}, be^{-i\theta}; p)_n}{\prod_{j=1}^4(a_j e^{i\theta}, a_j e^{-i\theta}; q)_\infty} d\theta
\]
\[
= \frac{1}{(q, qa^2_1; q)_n} \sum_{k=0}^{n} \frac{1 - a^2_1 q^{2k}}{1 - a^2_1} \frac{(a^2_1, q^{-n}; q)_k}{(q, a^2_1 q^{n+1}; q)_k} q^{k(n+1)} (a_1 b q^k, b q^{-k}/a_1; p)_n
\]
\[
\times \int_0^\pi \frac{(e^{2i\theta}, e^{-2i\theta}; q)_\infty}{(a_1 q^{n+1} e^{i\theta}, a_1 q^{n+1} e^{-i\theta}, a_1 q^k e^{i\theta}, a_1 q^k e^{-i\theta}; q)_\infty} \times \frac{(a_1 q^{k+1} e^{i\theta}, a_1 q^{k+1} e^{-i\theta}; q)_\infty}{\prod_{j=2}^4(a_j e^{i\theta}, a_j e^{-i\theta}; q)_\infty} d\theta
\]

Using [Gasper and Rahman 2004, (6.3.8)] and Watson’s formula [Gasper and Rahman 2004, (III.18)], the integral in the equation above becomes
\[
\frac{2\pi (a_1 a_2 a_3 a_4; q)_\infty}{(q; q)_\infty \prod_{1 \leq j < k \leq 4}(a_j a_k; q)_\infty} \frac{(a_1 a_2; q)_n (a_1 a_3, a_1 a_4; q)_{n+1}}{(a_1 a_2 a_3 a_4; q)_n} \times \frac{1}{(1 - a_1 a_3 q^k)(1 - a_1 a_4 q^k)} \phi_3 \left(q^{k-n}; q, a_3 a_4, a_1 q^{k+1}/a_2 \left| q, q \right. \right).
\]

This completes the proof.

We give a second proof of (5-3) because it has an idea which may be useful in other cases. The second proof uses the following recent result of [Ismail and Stanton 2010]:

(5-4)
\[
\frac{(q, qa^2; q)_n}{(q a e^{i\theta}, q a e^{-i\theta}; q)_n} (be^{i\theta}, be^{-i\theta}; p)_n
\]
\[
= \sum_{k=0}^{n} \frac{1 - a^2 q^{2k}}{1 - a^2} \frac{(q^{-n}, a^2, a e^{i\theta}, a e^{-i\theta}; q)_k}{(q, a^2 q^{n+1}, a q e^{i\theta}, a q e^{-i\theta}; q)_k} q^{k(1+n)} (ab q^k, b q^{-k}/a; p)_n.
\]

Second proof of Theorem 5.2. In view of (5-4), the left-hand side of (5-3) is
\[
\frac{1}{(q, qa^2_1; q)_n} \sum_{k=0}^{n} \frac{1 - a^2 q^{2k}}{1 - a^2} \frac{(q^{-n}, a^2_1; q)_k}{(q, a^2_1 q^{n+1}; q)_k} q^{k(1+n)} (a_1 b q^k, b q^{-k}/a_1; p)_n
\]
\[
\times \int_0^\pi \frac{(e^{2i\theta}, e^{-2i\theta}; q)_\infty}{(a_1 q^{k+1} e^{i\theta}, a_1 q^{k+1} e^{-i\theta}; q)_\infty \prod_{j=2}^4(a_j e^{i\theta}, a_j e^{-i\theta}; q)_\infty} d\theta.
\]
This integral can be evaluated by (3-1) and equals

\[
\frac{2\pi (a_1^2 q^{2k+1}, q; q)_{n-k} (q^k a_1 a_2 a_3 a_4; q)_{\infty}}{(q; q)_{\infty} \prod_{j=2}^{4} (q^k a_1 a_j; q)_{\infty} \prod_{2 \leq r < s \leq 4} (a_r a_s; q)_{\infty}}
\times 4\phi_3 \left(\begin{array}{c} q^{k-n}, a_1 a_2 q^k, a_1 a_3 q^k, a_1 a_4 q^k \\ a_1^2 q^{2k+1}, a_1 a_2 a_3 a_4 q^k, q^{-n} \end{array} \right| q, q \right)
\]

The application of the iterated Sears transformation [Gasper and Rahman 2004, (III.16)] reduces \(4\phi_3\) to

\[
\frac{(a_1 a_2 q^k, a_1 a_3 q^{k+1}, a_1 a_4 q^{k+1}; q)_{n-k}}{(a_1^2 q^{2k+1}, a_1 a_2 a_3 a_4 q^k, q; q)_{n-k}}
\]
times the \(4\phi_3\) in (5-3). Simple manipulations now establish (5-3). \(\square\)

Let \(p = 1\) and \(\zeta = \frac{1}{2} (b + 1/b)\). Then,

\[
\int_{0}^{\pi} \frac{(e^{2i\theta}, e^{-2i\theta}; q)_{\infty}}{\prod_{j=1}^{4} (a_j e^{i\theta}, a_j e^{-i\theta}; q)_{\infty}} (\cos \theta - \zeta)^n d\theta
\]

\[
= \frac{2\pi (a_1 a_2 a_3 a_4; q)_{\infty}}{(q; q)_{\infty} \prod_{1 \leq j < k \leq 4} (a_j a_k; q)_{\infty}} \frac{(a_1 a_2, qa_1 a_3, qa_1 a_4; q)_n}{(q, qa_1^2, a_1 a_2 a_3 a_4; q)_n}
\times \sum_{k=0}^{n} \frac{1 - a_1^2 q^{2k}}{1 - a_1^2} \frac{(a_1^2, q^{-n}; q)_k}{(q, a_1^2 q^{n+1}; q)_k} \left(\frac{1}{2} (a_1 q^k + q^{-k} / a_1) - \zeta \right)^n
\times q^k \frac{(1 - a_1 a_3)(1 - a_1 a_4)}{(1 - a_1 a_3 q^k)(1 - a_1 a_4 q^k)}
\times 4\phi_3 \left(\begin{array}{c} q^{k-n}, q, a_3 a_4, a_1 q^{k+1} / a_2 \\ a_1 a_3 q^{k+1}, a_1 a_4 q^{k+1}, q^{1-n} / a_1 a_2 \end{array} \right| q, q \right).
\]

The special case \(\zeta = 0\) gives the Askey–Wilson moments

\[
\int_{-1}^{1} W(x; a) x^n dx = \frac{(a_1 a_2, qa_1 a_3, qa_1 a_4; q)_n}{(2a_1)^n (q, qa_1^2, a_1 a_2 a_3 a_4; q)_n}
\times \sum_{k=0}^{n} \frac{1 - a_1^2 q^{2k}}{1 - a_1^2} \frac{(a_1^2, q^{-n}; q)_k}{(q, a_1^2 q^{n+1}; q)_k} \left(1 + a_1^2 q^{2k} \right)^n
\times q^{k(n+1)} \frac{(1 - a_1 a_3)(1 - a_1 a_4)}{(1 - a_1 a_3 q^k)(1 - a_1 a_4 q^k)}
\times 4\phi_3 \left(\begin{array}{c} q^{k-n}, q, a_3 a_4, a_1 q^{k+1} / a_2 \\ a_1 a_3 q^{k+1}, a_1 a_4 q^{k+1}, q^{1-n} / a_1 a_2 \end{array} \right| q, q \right),
\]
where \(W \) is the normalized weight function

\[
W(x; \mathbf{a}) := \frac{(q; q)_\infty \prod_{1 \leq r < s \leq 4} (a_r a_s; q)_\infty}{2\pi (a_1 a_2 a_3 a_4; q)_\infty} w(x; \mathbf{a}).
\]

The moments of the Askey–Wilson weight functions were first computed in the very interesting paper [Corteel and Williams 2007]. Corteel and Williams used purely combinatorial techniques and showed that the moments of the Askey–Wilson weight is a generating function for purely combinatorial objects. The Corteel-Williams formula is very different in nature from our (5-6), and a very interesting but difficult exercise is to show the equivalence of the two results.

6. The Andrews identities

We now prove both (1-4) and (1-5) using the \(5\phi_4 \) to \(12\phi_{11} \) transformation [Gasper and Rahman 2004, (2.8.4)].

Proof of (1-4). The limiting case \(e \to 0 \) of the \(5\phi_4 \) to \(12\phi_{11} \) transformation (2.8.4) of [Gasper and Rahman 2004] is

\[
4\phi_3 \left(\begin{array}{l}
q^{-n}, b, c, d \\
q^{1-n} q^{-n} q^{1-n}
\end{array} \right) \Bigg| q, q \Bigg) = \frac{(\lambda^2 q^{n+1}; q)_n}{(q; q)_n} \frac{(\lambda q^n)^{-n}}{(\lambda q)^n}
\]

\[
\times 10\phi_9 \left(\begin{array}{l}
\lambda, q \sqrt{\lambda}, -q \sqrt{\lambda}, \lambda b q^n, \lambda c q^n, \lambda d q^n, q^{-\frac{n}{2}}, -q^{-\frac{n}{2}}, q^{\frac{1-n}{2}}, -q^{\frac{1-n}{2}} \\
q^{-\frac{n}{2}}, q^{\frac{1-n}{2}}, q^{1-n}, q^{-1-n}, q^{\frac{1+n}{2}}, -q^{\frac{1+n}{2}}
\end{array} \right) \left| q, \lambda q^{n+1} \right),
\]

where \(bcd \lambda = q^{1-2n} \). Thus, the \(4\phi_3 \) above is

\[
\frac{(\lambda q^n)^{-n}}{(\lambda q; q)_n} \sum_{k=0}^{[n/2]} \frac{1 - \lambda q^{2k}}{1 - \lambda} \frac{(q^{-n}; q)_2^{2k} (\lambda, \lambda b q^n, \lambda c q^n, \lambda d q^n; q)_k}{(q, q^{1-n}/b, q^{1-n}/c, q^{1-n}/d; q)_k}
\]

\[
\times \frac{(\lambda^2 q^{n+1}; q)_n}{(\lambda^2 q^{n+1}; q)_2^{2k}} \frac{(\lambda q^{n+1})^k}{(\lambda q^{n+1})^k}
\]

\[
= \frac{(\lambda q^n)^{-n}}{(\lambda q; q)_n} \sum_{k=0}^{[n/2]} \frac{1 - \lambda q^{2k}}{1 - \lambda} \frac{(q^{-n}; q)_2^{2k} (\lambda, \lambda b q^n, \lambda c q^n, \lambda d q^n; q)_k}{(q, q^{1-n}/b, q^{1-n}/c, q^{1-n}/d; q)_k}
\]

\[
\times (\lambda^2 q^{n+1+2k}; q)_{n-2k} (\lambda q^{n+1})^k,
\]

since \((a; q)_n/(a; q)_j = (aq^j; q)_{n-j}\). In the case of (1-4), we replace \(q \) by \(q^2 \), then replace \(b, c \) and \(d \) by \(a, b \) and \(q^{1-2n}/ab \), respectively. These choices make \(\lambda = q^{1-2n} \). Hence, the \(4\phi_3 \) in (1-4) transforms to
\[(6-1) \quad \frac{q^n}{(q^{3-2n}; q^2)_n} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1 - q^{1-2n+4k}}{1 - q^{1-2n}} (q^{1-2n}, qa, qb, q^{2-2n}/ab; q^2)_k \]

\[
\times q^k (q^{4-2n+4k}; q^2)_{n-2k} (q^{2-2n}; q^2)_{2k}.
\]

Since \((q^{4-2n+2k}; q^2)_{n-2k} = q^{-2(n-2k)} (-q^2)^{n-2k} (q^{2-2k}; q^2)_{n-2k}\) by [Gasper and Rahman 2004, (I.8)], we find that the summand of the series above vanishes, unless \(0 \leq n - 2k \leq 1\), which implies that the only nonvanishing term is when \(k = \lfloor n/2 \rfloor\). Computing and simplifying this last term gives the right-hand side of (1-4). □

Proof of (1-5). The use of the easily verifiable identity

\[
\frac{1 - abq^{-1}}{1 - ab^2q^{2n-3}} (b, q^{3-2n}/ab; q^2)_k - ab^2q^{2n-3} \frac{(b, q^{3-2n}/ab; q^2)_k}{(q^{2-2n}/b, qab; q^2)_k} = \frac{(b, q^{2-2n}/ab; q^2)_k}{(q^{4-2n}/b, qab; q^2)_k},
\]

gives

\[
(6-2) \quad 4\phi_3\left(q^{2n}, a, b, q^{3-2n}/ab \left| q^2, q^2 \right. \right) = \frac{1 - abq^{-1}}{1 - ab^2q^{2n-3}} 4\phi_3\left(q^{2n}/a, q^{4-2n}/b, qab \left| q^2, q^2 \right. \right) - ab^2q^{2n-3} 4\phi_3\left(q^{2n}/a, q^{2-2n}/b, qab \left| q^2, q^2 \right. \right),
\]

yielding two balanced and nearly-poised series of the second kind on the right-hand side. Now we use the Watson transformation formula [Gasper and Rahman 2004, (III.18)] to transform the right-hand side of into \(8\phi_7\) series. Thus

\[
4\phi_3\left(q^{2n}, a, b, q^{3-2n}/ab \left| q^2, q^2 \right. \right) = \frac{1 - abq^{-1}}{1 - ab^2q^{2n-3}} \frac{(a/q, b/q; q^2)_n}{(1/q, ab/q; q^2)_n} \times 8\phi_7\left(\begin{array}{c}
q^{1-2n}, q^{-n+5/2}, -q^{-n+5/2}, q^{-2n}, qa, -b, \frac{b}{q}, q \\
q^{-n+1/2}, q^{3-2n}, q^{2-2n}, q^{4-2n}, q^{3-2n}/a, q^{2-2n}/b, q^{3-2n}/b, b
\end{array} \right) \left(q^2, q^{6-2n}/a^2b^2 \right)
\]

\[
- ab^2q^{2n-3} \frac{(b/q, ab; q^2)_n}{(1/q, a; q^2)_n} 8\phi_7\left(\begin{array}{c}
q^{1-2n}, q^{-n+5/2}, -q^{-n+5/2}, q^{-2n}, b, q, \frac{q^{2-2n}}{ab}, \frac{q^{3-2n}}{ab} \left| q^2, q^2 \right. \right) \left(q^{-n+1/2}, q^{3-2n}/b, qab, ab \right) \left(q^{2}, a^2 \right).
\]
The crucial formula to use now is the quadratic transformation formula [Gasper and Rahman 2004, (3.5.10)], that after some simplification, gives

\[
4\phi_3 \left(\frac{q^{-2n}, a, b, q^{3-2n}/ab}{q^{2-2n}/a, q^{4-2n}/b, qab} \right) = \frac{(q^{2-2n}; q)_{2n}}{(q^{2-2n}/a; q)_{2n}} \frac{(abq^{n-2}, -abq^{n-2}; q)_n}{(bq^{n-2}, -bq^{n-2}; q)_n} \frac{1 - abq^{-1}}{1 - ab^2q^{2n-3}} \\
\times \sum_{k=0}^{n} \frac{1 + q^{2-2n+2k}/b}{1 + q^{2-2n}/b} \frac{(-q^{2-2n}/b, q^{2-n}/b, -q^{2-n}/b, a; q)_k}{(q, q^{3-n}/b, -q^{3-n}/b, -q^{3-2n}/a; q)_k} \frac{q^{2k}(q^{2n}; q^2)_k}{a^k(q^{2-2n}; q^2)_k} \frac{abq^{3n-3}}{(1/q, a, a^2b^2q^2; q^2)_n (q^{2-2n}/b; q)_{2n}}
\]

However, in each of the two series above there is the common factor

\[
\frac{(q^{2-2n}; q)_{2n}(q^{-2n}; q^2)_k}{(q^{2-2n}; q^2)_k} = (q^{2-2n+2k}; q^2)_{n-k} (q^{-2n}; q^2)_k (q^{3-2n}; q^2)_n,
\]

which vanishes unless \(k = n \). So, the only term that survives in each is the one term with \(k = n \). Combining the two terms after a lot of messy but straightforward simplifications, we obtain (1-5).

\[\square\]

Acknowledgements

We thank the referee for a careful reading of the manuscript. The research of Mourad Ismail is supported by a grant from King Saud University in Riyadh.

References

Received June 29, 2010. Revised March 28, 2011.

MOURAD E. H. ISMAIL
DEPARTMENT OF MATHEMATICS
CITY UNIVERSITY OF HONG KONG
TAT CHEE AVENUE
KOWLOON
HONG KONG

and

DEPARTMENT OF MATHEMATICS
KING SAUD UNIVERSITY
RIYADH
SAUDI ARABIA

ismail@math.ucf.edu

MIZAN RAHMAN
DEPARTMENT OF MATHEMATICS
CARLETON UNIVERSITY
OTTAWA, ONTARIO K1S5B6
CANADA

mrahman@math.carleton.ca
Remarks on a Künneth formula for foliated de Rham cohomology
MÉLANIE BERTELSON

K-groups of the quantum homogeneous space $q(n)/q(n-2)$
PARtha SARATHI CHAKRABORTY and S. SUNDAR

A class of irreducible integrable modules for the extended baby TKK algebra
XUEWU CHANG and SHAOBIN TAN

Duality properties for quantum groups
SOPHIE CHEMLA

Representations of the category of modules over pointed Hopf algebras over S_3 and S_4
AGUSTÍN GARCÍA IGLESIAS and MARTÍN MOMBELLI

(p, p)-Galois representations attached to automorphic forms on n
EKNATH GHATE and NARASIMHA KUMAR

On intrinsically knotted or completely 3-linked graphs
RYO HANAKI, RYO NIKKUNI, KOUKI TANIYAMA and AKIKO YAMAZAKI

Connection relations and expansions
MOURAD E. H. ISMAIL and MIZAN RAHMAN

Characterizing almost Prüfer v-multiplication domains in pullbacks
QING LI

Whitney umbrellas and swallowtails
TAKASHI NISHIMURA

The Koszul property as a topological invariant and measure of singularities
HAL SADOFSKY and BRAD SHELTON

A completely positive map associated with a positive map
ERLING STØRMER

Classification of embedded projective manifolds swept out by rational homogeneous varieties of codimension one
KIWAMU WATANABE

Note on the relations in the tautological ring of \mathcal{M}_g
SHENGMAO ZHU