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Let I be an ideal of an integral domain T , let ϕ : T→ T/I be the projection,
let D be an integral domain contained in T/I , and let R = ϕ−1(D). We
characterize when R is an almost Prüfer v-multiplication domain, an almost
valuation domain, and an almost Prüfer domain, in the context of pullbacks.

1. Introduction

Let I be an ideal of an integral domain T , let ϕ :T→T/I be the natural projection,
let D be an integral domain contained in T/I , and let k = q f (D) be the quotient
field of D. Let R = ϕ−1(D) be the integral domain arising from the following
pullback of canonical homomorphisms:

R //

��

D

��
T // T/I

It is well-known that D = R/I and that I is a prime ideal of R. Notice that I is
a common ideal of R and T , and hence T is an overring of R. We assume that R
is properly contained in T , and we refer to this as a pullback diagram of type (4).
For the diagram (4), if q f (D) ⊆ T/I , then we refer to this as a diagram of type
(4′). For the diagram (4), if I is a prime ideal of T and q f (D)= q f (T/I ), then
we refer to this as a diagram of type (4∗). Here q f (T/I ) denotes the quotient field
of T/I . For the diagram (4), if I = M is a maximal ideal of T , we refer to this as
a diagram of type (4M ). For the diagram (4M ), if q f (D) = T/M , then we refer
to this as a diagram of type (4∗M ).

Pullbacks are an important tool in constructing interesting examples and counter-
examples. They have become so important that in recent years there have been
many papers devoted to ring- and ideal-theoretic properties in pullback domains.
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For more details on pullbacks, see [Mimouni 2004; Houston and Taylor 2007;
Fontana and Gabelli 1996; Gilmer 1972; Gabelli and Houston 1997].

Zafrullah [1985] began a general theory of almost factoriality and introduced
the notion of an almost GCD-domain. Zafrullah defined R to be an almost GCD-
domain (AGCD-domain for short) if for each a, b ∈ D \ {0}, there is a positive
integer n = n(a, b) such that an D ∩ bn D is principal (or equivalently, (an, bn)v is
principal). Anderson and Zafrullah [AZ 1991] introduced several classes of integral
domains related to almost GCD-domains, including almost Bézout domains (AB-
domains), almost Prüfer domains (AP-domains), and almost valuation domains
(AV-domains). As in [AZ 1991], an integral domain R is an AB-domain if for
each a, b ∈ D \ {0}, there is a positive integer n = n(a, b) such that (an, bn) is
principal; while R is an AP-domain if for each a, b ∈ D \ {0}, there is a positive
integer n=n(a, b) such that (an, bn) is invertible. Following [AZ 1991], an integral
domain R is said to be an AV-domain if for each a, b ∈ D \ {0}, there is a positive
integer n = n(a, b) such that an

|bn or bn
|an . Similarly, in [Li 2012] we defined an

integral domain R to be an almost Prüfer v-multiplication domain (APVMD) if for
each a, b ∈ R \ {0}, there is a positive integer n = n(a, b) such that an D ∩ bn D is
t-invertible, or equivalently, (an, bn) is t-invertible. Recall that an integral domain
R is said to be a Prüfer v-multiplication domain (PVMD) if each a, b ∈ R \ {0},
(a, b) is t-invertible. The class of APVMDs includes a lot of important rings, such
as AV-domains, AB-domains, AGCD-domains, AP-domains, PVMDs, and so on.

Anderson and Zafrullah [1991, Theorem 4.9] proved that D is an AB-domain
(respectively, AP-domain) if and only if R = D + Xk[X ] is an AB-domain (re-
spectively, AP-domain). However, we notice that the (D + Xk[X ])-construction
is a special case of the pullback of type (4M ). Mimouni [2004, Theorem 2.2]
generalized these results and proved that for the diagram (4M ), R is an AP-domain
if and only if T and D are AP-domains and the extension k ⊆ T/M is a root ex-
tension. He also gave a similar characterization for AV-domains. Mimouni [2004,
Corollary 2.6] continued to show that for the diagram (4M ), assuming that D= k is
a field, then R is an AB-domain if and only if T is an AB-domain and the extension
k ⊆ T/M is a root extension. In [Li 2012, Theorem 3.10], we proved that D is an
APVMD if and only if R = D+ Xk[X ] is an APVMD.

From this we notice that the characterization of AV-domains and AP-domains
is known only in the context of the special pullback of type (4M ), and that the
study of APVMDs is only in the (D+ Xk[X ])-construction, a special case of type
(4M ). So the main purpose of this paper is to characterize APVMDs in pullbacks
in greater generality and to generalize the characterization of AV-domains and AP-
domains for the pullback of type (4M ) to that for the pullback of type (4′).

In Section 2, we mainly prove that in the pullback of type (4M ), R is an APVMD
if and only if D and T are APVMDs, TM is an AV-domain, and the extension
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q f (D) ⊆ T/M is a root extension. Using this fact, we give Example 2.2 to show
that an APVMD is not necessarily a PVMD. We also show that for the diagram
(4∗M ), R is an APVMD if and only if D and T are APVMDs and TM is an AV-
domain. Using this result, we prove that D is an APVMD if and only if R =
D+ Xk[[X ]] is an APVMD.

In Section 3, we mainly indicate that for the diagram (4′), if T is an AV-domain,
then R is an APVMD if and only if D is an APVMD and the extension q f (D)⊆
T/I is a root extension. We prove that for the diagram (4′), R is an AV-domain
if and only if T and D are AV-domains and the extension k = q f (D) ⊆ T/I is
a root extension. We also show that for the diagram (4′), assuming that T is an
AV-domain, then R is an AP-domain if and only if D is an AP-domain and the
extension k = q f (D)⊆ T/I is a root extension.

Following [Zafrullah 1988, p. 95], assume that D is the ring of entire functions
and S is the multiplicative set generated by the principal primes of D; then D
is integrally closed, and hence R = D + X DS[X ] is integrally closed, but R =
D+ X DS[X ] is not a PVMD. Because an integrally closed APVMD is a PVMD
by [Li 2012, Theorem 2.4], R is not an APVMD. Consider the following pullback:

R = D+ X DS[X ] //

��

D

��
T = DS[X ] // DS ∼= T/I

Here I denotes X DS[X ]. The example indicates that q f (D)= q f (T/I ), D and T
are APVMDs, I is principal in T , and T = DS[X ] is a PVMD. It follows that TI

is an AV-domain by [Li 2012, Theorem 2.3]. However, R is not an APVMD. The
pullback above belongs to the pullback of type (4∗). Therefore, for the diagram
(4∗), without some other assumption on T , D or T/I , there is no hope of proving
that R is an APVMD even when T and D are APVMDs and TI is an AV-domain.
So in Section 4, we prove that in a pullback of type (4∗), if T = (Iv : Iv), then R
is an APVMD if and only if T is an APVMD, TI is an AV-domain, and for each
nonzero prime ideal P̄ of D, either (1) DP̄ and Tϕ−1(D\P̄) are AV-domains, or (2)
there exists a finitely generated ideal A of D such that A ⊆ P̄ , A−1

∩ E = D, and
(ϕ−1(P̄)T )t = T .

For details on star operations, see [Gilmer 1972, Sections 32 and 34].

2. Pullbacks of type (4M)

We begin with the characterization of APVMDs in a pullback of type (4M ).

Theorem 2.1. For the diagram (4M ), R is an APVMD if and only if D and T
are APVMDs, TM is an AV-domain, and the extension q f (D) ⊆ T/M is a root
extension.
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Proof. (⇒) Assume that R is an APVMD. Let x, y ∈ D \ {0}; then ϕ(a) = x
and ϕ(b) = y for some a, b ∈ R \ M . Because R is an APVMD, there is a
positive integer n = n(a, b) such that (an, bn) is t-invertible in R. By [Wang
2006, Theorem 10.3.11], (ϕ(an), ϕ(bn)) is t-invertible in D. Because (xn, yn) =

(ϕ(a)n, ϕ(b)n)= (ϕ(an), ϕ(bn)), it follows that (xn, yn) is t-invertible in D. Thus
D is an APVMD. Let c, d ∈ T \ {0}. Because T and R have the same quotient
field, there is an element r ∈ R \ {0} with rc, rd ∈ R. Then ((rc)n, (rd)n)R
is a t-invertible ideal of R for some positive integer n. According to [Wang
2006, Theorem 10.3.11], ((rc)n, (rd)n)T is t-invertible in T . It is well-known
that ((rc)n, (rd)n)T = rn(cn, dn)T , so (cn, dn)T is t-invertible in T . Therefore T
is an APVMD. As we know, M is a v-ideal of R. Then RM is an AV-domain by
[Li 2012, Theorem 2.3]. By [Wang 2006, Theorem 10.2.2], we have the pullback

RM //

��

DR\M

��
TM // T/M

By [Mimouni 2004, Theorem 2.2], TM and DR\M are AV-domains and the ex-
tension q f (D)= q f (DR\M)⊆ T/M is a root extension.

(⇐) Let P be a maximal t-ideal of R.

Case 1. Suppose that M * P . By [Wang 2006, Theorem 10.2.4(3)], there is a
prime ideal Q of T with P = Q ∩ R. Clearly, M * Q. In fact P * M . Because
M is a v-ideal of R, M is a t-ideal of R. As the maximality, P * M . So Q * M .
Hence Q is incomparable to M . According to [Fontana et al. 1998, Lemma 3.3],
Q is a maximal t-ideal of T . Since T is an APVMD, TQ is an AV-domain. By
[Wang 2006, Theorem 10.2.1(6)], RP = TQ . Hence RP is an AV-domain.

Case 2. Suppose that M ⊆ P . There exists a prime ideal p of D such that P =
ϕ−1(p). Because P is a t-ideal of R, P= Pt . Then ϕ−1(p)= (ϕ−1(p))t =ϕ−1(pt)

by [Wang 2006, Theorem 10.3.5(3)]. So p= pt . Thus p is a t-ideal of D. Since D
is an APVMD, Dp is an AV-domain. In this case, consider the following pullback:

RP //

��

Dp

��
TM // T/M

Since TM and Dp are AV-domains and the extension q f (D) ⊆ T/M is a root
extension, RP is an AV-domain by [Mimouni 2004, Theorem 2.2]. Therefore R is
an APVMD. �
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Gabelli and Houston [1997, Theorem 4.13] showed that for the diagram (4M ),
R is a PVMD if and only if T and D are PVMDs, k = T/M , and TM is a valuation
domain. Using this result and Theorem 2.1, we can easily get the following result.

Example 2.2. Let R = K + X L[X ], where K and L are fields, K ⊆ L , and for
some prime p, L p

⊆ K . Consider the pullback

K + X L[X ] //

��

K

��
L[X ] // L

Then R is an APVMD but not a PVMD. Thus an APVMD need not be a PVMD.

Corollary 2.3. For the diagram (4∗M ), R is an APVMD if and only if D and T are
APVMDs and TM is an AV-domain.

Proof. It easily follows from Theorem 2.1 and [Mimouni 2004, Lemma 2.3]. �

Corollary 2.4. For the diagram (4∗M ), R is an AP-domain if and only if D and T
are AP-domains.

Proof. (⇒) It follows from [Mimouni 2004, Theorem 2.2].

(⇐) Let P be a maximal ideal of R.

Case 1. Suppose that M * P . By [Wang 2006, Theorems 10.2.4(3) and 10.2.1(6)],
there is a prime ideal Q of T with P = Q ∩ R and RP = TQ . Since T is an
AP-domain, TQ is an AV-domain by [AZ 1991, Theorem 5.8]. Hence RP is an
AV-domain.

Case 2. Suppose that M ⊆ P . There exists a prime ideal p of D such that P =
ϕ−1(p). Since D is an AP-domain, Dp is an AV-domain. In this case, consider the
pullback

RP //

��

Dp

��
TM // T/M

Since TM and Dp are AV-domains and q f (D) = q f (Dp) = T/M , RP is an AV-
domain by [Mimouni 2004, Lemma 2.3]. Therefore R is an AP-domain. �

Proposition 2.5. For the diagram (4M ), suppose that (T,M) is a quasilocal do-
main and D = k is a proper field of T/M. Then R is an APVMD if and only if R is
an AV-domain.

Proof. (⇐) It easily follows from their definitions.

(⇒) Assume that D is a field. Since D = R/M , M is a maximal ideal of R.
Because T is quasilocal, R is quasilocal by [Wang 2006, Corollary 10.2.1]. Also
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M = (R : T ) is a v-ideal of R. Hence M is the unique maximal t-ideal of R.
Therefore R = RM is an AV-domain. �

In [Li 2012, Theorem 3.10], we considered the polynomial ring case and proved
that D is an APVMD if and only if R = D+ Xk[X ] is an APVMD. Similarly, we
consider the power series ring case and get the following result.

Corollary 2.6. Let D be an integral domain with quotient field k. Then D is an
APVMD if and only if R = D+ Xk[[X ]] is an APVMD.

Proof. Consider the pullback

R = D+ Xk[[X ]] //

��

D

��
T = k[[X ]] // k = k[[X ]]/Xk[[X ]]

T = k[[X ]] is a UFD, so T is an APVMD. The rest follows from Corollary 2.3. �

3. Pullbacks of type (4′)

Mimouni [2004] considered the pullbacks of type (4M ) in AP-domains and AV-
domains. He proved that for the diagram (4M ), R is an AV-domain (respectively
AP-domain) if and only if T and D are AV-domains (respectively AP-domains)
and the extension k ⊆ T/M is a root extension. We generalize these results for the
special pullback of type (4M ) to those for the pullback of type (4′).

Lemma 3.1. For the diagram (4′), if R is an AP-domain (resp. AGCD-domain),
then the extension k = q f (D)⊆ T/I is a root extension.

Proof. Assume that R is an AP-domain (resp. AGCD-domain). By way of contra-
diction, suppose that the extension k ⊆ T/I is not a root extension. So there is
λ ∈ T/I such that λn is not in k for each positive integer n. Set λ= ϕ(a) for some
a ∈ T \ I . Let b be a nonzero fixed element of I . Since R is an AP-domain (resp.
AGCD-domain), ((ab)n, bn) is invertible (resp. ((ab)n, bn)v is principal) for some
positive integer n. Let J denote ((ab)n, bn). Then J J−1

= R (resp. Jv = cR for
some c ∈ R). By [Wang 2006, Example 8.1.10(1)], J−1

= (ab)−n R ∩ b−n R. Let
f ∈ J−1; then f = (ab)−n f1 = b−n f2 for some f1, f2 ∈ R. Thus a−n f1 = f2 and
so f1 = an f2. If f2 is not in I , then ϕ( f2) ∈ D \ {0}. Hence ϕ( f1) = ϕ(an f2) =

ϕ(a)nϕ( f2)= λ
nϕ( f2). So λn

∈ q f (D)= k, a contradiction. Therefore f2 ∈ I . So
J−1
⊆b−n I . We claim b−n I ⊆ J−1. Let z∈ I and x ∈ J and write x=α(ab)n+βbn

for some α, β ∈ R. Then (b−nz)x = (b−nz)(α(ab)n+βbn)= zαan
+ zβ ⊆ I ⊆ R,

so b−nz ∈ J−1. Then b−n I ⊆ J−1. Therefore b−n I = J−1. So Jv = bn I−1. Since
J J−1

= R (resp. Jv = cR), we have 1 = g1h1+ · · · + gmhm for g1, . . . , gm ∈ J ,
h1, . . . , hm ∈ J−1 (resp. bn I−1

= cR). For each i ∈ {1, 2, . . . ,m}, write gi =



ALMOST PRÜFER v-MULTIPLICATION DOMAINS IN PULLBACKS 453

αi (ab)n + βi bn and hi = b−n fi , where αi , βi ∈ R, fi ∈ I . Then we have 1 =
g1h1+· · ·+gmhm = (α1(ab)n+β1bn)(b−n f1)+· · ·+(αm(ab)n+βmbn)(b−n fm)=

(α1an
+ β1) f1 + · · · + (αman

+ βm) fm ∈ I , which is absurd. (Respectively, for
each y ∈ I−1, T yI ⊆ y I ⊆ R, so T y ∈ I−1, hence T ⊆ (I−1

: I−1). Then
R ⊂ T ⊆ (I−1

: I−1)= (bn I−1
: bn I−1)= (J−1

: J−1)= (cR : cR)= R, which is
absurd.) Therefore the extension k ⊆ T/I is a root extension. �

Lemma 3.2. For the diagram (4′), assume that D = k is a field. Then R is an
AV-domain if and only if T is an AV-domain and the extension k ⊆ T/I is a root
extension.

Proof. (⇒) It follows from Lemma 3.1 and the fact that T is an overring of R.

(⇐) Let x ∈ q f (R); then x ∈ q f (T ). Since T is an AV-domain, there is a positive
integer n = n(x) such that xn

∈ T or x−n
∈ T . Assume that, for example, xn

∈ T .
If xn

∈ I , then xn
∈ R. If xn

∈ T \ I , then ϕ(x)n = ϕ(xn) ∈ T/I \ {0}. Since
the extension k ⊆ T/I is a root extension, there is a positive integer m such that
ϕ(xnm) = ϕ(x)nm

∈ k. Hence xnm
∈ ϕ−1(k) = R. It follows that R is an AV-

domain. �

Theorem 3.3. For the diagram (4′), R is an AV-domain if and only if T and D are
AV-domains and the extension k = q f (D)⊆ T/I is a root extension.

Proof. (⇒) By [AZ 1991, Lemma 4.5], T is an AV-domain as an overring of R;
and by [AZ 1991, Theorem 4.10], D= R/I is an AV-domain. Also by Lemma 3.1,
the extension k = q f (D)⊆ T/I is a root extension.

(⇐) We use the fact that the diagram (4′) splits into two parts as follows:

R //

��

D

��
R0 = ϕ

−1(k) //

��

k = R0/I

��
T // T/I

Consider the second part of this diagram:

R0 //

��

k

��
T // T/I
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Since T is an AV-domain and the extension k ⊆ T/I is a root extension, by
Lemma 3.2 R0 is an AV-domain. The first part of the diagram —

R //

��

D

��
R0 // k

— is a pullback diagram of type (4∗M ). Since D and R0 are AV-domains, R is an
AV-domain by [Mimouni 2004, Lemma 2.3]. �

Lemma 3.4. For the diagram (4), let Q(A)= {x ∈ T | x I ⊆ A} for an ideal A of
R. Then if P is a prime ideal of R and I * P , then Q(P) is a prime ideal of T ,
P = Q(P)∩ R and RP = TQ(P).

Proof. Let I * P , let x, y ∈ T , and let xy ∈ Q(P). Then xy I 2
⊆ xy I ⊆ P .

Since x I, y I ⊆ I ⊆ R and P is a prime ideal of R, we have x I ⊆ P or y I ⊆ P . So
x ∈ Q(P) or y ∈ Q(P). Thus Q(P) is a prime ideal of T . We claim P= Q(P)∩R.
Because P I ⊆ P , we have P ⊆ Q(P)∩ R. Let x ∈ Q(P)∩ R; then x I ⊆ P . Since
I * P , we have x ∈ P . Hence Q(P)∩R⊆ P . Thus P = Q(P)∩R. Next we show
that RP = TQ(P). It easily follows that RP ⊆ TQ(P). For the reverse inclusion, let
x ∈TQ(P). Then x= z1/z2 for some z1∈T, z2∈T \Q(P). Since I * P , there exists
u ∈ I \ P . Of course u ∈ I \Q(P). Then uz1 ∈ I ⊆ R, uz2 ∈ I \Q(P)⊆ R \Q(P).
Thus uz2 ∈ R \ P . So x = uz1/uz2 ∈ RP . Thus TQ(P) ⊆ RP , so RP = TQ(P). �

Theorem 3.5. For the diagram (4′), assume that T is an AV-domain. Then R is
an APVMD if and only if D is an APVMD and the extension k = q f (D) ⊆ T/I is
a root extension.

Proof. As in Theorem 3.3, we consider the diagram

R //

��

D

��
R0 = ϕ

−1(k) //

��

k = R0/I

��
T // T/I

(⇐) Since T is an AV-domain, R0 is an AV-domain by Lemma 3.2. Because D is
an APVMD, by Corollary 2.3 R is an APVMD.

(⇒) Assume that R is an APVMD; by Corollary 2.3 D and R0 are APVMDs and
(R0)I is an AV-domain. Set S = R \ I . Then RS = RI and (R0)I = (R0)S . By
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[Houston and Taylor 2007, Lemma 1.2], consider the pullback

(R0)S //

��

k = kϕ(S)

��
TS // (T/I )ϕ(S)

As (R0)S = (R0)I is an AV-domain, the extension k⊆ (T/I )ϕ(S) is a root extension
by Lemma 3.2. So the extension k ⊆ T/I is a root extension. �

Theorem 3.6. For the diagram (4′), assume that T is an AV-domain. Then R is an
AP-domain if and only if D is an AP-domain and the extension k = q f (D)⊆ T/I
is a root extension.

Proof. (⇐) As in Theorem 3.3, we consider the diagram

R //

��

D

��
R0 = ϕ

−1(k) //

��

k = R0/I

��
T // T/I

Since T is an AV-domain, R0 is an AV-domain by Lemma 3.2. Then R is an
AP-domain by Corollary 2.4.

(⇒)Assume that R is an AP-domain; then D= R/I is an AP-domain by [AZ 1991,
Theorem 4.10]. Also by Lemma 3.1, the extension k ⊆ T/I is a root extension. �

4. Pullbacks of type (4∗)

Lemma 4.1. For a diagram (4∗), R is an AV-domain if and only if T and D are
AV-domains.

Proof. The proof is similar to that of Lemma 3.2.

(⇒) If R is an AV-domain, so are its homomorphic image of D and its overring T .

(⇐) Let x ∈ q f (R); then x ∈ q f (T ). Since T is an AV-domain, there is a positive
integer n = n(x) such that xn

∈ T or x−n
∈ T . Assume that, for example, xn

∈ T .
If xn
∈ I , then xn

∈ R. If xn
∈ T \ I , then ϕ(x)n = ϕ(xn)∈ T/I \{0} ⊆ q f (T/I )=

q f (D). Since D is an AV-domain, there is a positive integer m such that ϕ(x)nm
∈

D. Hence xnm
∈ ϕ−1(D)= R. It follows that R is an AV-domain. �

Proposition 4.2. Let R be an integral domain and I a nonzero ideal of R. If R is
an APVMD, then (Iv : Iv) is an APVMD.
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Proof. Set T = (Iv : Iv). Assume that x, y ∈ T = (Iv : Iv). Choose a fixed
element a ∈ Iv. Then ax, ay ∈ Iv ⊆ R. Since R is an APVMD, there is a positive
integer n = n(ax, ay) such that ((ax)n, (ay)n) is t-invertible in R. Let J denote
((ax)n, (ay)n). So (J J−1)t = R. There is a finitely generated ideal H ⊆ J J−1

⊆ R
such that Hv = R. By [Houston and Taylor 2007, Lemma 2.3], (Iv : Iv) is t-
linked over R. Then (H T )v = T . So (J J−1T )t = T . Thus (an(xn, yn)J−1T )t =(
((ax)n, (ay)n)J−1T

)
t=T . So (xn, yn) is t-invertible in T . Therefore T = (Iv : Iv)

is an APVMD. �

Proposition 4.3. For a diagram (4∗), if R is an APVMD, then I is a prime t-ideal
of both R and T .

Proof. We claim RI is an AV-domain, and thus I is a t-ideal of R. Let x, y∈ R\{0}.
If (xn, yn)(xn, yn)−1

⊆ I for each positive integer n, then ((xn, yn)(xn, yn)−1)−1
⊇

I−1
⊇ T ) R, which contradicts that R is an APVMD. Hence there exists a positive

integer n such that (xn, yn)(xn, yn)−1 * I . Thus ((xn, yn)(xn, yn)−1)RI = RI . So
(xn, yn)RI is invertible in RI . Since RI is quasilocal, (xn, yn)RI is principal.
Then RI is an AV-domain. So I RI is a maximal t-ideal of RI . By [Kang 1989,
Lemma 3.17], I = I RI ∩ R is a t-ideal of R. Since q f (D) = q f (T/I ), we have
RI = TI by [Houston and Taylor 2007, Lemma 1.2]. So TI is an AV-domain. Then
I TI is a maximal t-ideal of T . Therefore I is a prime t-ideal of T . �

Houston and Taylor [2007, Theorem 2.8] characterized the PVMD-property in
a pullback of type (4∗). Similarly, we are ready to study the APVMD-property in
a pullback of type (4∗). For convenience, let E denote T/I .

Theorem 4.4. For a diagram (4∗), assume that T = (Iv : Iv). Then R is an APVMD
if and only if T is an APVMD and TI is an AV-domain, and for each nonzero prime
ideal P̄ of D, either

(1) DP̄ and Tϕ−1(D\P̄) are AV-domains, or

(2) there is a finitely generated ideal A of D such that A⊆ P̄ , A−1
∩ E = D, and

(ϕ−1(P̄)T )t = T .

Proof. (⇒) Assume that R is an APVMD. By Proposition 4.2, T = (Iv : Iv) is an
APVMD. Also, TI is an AV-domain by Proposition 4.3. Let P̄ be a prime ideal of
D, and let P = ϕ−1(P̄).

Case 1. If P is a t-ideal of R, then RP is an AV-domain. By [Houston and Taylor
2007, Lemma 1.2], we have the pullback

RP //

��

Dϕ(R\P) = DP̄

��
TR\P = Tϕ−1(D\P̄) // Eϕ(S) = ED\P̄
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By Lemma 4.1, DP̄ and TR\P = Tϕ−1(D\P̄) are AV-domains.

Case 2. Suppose that P is not a t-ideal of R. Since R is an APVMD, it is a
UMT-domain by [Li 2012, Theorem 3.8]. By [Fontana et al. 1998, Corollary 1.6],
Pt = R. Hence there is a finitely generated ideal J ⊆ P such that J−1

= R.
Since T is t-linked over R by [Houston and Taylor 2007, Lemma 2.3], we have
(J T )−1

= T . So (ϕ−1(P̄)T )t = (PT )t = T . Now let A = ϕ(J ) and e ∈ A−1
∩ E .

Then ϕ(t) = e for some t ∈ T and eA ⊆ D. Hence ϕ−1(eA) ⊆ ϕ−1(D) = R.
Also, ϕ−1(eA) = ϕ−1(e)ϕ−1(A) = ϕ−1(ϕ(t))ϕ−1(ϕ(J )) ⊇ t J . So t J ⊆ R. Then
t ∈ J−1

= R. Thus e = ϕ(t) ∈ D. Therefore A−1
∩ E = D.

(⇐) Let P be a maximal t-ideal of R. It suffices to show that RP is an AV-domain.

Case 1. Assume that I * P . By Lemma 3.4, there is a prime ideal Q of T such
that P = Q ∩ R and RP = TQ . By Proposition 4.3, we know that I is a prime
t-ideal of R. Then (PT )t 6= T by [Houston and Taylor 2007, Lemma 2.6]. Hence
PT ⊆ Q1 for some prime t-ideal Q1 of T . Since T = (Iv : Iv) is t-linked over R by
[Houston and Taylor 2007, Lemma 2.3], it follows that (Q1 ∩ R)t 6= R. However,
P ⊆ Q1 ∩ R and P is a maximal t-ideal of R. It follows that Q = Q1. Then Q is
t-ideal of T . Therefore RP = TQ is an AV-domain.

Case 2. Assume that I ⊆ P . Let P̄ denote ϕ(P). By way of contradiction, suppose
that condition (2) of the hypothesis holds: there is a finitely generated ideal A of
D such that A⊆ P̄ , A−1

∩E = D, and (ϕ−1(P̄)T )t = (PT )t = T . Then A= ϕ(J1)

and (J2T )−1
= T for some finitely generated ideals J1, J2 of R. Also J1+ J2⊆ P .

Set J = J1 + J2. Then J−1
⊆ J−1

2 . Let x ∈ J−1
2 ; then x J2 ⊆ R, and hence

x J2T ⊆ T . So x ∈ (J2T )−1
= T . So J−1

⊆ J−1
2 ⊆ T . Since J ⊆ P and P is a

prime t-ideal of R, then J−1
6= R. Otherwise, if J−1

= R, then R= Jv ⊆ Pt = P , a
contradiction. So R $ J−1. Therefore, there is an element t ∈ J−1

\R with t J ⊆ R.
So ϕ(t)A ⊆ ϕ(t)ϕ(J1) ⊆ ϕ(t)ϕ(J ) = ϕ(t J ) ⊆ D. Then ϕ(t) ∈ A−1

∩ E = D. So
t ∈ R, a contradiction. Hence condition (1) must hold. Localize the diagram at P
and consider the pullback

RP //

��

Dϕ(R\P) = DP̄

��
TR\P = Tϕ−1(D\P̄) // Eϕ(S) = ED\P̄

By Lemma 4.1, RP is an AV-domain. Therefore, R is an APVMD. �
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