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We give some nontrivial relations in the tautological ring of Mg . These are
derived from some new geometric relations obtained by localization on the
moduli of stable quotients, which was recently introduced by A. Marian,
D. Oprea and R. Pandharipande.

1. Introduction

We denote by Mg the moduli space of smooth curves of genus g ≥ 2 over an
algebraically closed field. Let π : Cg → Mg be its tautological family and ωπ
be the dualizing sheaf. We denote by E = π∗ωπ the Hodge bundle. Define κi =

π∗(c1(ωπ )
i+1) ∈ Ai (Mg), λi = ci (E), and in particular, k0 = 2g− 2, k−1 = 0. The

tautological ring R∗(Mg) is defined to be the subring generated by λ-classes and
κ-classes. By Mumford’s formula [1983], the tautological ring is in fact generated
by the κ-classes κ1, . . . , κg−2.

Faber [1999] proposed a series of remarkable conjectures about the structure of
R∗(Mg):

(a) The tautological ring R∗(Mg) is Gorenstein with socle in degree g − 2, and
when an isomorphism Rg−2(Mg)=Q is fixed, the natural pairing

Ri (Mg)× Rg−2−i (Mg)→ Rg−2(Mg)=Q

is perfect.

(b) The [g/3] classes κ1, . . . , κ[g/3] generate the ring R∗(Mg), with no relations in
degrees ≤ [g/3].

(c) Let
∑n

j=1 d j = g− 2 and d j ≥ 0. Then

(1)
∑
σ∈Sn

κσ =
(2g− 3+ n)!

(2g− 2)!!
∏n

j=1(2d j + 1)!!
κg−2,
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where κσ is defined as follows: write the permutation σ = β1 . . . βν(σ ), where we
think of the symmetric group Sn as acting on the n-tuple (d1, . . . , dn). Denote by
|β| the sum of the elements of a cycle β. Then κσ = κ|β1|κ|β2| . . . κ|βν(σ )|.

By now there are many works related to Faber’s conjecture. Looijenga [1995]
illustrated that

dim Rk(Mg)= 0, k > g− 2, and dim Rg−2(Mg)≤ 1.

Faber [1999] proved that actually dim Rg−2(Mg) = 1 and thus R∗(Mg) has the
Gorenstein property. But the perfect pairing conjecture is still open.

Part (b) of the conjecture was proved independently by Morita [2003] and Ionel
[2005] with different methods.

Part (c) of the conjecture (that is, Faber’s intersection number conjecture) is
equivalent to a closed formula of the λgλg−1 Hodge integral, itself a consequence
of the degree-zero Virasoro conjecture for surfaces [Getzler and Pandharipande
1998]. A short and direct proof of that integral formula can be found in [Liu
and Xu 2009]. Recently, Buryak and Shadrin [2009] gave another combinatoric
approach to this problem.

Thus, only the perfect pairing conjecture is open in Faber’s original conjecture.
Liu and Xu [2010] proved some effective recursive relations in the top-degree tauto-
logical ring Rg−2(Mg) based on Faber’s intersection number conjecture. We know
that it is important to find explicit relations in the tautological ring independent of
genus. Faber [1999] also proposed a conjecture that all the tautological relations
can be generated by the Brill–Noether method. Recently, Faber and Pandharipande
have found some counterexamples when g≥24, and thus Faber’s approach may not
produce all tautological relations starting from g = 24. The Brill–Noether method
is an effective way to calculate the tautological relations. Ionel [2005] found some
explicit relations in dimension a = g+b+1−2d for each d ≥ 2, g ≥ 2 and b≥ 0.
As an application, Ionel gave a proof for Part (b) of Faber’s conjecture.

Marian, Oprea and Pandharipande [2009] obtained a vanishing theorem via a
localization technique on the moduli space of stable quotients. Their result leads
to some new geometric relations in the tautological ring. They computed these
three special cases of their new geometric relation:

Case 1. If a = 0, b = 1, and c = 2k (for k ≥ 1), then in Rg−2d−1+2k(Mg),

(2) ρ∗(cg−d−1+2k(F̃d))= 0.

Case 2. If a = 1, b = 1, and c = 2k (for k ≥ 1), then in Rg−2d+2k(Mg),

(3) ρ∗
(
2(K1+ · · ·+ Kd) · cg−d−1+2k(F̃d)+ (2g− 2) · cg−d+2k(F̃d)

)
= 0.
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Case 3. If a = 2, b = 0, and c = 2k (for k ≥ 1), then in Rg−2d+2k(Mg),

(4) ρ∗
(
−2(K1+ · · ·+ Kd − 21 · cg−d−1+2k(F̃d)+ 2d · cg−d+2k(F̃d)

)
= 0.

Combining (3) and (4), we have

(5) ρ∗
(
21 · cg−d−1+2k(F̃d)+ (g+ d − 1)cg−d+2k(F̃d)

)
= 0 in Rg−2d+2k(Mg).

The notation in these formulas is explained in Section 2.
In this note, applying the method of [Ionel 2005], we derive new relations for

the tautological ring in Mg from (2) and (3), which can be considered a partial gen-
eralization of the main results in [Ionel 2005]. We also show that (5) is equivalent
to (3).

Our main results are given by the following proposition.

Proposition 1.1. For each g, d ≥ 2 and k ≥ 1, formula (2) is equivalent to

(6)
[
exp

(1
t
π∗G(t K , w)

)]
tg−2d−1+2kwd

= 0,

and (3) is equivalent to

(7)
[
exp

(1
t
π∗G(t K , w)

)
π∗
(
(2wGw(t K , w)+ 1)K

)]
tg−2d+2kwd

= 0.

Here G(x, w) (as in [Ionel 2005, Definition 2.1]) is the unique formal power series
in x and w that satisfies the recursive formula

(8) xwGww = w(Gw)
2
+ (1− x)Gww − 1

with

(9) G(x, 0)=−
∞∑

a=2

Ba

a(a− 1)
xa,

where Ba denotes the Bernoulli numbers.

Theorem 1.2. For each g, d ≥ 2 and k ≥ 1, formulas (6) and (7) give the following
relations in Rg−2d−1+2k(Mg) and Rg−2d+2k(Mg), respectively:

(10)
[
(1+ 4u)k−1 exp

(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)]

xg−2d−1+2kud
= 0,

(11)
[
(1+ 4u)k−1 exp

(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)

×

(
g− 1−

∞∑
a=0

xa+1κa+1

a∑
j=0

qa, j u j+1
)]

xg−2d+2kud
= 0.
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Here the positive integers qk, j (as in [Ionel 2005, Definition 1.3]) are defined re-
cursively for k ≥ j ≥ 0 by the relation

(12) qk, j = (2k+ 4 j − 2)qk−1, j−1+ ( j + 1)qk−1, j +

k−1∑
m=0

j−1∑
l=0

qm,lqk−1−m, j−1−l,

with initial condition q0,0 = 1; and the coefficients ck, j , for k ≥ 1 and k ≥ j ≥ 0,
by the relation

(13) qk, j = (2k+ 4 j)ck, j + ( j + 1)ck, j+1,

for all k ≥ 1 and k ≥ j ≥ 0.

When k = 1, formulas (10) and (11) are just [Ionel 2005, (1.10) and (1.9)] with
b = 0 and b = 1 respectively.

Theorem 1.3. Formula (5) is equivalent to formula (3).

2. Preliminaries

In this section, we introduce the notations and results that we use in this paper. We
denote by Cd

g the d-fold of not necessarily distinct fiber products of Cg over Mg,
parametrizing smooth curves of genus g with n-tuples of necessary distinct points,
that is, Cd

g = {(C, x1, . . . , xd)|xi ∈ C}. Let ρ : Cd
g→Mg be the map forgetting all

the points. Then ρ is the composition of morphisms πi : Ci
g→ Ci−1

g forgetting the
i-th point, ρ = π1π2 . . . πd ; here π1 = π .

There are some natural classes in A1(Cd
g): Ki = p∗i (c1(ωπ )) where pi is the i-th

projection from Cd
g to Cg. K1 is written as K in the following. Di j is the diagonal

class of Cd
g where the points xi = x j .

Faber [1999] collected the following ρ-rules, due to Harris and Mumford [1982]:

Formularium. (a) Every monomial in the classes

Ki (1≤ i ≤ d) and Di j (1≤ i < j ≤ d)

on Cd
g can be rewritten as monomial M pulled back from Cd−1

g times either a single
diagonal Did or a power K l

d of Kd by a repeated application of the following
substitution rules:

Did D jd → Di j Did (i < j < d),
D2

id →−Ki Did (i < d),
Kd Did → Ki Did (i < d).

(b) For M a monomial pulled back from Cd−1
g ,

(πd)∗(M · Did)= M,
(πd)∗(M · K l

d)= M · ρ∗(kl−1).
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For convenience, Ionel [2005] introduced the more general classes in A∗(Cd
g).

If 1 ≤ i1 < · · · < ik ≤ d is a sequence of integers, let Di1,...,ik be the class of the
stratum of Cd

g , where all the points xil are equal for l = 1, . . . , k. Given an un-
ordered partition {J1, . . . , Jk} of {x1, . . . , xd}, we denote by 1J1,...,Jk =

∏d
i=1 DJi

the codimension d − k multidiagonal in Cd
d , where all points in each Ji are equal.

Given such a stratum 1J1,...,Jk , we denote by x Ji any one of the points of Ji , and
by K Ji its corresponding K -class; also |Ji |> 0 denotes the number of points in Ji .
If I, J are two subsets of {1, . . . , d} with I ∩ J 6=∅, then

(14) DI · DJ = (−K I )
|I∩J |−1 DI∪J .

Let f (x1, . . . , xd) ∈ Q[x1, . . . , xd ] be an arbitrary polynomial. Then by (14) and
the ρ-rules, we have

(15) ρ∗(1J1,...,Jk · f (K1, . . . , Kd))= π∗ f (K , . . . , K ).

Denote by Fd = (πd+1)∗
(
OCd+1

g
(D1,d+1+ · · ·+ Dd,d+1)/OCd+1

g

)
the jet bundle at d

points, and let E∨ be the dual of the Hodge bundle. By direct calculation,

c(Fd)= c(Fd−1)(1− Kd + D1,d + · · ·+ Dd−1,d).

Let F̃d = ρ
∗E∨− Fd . The geometric relation formulated in [Ionel 2005] is

(16) (2d + 2g− 2) · ρ∗(cg+1−d(F̃d)K b
1 )= (d − 1)κb−1 · ρ∗(D12 · cg+1−d(F̃d)),

for d ≥ 2, g ≥ 2 and b ≥ 0.
Via the main formula [Ionel 2005, Proposition 2.3], we have

(17) ct(F̃d)=
ρ∗(ct(E

∨))

ct(Fd)

= ρ∗ exp
(
−

∞∑
a=1

Ba+1

a(a+ 1)
κata

)
·

∞∑
r=0

∑
{J1,...,Jr }

td−r1J1,...,Jr

r∏
i=1

H|Ji |(t K Ji ),

where the last sum is over all (unordered) partitions {J1, . . . , Jr } of {x1, . . . , xd},
and the formal power series

(18) G(x, w)=
∞∑

d=0

Hd(x)
wd

d!
=

∞∑
k=0

∞∑
j=0

ak j xkw j

satisfies (8) and (9). The main result of [Ionel 2005] is that relation (16) gives the
following relation in Rg+1+b−2d(Mg):
(19)[
exp

(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)
·

(
κb−1−2

∞∑
a=0

κa+bxa+1
a∑

j=0

qa, j u j+1
)]

xg+2−2d ud
=0,
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where g, d ≥ 2 and b ≥ 0. For b = 0, this relation simplifies to

(20)
[
exp

(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)]

xg+1−2d ud
= 0.

As an application of the relation (19), Part (b) of Faber’s conjecture is proved.
Marian, Oprea and Pandharipande [Marian et al. 2009] obtained a vanishing

theorem via a localization technique on the moduli space of stable quotients. We
describe their main statement for the reader’s convenience.

Given an element [C, p̂1, . . . , p̂d ] ∈Cd
g , there is a canonically associated stable

quotient

(21) 0→ OC(−

d∑
j=1

p̂ j )→ OC → Q→ 0.

Consider the universal curve π :U → Cd
g with universal quotient sequence

0→ SU → OU → QU → 0

obtained from (21). Let Fd =−Rπ∗(S∗U ) ∈ K (Cd
g) be the class in K -theory. With

some computations, we have

(22) c(Fd)= c(F̃d)=
ρ∗(c(E∨))

c(Fd)
.

Consider the proper morphism

ν : Qg(P
1, d)→Mg.

The universal curve
5 :U → Qg(P

1, d)

carries the basic divisor classes s = c1(S∗U ) and ω = c1(ωπ ).
Let c > 0 and a, b ≥ 0. Then by (22), the geometric relation in the tautological

ring shows that [Marian et al. 2009, Proposition 5]

(23) ρ∗

(
5∗(saωb) · cg−d−1+c(F̃d)

+ (−1)g−d−1[5∗((s− 1)aωb) · c−(F̃d)
]g−d−2+a+b+c

)
= 0

in R∗(Mg), where c−(F̃) denotes the total Chern class of F̃d evaluated at −1. Then
they obtained the following three special cases of (23).

Case 1. If a = 0, b = 1, and c = 2k (for k ≥ 1), then in Rg−2d−1+2k(Mg),

(24) ρ∗(cg−d−1+2k(F̃d))= 0.
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Case 2. If a = 1, b = 1, and c = 2k (for k ≥ 1), then in Rg−2d+2k(Mg),

(25) ρ∗
(
2(K1+ · · ·+ Kd) · cg−d−1+2k(F̃d)+ (2g− 2) · cg−d+2k(F̃d)

)
= 0.

Case 3. If a = 2, b = 0, and c = 2k (for k ≥ 1), then in Rg−2d+2k(Mg),

(26) ρ∗
(
−2(K1+ · · ·+ Kd − 21 · cg−d−1+2k(F̃d)+ 2d · cg−d+2k(F̃d)

)
= 0,

where 1=
∑

1≤i< j≤d Di j .

Combining (25) and (26), we have

(27) ρ∗
(
21 · cg−d−1+2k(F̃d)+ (g+ d − 1)cg−d+2k(F̃d)

)
= 0 in Rg−2d+2k(Mg).

In the next section, we show how to get similar results with (19) and (20) by the
same combinatorial method as in [Ionel 2005].

3. Proof of the main results

With a minor modification of [Ionel 2005, Lemma 2.5], we have:

Lemma 3.1. In terms of the generating function G(x, w) defined by (8) and (9),
we have

(28)
∞∑

d=0

wd t−d

d!
ρ∗ct(F̃d)= exp

(1
t
ρ∗G(t K , w)

)
and

(29)
∞∑

d=1

wd−1t−d

d!
ρ∗(ct(F̃d)K j )= exp

(1
t
ρ∗G(t K , w)

)
·

1
t
ρ∗
(
Gw(t K , w)K j

)
,

for j = 1, . . . , d.

Proof. The ct(F̃d), after being pushed forward by ρ, depends only on the lengths li

of sets Ji . By (17), and some combinatoric enumeration, it is easy to get (28) and
(29); see [Ionel 2005] for details. �

Therefore, by Lemma 3.1, identities (2) and (3) give rise to (6) and (7) in
Proposition 1.1, respectively.

In order to get Theorem 1.2, we need to better understand the structure of the
function G(x, w) defined by (8) and (9). Ionel [2005, Lemmas 3.1 and 3.2] ob-
tained the following expansions for Gw(x, w) and G(x, w):

(30) Gw(x, w)

=
−1+
√

1+4w
2w

+
x

1+4w
+

∞∑
k=1

k∑
j=0

xk+1qk, j (−w)
j (1+ 4w)− j−k/2−1,
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where the coefficients qk, j are defined by (12) and

(31) G(x, w)=G(0, w)+ x
4

ln(1+4w)−
∞∑

k=1

∞∑
j=0

xk+1ck, j (−w)
j (1+4w)− j−k/2,

where the coefficients ck, j are related to the coefficients qk, j by (13). Also, we
need the variable transformation formula used in [Ionel 2005].

Lemma 3.2 [Ionel 2005, Lemma 3.3]. Let P(x, w) be a formal power series in
x and w. Denote by P̂(y, u) the formal power series in y and u obtained from
P(x, w) after the change of variables u =−w/(1+ 4w) and y = x/

√
1+ 4w.

(32) [P(x, w)]xawd = (−1)d [(1+ 4u)(a+2d−2)/2 P̂(y, u)]yaud .

By the expansion (31),

(33) 1
t
π∗G(t K , w)= κ0

4
ln(1+ 4w)−

∞∑
a=1

taκa

∞∑
j=0

ca, j (−w)
j (1+ 4w)− j−a/2.

Using the change of variables,

(34) t→ (1+ 4w)
1
2 y, w→

−u
1+4u

, (1+ 4w)→ 1
1+4u

,

we have

(35) exp
(1

t
π∗(G(t K , w))

)
= (1+ 4u)−κ0/4 exp

(
−

∞∑
a=1

yaκa

∞∑
j=0

ca, j u j
)
.

Similarly, by the expansion (30),

π∗
(
(2wGw(t K , w)+ 1)K

)
= π∗

(
(1+ 4w)1/2K + 2w

1+4w
t K 2

+

∞∑
a=1

a∑
j=0

ta+1K a+2qa, j (−w)
j 2w(1+ 4w)− j−a/2−1

)

= (1+ 4w)
1
2

(
κ0− 2

∞∑
a=0

ta+1κa+1

a∑
j=0

qa, j (−w)
j+1(1+ 4w)− j−(a+1)/2−1

)
.

By the change of variables

(36) t→ (1+ 4w)
1
2 y, w→

−u
1+4u

, (1+ 4w)→ 1
1+4u

,
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we get

(37) π∗
(
(2wGw(t K , w)+ 1)K

)
= (1+ 4u)−1/2

(
κ0− 2

∞∑
a=0

ya+1κa+1

a∑
j=0

qa, j u j+1
)
.

By Lemma 3.2, (35) and (37), we have[
exp

(1
t
π∗G(t K , w)

)]
tg−2d−1+2kwd

= (−1)d
[
(1+ 4u)k−1 exp

(
−

∞∑
a=1

yaκa

∞∑
j=0

ca, j u j
)]

yg−2d−1+2kud
,

[
exp

(1
t
π∗G(t K , w)

)
π∗
(
(2wGw(t K , w)+ 1)K

)]
tg−2d+2kwd

=

[
(1+ 4u)k−1 exp

(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)

(
g− 1−

∞∑
a=0

xa+1κa+1

a∑
j=0

qa, j u j+1
)]

xg−2d+2kud
.

By formulas (6) and (7), Theorem 1.2 is proved.

Theorem 3.3. Formula (3) is equivalent to formula (5).

Proof. By the definition of F̃d ,

π∗d (ct(F̃d−1))= ct(F̃d)(1− t Kd + t D1,d + · · ·+ t Dd−1,d).

After being pushed forward by ρ,

0= ρ∗π∗d (ct(F̃d−1))= ρ∗(ct(F̃d))− tρ∗(Kd · ct(F̃d))+ (d − 1)tρ∗(D1,d · ct(F̃d)).

In particular,

(d−1)
[
ρ∗(D1,d ·ct(F̃d))

]
tg−d−1+2k =

[
ρ∗(Kd ·ct(F̃d))

]
tg+d−1+2k−

[
ρ∗(ct(F̃d))

]
tg−d+2k .

In fact
ρ∗(Di, j · ct(F̃d))= ρ∗(D1,d · ct(F̃d)),

and the equivalence of formulas (3) and (5) is deduced from the identity

2
[
ρ∗(1 · ct(F̃d))

]
tg−d−1+2k = d(d − 1)

[
ρ∗(D1,d · ct(F̃d))

]
tg−d−1+2k

= d
[
ρ∗(Kd · ct(F̃d))

]
tg−d−1+2k − d

[
ρ∗(ct(F̃d))

]
tg−d+2k

=−(g− 1)
[
ρ∗(ct(F̃d))

]
tg−d+2k − d

[
ρ∗(ct(F̃d))

]
tg−d+2k

=−(g+ d − 1)
[
ρ∗(ct(F̃d))

]
tg−d+2k . �
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Example 3.4. We give some low genus examples for Theorem 1.2. By the recur-
sion relations (12) and (13) of constants qk, j , ck, j , we get

q0,0 = 1,

q1,0 = 1, q1,1 = 5,

q2,0 = 1, q2,1 = 18, q2,2 = 60,

q3,0 = 1, q3,1 = 47, q3,2 = 442, q3,3 = 1105,

. . .

and
c1,0 =

1
12 , c1,1 =

5
6 ,

c2,0 = 0, c2,1 = 1, c2,2 = 5,

c3,0 =−
1

360 , c3,1 =
61
60 , c3,2 =

221
12 , c3,3 =

1105
18 ,

. . .

Taking g = 5, d = 3, k = 2, formula (10) gives a relation in R2(M5):

(38) 25
18κ

2
1 − 20κ2 = 0.

Taking g = 6, d = 3, k = 2, formula (10) gives a relation in R3(M6):

(39) −
275
1296κ

3
1 +

55
6 κ1κ2−

2431
18 κ3 = 0.

It is easy to check that the relations (38) and (39) match the results in [Faber 1999].

We have written a Maple program to calculate more relations through Theorem 1.2.
Unfortunately, it is difficult to determine if they contain the new tautological rela-
tions in high genus beyond those obtained by Faber.

4. Conclusion

The new relations in the tautological ring obtained in this note, that is, formulas
(10) and (11), can be regarded as a partial generalization of formula (19) (which is
[Ionel 2005, (1.9)]) in the special cases b = 0, 1.

When b = 0, formula (19) is just (20):[
exp

(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)]

xg+1−2d ud
= 0,

which is the special case of formula (10) with k = 1.
For b = 1, (19) becomes[

exp
(
−

∞∑
a=1

xaκa

a∑
j=0

ca, j u j
)
·

(
g−1−

∞∑
a=0

κa+1xa+1
a∑

j=0

qa, j u j+1
)]

xg+2−2d ud
= 0,
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which is the special case of (11) with k = 1.
However, our results can not cover formula (19) when b ≥ 2. In this note, we

only consider three special cases of (23) to deduce our main results. We hope that
one can obtain a more general formula, like (11), from formula (23), with the same
method.1

As mentioned in the introduction, it is important to find explicit relations in the
tautological ring in studying Faber’s conjecture. From this note, we see that the
stable quotient method introduced by Marian, Oprea and Pandharipande [2009]
provides a new and effective way to obtain the relations in the tautological ring.
With this method, recently, Pandharipande [2009a; 2009b] introduced the κ ring
of the moduli of curves of compact type and studied its algebraic structure. In our
further study, we hope to find more applications of the stable quotient method.
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