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We show that each positive map from B(K ) to B(H) is a scalar multiple of
a map of the form Tr −ψ with ψ completely positive. This is used to give
necessary and sufficient conditions for maps to be C-positive for a large class
of mapping cones; in particular, we apply the results to k-positive maps.

Introduction

In [Skowronek and Størmer 2010], we studied several norms on positive maps from
B(K ) into B(H), where K and H are finite-dimensional Hilbert spaces. These
norms were very useful in the study of maps of the form Tr−λψ , where Tr is
the usual trace on B(K ), λ > 0, and ψ is a completely positive map of B(K ) into
B(H). Herein we shall see that every positive map is a positive scalar multiple of a
map of the above form with λ= 1; hence the results in that reference are applicable
to all positive maps. In particular, they yield a simple criterion for some maps to
be k-positive but not (k+ 1)-positive. As an illustration, we give a new proof that
the Choi map of B(C3) into itself is atomic, that is, not the sum of a 2-positive and
a 2-copositive map.

C-positive maps

Let K and H be finite-dimensional Hilbert spaces. We denote by B(B(K ), B(H))
(resp. B(B(K ), B(H))+) the linear (resp. positive linear) maps of B(K ) into
B(H). In the case K = H , we write P(H) = B(B(H), B(H))+. Following
[Størmer 1986], we say that a closed cone C⊂ P(H) is a mapping cone if α◦φ◦β ∈
C for all φ ∈C and α, β ∈CP — the completely positive maps in P(H). A map φ
in B(B(K ), B(H)) defines a linear functional φ̃ on B(K )⊗ B(H), identified with
B(K ⊗H) in the sequel, by φ̃(a⊗b)= Tr(φ(a)bt), where Tr is the usual trace on
B(H) and t denotes the transpose. Let P(B(K ),C) denote the closed cone

P(B(K ),C)= {a ∈ B(K ⊗ H) : ι⊗α(a)≥ 0 for all α ∈ C},
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where ι denotes the identity map on B(K ). Then a map φ ∈ B((B(K ), B(H)) is
said to be C-positive if φ̃ is positive on P(B(K ),C). We denote by PC the cone
of C-positive maps.

If (ei j ) is a complete set of matrix units for B(K ), then the Choi matrix for a
map φ is

Cφ =
∑

ei j ⊗φ(ei j ) ∈ B(K ⊗ H).

By [Størmer 2008; 2009], the transpose C t
φ of Cφ is the density operator for φ̃, and

by [Choi 1975], φ is completely positive if and only if Cφ ≥ 0 if and only if φ̃ ≥ 0
as a linear functional on B(K ⊗ H). When C = CP , we have P(B(K ),CP) =
B(K ⊗ H)+, so φ is CP-positive if and only if φ is completely positive.

If C1⊂C2 are two mapping cones on B(H), then P(B(K ),C1)⊃ P(B(K ),C2),
because if ι⊗α(a)≥ 0 for all α ∈C2, then the same inequality holds for all α ∈C1.
Thus φ̃ ≥ 0 on P(B(K ),C1) implies φ̃ ≥ 0 on P(B(K ),C2), so PC1 ⊂ PC2 .

Let C be a mapping cone on B(H). Let Po
C be the dual cone of PC defined as

Po
C = {φ ∈ B(B(K ), B(H)) : Tr(CφCψ)≥ 0 for all ψ ∈ PC}.

Thus, if C1 ⊂ C2 then Po
C1
⊃ Po

C2
. In the particular case when C ⊃ CP , we thus

get Po
C ⊂Po

CP = CP(K , H)— the completely positive maps of B(K ) into B(H).
As in [Skowronek and Størmer 2010], C defines a norm on B(B(K ), B(H)) by

‖φ‖C = sup{|Tr(CφCψ)| : ψ ∈ Po
C,Tr(Cψ)= 1}.

In the special case when C⊃ CP , it follows that

‖φ‖C = sup |ρ(Cφ)|,

where the sup is taken over all states ρ on B(K⊗H)with density operator Cψ with
ψ ∈Po

C . Let φ ∈ B(B(K ), B(H)) be a self-adjoint map, that is, φ(a) is self-adjoint
for a self-adjoint. Then Cφ is a self-adjoint operator, and so is a difference C+φ −C−φ
of two positive operators with orthogonal supports. Let c ≥ 0 be the smallest
positive number such that c1 ≥ Cφ . Then c = ‖C+φ ‖. Hence, if c 6= 0, there exists
a map φcp ∈ B(B(K ), B(H)) such that the Choi matrix for φcp equals 1− c−1Cφ ,
which is a positive operator. Thus, if we let Tr denote the map x 7→ Tr(x)1, then
φcp is completely positive, and c−1φ = Tr−φcp, since CTr = 1, as is easily shown.
Combining this discussion with [Skowronek and Størmer 2010, Proposition 2], we
get the following theorem.

Theorem 1. Let φ be a self-adjoint map of B(K ) into B(H). Then if −φ is not
completely positive, we have:

(i) There exists a completely positive map φcp ∈ B(B(K ), B(H)) such that

‖C+φ ‖
−1φ = Tr−φcp.
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(ii) If C is a mapping cone on B(H) containing CP , then φ is C-positive if and
only if

1≥ ‖φcp‖C = sup ρ(Cφcp),

where the sup is taken over all states ρ on B(K ⊗ H) with density operator
Cψ with ψ ∈ Po

C.

We did not need to take the absolute value of ρ(Cφcp) because Cφcp ≥ 0 and
ψ ∈ Po

C ⊂ CP .
We next spell out the theorem for some well-known mapping cones. Recall

that a map φ is decomposable if φ = φ1+ φ2 with φ1 completely positive and φ2

copositive, that is, φ2 = t ◦ψ with ψ completely positive. Also recall that a state
ρ on B(K ⊗ H) is a PPT -state if ρ ◦ (ι⊗ t) is also a state.

Corollary 2. Let φ ∈ B(B(K ), B(H)) be a self-adjoint map. Then we have:

(i) φ is positive if and only if ρ(Cφcp)≤ 1 for all separable states ρ on B(K⊗H).

(ii) φ is decomposable if and only if ρ(Cφcp)≤1 for all PPT-states ρ on B(K⊗H).

(iii) φ is completely positive if and only if ρ(Cφcp)≤1 for all states ρ on B(K⊗H).

Proof. (i) That φ is positive is the same as saying that φ is P(H)-positive. Since
the dual cone of P(H) is the cone of separable states, (i) follows.

(ii) A state ρ is PPT if and only if its density operator is of the form Cψ with ψ
a map that is both positive and copositive [Størmer 2008, Proposition 4]. But the
dual of those maps is the cone of decomposable maps [Skowronek et al. 2009].
Thus (ii) follows from the theorem.

(iii) This follows because the dual cone of the completely positive maps is the cone
of completely positive maps, and the density operator for a state is positive; hence
the corresponding map ψ is completely positive. �

k-positive maps

A map φ ∈ B(B(K ), B(H)) is said to be k-positive if

φ⊗ ι ∈ B(B(K ⊗ L), B(H ⊗ L))+

whenever L is a k-dimensional Hilbert space. The k-positive maps in P(H) form
a mapping cone Pk containing CP . Denote by Pk(K , H) the cone of k-positive
maps in B(B(K ), B(H)). Then we have (see also [Itoh 1987]):

Lemma 3. PPk = Pk(K , H).

Proof. We have Po
k = SPk , the k-superpositive maps in P(H), which is the mapping

cone generated by maps of the form AdV defined by AdV (a) = V aV ∗, where
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V ∈ B(H), rank V ≤ k [Skowronek et al. 2009]. By [Størmer 2009], the dual cone
of PPo

k
is given by

Po
Po

k
=
{
φ∈ B(B(K ), B(H)) : AdV ◦φ∈CP(K , H) for all V ∈ B(H), rank V ≤k

}
.

By [Skowronek 2010, Theorem 3] or [Skowronek and Størmer 2010, Theorem 2], it
follows that Po

Po
k
= Pk(K , H). By [Størmer 1986, Theorem 3.6], PPk is generated

by maps of the form α ◦ β with α ∈ Pk, β ∈ CP(K , H). Let AdV ◦ γ, AdV ∈
SPk, γ ∈ CP(K , H) be a generator for PPo

k
. Then

Tr(Cα◦βCAdV ◦γ )= Tr(CAdV ∗◦α◦βCγ )≥ 0,

since AdV ∗ ◦ α is completely positive because α ∈ Pk and rank V ≤ k. Since the
above inequality holds for the generators of the two cones, it follows that PPk =

Po
Po

k
= Pk(K , H), completing the proof of the lemma. �

It follows from the above description of Po
Pk

that the states with density operators
Cψ , ψ ∈Po

Pk
, are the same as the vector states generated by vectors in the Schmidt

class S(k), that is, the vectors y =
∑k

i=1 xi ⊗ yi , xi ∈ K , yi ∈ H , where the xi and
yi are not necessarily all 6= 0.

Theorem 4. Let φ ∈ B(B(K ), B(H))+. Then we have:

(i) φ is k-positive if and only if supx∈S(k),‖x‖=1(Cφcp x, x)≤ 1.

(ii) Suppose k < min(dim K , dim H), and that there exists a unit vector y =∑k
i=1 xi⊗yi ∈ S(k) such that y⊥Cφ y /∈ X⊗Y , where X = span(xi ), Y = span(yi ).

Then φ is not (k+ 1)-positive.

In order to prove the theorem we first prove a lemma.

Lemma 5. Let A be a self-adjoint operator in B(K⊗H). Suppose y=
∑k

i=1 xi⊗yi

satisfies (Ay, y)= 1, and Ay /∈ X ⊗Y with X, Y as in Theorem 4. Then there exist
a unit product vector x ⊥ X ⊗ Y and s ∈ (0, 1) such that(

A(sx + (1− s2)1/2 y), sx + (1− s2)1/2 y
)
> 1.

Proof. Because Ay /∈ X ⊗ Y , there exists a product vector x ⊥ X ⊗ Y such that
Re(x, Ay) > 0. Let s ∈ (−1, 1) and t = t (s) = (1− s2)1/2, and let f denote the
function

f (s)= (A(sx + t y), s+ t y)= s2(Ax, x)+ t2(Ay, y)+ 2st Re(Ax, y).

Because (Ay, y)= 1, we get

f ′(0)= 2 Re(Ax, y) > 0.

Therefore, for s > 0 and near 0 we have (A(sx+ t y), s+ t y) > f (0)= 1, proving
the lemma. �
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Proof of Theorem 4. (i) is a direct consequence of Theorem 1, since, as noted in
the proof of Lemma 3, the vector states ωx with x ∈ S(k) generate the set of states
with density operators Cψ with ψ ∈ Po

Pk
.

(ii) By Theorem 1, we have Cφcp = 1−‖C+φ ‖
−1Cφ , so that (Cφcp y, y) = 1, using

the assumption that Cφ y ⊥ y. Furthermore, Cφcp y = y − ‖C+φ ‖
−1Cφ y. Since

Cφ y /∈ X⊗Y , we have Cφcp y /∈ X⊗Y . Thus by Lemma 5, there exist a unit product
vector x ⊥ X⊗Y and s, t = (1− s2)1/2 > 0 such that (Cφcp(sx+ t y), sx+ t y) > 1.
Since sx + t y is a unit vector in S(k + 1), φ is not (k + 1)-positive by part (i),
completing the proof of the theorem. �

Example. We illustrate the above results by an application to the Choi map φ ∈
B(B(C3), B(C3)) defined by

φ((xi j ))=

x11+ x33 −x12 −x13

−x21 x11+ x22 −x23

−x31 −x32 x22+ x33

 .
We have Ct◦φ = (ι⊗ t)Cφ . So if y = x ⊗ x with x = 3−1/2(1, 1, 1) ∈ C3, then

(Cφ y, y)= (Ct◦φ y, y)= 0, and Cφ y 6= 0 6= Ct◦φ y. Hence, by Theorem 4, neither
φ nor t ◦ φ is 2-positive, that is, φ is neither 2-positive nor 2-copositive. Since φ
is an extremal positive map of B(C3) into itself [Choi and Lam 1977], φ cannot
be the sum of a 2-positive and a 2-copositive map, and hence φ is atomic, a result
first proved in [Tanahashi and Tomiyama 1988], and then extended to more general
maps by others (see [Ha 1998] for references).

The Choi map φ also yields an example of a PPT-state on B(C3)⊗B(C3), which
is not separable. Indeed, in [Størmer 1982] we gave an example of a positive matrix
in A in B(C3)⊗ B(C3) such that its partial transpose t⊗ ι(A) is also positive, and
that φ ⊗ ι(A) is not positive. Then A cannot be of the form

∑
Ai ⊗ Bi with

Ai and Bi positive, and hence the state ρ(x) = Tr(A)−1 Tr(Ax) is PPT but not
separable. An example of a PPT state on B(C3)⊗ B(C3) that is not separable was
later exhibited in [Horodecki 1997].
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