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The mapping class group of a Heegaard splitting is the group of connected
components in the set of automorphisms of the ambient manifold that map
the Heegaard surface onto itself. For the genus-three Heegaard splitting of
the 3-torus, we find an eight element generating set for this group. Six of
these generators induce generating elements of the mapping class group of
the 3-torus and the remaining two are isotopy trivial in the 3-torus.

1. Introduction

Given a 3-manifold M and a Heegaard splitting (6, H1, H2) of M , consider the set
Aut(M) of orientation preserving automorphisms M → M . The set of connected
components of Aut(M) forms a group Mod(M) called the mapping class group.
We will define Aut(M, 6) to be the subset of Aut(M) consisting of maps that
send 6 onto itself. The set of connected components of Aut(M, 6) again forms a
group, which we will denote Mod(M, 6).

The 3-torus T 3
= S1

× S1
× S1 is known to have a unique (up to isotopy)

genus-three Heegaard splitting (6, H1, H2) [Boileau and Otal 1990]. The map-
ping class group Mod(T 3) is isomorphic to SL(3,Z). However, in Mod(T 3, 6)

there are automorphisms that are nontrivial on 6 but are isotopy trivial in T 3.
Thus Mod(T 3, 6) is in some sense much larger than Mod(T 3). We will prove the
following:

Theorem 1. For (6, H1, H2) a genus-three Heegaard splitting of T 3, the group
Mod(T 3, 6) is generated by the automorphisms α12, α21, α13, α31, α23, α32, σ
and τ defined in Sections 2 and 3.

This is the first nontrivial example of a genus-three Heegaard splitting of an
irreducible Heegaard splitting for which a finite generating set can be explicitly
described. Goeritz [1933] found a finite generating set for the mapping class group
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of the genus-two Heegaard splitting of S3. Scharlemann [Scharlemann 2004] re-
cently published a new proof of this result after discovering that the two purported
proofs of the higher-genus cases are fatally flawed. Akbas [2008] later found a
finite presentation for this group and shortly afterwards, Cho [2008] presented a
new proof that this presentation is correct.

For genus-one Heegaard splittings of lens spaces, the mapping class group is
finite and easy to understand. For minimal Heegaard splittings of connect sums of
S1
× S2, the mapping class group of the Heegaard splitting is isomorphic to the

mapping class group of a handlebody, and is thus understood. These two classes
and the genus-two Heegaard splitting of S3 are the only previously understood
examples.

The problem of understanding mapping class groups of Heegaard splittings is
equivalent to problems in algebra and geometry: Algebraically, the mapping class
group of (M, 6) is the intersection of the subgroups of Mod(6) that extend into the
two handlebodies or that take one handlebody to the other. These two subgroups are
conjugate (by the gluing map) and each is finitely generated, but from the algebraic
viewpoint there appears to be no general method for calculating their intersection.

Geometrically, for genus greater than two, the mapping class group is the group
of automorphisms of the curve complex preserving two handlebody sets. Because
the large scale geometry of the curve complex is understood, this point of view is
useful for high distance Heegaard splittings. (See [Namazi 2004].) However, the
local geometry of the curve complex is not well behaved, making this a difficult
problem for low distance Heegaard splittings. By appealing to the topology of T 3,
we can solve this problem for this one case. It seems that in general, solving this
problem in the 3-manifold setting should be more reasonable than the equivalent
problems in algebra and geometry.

2. The mapping class group

A Heegaard splitting for a 3-manifold M is a triple (6, H1, H2)where H1, H2⊂M
are handlebodies (connected manifolds homeomorphic to closed regular neighbor-
hoods of graphs in S3) and6 is a compact, connected, closed and orientable surface
embedded in M such that H1 ∪ H2 = M and ∂H1 =6 = ∂H2 = H1 ∩ H2.

As defined above, Mod(M, 6) is the group of equivalence classes of orientation
preserving automorphisms of M that take 6 onto itself. Two automorphisms are
equivalent if there is an isotopy from one to the other by automorphisms of M that
take 6 onto itself.

Each connected component of Aut(M, 6) is a subset of a connected component
of Aut(M), so the inclusion map in Aut(M) determines a canonical homomorphism
i : Mod(M, 6)→ Mod(M). In other words, i is induced by “forgetting” 6 and
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considering each element of Mod(M, 6) as an automorphism of M . For further
discussion of this homomorphism, see [Johnson and Rubinstein 2006]. The kernel
of i is the subgroup of Mod(M, 6) consisting of automorphisms that are isotopy
trivial on M but whose restrictions to 6 are not isotopy trivial. (If we include
orientation reversing automorphisms of M , then there is one exception to this fact:
any minimal-genus Heegaard splitting of a connect sum of S1

× S2s will have an
automorphism that interchanges the handlebodies, but restricts to the identity on
the boundary.)

Consider R3 with axes labeled x1, x2, x3. Let T1, T2, T3 be isometries of R3

where Ti is translation by 1 unit along the axis xi . We can think of T 3 as the
quotient of R3 by the group generated by T1, T2 and T3. Each automorphism of T 3

lifts to an automorphism of R3. Within the isotopy class for this automorphism,
there is a representative that lifts to R3 such that the automorphism of R3 fixes the
origin. It sends the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) to integral vectors v1, v2, v3,
respectively. Thus an automorphism of T 3 determines an element of the matrix
group GL3(Z).

The matrix determined by an automorphism is unique and an element of GL3(Z)

is represented by an automorphism of T 3 if and only if its determinant is one.
Thus Mod(T 3) is isomorphic to the group SL3(Z) of 3× 3 integral matrices with
determinant one. This group is generated by the six automorphisms that send xi to
xi+x j for i 6= j . Let Ai j be this automorphism for each distinct pair i, j ∈{1, 2, 3}.

We would like to construct a Heegaard splitting for T 3 that fits naturally into
the picture of the 3-torus described above. Let K1 ⊂ T 3 be the image in T 3 of the
three edges in R3 from the origin to (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.
This K1 is a graph with a single vertex and three edges. Let K2 be the image in T 3

of the same three edges, translated by the vector ( 1
2 ,

1
2 ,

1
2). This is again a graph

with one vertex and three edges.
Let H1 be the set of points in T 3 whose distance to K1 (in the Euclidean metric

on T 3) is greater than or equal to their distance to K2. Let H2 be the set of points
closer to K2 and let6 be the set of points equidistant to K1 and K2. Each of H1, H2

is the closure of a regular neighborhood of K1, K2, respectively so each set is a
handlebody. Moreover, 6 is the boundary of each handlebody, so (6, H1, H2) is a
(genus-three) Heegaard splitting for T 3, shown on the right. (Gluing opposite faces
of the cube by translations forms T 3. The image in T 3 of
the surface shown is the Heegaard splitting 6. It is drawn
here as a smooth surface, though the way it’s defined it
is piecewise linear.) Boileau and Otal [1990] showed that
two Heegaard splittings of T 3 are isotopic if they have the
same genus, so (6, H1, H2) is the standard (up to isotopy)
genus-three Heegaard splitting of T 3.
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Figure 1. The move αi j replaces the edge along the xi axis with
an edge that follows the x j axis, then the xi axis.

Orient each edge of K1 so that it points in the increasing direction along its axis.
Choose distinct i, j, k ∈ {1, 2, 3}. Applying the transformation Ai j to T 3 sends the
edges of K1 along the x j and xk axes onto themselves and sends the edge along
the xi axis to the diagonal of a square in the xi -x j plane. Isotope this diagonal
across the square into a neighborhood of the original spine so that it first passes
along the edge in the x j axis and then along the edge in the xi axis. The resulting
spine is shown in Figure 1.

There is a unique element αi j of Mod(T 3, 6) that maps to Ai j in Mod(T 3) and
sends K1 onto the new spine defined above. If we had chosen to slide the diagonal
edge in the opposite direction across the square, we would have gotten a different
element of Mod(T 3, 6). Because each αi j maps to Ai j , the images in i of {αi j }

generate Mod(T 3). In order to extend this set of elements to a generating set for
Mod(T 3, 6), we must understand the kernel of i .

3. The kernel

In this section, we will define elements σ and τ of Mod(T 3, 6) that are nontrivial
in Mod(T 3, 6), but isotopy trivial in Mod(T 3). First consider the translation of R3

by the vector (1
2 ,

1
2 ,

1
2). This descends to an automorphism σ of T 3 that sends the

handlebody H1 onto H2 and sends H2 onto H1. The translation of R3 is isotopic
to the identity by a family of translations, inducing an isotopy of T 3 taking σ to
the identity. Thus σ is in the kernel of i . Note that there are many automorphisms
that are isotopic to the identity and swap the two handlebodies. For our purposes,
we could have picked any of these, but σ happens to be the easiest to define. (Note
that σ has order two in Mod(T 3, 6).)

The second automorphism in the kernel that we will define is called a torus
twist and can be defined on Heegaard splittings in a large family of manifolds.
Let D1 ⊂ H1 and D2 ⊂ H2 be properly embedded, essential disks such that the
intersection of ∂D1 and ∂D2 is exactly two points. We will assume that the alge-
braic intersection number of ∂D1 and ∂D2 is zero, though this is not necessary in
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D2

D2

D1

Figure 2. A neighborhood of the two disks is a solid torus.

general. In [Johnson and Rubinstein 2006] showed that D1 and D2 determine an
element of the kernel of i as follows:

Let N be the closure of a regular neighborhood of D1 ∪ D2. Because there are
two points of intersection, N is a solid torus, as in Figure 2. (On the left, the disk D2

is shown cut in half, at the top and bottom of the figure.) Because the orientations
at the two intersections are opposite, the surface 6∩ N is a four punctured sphere
whose boundary consists of four simple closed curves in ∂N .

The loops 6 ∩ ∂N are parallel longitudes in ∂N . There is a one-parameter
family of automorphisms of the torus, beginning and ending at the identity, such
that each automorphism takes each longitude onto itself and such that the image
of any point in the longitude under this family goes around the loop once. This
family defines an homeomorphism from T 2

× [0, 1] onto itself that is the identity
on its boundary. A torus twist is a homeomorphism of the 3-torus consisting of this
map on a regular neighborhood of ∂N and the identity everywhere else. Because
N is a solid torus, such an automorphism is isotopic to the identity. This is, in
some sense, a 3-dimensional version of a Dehn twist. A torus twist around the ∂N
constructed above induces an automorphism of 6 consisting of Dehn twists along
loops parallel to 6 ∩ ∂N .

A torus twist is defined by the solid torus N constructed from a pair of disks
D1, D2. If τ is a torus twist and φ is any automorphism of (M, 6) then φ−1τφ is
a torus twist around φ(N ), which is defined by the disks φ(D1), φ(D2). We will
choose a specific pair of disks and show that the kernel of i is generated by torus
twists that are conjugates of this fixed torus twist.

For each i ∈ {1, 2, 3}, the image in T 3 of the plane {(x1, x2, x3) | xi = 0} in-
tersects H2 in a properly embedded, essential disk Di

2 and the image of the plane
{(x1, x2, x3) | xi =

1
2} intersects H1 in a disk Di

1. For each i , j the disks Di
1 and D j

2
are disjoint when i = j and intersect in two points when i 6= j . When i 6= j , a
regular neighborhood of Di

1 ∪ D j
2 is a solid torus parallel to the xk axis (k 6= i, j)
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Figure 3. The torus defining an automorphism τi j .

and we can twist in the positive direction along this axis. Thus for each choice
of distinct i and j , Di

1 and D j
2 define a torus twist τi j . One of these is shown

in Figure 3.
For i 6= j , the boundary of a regular neighborhood of Di

1 ∪ D j
2 intersects 6 in

loops parallel to the loops of intersection with the boundary of a neighborhood of
D j

1 ∪ Di
2. However, twisting in the positive direction around the first solid torus

induces oppositely oriented Dehn twists along these loops than twisting in the
positive direction along the second solid torus. Thus τi j = τ

−1
j i on 6. For our last

generator, define τ = τ12.

4. Torus twists

Let G ⊂Mod(T 3, 6) be the subgroup generated by {αi j , σ, τ }. In order to show
that G = Mod(T 3, 6), we will show first that the kernel of i is generated by a
certain class of torus twists and second that these torus twists are all conjugate to τ
by elements of G. We will begin by defining some relations on elements of G.
Define ri j = αi jα

−1
j i αi jτ jk . The reader can check the following:

Lemma 2. Let i, j, k ∈ {1, 2, 3} be distinct. Then the automorphism ri j takes the
image in T 3 of the xi axis onto the image of the j axis and takes the x j axis onto
the negative i axis.

Because τ = τ12= τ
−1
21 , the rotations r31=r−1

13 and r32=r−1
23 are in G. Moreover,

we have that τ13 = r23τ12r−1
23 so τ13 is in G, as is r12 and therefore τ23. Thus the

torus twists {ti j } are all contained in G.
Let S be the image in T 3 of the plane {(x1, x2, x3) | x3 = 0} in R3. Let

φ ∈Mod(T 3, 6)

be a torus twist defined by disks D1 ⊂ H1 and D2 ⊂ H2. Let T be the boundary of
a regular neighborhood of D1∪D2, that is, the torus that defines the twist. Assume
S and T are transverse.
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Lemma 3. If T is a torus defining a torus twist on 6 and T ∩ S is connected and
essential in T then φ is conjugate to τ by elements of G (and thus φ is in G).

Proof. Because the intersection T ∩S is a single loop and this loop is essential in T ,
the complement T \ S is an annulus A⊂ T . The intersection of T with 6 consists
of four loops, each of which intersects A in a properly embedded, essential arc.
These arcs cut the twice punctured, genus-two surface 6 \ S into planar pieces.
Because the pieces are planar, the arcs must cut 6 \ S into two annuli.

The intersection H1 ∩ S is a punctured torus S′ ⊂ S. The intersection of T
with S′ is a pair of properly embedded arcs (with endpoints in T ∩6) that cut S′

into a disk and an annulus. There is a spine for S′ such that one edge of the spine
intersects T in two points and the other edge is disjoint from T . Let γ1 be the edge
that intersects T and γ2 the edge disjoint from T .

Let γ ′1 be the edge of the spine K1 for H1 that is the image of the x1 axis of R3.
Let γ ′2 be the edge of K coming from the x2 axis. These two edges form a spine
for S. By applying the generators α12, α21, τ13 and τ23, one can send γ ′1, γ ′2 onto
any spine for S′. In particular, one can send these edges onto γ1 and γ2. This
automorphism sends the torus defined by D1

1 and D2
2 onto T so conjugating τ by

this automorphism produces φ. �

5. Weak reducing disks

Let D1 ⊂ H1 and D2 ⊂ H2 be properly embedded, essential disks in the standard
Heegaard splitting (6, H1, H2) of T 3.

Definition 4. The disks D1, D2 are a weak reducing pair if the boundary of D1

can be isotoped disjoint from ∂D2.

Each of the pairs of disks Di
1, Di

2 constructed above is a weak reducing pair.

Lemma 5. A weak reducing pair of disks determines a unique isotopy class of
incompressible tori in T 3.

Proof. First note that (6, H1, H2) is irreducible because cutting6 along a reducing
sphere would produce a genus-two Heegaard splitting. This is impossible because
π1(T 3) has rank three. Thus the boundaries of D1 and D2 cannot be isotopic.

We will see momentarily that both D1 and D2 must be nonseparating disks in
H1, H2, respectively, but for now note that if D1 is separating, then it cuts H1 into
a genus-two handlebody and a genus-one handlebody. The boundary of D2 must
be contained in the boundary of the genus-two handlebody so a (nonseparating)
meridian disk for the genus-one handlebody will be disjoint from D2. Thus if
D1 is separating then it uniquely determines a nonseparating disk in H1 disjoint
from ∂D2 and we can replace D1 with this disk. Likewise, if D2 is separating then
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we can replace D2 with the unique nonseparating disk in H2 determined by D2.
Thus we can assume D1 and D2 are nonseparating.

Scharlemann and Thompson [1994] showed that given a pair D1⊂ H1, D2⊂ H2

of disjoint essential disks, one can form a generalized Heegaard splitting, consisting
of four compression bodies G1,G2,G3,G4 such that G1 ∩G2 = ∂+G1 = ∂+G2,
G2 ∩G3 = ∂−G2 = ∂−G3 and G3 ∩G4 = ∂+G3 = ∂+G4. The thin surface

S = ∂−G2 = ∂−G3

is the result of compressing 6 across D1 and D2. Since ∂D1 and ∂D2 are nonsep-
arating in the genus-three surface 6, the surface S consists of one or two tori.

By [Scharlemann and Thompson 1994], if S is compressible then the generalized
Heegaard splitting can be weakly reduced further, in which case one of the thin
levels will contain a sphere. This implies that the original Heegaard splitting is
reducible. Because the genus-three Heegaard splitting of T 3 is irreducible, S must
consist of incompressible tori.

Because every incompressible torus in T 3 is nonseparating, S must consist of
two parallel incompressible tori whose union is separating, though each is non-
separating on its own. There was no choice involved in the construction of S, and
the two components of S are isotopic, so D1 and D2 define a unique isotopy class
of incompressible tori (shown in Figure 4). �

D1
2

D1
1

Figure 4. Compressing 6 along a weak reducing pair produces a
pair of incompressible tori.

Lemma 6. If D1 and D2 are a weak reducing pair then each of ∂D1 and ∂D2 is
nonseparating in 6. If D′2 is an essential, properly embedded disk in H2 disjoint
from ∂D1 then D′2 is isotopic to D2. Similarly, if D′1 is essential and properly
embedded in H1 and ∂D′1 is disjoint from ∂D2 then D′1 is isotopic to D1.

In other words, a disk in H1 or H2 is half of at most one weak reducing pair.
(Some disks are not half of any weak reducing pair.)
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Proof. Let D1 and D2 be a weak reducing pair for (6, H1, H2). First assume that
each of D1 and D2 is nonseparating. As in the proof of Lemma 5, compressing 6
along D1 and D2 produces a surface S consisting of two parallel incompressible
tori. If we first compress S across D1 then we get a surface isotopic to the boundary
of H2 ∪ N (D1), where N (D1) is the closure of a regular neighborhood of D1.

Compressing ∂(H2 ∪ N (D1)) across D2 produces a pair of parallel tori that
cut T 3 into two pieces homeomorphic to T 2

×[0, 1]. Thus H2∪ N (D1) is homeo-
morphic to attaching a one-handle to T 2

× [0, 1] with ends on opposite boundary
tori. Any compressing disk for ∂H2 that is disjoint from D1 will be a compressing
disk for ∂(H2 ∪ N (D1)). Any compressing disk for ∂(H2 ∪ N (D1)) is isotopic to
a meridian of the one handle so there is a unique compressing disk for H2 disjoint
from D1. In other words a compressing disk D′2 will be isotopic to D2. The same
argument with D1 and D2 reversed shows that any disk in H1 disjoint from D2 is
isotopic to D1.

If D2 is separating and D1 is nonseparating then, as noted in the proof of
Lemma 5, there is a nonseparating disk D′2 that is disjoint from both D1 and D2.
Because D1 and D′2 are disjoint and each is nonseparating, we have just shown
that D2 must be isotopic to D′2. Thus if D1 is nonseparating then D2 must be
nonseparating.

Finally, if D1 is separating then there is a nonseparating disk D′1 disjoint from
D1 and D2. Because D′1 and D2 are disjoint and D′1 is nonseparating, D2 must
be nonseparating. Because D′1 and D2 are disjoint and each is nonseparating, D1

must be isotopic to D′1, so D1 is nonseparating. �

6. Graphics and disks

The key to the proof of Theorem 1 is the following lemma:

Lemma 7. Let D1, D2 and D′1,D′2 be weak reducing pairs. Then the incompress-
ible tori determined by the two pairs are isotopic in T 3 if and only if there is a
sequence of torus twists on (6, H1, H2) taking D′1, D′2 onto D1, D2 such that each
torus twist is along a torus that cuts 6 into planar surfaces and intersects the
incompressible torus defined by D1, D2 in a single loop.

This will be proved in Section 8. The proof uses Morse functions and stable
functions on 3-manifolds, which we will describe in this and the next sections.

Let f : T 3
→ R be a Morse function on T 3 with one index zero critical point

at level 0, three index one then three index two critical points (at distinct levels),
then one index three critical point at level 1. Let π : T 3

→ S1 be a fiber bundle
map such that π−1(s) is a torus for each s ∈ S1. We can think of π as a circle
valued Morse function on T 3. As was shown in [Kobayashi and Saeki 2000], after
an arbitrarily small isotopy the product of two Morse functions on a 3-manifold



84 JESSE JOHNSON

M is a stable function from M to R2. The same argument in this situation implies
that after an arbitrarily small isotopy, the product of f and π is a stable function
f ×π : T 3

→ [0, 1]× S1.
Assume f and π have been isotoped so that F = f × π is stable. For each

t ∈ [0, 1], define ft to be the level surface f −1(t). Define πt to be the restriction
of π to ft . As was shown in [Kobayashi and Saeki 2000], the discriminant set J

of F is a one dimensional submanifold in T 3, whose image F(J) is a finite graph
in [0, 1]× S1, called the graphic of f . We will say that F is generic if F is stable
and for any s ∈ S1, there is at most one vertex of F(J) in the line [0, 1]× {s}.

Because f is Morse, ft is a surface for all but finitely many values of t . Because
F is stable, πt is a Morse function on ft for all but finitely many of the regular
values of t . If F is generic then at the values of t where πt fails to be Morse, πt will
have either exactly two critical points at the same level or exactly one degenerate
critical point. (If F is stable but not generic, there will be a value of t where there
are more than one pairs of critical points at the same level.) Let `1 ∈ [0, 1] be the
level of the highest index one critical point in f and let `2 be the level of the lowest
index two critical points. (By assumption, `1 < `2.)

Assume some level set ft is equal to 6 (as a subset of T 3) for some t ∈ (`1, `2).
Then the surfaces { ft | t ∈ (`1, `2)} determine an isotopy of6, inducing a canonical
(up to isotopy) identification ct :6→ ft for each t ∈ (`1, `2).

Lemma 8. Assume f has the property that for any regular value t < `1, the
surface ft is not compressible into f −1([t, 1]) and for any regular t > `2, the
surface ft is not compressible into f −1([0, t]). If f×π :T 3

→[0, 1]×S1 is generic
then there is a unique (up to isotopy) weak reducing pair D1, D2 such that for some
t ∈ (`1, `2), ct sends ∂D1 and ∂D2 to loops isotopic into regular level sets of πt .

We should emphasize that there are essentially two parts to the statement: first
that for some t , the level sets of πt determine a weak reducing pair of disks and
second that if πt and πt ′ determine weak reducing pairs, then they determine the
same weak reducing pair.

Proof. Let C1 ⊂ [0, 1] be the set of points t ∈ [0, 1] such that an essential level
loop of πt bounds a disk in f −1([0, t]). Similarly, let C2 be the set of points where
an essential level loop of πt bounds a disk in f −1([t, 1]). We first will show that
C1 ∩C2 is a nonempty, connected, open interval (a, b)⊂ [0, 1], implying that the
level loops of πt for t ∈ (a, b) contain the boundaries of a weak reducing pair.

For any ε>0, the set f ([`1+ε, `2−ε])⊂M is foliated by level surfaces of f and
its complement is a pair of handlebodies. Thus there is a sweep-out f ′ :M→[0, 1]
that agrees with f on the interval [`1+ε, `2−ε]. (Each level set of f ′ is isotopic
to 6.) Define the sets C ′1,C ′2 ⊂ [0, 1] as the values of t for which the level set
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of f ′ intersects a level set of π in a loop bounding a compressing disk for the
surface f ′−1(t).

Bachman and Schleimer [2005, Claim 6.7] showed that for a sweep-out f ′ of a
surface bundle, the set C ′1 is of the form [0, b) for some b and C ′2 is of the form
(a, 0] for some a. Thus if a< b then C ′1∩C ′2 is an open interval (a, b). Because f
agrees with f ′ on [`1+ε, `2−ε] for every ε > 0, the intersection of C1 ∩C2 with
(`1, `2) is a (possibly empty) open interval.

If for some t and s there are regular loops of πt(s) that are essential in ft and
trivial in π−1(s) then t is in either C1 or C2. Cooper and Scharlemann [1999]
showed that for a torus bundle M with bundle map π , if there is a surface S ⊂ M
such that π |S is Morse and every regular level loop is either trivial in both surfaces
or essential in both surfaces then S is an essential torus. If π |S is near Morse (that
is, at a crossing of the graphic) and all regular level loops are trivial or essential in
both surfaces then S is a strongly irreducible, genus-two Heegaard surface.

Because 6 is not a genus-two surface, every level surface f ′t must have a level
loop that is essential in f ′t but trivial in the appropriate level surface of π . Thus
C ′1∩C ′2 is a nonempty open interval. The set C1∩C2 is the intersection of C ′1∩C ′2
with [`1, `2] (because f and f ′ agree on this set) so C1 ∩C2 is empty if and only
if C1 ∩ (`1, `2) or C2 ∩ (`1, `2) is empty.

Assume for contradiction C1 is disjoint from (`1, `2). Let t be a value between `1

and the last crossing before `1. The surface ft has genus two and π | ft is Morse
so there is a regular level s ∈ S1 such that a loop in π−1

t (s) is essential in ft and
trivial in π−1(s). Thus some essential loop γ ⊂ f −1

t (s) bounds a disk in either
f −1([0, t]) or f −1([t, 1]).

If γ bounds a disk in f −1([0, t]) then attaching a one-handle at the critical point
at time `1 does not affect this disk. So γ must bound a disk in f −1([t, 1]). This
contradicts the assumption that for any regular value t <`1, ft is not compressible
into f −1([t, 1]). Thus C1 must intersect (`1, `2). A similar argument implies C2

must intersect (`1, `2). Thus C1∩C2 is a nonempty, connected, open interval (a, b).
For t ∈ (a, b), at least one loop in the pair of pants decomposition bounds a

disk in H1 and at least one bounds a disk in H2. Because any two loops in the
pants decomposition are disjoint, Lemma 6 implies that there is exactly one loop
bounding a disk in H1 and exactly one bounding a disk in H2.

At each crossing in (a, b)× S1, ft passes through a near-Morse function and
the induced pants decomposition changes in one of two ways (see [Hatcher and
Thurston 1980]): (1) One loop in the pants decomposition may be replaced by a
new loop that intersects the original loop in one or two points or (2) two loops that
are contained in a twice punctured torus component are simultaneously removed
and replaced. After the change, there are still loops bounding disks in opposite
handlebodies. The second type of move cannot change the two loops that bound
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a weak reducing pair because two such loops are never contained in a twice punc-
tured torus component. Because the loops bounding the disks cannot both change
simultaneously, Lemma 6 implies that neither can change. Thus the weak reducing
pair is uniquely determined. �

7. Stable functions in dimension three

We have seen how the graphic defined by a Morse function f for a genus-three
Heegaard splitting for T 3 and a torus bundle map π for T 3 determine a weak reduc-
ing pair of disks for the Heegaard splitting. An automorphism φ of the Heegaard
splitting will take this weak reducing pair to a new weak reducing pair, determined
by the graphic of the original sweep-out f and a new bundle map π ◦ φ. If φ is
isotopy trivial then the isotopy determines a family of bundle maps {π t

}t∈[0,1] such
that π0

= π and π1
= π ◦φ.

Each bundle map π t determines a graphic with f . At each value of t where
the graphic is generic, π t determines a pair of weak reducing disks. Thus the
family {π t

} determines a sequence of weak reducing disks for (6, H1, H2). If we
choose this family carefully, we can understand the sequence of weak reducing
disks well enough to find a sequence of automorphisms of (6, H1, H2) taking the
original weak reducing pair to each consecutive pair in the sequence. In this section
we will describe how the graphic can change during the isotopy of π and in the
next section we will show how this corresponds to a sequence of weak reducing
disks which suggest a sequence of automorphisms of (6, H1, H2).

In order to understand how the graphic changes, we will consider an isotopy
of f rather than an isotopy of π . Because φ is isotopic to the identity, there is a
continuous family {φt : T 3

→ T 3
} such that φ0 is the identity and φ1 = φ. The

family of bundle maps defined above is given by π t
= π ◦ φt and the graphic at

time t is determined by f × (π ◦φt). If we compose the stable function with φ−1
t ,

we find that the graphic is also given by the map ( f ◦φ−1
t )×π .

Define f t
= f ◦ φ−1

t . Because f t is a Morse function for each t , there is an
open neighborhood Nt ⊂C∞(T 3,R) (with the Whitney C∞ topology [Golubitsky
and Guillemin 1973]) such that each function in N is isotopic to f t . Moreover, Nt

can be chosen to be convex in C∞(T 3,R). Because the set { f t
} ⊂ C∞(T 3,R) is

compact, it is covered by a finite subset of the convex open neighborhoods {Nt }.
Because each neighborhood is convex and consists of Morse functions isotopic
to f , the path f t can be replaced with a piecewise linear path consisting of arcs
connecting consecutive functions g0, . . . , gn

∈ { f t
} such that each gi

∈ Ni ∩ Ni+1

determines a generic graphic with π and each arc determines an isotopy of gi

onto gi+1. Thus in order to understand how the graphic changes as f t changes,
we can restrict our attention to straight arcs in C∞(T 3,R).
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Each intermediate function in the arc from gi to gi+1 is of the form agi
+bgi+1

where a, b> 0 and a+b= 1. By scaling this function as in [Johnson 2009], we can
make it of the form cos(s)gi

+ sin(s)gi+1. Thus we are interested in the graphic
defined by the stable function (cos(s)gi

+sin(s)gi+1)×π . This is the projection of
the map gi

×gi+1
×π : T 3

→R1
× S1 onto the annulus L× S1 where L ∈R2 is the

line through the origin with slope cos(s)/sin(s). Thus we can understand the effect
of the isotopy on the graphic by looking at projections of the map gi

× gi+1
×π .

We can choose the sequence {gi
} such that each of these maps gi , gi+1, π ,

gi
× gi+1, gi

× π and gi+1
× π is stable, so each is contained in an open ball

of isotopic maps in its respective vector space. The projections of R2
× S1 into

the appropriate subspaces define continuous maps from C∞(T 3,R3
× S1) into the

spaces containing the above maps and the preimage of each open neighborhood is
open in C∞(T 3,R2

×S1). Their intersection is an open set containing gi
×gi+1

×π .
Mather [1970] showed that stable functions between three dimensional mani-

folds are dense in the Whitney C∞ topology, so this open neighborhood contains a
stable function from T 3 into R2

×S1. This stable function projects to maps isotopic
to gi , gi+1, π , gi

×gi+1, gi
×π and gi+1

×π so if we replace gi , gi+1 and π with
these isotopic maps, gi

× gi+1
×π will be stable and the rest of the maps will be

isotopic to the original maps.
Mather’s classification of singularities of stable functions between three dimen-

sional manifolds implies that at each point p in T 3, some neighborhood N of p
can be parametrized and some open ball in R2

× S1 can be parametrized such that
f |N has one of the following forms:

f (x, y, z)= (x, y, z),

f (x, y, z)= (x2, y, z),

f (x, y, z)= (xy+ x3, y, z),

f (x, y, z)= (xy+ x2z+ x4, y, z).

The first type of point on the list is a regular point and at such a point, the dis-
criminant map from T (T 3) to T (R2

× S1) is one-to-one. At the last three types
of points, the discriminant map has a one dimensional kernel, so these points are
in the discriminant set. The discriminant set intersects each such neighborhood in
an open disk, so the discriminant set of g0 × g1 × π is a compact 2-dimensional
submanifold in T 3.

The image of the discriminant set in R2
× S1 is an immersed 2-manifold with

“cusps”. The cusps in the immersion of the 2-manifold form edges consisting
of points with neighborhoods of the third type, and these edges come together at
points with neighborhoods of the last type.
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(1) (2)

(3)
(4)

(5) (6)

Figure 5. Any two graphics are related by isotopies and a se-
quence of these six moves.

Lemma 9. Given a Morse function f : T 3
→ R, and isotopic torus bundle maps

π0, π1 such that f ×π0 and f ×π1 are stable then the maps f ×π0 and f ×π1

are related by a sequence of isotopies and moves of the types shown in Figure 5.

In fact, the theorem is true for any generic path of maps from a 3-manifold to a
2-manifold, but we do not need to prove it in such generality, so we will stick to
the situation described above.

Proof. Because π0 and π1 are isotopic, there is a smooth family of stable functions
{π t
| t ∈ [0, 1]} from π0 to π1. As noted above, we can approximate the family

of stable functions f × π t
= f × (π ◦ φt) by considering the isomorphic stable

functions ( f ◦ φ−1
t )× π , then approximating the path { f × φ−1

t } by a piecewise
linear path of straight arcs between a sequence of functions {gi

∈ C∞(T 3,R)}.
The stable function defined by π and a function in the arc from gi to gi+1 can be
recovered as a projection of gi

× gi+1
× π onto L × S1 for some line L in R2.

Thus in order to understand how the graphic changes with t , we must consider
projections of gi

×gi+1
×π . Without loss of generality, we will consider projections

of g0
× g1
×π .

Let S ⊂ T 3 be the discriminant set of the map F = g0
×g1
×π : T 3

→R2
× S1.

As noted above, S is a compact, closed surface in T 3. The image of S in R2
× S1

is a surface with “cusps”. On the complement of the cusps, there is a well defined
map from Tp S to TF(p)(R

2
× S1) where p is a noncusp point in S. If the plane

tangent to F(S) at F(p) is not parallel to the plane R2
×{π(p)} then its intersection

with this plane determines a slope in R2. For each p∈ S, let s(p) be this slope. The
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function s is defined on the complement in S of the points where F(S) is parallel
to the plane R2

×{π(p)}.
By perturbing F(S) slightly (by isotoping g0, g1 and π ), we can ensure that the

function s on S is a Morse function defined on the complement in S of a finite
number of points. Locally, we can identify a patch of F(S) with the graph of a
function γ from R2 (in variables y, z) to R as follows: Let γ ′ :R→R be a smooth
function. For each a, b, define γ (a, b) = γ ′(a)+

∫ b
0 s dy, where the integral is

taken along the arc from (a, 0) to (a, b). The slope of the intersection with the
plane R2

×{π(p)} is precisely dγ /dy so for some γ ′, F(S) is the graph of γ .
Let pt be the orthogonal projection of R2

× S1 onto the annulus L × S1 where
L ⊂ R2 is the line through the origin with slope cos(t)/ sin(t). The composition
of F with pt is a function from M to R2 and the discriminant set of F ◦ pt is the
projection of the closure in S of the subset s−1(t). In order to understand how the
graphic changes with t , we must understand how s−1(t) maps to the graphic.

Because s is a Morse function, s−1(t) will be a collection of closed loops in S.
By recovering S from s as the graph of a function γ (defined up to choice of γ ′), one
can check that the graphic defined by F ◦ pt is related to the level sets as follows:

If the image of s−1(t) in F(S) is transverse to the plane R2
×{π(p)} at a point

p∈ S then in the projection, p maps into the interior of an edge in the graphic. If the
level set is tangent to the plane at F(p) then p maps to a cusp in the graphic. Each
cusp point of S in the closure of s−1(t) maps to a cusp in the graphic. A noncusp
point p where s is not defined (because F(S) is tangent to the plane R2

×{π(p)})
maps to the interior of an edge. (Such a point is in the closure of s−1(t) for every t .)

When t passes through a critical level of s, there are two cases to consider: If
the critical point has index zero (or two) then right after (right before) the critical
point, a component of s−1(t) will be tangent to the plane R2

× {π(p)} in exactly
two points. Its image in F ◦ pt will be an eye as in move (1). Before (after) the
critical point, there is no such component so when t passes through the critical
level, the eye is created (removed) as in move (1). Similar reasoning shows that
the graphic changes by move (2) if the critical point has index one.

When t passes through a level where tangencies to the plane R2
× π(p) are

created or removed, the tangencies are created or removed in pairs, and in the
graphic this corresponds to move (3). At the points where F(S) is tangent to the
plane, the graphic does not change at all.

Generically, there will be no critical point of s in the (one dimensional) set of
cusp points in S. Thus the graphic only changes along the set of cusps when a
level set of s becomes tangent to an arc of cusp points. In this case, two cusps in
the graphic are created or eliminated as in move (3).

A stable map from a 3-manifold to R2 can fail to be stable for two reasons: there
may be critical points that do not have neighborhoods of the necessary forms, or the
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image of the discriminant set may be nongeneric, that is, have triple points, tangen-
cies or double points at cusps. We have shown that there is a family of functions
from f × π0 to f × π1 such that there are finitely many intermediary functions
with unstable neighborhoods, and these correspond to the first three moves. In
between these functions, the graphic changes by some homotopy of the image of
the discriminant set. By perturbing the family { ft } slightly we can ensure that the
homotopy is generic, consisting of a finite sequence of moves (4), (5) and (6). This
completes the proof. �

8. Graphics and isotopies

Proof of Lemma 7. A torus twist determines an automorphism that is isotopy trivial
in T 3 so it takes the torus determined by a weak reducing pair of disks to an isotopic
torus. If two weak reducing pairs are related by a sequence of torus twists then by
induction the induced tori are isotopic. The majority of the proof of Lemma 7 will
be devoted to the converse of this.

Let f : T 3
→[0, 1] be a Morse function with one index zero critical point, three

index one critical points followed by three index two critical points, then one index
three critical point. Let `1 be the level of the last index one critical point and `2

the level of the first index two critical point. Any level set ft = f −1(t) for t ∈
(`1, `2) is a Heegaard surface for T 3 and is thus isotopic to 6 for the standard (and
unique) Heegaard splitting (6, H1, H2). Moreover, there is a continuous family
{ct :6→ ft | t ∈ (`1, `2)} identifying each level surface with 6.

Assume f has the property that for t<`1, ft is not compressible into f −1([t, 1]).
This will be the case whenever the meridian disk defined by the last index one
critical point is not part of a weak reducing pair, so such an f exists. Similarly,
assume that for t > `2, ft is not compressible into f −1([0, t]).

For a weak reducing pair D1, D2, there is a bundle map π0
: T 3
→ S1 such

that the weak reducing pair determined by f × π0 and the maps ct is isotopic to
D1 and D2. Likewise, there is a bundle map π1 such that f × π1 determines a
weak reducing pair isotopic to the second pair D′1, D′2. By assumption the weak
reducing pairs define isotopic incompressible tori, so π0 and π1 are isotopic. Thus
Lemma 9 implies that f ×π0 and f ×π1 are related by a sequence of the moves
shown in Figure 5 and isotopies of the graphic.

Because we chose f so that ft is incompressible in one direction when t < `1

or t > `2, πr determines a unique weak reducing pair of disks for every value of r
for which the graphic for f × πr is generic. In particular, Lemma 8 implies that
for every generic s, there is a unique maximal interval (ar , br ) and a unique weak
reducing pair such that for t ∈ (ar , br ), the boundaries of the weak reducing pair
are level sets of πr restricted to ft . The essential level sets of πr restricted to ft
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change only when t passes through a value where there is a crossing in {t} × S1.
Thus the circles {ar }× S1 and {br }× S1 pass through crossings in the graphic.

The map f ×πr can fail to be generic for two reasons: the map may fail to be
stable (that is, when it undergoes one of the moves in Figure 5) or there may be
two crossings of the graphic at the same value of t . Generically, each of these will
happen for only finitely many values of r .

If f × πr fails to be stable because there is a point in M with a nonstable
neighborhood (that is, when the graphic changes by one of the first three types of
moves), the graphic changes within a subset I × S1 for some interval I ⊂ [0, 1].
For moves (1) and (2), there are no crossings in this band, so I is either disjoint
from (ar , br ) or a proper subset of (ar , br ). For move (3), there is a single crossing
in I × S1 but this crossing cannot be an endpoint of (ar , br ) because at least one of
the arcs involved corresponds to a pair of pants with a trivial boundary loop in ft .
Again I is disjoint from or properly contained in (ar , br ). The crossings created
(removed) by moves (4) and (6) cannot be endpoints of (ar , br ) because before
(after) the move, these crossings don’t exist.

For moves (1), (2), (3), (4) and (6), the move is disjoint from {t}× S1 for some
t ∈ (ar , br ) so the level loops of πr restricted to ft bounding a weak reducing
pair do not change. The weak reducing pair with boundaries in level sets of πr

restricted to ft does not change as r passes through r0 so the weak reducing pair
induced by πr does not change.

The last two cases to deal with are cases in which more than one crossings pass
through the same vertical arc of the graphic. This will only change the induced
weak reducing disks if before and after the move, these crossings sit in the vertical
loops ar × S1 and br × S1. When the move occurs, this region shrinks down to a
single arc, then expands back to an annulus, but with a new pair of loops bounding
weak reducing disks as in Figure 6.

To understand how this can happen, we must consider the following situation:
for some t and r , two level sets of πr restricted to ft bound a weak reducing pair.
Just to the left of t there is a crossing in the graphic that eliminates one of the loops
in the pair, and just to the right of t there is a crossing that eliminates the other
loop in the pair.

Figure 6. The induced weak reducing disks change when the in-
terval [as, bs] shrinks to a point and the graphic fails to be generic.
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Figure 7. The pairs of weak reducing disks before and after the
graphic becomes nongeneric.

Note that no component of the complement of 6 \ (∂D1 ∪ ∂D2) is a pair of
pants. This implies that the critical points just above and just below one of the
loops in the weak reducing pair are distinct from the critical points just above and
below the other loop. Thus the two crossings must involve four distinct edges of
the graphic, so move (5) cannot change the pair of weak reducing disks.

The only case in which four distinct edges of the graphic can be involved in the
crossing is when f ×πr is stable but not generic because there are two crossings
at the same value of t . Each boundary loop of the weak reducing pair sits in a four
punctured sphere bounded by essential level loops and each crossing corresponds
to replacing the boundary of the weak reducing disk with a new loop in the same
four punctured sphere. The new loops form a new weak reducing pair because
after the move, the graphic is generic again. Thus each boundary loop of the weak
reducing pair is replaced by a loop bounding a disk in the opposite handlebody.

Given a pair of weak reducing disks and bounding level sets of some πr as on
the left side of Figure 7, we can find a new pair of weak reducing disks as on the
right. A four punctured sphere in 6 that contains a loop bounding a disk in H1

contains at most one loop bounding a disk in H2 and vice versa. Thus the new pair
of weak reducing disks shown on the right of the figure is the pair defined by the
graphic on the right.

One can check that the original weak reducing pair shown on the left is taken to
the new pair shown on the right by a torus twist along a torus T that intersects S
in a single loop and cuts 6 into two four punctured spheres.

We have found a sequence of stable functions such that each determines a pair
of weak reducing disks for 6, the first and last stable functions determine D1, D2

and D′1, D′2, respectively, and the weak reducing disks determined by consecutive
stable functions are either isotopic or related by a torus twist along a torus meeting
the criteria for Lemma 7. This defines a sequence of torus twists taking D1, D2

onto D′1, D′2, completing the proof. �
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9. Proof of Theorem 1

Recall that G is the subgroup of Mod(T 3, 6) generated by the elements αi j , σ
and τ defined above. To prove Theorem 1, we must show that G is equal to
Mod(T 3, 6).

Proof of Theorem 1. Let φ be an element of Mod(T 3, 6). If φ interchanges the
handlebodies H1 and H2, then composing φ with σ produces an automorphism that
sends H1 to itself. Since σ is an element of G, σφ will be in G if and only if φ is
in G. Thus by replacing φ with σφ if necessary, we will assume that φ preserves
each handlebody.

The image i(φ) of φ in Mod(T 3) is a composition of the images {i(αi j )}. Thus
composing φ with a sequence of these maps produces an element of Mod(T 3, 6)

that is isotopy trivial in T 3. The maps {αi j } are in G so φ is in G if and only if this
composition is in G. We can thus assume φ is in the kernel of i .

Let T be the incompressible torus determined by D1
1 and D1

2 . The disks φ(D1
1)

and φ(D1
2) form a weak reducing pair for 6 and determine an incompressible

torus T ′ isotopic to φ(T ). Because φ is isotopic to the identity on T 3, T ′ is in fact
isotopic to T . Because D1

1 , D1
2 and φ(D1

1), φ(D
1
2) determine isotopic tori in T 3,

Lemma 7 implies that there is a sequence of torus twists, along tori that intersect T
in a single loop and cut6 into planar pieces, taking D1

1 to φ(D1
1) and D1

2 to φ(D1
2).

Any torus twist along a torus that intersects T in a single loop is a conjugate
of τ by elements of G, by Lemma 3. Composing φ by this conjugate of τ produces
an element of Mod(T 3, 6) that is isotopy trivial on T 3 and preserves D1

1 and D1
2 .

This conjugate is in G if and only if φ is in G, so we can replace φ with an element
of Mod(T 3, 6) that is in the kernel of i and takes D1

1 and D1
2 onto themselves.

The complement in 6 of ∂D1
1 ∪ ∂D1

2 is a pair of twice punctured tori. Let S be
one of these twice punctured tori. The automorphisms α23, α32, τ12 and τ13 take S
onto itself and their restrictions to S generate the mapping class group of the twice
punctured torus. Thus there is an element g of G such that g ◦ φ restricts to the
identity on S.

Each of the loops ∂D2
1 and ∂D3

1 intersects ∂D1
2 in two points, so each loop

intersects S in a single properly embedded arc. Because each loop bounds a disk
in H1, it must intersect the twice punctured torus 6 \ S in a single arc parallel to
the arc in S. Because g ◦φ is the identity on S, it fixes ∂D2

1 ∩ S and ∂D3
1 ∩ S, and

therefore also fixes the parallel arcs in 6 \ S. This implies that g ◦φ is the identity
on 6 \ S as well as S. Thus g ◦ φ is the identity on all of 6 so φ = g−1

∈ G,
completing the proof. �



94 JESSE JOHNSON

References

[Akbas 2008] E. Akbas, “A presentation for the automorphisms of the 3-sphere that preserve a genus
two Heegaard splitting”, Pacific J. Math. 236:2 (2008), 201–222. MR 2009d:57029 Zbl 1157.57002

[Bachman and Schleimer 2005] D. Bachman and S. Schleimer, “Surface bundles versus Heegaard
splittings”, Comm. Anal. Geom. 13:5 (2005), 903–928. MR 2006m:57027 Zbl 1138.57026

[Boileau and Otal 1990] M. Boileau and J.-P. Otal, “Sur les scindements de Heegaard du tore T 3”,
J. Differential Geom. 32:1 (1990), 209–233. MR 91i:57006 Zbl 0754.53012

[Cho 2008] S. Cho, “Homeomorphisms of the 3-sphere that preserve a Heegaard splitting of genus
two”, Proc. Amer. Math. Soc. 136:3 (2008), 1113–1123. MR 2009c:57029 Zbl 1149.57025

[Cooper and Scharlemann 1999] D. Cooper and M. Scharlemann, “The structure of a solvmanifold’s
Heegaard splittings”, Turkish J. Math. 23:1 (1999), 1–18. MR 2000h:57034 Zbl 0948.57015

[Goeritz 1933] L. Goeritz, “Die Abbildungen der Brezelfläche und der Volbrezel vom Geschlecht
2”, Abh. Math. Sem. Univ. Hamburg 9 (1933), 244–259. Zbl 0007.08102

[Golubitsky and Guillemin 1973] M. Golubitsky and V. Guillemin, Stable mappings and their sin-
gularities, Graduate Texts in Math. 14, Springer, New York, 1973. MR 49 #6269 Zbl 0294.58004

[Hatcher and Thurston 1980] A. Hatcher and W. Thurston, “A presentation for the mapping class
group of a closed orientable surface”, Topology 19:3 (1980), 221–237. MR 81k:57008 Zbl 0447.
57005

[Johnson 2009] J. Johnson, “Stable functions and common stabilizations of Heegaard splittings”,
Trans. Amer. Math. Soc. 361:7 (2009), 3747–3765. MR 2010b:57023 Zbl 1168.57013

[Johnson and Rubinstein 2006] J. Johnson and J. H. Rubinstein, “Mapping class groups of Heegaard
splittings”, preprint, 2006. arXiv math.GT/0701119

[Kobayashi and Saeki 2000] T. Kobayashi and O. Saeki, “The Rubinstein–Scharlemann graphic of
a 3-manifold as the discriminant set of a stable map”, Pacific J. Math. 195:1 (2000), 101–156.
MR 1781617 (2001i:57026)

[Mather 1970] J. N. Mather, “Stability of C∞ mappings: V, Transversality”, Advances in Math. 4:3
(1970), 301–336. MR 43 #1215c Zbl 0207.54303

[Namazi 2004] H. Namazi, “Big handlebody distance implies finite mapping class group”, preprint,
2004. arXiv math.GT/0406551

[Scharlemann 2004] M. Scharlemann, “Automorphisms of the 3-sphere that preserve a genus two
Heegaard splitting”, Bol. Soc. Mat. Mexicana (3) 10:Special Issue (2004), 503–514. MR 2007c:
57020 Zbl 1095.57017

[Scharlemann and Thompson 1994] M. Scharlemann and A. Thompson, “Thin position for 3-mani-
folds”, pp. 231–238 in Geometric topology (Haifa, 1992), edited by C. Gordon et al., Contemp.
Math. 164, Amer. Math. Soc., Providence, RI, 1994. MR 95e:57032 Zbl 0818.57013

Received May 28, 2010. Revised January 13, 2011.

JESSE JOHNSON

DEPARTMENT OF MATHEMATICS

OKLAHOMA STATE UNIVERSITY

STILLWATER OK 74078
UNITED STATES

jjohnson@math.okstate.edu
http://www.math.okstate.edu/~jjohnson/



PACIFIC JOURNAL OF MATHEMATICS
http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://www.pjmath.org
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://www.pjmath.org
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 253 No. 1 September 2011

1Singularities of the projective dual variety
ROLAND ABUAF

19Eigenvalue estimates for hypersurfaces in Hm
× R and applications

PIERRE BÉRARD, PHILIPPE CASTILLON and MARCOS CAVALCANTE

37Conformal Invariants associated to a measure: Conformally covariant
operators

SUN-YUNG A. CHANG, MATTHEW J. GURSKY and PAUL YANG

57Compact symmetric spaces, triangular factorization, and Cayley coordinates
DEREK HABERMAS

75Automorphisms of the three-torus preserving a genus-three Heegaard splitting
JESSE JOHNSON

95The rationality problem for purely monomial group actions
HIDETAKA KITAYAMA

103On a Neumann problem with p-Laplacian and noncoercive resonant
nonlinearity

SALVATORE A. MARANO and NIKOLAOS S. PAPAGEORGIOU

125Minimal ramification in nilpotent extensions
NADYA MARKIN and STEPHEN V. ULLOM

145Regularity of weakly harmonic maps from a Finsler surface into an n-sphere
XIAOHUAN MO and LIANG ZHAO

157On the sum of powered distances to certain sets of points on the circle
NIKOLAI NIKOLOV and RAFAEL RAFAILOV

169Formal geometric quantization II
PAUL-ÉMILE PARADAN

213Embedded constant-curvature curves on convex surfaces
HAROLD ROSENBERG and MATTHIAS SCHNEIDER

221A topological construction for all two-row Springer varieties
HEATHER M. RUSSELL

0030-8730(201109)253:1;1-8

Pacific
JournalofM

athem
atics

2011
Vol.253,N

o.1


	
	
	

