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For a given abelian group G, we classify the isomorphism classes of G-
gradings on the simple restricted Lie algebras of types W(m;1) and S(m;1)

for m≥2, in terms of numerical and group-theoretical invariants. Our main
tool is automorphism group schemes, which we determine for the simple
restricted Lie algebras of types S(m;1) and H(m;1). The ground field is
assumed to be algebraically closed of characteristic p > 3.

1. Introduction

Let U be an algebra (not necessarily associative) over a field F and let G be a
group, written multiplicatively.

Definition 1.1. A G-grading on U is a vector space decomposition

U =
⊕
g∈G

Ug

such that
UgUh ⊂Ugh for all g, h ∈ G.

The subspace Ug is called the homogeneous component of degree g. The support
of the G-grading is the set

{g ∈ G |Ug 6= 0}.

If U is finite-dimensional, then, replacing G with the subgroup generated by the
support of the grading, we may assume without loss of generality that G is finitely
generated.

Definition 1.2. Two G-gradings U =
⊕

g∈G Ug and U =
⊕

g∈G U ′g are isomorphic
if there exists an algebra automorphism ψ :U →U such that

ψ(Ug)=U ′g for all g ∈ G,

that is, if U =
⊕

g∈G Ug and U =
⊕

g∈G U ′g are isomorphic as G-graded algebras.
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Since the same vector space decomposition can be regarded as a G-grading for
different groups G, one can also define equivalence of gradings, which is a weaker
relation than isomorphism — see, for example, [Kochetov 2009] for a discussion.
Fine gradings (that is, those that cannot be refined) as well as their universal groups
are of particular interest.

We are interested in the problem of finding all possible group gradings on finite-
dimensional simple Lie algebras. If L is a simple Lie algebra, then it is known that
the support of any G-grading on L generates an abelian group. Hence, in this
paper we will always assume that G is abelian. We will also assume that the
ground field F is algebraically closed.

For an arbitrary abelian group G, the classification of G-gradings (up to isomor-
phism) is known for almost all classical simple Lie algebras over an algebraically
closed field of characteristic 0 or p > 2. The classification of fine gradings (up to
equivalence) is also known. Refer to [Bahturin and Kochetov 2010; Elduque 2010]
and references therein.

Our goal is to carry out the same classification for simple restricted Lie algebras
of Cartan type. In the present paper, we achieve this goal in characteristic p > 3
for Witt algebras in Theorem 4.13 and Corollary 4.14 and for special algebras (see
the definitions in Section 2) in Theorem 4.17 and Corollary 4.18.

In a number of cases, a fruitful approach to the classification of gradings by
abelian groups on an algebra U is to use another algebra, R, that shares with U
the automorphism group scheme (see Section 3) and whose gradings are easier to
study. This approach often requires equipping R with some additional structure.
For classical simple Lie algebras of series A, B, C and D, one takes for R the
matrix algebra Mn(F), possibly equipped with an antiautomorphism.

For Lie algebras of Cartan type, R is the “coordinate algebra” O(m; n) (see
Definition 2.1). In the restricted case, this is just the truncated polynomial algebra
O(m;1)= F[x1, . . . , xm]/(x

p
1 , . . . , x p

m). It is not difficult to classify G-gradings on
the algebra O(m;1)— see Theorem 4.8 and Corollary 4.11. Since O(m;1) has the
same automorphism group scheme as the Witt algebra W (m;1), this immediately
gives the classification of gradings for the latter. In Section 3, we show that the
automorphism group scheme of the special algebra S(m;1)(1) for m ≥ 3, respec-
tively Hamiltonian algebra H(m;1)(2) for m = 2r , is isomorphic to the stabilizer
of the differential form ωS , respectively ωH , in the automorphism group scheme of
O(m;1)— see Theorems 3.2 and 3.5, respectively. As a consequence, all gradings
on S(m;1)(1) and H(m;1)(2) come from gradings on O(m;1). However, this does
not yet give a classification of gradings on S(m;1)(1) and H(m;1)(2) up to isomor-
phism, because one must make sure that the isomorphism preserves the appropriate
differential form — see Corollary 4.2. We then obtain a classification of gradings
on S(m;1)(1) for m ≥ 3 and S(2;1)(2) = H(2;1)(2) — see Theorem 4.17. The
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classification for H(2r;1)(2) with r > 1 remains open.
The paper is structured as follows. In Section 2, we recall the definitions and

basic facts regarding Lie algebras of Cartan type. In Section 3, we briefly recall
background information on automorphism group schemes and determine them for
S(m;1)(1) and H(m;1)(2). In Section 4, we obtain the classification of gradings
for Witt and special algebras (using the results on automorphism group schemes).

2. Cartan-type Lie algebras

We start by briefly recalling the definitions and relevant properties of Cartan-type
Lie algebras. We will use [Strade 2004] as a standard reference. Fix m ≥ 1 and
n = (n1, . . . , nm) where ni ≥ 1. Set

Z(m;n) := {α ∈ Zm
| 0≤ αi < pni for i = 1, . . . ,m }.

The elements of Z(m;n) will be called multi-indices and denoted by Greek letters
α, β, γ . For α = (α1, . . . , αm), set

|α| = α1+ · · ·+αm .

Denote by 1 the multi-index that has 1 in all positions and by εi the multi-index
that has 1 in position i and zeros elsewhere.

Let F be a field of characteristic p > 0.

Definition 2.1. The algebra O = O(m; n) over F is a commutative associative al-
gebra with a basis {x (α) | α ∈ Z(m,n)} where multiplication given by

x (α)x (β) =
(
α+β

α

)
x (α+β) where

(
α+β

α

)
=

m∏
i=1

(
αi +βi

αi

)
.

If n = 1, then O∼= F[x1, . . . , xm]/(x
p
1 , . . . , x p

m) by identifying xi with x (εi ):

x (α) = 1
α1! · · ·αm !

xα1
1 · · · x

αm
m .

The algebra O has a canonical Z-grading O =
⊕

`≥0 O` defined by declaring the
degree of x (α) to be |α|. The associated filtration will be denoted by

O(`) :=
⊕
j≥`

O j .

Note that M := O(1) is the unique maximal ideal of O.
We now define Witt, special and Hamiltonian graded Cartan-type Lie algebras.

Contact algebras and generalized (that is, nongraded) Cartan-type Lie algebras will
not be considered in this paper.
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Definition 2.2. Define a linear map ∂i :O→O by ∂i x (α)= x (α−εi ), where the right-
hand side is understood to be zero if αi = 0. Then ∂i is a derivation of O. The Witt
algebra W =W (m; n) is the subalgebra of Der(O) that consists of all operators of
the form

f1∂1+ · · ·+ fm∂m where fi ∈ O.

The canonical Z-grading of O induces a Z-grading on End(O). Since W is a
graded subspace of End(O), it inherits the Z-grading: W =

⊕
`≥−1 W`. Denote the

associated filtration by W(`).
The de Rham complex

�0 d
−→�1 d

−→�2 d
−→ · · ·

is defined as follows: �0
= O, �1

=HomO(W,O), and �k
= (�1)∧k for k ≥ 2. The

map d : �0
→ �1 is defined by (d f )(D) = D( f ) for all f ∈ O and D ∈ W . The

remaining maps d :�k
→�k+1 are defined in the usual way: d( f dxi1∧· · ·∧dxik )=

d f ∧ dxi1 ∧ · · · ∧ dxik .
Any element D ∈W acts on �1

= HomO(W,O) by setting

D(ω)(E)= D(ω(E))−ω([D, E]) for all ω ∈�1 and E ∈W.

This action turns all the �k
= (�1)∧k into W -modules. Of course, they also have

canonical Z-gradings and associated filtrations.
We will need the following differential forms to define the special and Hamil-

tonian algebras:

ωS := dx1 ∧ dx2 ∧ · · · ∧ dxm ∈�
m if m ≥ 2,

ωH := dx1 ∧ dxr+1+ dx2 ∧ dxr+2+ · · ·+ dxr ∧ dx2r ∈�
2 if m = 2r.

Definition 2.3. The special algebra S= S(m; n) is the stabilizer of ωS in W (m; n):

S = { D ∈W | D(ωS)= 0 }.

The Hamiltonian algebra H = H(m; n) is the stabilizer of ωH in W (m; n):

H = { D ∈W | D(ωH )= 0 }.

In the case m = 2, we have ωS = ωH and hence S = H . It is well-known that
W (m; n) is simple unless p = 2 and m = 1. The algebras S(m; n) and H(m; n)
are not simple, but the first derived algebra S(m; n)(1) for m ≥ 3 and the second
derived algebra H(m; n)(2) are simple.

The Lie algebras W (m; n), S(m; n) and H(m; n) are restrictable — that is, ad-
mit p-maps making them restricted Lie algebras — if and only if n=1. From now
on, we will assume that this is the case. Since W , S and H have trivial center, their
p-maps are unique. Also, in this case W =Der(O) and hence the p-map is just the
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p-th power in the associative algebra End(O). The algebras S and H are restricted
subalgebras of W .

3. Automorphism group schemes

Let O= O(m;1). Any automorphism µ of the algebra O gives rise to an automor-
phism Ad(µ) of W given by Ad(µ)(D) = µ ◦ D ◦µ−1. Then we can define the
action of µ on �1

= HomO(W,O) by setting

µ(ω)(D)= µ(ω(Ad(µ−1)(D)))

for all ω ∈ �1 and D ∈ W . This turns all the �k
= (�1)∧k into Aut(O)-modules.

Clearly, these actions can still be defined in the same way if we extend the scalars
from the base field F to any commutative associative F-algebra K , that is, replace O

with O(K ) := O⊗ K , W with W (K ) :=W ⊗ K and �k with �k(K ) :=�k
⊗ K .

Recall the automorphism group scheme of a finite-dimensional F-algebra U (see,
for example, [Waterhouse 1979] for background on affine group schemes). As a
functor, the (affine) group scheme Aut(U ) is defined by setting Aut(U )(K ) =
AutK (U ⊗ K ) for any commutative associative F-algebra K . From the discussion
above it follows that we have morphisms of group schemes Ad :Aut(O)→Aut(W )

and also Aut(O)→ GL(�k). (We identify a smooth algebraic group scheme such
as GL(V ) with the corresponding algebraic group.) Note that, since the p-map of
W ⊗ K is uniquely determined, the automorphism group scheme of W as a Lie
algebra is the same as its automorphism group scheme as a restricted Lie algebra.
Note also that the maps d :�k

→�k+1 are Aut(O)-equivariant.
The algebraic group scheme Aut(U ) contains the algebraic group Aut(U ) as the

largest smooth subgroupscheme. The tangent Lie algebra of Aut(U ) is Der(U ),
so Aut(U ) is smooth if and only if Der(U ) equals the tangent Lie algebra of the
group Aut(U ). The automorphism group schemes of simple Cartan-type Lie alge-
bras, unlike those of the classical simple Lie algebras, are not smooth. Indeed, the
tangent Lie algebra of Aut(O) is W(1), which is a proper subalgebra of W =Der(O),
so Aut(O) is not smooth. In view of the following theorem, we see that Aut(W ) is
not smooth.

Theorem 3.1 [Waterhouse 1971]. Let O = O(m;1) and W = W (m;1). Assume
p > 3. Then the morphism Ad : Aut(O)→ Aut(W ) is an isomorphism of group
schemes. �

The automorphism group scheme of the general W (m; n) has also been deter-
mined by [Waterhouse 1991] for p > 2 and with small exceptions for p = 3, and
by [Skryabin 1995; 2001] for any p, with small exceptions in the cases p = 2
and p = 3. In particular, Theorem 3.1 holds for p = 3 if m ≥ 2 and for p = 2
if m ≥ 3.
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In this section we establish analogues of Theorem 3.1 for the simple algebras
S(m;1)(1) and H(m;1)(2). We follow the approach of [Waterhouse 1971]. Suppose
8 : G→ H is a morphism of algebraic group schemes. Let Gred and Hred be the
largest smooth subgroupschemes, which will be regarded as algebraic groups. In
order for 8 to be an isomorphism, the following two conditions are necessary:

A) The restriction 8 :Gred→Hred is a bijection.

B) The tangent map Lie(8) : Lie(G)→ Lie(H) is a bijection.

However, unless G is known to be smooth (that is, G=Gred), these two conditions
are not sufficient for 8 to be an isomorphism. In general, one has to show that
the associated map of distribution algebras 8̃ : G → H is surjective. (The two
conditions above imply that 8̃ :G→ H is injective.)

Recall that the distribution algebra G of an algebraic group scheme G is a con-
nected cocommutative Hopf algebra (see, for example, [Montgomery 1993] for
background on Hopf algebras), with the space of primitive elements Prim(G) =
Lie(G) of finite dimension. Hence Lie(G) has a descending chain of restricted Lie
subalgebras — see, for example, [Sweedler 1967; Dieudonné 1973, II, Section 3,
Number 2]:

Lie(G)= Lie0(G)⊃ Lie1(G)⊃ Lie2(G)⊃ · · · ,

defined by Liek(G) := Liek(G)=Vk(G)∩Prim(G), where V :G→G is the Ver-
schiebung operator — see, for example, [Sweedler 1967, Theorem 1; Dieudonné
1973, II, Section 2, Number 7]. The intersection of this chain is Lie(Gred), which
can be identified with the tangent algebra of the algebraic group Gred.

Recall that a sequence of elements 1 = 0h, 1h, . . . , nh in a connected cocom-
mutative Hopf algebra G is called a sequence of divided powers (lying over 1h) if
1( j h) =

∑ j
i=0

i h⊗ j−i h for all j = 1, . . . , n. Thus 1h ∈ Prim(G) and ε( j h) = 0
for all j = 1, . . . , n. It is easy to see that Vk(pk

h) = 1h for any pk
≤ n. Hence,

if there exists a sequence of divided powers of length pk lying over h ∈ Prim(G),
then h ∈ Liek(G). The converse is also true [Sweedler 1967, Theorem 2].

Now we come back to the problem of proving that a morphism 8 : G→ H
of algebraic group schemes is an isomorphism. Assuming that 8 satisfies con-
ditions A) and B), we need to show that the Hopf subalgebra 8̃(G) ⊂ H in fact
equals H. Regarding H as a Hopf subalgebra in the distribution algebra of GL(V )
for a suitable space V , we can apply [Dieudonné 1973, II, Section 3, Number 2,
Corollary 1] to conclude that 8̃(G)= H if and only if

C) Lie(8) maps Liek(G) onto Liek(H) for all k.

Here we are interested in the case G = Aut(O), where O = O(m;1), and its
subgroupschemes AutS(O) := StabG(〈ωS〉) and AutH (O) := StabG(〈ωH 〉). We
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have

Aut(O)red = Aut(O), Lie(Aut(O))= Der(O)=W,

AutS(O)red = StabAut(O)(〈ωS〉), Lie(AutS(O))= StabW (〈ωS〉)=: C S,

AutH (O)red = StabAut(O)(〈ωH 〉), Lie(AutH (O))= StabW (〈ωH 〉)=: C H.

Denote StabAut(O)(〈ωS〉) by AutS(O) and StabAut(O)(〈ωH 〉) by AutH (O) for brevity.
Assume p > 3. It is known that the morphism Ad : Aut(O)→ Aut(W ) as well

as its restrictions AutS(O)→ Aut(S(1)) for m ≥ 3 and AutH (O)→ Aut(H (2)) for
m=2r induce bijections Aut(O)→Aut(W ), AutS(O)→Aut(S(1)) and AutH (O)→

Aut(H (2))— see, for example, [Strade 2004, Theorem 7.3.2]. Also, the tangent
map ad :W→Der(W ) and its restrictions C S→Der(S(1)) and C H→Der(H (2))

are bijective — see, for example, [Strade 2004, Theorem 7.1.2]. So conditions A)
and B) are satisfied for the morphisms Aut(O)→ Aut(W ), AutS(O)→ Aut(S(1))
and AutH (O)→ Aut(H (2)).

By [Allen and Sweedler 1969, Lemma 3.5, 2], we know that Liek(Aut(O)) =
StabW (M)=W(0) for all k > 0. Hence, for k > 0, we have

Liek(AutS(O))⊂ Liek(Aut(O))∩C S = C S(0),

Liek(AutH (O))⊂ Liek(Aut(O))∩C H = C H(0).

On the other hand, Lie(AutS(O)) = C S(0) and Lie(AutH (O)) = C H(0). It follows
that, in fact,

(1) Liek(AutS(O))= C S(0) and Liek(AutH (O))= C H(0) for all k > 0.

By [Allen and Sweedler 1969, Lemma 3.5, 4], we have Liek(Aut(W ))= ad(W(0))

for all k > 0, so condition C) is satisfied for the morphism Aut(O)→ Aut(W ).
This is how Theorem 3.1 is proved in [Waterhouse 1971]. We are now ready to
prove our analogues for S and H .

Theorem 3.2. Let O= O(m;1) for m ≥ 3 and S(1) = S(m;1)(1). Let

AutS(O)= StabAut(O)(〈ωS〉).

Assume p > 3. Then the morphism Ad : AutS(O)→ Aut(S(1)) is an isomorphism
of group schemes.

Proof. By the above discussion, we have to prove that condition C) is satisfied for
Ad :AutS(O)→Aut(S(1)). Let G be the distribution algebra of Aut(S(1)). In view
of (1), it suffices to show that Lie1(G) ⊂ ad(C S(0)). In other words, we have to
verify, for any D ∈ C S, that if D /∈ C S(0), then ad D /∈ Lie1(G). We can write
D = λ1∂1+· · ·+λm∂m+D0 where D0 ∈C S(0) and the scalars λ1, . . . , λm are not
all zero. Now, D0 ∈Lie1(AutS(O)) implies ad D0 ∈Lie1(G), so it suffices to prove
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that ad(λ1∂1 + · · · + λm∂m) /∈ Lie1(G). Applying an automorphism of O induced
by a suitable linear transformation on the space Span{∂1, . . . , ∂m}, we may assume
without loss of generality that D = ∂1.

By way of contradiction, assume that ad ∂1 ∈ Lie1(G). Then there exists a
sequence of divided powers 1= 0h, 1h, . . . , ph in G such that 1h = ad ∂1.

As pointed out in the proof of [Allen and Sweedler 1969, Lemma 3.5, 4],
by [Sweedler 1967, Lemma 7], we may assume without loss of generality that
kh= (1/k!)(1h)k for k = 0, . . . , p−1. The distribution algebra G acts canonically
on S(1), so we have a homomorphism η : G→ End(S(1)). The restriction of η to
Prim(G)= Der(S(1)) is the identity map. Let kδ = η(kh) for k = 0, . . . , p. Then

(2) kδ =
1
k!
(ad ∂1)

k for k = 0, . . . , p− 1,

and, since S(1) is a G-module algebra,

(3) kδ([X, Y ])=
k∑

j=0

[
jδ(X), k− jδ(Y )] for all k = 0, . . . , p and X, Y ∈ S(1).

The action of G on S(1) extends canonically to the universal enveloping alge-
bra U (S(1)) and, since the p-map of S(1) is uniquely determined, the G-action
passes on to the restricted enveloping algebra u(S(1)). By abuse of notation, we
will use kδ to denote the action of kh on u(S(1)) as well as on S(1). Note for future
reference that

(4) kδ(XY )=
k∑

j=0

( jδ)(X) ( k− jδ)(Y ) for all k = 0, . . . , p and X, Y ∈ u(S(1)).

If we replace pδ by pδ+ ξ , where ξ is any derivation of S(1), then Equations (3)
and (4) will still hold (with the same 0δ, . . . , p−1δ). We will use this observation
to simplify the operator pδ.

Let zi = 1+ xi , i = 1, . . . ,m. For each multi-index α ∈ Z(m;1), set

zα = zα1
1 · · · z

αm
m .

Since z p
i = 1 for all i , we may regard the components of α as elements of the cyclic

group Zp when dealing with zα. It is this property that will make the basis {zα} of
O= O(m;1) more convenient for us than the standard basis {xα}.

Recall [Strade 2004, Section 4.2] that S(1) = S(m;1)(1) is spanned by the ele-
ments of the form

Di, j ( f ) := ∂ j ( f )∂i − ∂i ( f )∂ j ,
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where f ∈ O and 1≤ i < j ≤ m. Hence, S(1) is spanned by the elements

Di, j (zα)= α j zα−ε j ∂i −αi zα−εi ∂ j .

For the calculations we are about to carry out, we will need the following:

Lemma 3.3. For any 1≤ i < j ≤ m and α, β ∈ Z(m;1), the commutator

[D1,2(zα), Di, j (zβ)]

is given by the following expressions:

−(α1β2−α2β1)Di, j (zα+β−ε1−ε2) if 2< i < j,(5)

−(α1(β2− 1)−α2β1)D2, j (zα+β−ε1−ε2) if 2= i < j,(6)

−α1β j D1,2(zα+β−ε1−ε j )+α2β1 D1, j (zα+β−ε1−ε2)(7)
−α1β1 D2, j (zα+β−2ε1) if i = 1, j > 2,

−(α1β2−α2β1)D1,2(zα+β−ε1−ε2) if i = 1, j = 2.(8)

Proof. The verification of expressions (5)–(8) is straightforward. Here we will
verify (7), which is somewhat special, and leave the rest to the reader. We have,
for j > 2,

[D1,2(zα), D1, j (zβ)] = [α2zα−ε2∂1−α1zα−ε1∂2, β j zβ−ε j ∂1−β1zβ−ε1∂ j ]

= α2β jβ1zα+β−ε1−ε2−ε j ∂1−α2β jα1zα+β−ε1−ε2−ε j ∂1

+α2β1α j zα+β−ε1−ε2−ε j ∂1−α2β1(β1− 1)zα+β−2ε1−ε2∂ j

+α1β j (α1− 1)zα+β−2ε1−ε j ∂2−α1β jβ2zα+β−ε1−ε2−ε j ∂1

+α1β1β2zα+β−2ε1−ε2∂ j −α1β1α j zα+β−2ε1−ε j ∂2

= (α2β jβ1−α2β jα1+α2β1α j −α1β jβ2)zα+β−ε1−ε2−ε j ∂1

+α1(β j (α1− 1)−β1α j )zα+β−2ε1−ε j ∂2

+β1(−α2(β1− 1)+α1β2)zα+β−2ε1−ε2∂ j .

Comparing the above with

D1,2(zα+β−ε1−ε j )= (α2+β2)zα+β−ε1−ε2−ε j ∂1− (α1+β1− 1)zα+β−2ε1−ε j ∂2,

D1, j (zα+β−ε1−ε2)= (α j +β j )zα+β−ε1−ε2−ε j ∂1− (α1+β1− 1)zα+β−2ε1−ε2∂ j ,

D2, j (zα+β−2ε1)= (α j +β j )zα+β−2ε1−ε j ∂2− (α2+β2)zα+β−2ε1−ε2∂ j ,

one readily sees that (7) holds. �

Another useful fact is the following:

(9) [∂`, Di, j ( f )] = Di, j (∂`( f )) for all i, j, `= 1, . . . ,m and f ∈ O.

The remaining part of the proof of Theorem 3.2 will be divided into four steps.



298 YURI BAHTURIN AND MIKHAIL KOCHETOV

Step 1: Without loss of generality, we may assume

(10) pδ
(
D1,2(z1z2)

)
= 0.

Substituting α = ε1 + ε2 into expressions (5)–(8), we see that each nonzero el-
ement Di, j (zβ) is an eigenvector for the operator ad D1,2(z1z2), with eigenvalue
λ(i, j, β) = β1− β2− 1, β1− β2 or β1− β2+ 1, depending on i, j . (For the case
i = 1 and j > 2, one has to combine the first and the third terms in expression (7),
which gives −(β2 + 1)D1, j (zβ).) Since λ(i, j, β) is in the field G Fp, we have
D1,2(z1z2) = D1,2(z1z2)

p. Applying the operator pδ to both sides and using (4),
we obtain

pδ
(
D1,2(z1z2)

)
=

∑
i1+···+i p=p

( i1δ)
(
D1,2(z1z2)

)
· · · ( i pδ)

(
D1,2(z1z2)

)
.

Taking into account (2) and (9), we see that kδ
(
D1,2(z1z2)

)
= 0 for 1 < k < p.

Hence,

(11) pδ
(
D1,2(z1z2)

)
=
(1δ

(
D1,2(z1z2)

))p

+

p−1∑
k=0

D1,2(z1z2)
k(pδ)

(
D1,2(z1z2)

)
D1,2(z1z2)

p−k−1.

Since 1δ
(
D1,2(z1z2)

)
= [∂1, D1,2(z1z2)] = D1,2(z2)= ∂1 and ∂ p

1 = 0, the first term
on the right-hand side of (11) vanishes. The second term can be rewritten using
the identity

p−1∑
k=0

X k Y X p−k−1
= (ad X)p−1(Y ),

where X = D1,2(z1z2) and Y = pδ(X). Thus, (11) yields

Y =
(
ad D1,2(z1z2)

)p−1
(Y ).

It follows that Y can be written as a linear combination of those Di, j (zβ) for which
the eigenvalue λ(i, j, β) is nonzero:

pδ
(
D1,2(z1z2)

)
=

∑
i, j,β : λ(i, j,β) 6=0

σ
i, j
β Di, j (zβ).

Replacing pδ with

pδ+
∑
i, j,β

σ
i, j
β

λ(i, j, β)
ad Di, j (zβ)

completes Step 1.
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Step 2: Without loss of generality, we may assume, in addition to (10), that

(12) pδ(∂1)=
∑

i, j,β :β1=p−1

τ
i, j
β Di, j (zβ)

for some scalars τ i, j
β .

By (9), we have [∂1, D1,2(z1z2)] = ∂1. Applying the operator pδ to both sides
and using (3), (2) and (10), we obtain

pδ(∂1)=

p∑
k=0

[ kδ(∂1),
p−kδ(D1,2(z1z2))

]
=
[pδ(∂1), D1,2(z1z2)

]
.

Hence [D1,2(z1z2), Y ] =−Y where Y = pδ(∂1). It follows that Y can be written as
a linear combination of those Di, j (zβ) for which the eigenvalue λ(i, j, β) is −1:

(13) pδ(∂1)=
∑

i, j,β : λ(i, j,β)=−1

τ
i, j
β Di, j (zβ).

Now replace pδ with

pδ+
∑

i, j,β :β1 6=p−1

τ
i, j
β

β1+ 1
ad Di, j (zβ+ε1).

Using (9) gives (12) for the new pδ, because all terms with β1 6= p−1 in the right-
hand side of (13) will cancel out. It remains to check that we still have (10) for the
new pδ. In other words, we have to check that [D1,2(z1z2), Di, j (zβ+ε1)] = 0 for
all i, j, β with τ i, j

β 6= 0. But this is clear, because λ(i, j, β + ε1) = λ(i, j, β)+ 1
and thus λ(i, j, β+ ε1)= 0 for all i, j, β that occur in the right-hand side of (13).
Step 2 is complete.

Step 3: For any element X = f1∂1+ · · ·+ fm∂m ∈W , define

pr1(X) := f1 ∈ O.

Assume (10) and (12). Then, pr1
(

pδ(D1,2(zk
1z2))

)
for any k = 1, . . . , p − 1 is a

linear combination of zγ with 0≤ γ1 < k.
We proceed by induction on k. The basis for k = 1 follows from (10). Now

suppose the claim holds for some k ≥ 1. By (9), we have

[∂1, D1,2(zk+1
1 z2)] = (k+ 1)D1,2(zk

1z2).

Applying the operator pδ to both sides, we obtain

(14) pδ([∂1, D1,2(zk+1
1 z2)])= (k+ 1)(pδ)(D1,2(zk

1z2)).
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Using (3),(2) and (12), the left-hand side of (14) becomes[ ∑
i, j,β :β1=p−1

τ
i, j
β Di, j (zβ), D1,2(zk+1

1 z2)

]
+
[
∂1,

pδ(D1,2(zk+1
1 z2))

]
.

Setting Y = pδ(D1,2(zk+1
1 z2)), we can rewrite (14) as

(15) [∂1, Y ] = (k+1)(pδ)(D1,2(zk
1z2))+

∑
i, j,β :β1=p−1

τ
i, j
β [D1,2(zk+1

1 z2), Di, j (zβ)].

Our goal is to show that monomials zγ with γ1≥ k+1 do not occur in f1 :=pr1(Y ).
Since pr1[∂1, Y ] = ∂1 f1, it suffices to show that elements zγ ∂1 with γ1 ≥ k do not
occur in the right-hand side of (15), when it is regarded as an element of W . The
induction hypothesis tells us that such elements do not occur in the first term of
the right-hand side of (15). We will prove the same for the second term.

In the case 2< i < j , we have by (5) that

[D1,2(zk+1
1 z2), Di, j (zβ)] = (β1−β2(k+ 1))Di, j (zβ+kε1).

Hence, no elements zγ ∂1 occur here.
In the case 2= i < j , we have by (6) that

[D1,2(zk+1
1 z2), Di, j (zβ)] = (β1− (β2− 1)(k+ 1))D2, j (zβ+kε1).

Again, no elements zγ ∂1 occur.
In the case i = 1 and 2 < j , we can write [D1,2(zk+1

1 z2), Di, j (zβ)], using (7)
and β1 = p− 1, as

−(k+ 1)β j D1,2(zβ+kε1+ε2−ε j )− D1, j (zβ+kε1)+ (k+ 1)D2, j (zβ+(k−1)ε1+ε2).

Elements zγ ∂1 occur only in the first two summands, and we have γ =β+kε1−ε j

in either case. Therefore, γ1 = β1+ k = k− 1 mod p (recall that we may take the
exponents of z modulo p).

In the case i = 1, j = 2, we have by β1 = p− 1 and (8) that

[D1,2(zk+1
1 z2), D1,2(zβ)] = −((k+ 1)β2+ 1)D1,2(zβ+kε1).

Hence, elements zγ ∂1 occur with γ = β+kε1−ε2. Once again, γ1= k−1 mod p.
The inductive proof of Step 3 is complete.

Step 4: We can finally obtain a contradiction. By (8), we have

[D1,2(z
p−1
1 z2), D1,2(z2

1z2)] = 3D1,2(z2)= 3∂1.
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Applying pδ and taking into account (3), (2) and (12), we obtain

(16) 3
∑

i, j,β :β1=p−1

τ
i, j
β Di, j (zβ)

=
[pδ(D1,2(z

p−1
1 z2)), D1,2(z2

1z2)
]
+
[
D1,2(z

p−1
1 z2),

pδ(D1,2(z2
1z2))

]
+

[
D1,2

( 1
(p−1)!

∂
p−1
1 (z p−1

1 z2)
)
, D1,2

( 1
1!
∂1(z2

1z2)
)]

+

[
D1,2

( 1
(p−2)!

∂
p−2
1 (z p−1

1 z2)
)
, D1,2

( 1
2!
∂2

1 (z
2
1z2)

)]
.

One readily verifies that the sum of the third and fourth terms in the right-hand
side of (16) is 3∂1. Consider the first and the second terms. Denote

X := pδ(D1,2(z
p−1
1 z2)) and Y := pδ(D1,2(z2

1z2)).

By Step 3, we know pr1(X) is a linear combination of zγ with 0≤ γ1 ≤ p−2 and
pr1(Y ) is a linear combination of zγ with 0≤ γ1 ≤ 1.

Since D1,2(z2
1z2) = z2

1∂1 − 2z1z2∂2, we see that the coefficient of ∂1 depends
only on z1 and hence all terms with ∂1 in the commutator [X, D1,2(z2

1z2)] come
from terms with ∂1 in X . In other words,

pr1[X, D1,2(z2
1z2)] = pr1[pr1(X)∂1, D1,2(z2

1z2)].

Since
[zγ ∂1, D1,2(z2

1z2)] = (2− γ1+ 2γ2)zγ+ε1∂1− 2zγ+ε2∂2,

we conclude that pr1[X, D1,2(z2
1z2)] is a linear combination of monomials zγ+ε1

with 0≤ γ1 ≤ p−2. Therefore, elements zα∂1 with α1= 0 do not occur in the first
term in the right-hand side of (16).

Since D1,2(z
p−1
1 z2)= z p−1

1 ∂1+ z p−2
1 z2∂2, we also see that

pr1[D1,2(z
p−1
1 z2), Y ] = pr1[D1,2(z

p−1
1 z2), pr1(Y )∂1].

Then

[D1,2(z
p−1
1 z2), zγ ∂1] = (1+ γ1+ γ2)zγ+(p−2)ε1∂1+ 2zγ+(p−3)ε1+ε2∂2,

implies that pr1[D1,2(z
p−1
1 z2), Y ] is a linear combination of monomials zγ+(p−2)ε1

with 0≤ γ1 ≤ 1. Therefore, elements zα∂1 with α1 = 0 do not occur in the second
term in the right-hand side of (16).

Finally, all elements zα∂1 that occur in the left-hand side of (16) have α1= p−1.
Summarizing our analysis, we obtain

3∂1 = 0,

which is a contradiction, since p > 3. The proof of Theorem 3.2 is complete. �
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Corollary 3.4. Under the assumptions of Theorem 3.2,

Liek(Aut(S(1)))= ad(C S(0)) for all k > 0.

Theorem 3.5. Let O= O(m;1) for m = 2r and H (2)
= H(m;1)(2). Let

AutH (O)= StabAut(O)(〈ωH 〉).

Assume p > 3. Then the morphism Ad :AutH (O)→Aut(H (2)) is an isomorphism
of group schemes.

Proof. Denote by G the distribution algebra of Aut(H (2)). As in the proof of
Theorem 3.2, we must show that Lie1(G)⊂ad(C H(0))— that is, for any D∈C H , if
D /∈C H(0), then ad D /∈Lie1(G). Again, we can write D=λ1∂1+· · ·+λm∂m+D0,

where D0 ∈ C H(0) and the scalars λ1, . . . , λm are not all zero. Since D0 is in
Lie1(AutH (O)), we have that ad D0 is in Lie1(G), so it suffices to prove that
ad(λ1∂1+ · · · + λm∂m) /∈ Lie1(G). Applying an automorphism of O induced by a
suitable symplectic transformation on the space Span{∂1, . . . , ∂m}, we may assume
without loss of generality that D = ∂1.

By way of contradiction, assume that ad ∂1 ∈ Lie1(G). Then there exists a
sequence of divided powers 1 = 0h, 1h, . . . , ph in G such that 1h = ad ∂1. We
may assume without loss of generality that kh = (1/k!)(1h)k for k = 0, . . . , p−1.

The distribution algebra G acts canonically on H (2), so there is a homomorphism
η : G→ End(H (2)). The restriction of η to Prim(G) = Der(H (2)) is the identity
map. Let kδ = η(kh) for k = 0, . . . , p. Then

(17) kδ =
1
k!
(ad ∂1)

k for k = 0, . . . , p− 1,

and, since H (2) is a G-module algebra,

(18) kδ([X, Y ])=
k∑

j=0

[
jδ(X), k− jδ(Y )] for all k = 0, . . . , p and X, Y ∈ H (2).

For the extended action of G on the restricted enveloping algebra u(H (2)), we have

(19) kδ(XY )=
k∑

j=0

( jδ)(X) (k− jδ)(Y ) for all k= 0, . . . , p and X, Y ∈ u(H (2)).

We may replace pδ by pδ+ ξ , where ξ is any derivation of H (2), without affecting
Equations (18) and (19). We will use this observation to simplify the operator pδ.

As in [Strade 2004, Section 4.2], define

σ(i) :=
{

1 if i = 1, . . . , r,
−1 if i = r + 1, . . . , 2r,

and i ′ := i + σ(i)r.
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Also define a map DH : O→ H by

DH ( f ) :=
2r∑

i=1

σ(i)∂i ( f )∂i ′ .

Note that the kernel of DH is F1.
Let zi = 1+ xi , i = 1, . . . , 2r . For each multi-index α ∈ Z(2r;1), set

zα = zα1
1 · · · z

α2r
2r .

We may regard the components of α as elements of the cyclic group Zp when
dealing with zα. For the calculations we are about to carry out, we need the formula

(20) [DH (zα), DH (zβ)] = DH
(
DH (zα)(zβ)

)
for all α, β ∈ Z(2r;1).

In particular,

(21) [∂`, DH (zβ)] = DH
(
∂`(zβ)

)
for all `= 1, . . . , 2r and β ∈ Z(2r;1).

Let τ = (p− 1, . . . , p− 1) ∈ Z(2r;1). By [Strade 2004, Section 4.2],

{DH (zα) | 0< α < τ }

is a basis of H (2).
The remaining part of the proof of Theorem 3.5 will be divided into four steps,

which are similar to the steps in the proof of Theorem 3.2.

Step 1: Without loss of generality, we may assume

(22) pδ (DH (z1zr+1))= 0.

Substituting α = ε1 + ε2 into (20), we see that DH (zβ) is an eigenvector for the
operator ad DH (z1zr+1), with eigenvalue βr+1−β1. Since βr+1−β1 is in the field
G Fp, we have DH (z1zr+1)=DH (z1zr+1)

p. Applying the operator pδ to both sides
and using (19), we obtain

pδ (DH (z1zr+1))=
∑

i1+···+i p=p

(i1δ) (DH (z1zr+1)) · · · (
i pδ) (DH (z1zr+1)) .

Taking into account (17) and (21), we see that kδ (DH (z1zr+1))= 0 for 1< k < p.
Hence,

(23) pδ (DH (z1zr+1))=
(1δ (DH (z1zr+1))

)p

+

p−1∑
k=0

DH (z1zr+1)
k(pδ) (DH (z1zr+1)) DH (z1zr+1)

p−k−1.
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Since 1δ (DH (z1zr+1)) = [∂1, DH (z1zr+1)] = DH (zr+1) = −∂1 and ∂ p
1 = 0, the

first term on the right-hand side of (23) vanishes. The second term can be rewritten
using the identity

p−1∑
k=0

X k Y X p−k−1
= (ad X)p−1(Y ),

where X = DH (z1zr+1) and Y = pδ(X). Thus, (23) yields

Y = (ad DH (z1zr+1))
p−1 (Y ).

It follows that Y is a linear combination of those DH (zβ) for which the eigenvalue
βr+1−β1 is nonzero:

pδ (DH (z1zr+1))=
∑

β :βr+1 6=β1

σβDH (zβ).

Replacing pδ with
pδ+

∑
β

σβ

βr+1−β1
ad DH (zβ)

completes Step 1.

Step 2: Without loss of generality, we may assume that, in addition to (22),

(24) pδ(∂1)=
∑

β :β1=p−1

τβDH (zβ)

for some scalars τβ .
By (21), we have [∂1, DH (z1zr+1)] = −∂1. Applying the operator pδ to both

sides and using (18), (17) and (22), we obtain

−
pδ(∂1)=

p∑
k=0

[kδ(∂1),
p−kδ(DH (z1zr+1))

]
=
[pδ(∂1), DH (z1zr+1)

]
.

Hence [DH (z1zr+1), Y ] = Y , where Y = pδ(∂1). It follows that Y is a linear
combination of those DH (zβ) for which the eigenvalue βr+1−β1 is 1:

(25) pδ(∂1)=
∑

β :βr+1−β1=1

τβDH (zβ).

Now replace pδ with

pδ+
∑

β :β1 6=p−1

τβ

β1+ 1
ad DH (zβ+ε1).

Using (21) gives (24) for the new pδ, because all terms with β1 6= p−1 in the right-
hand side of (25) will cancel out. It remains to check that we still have (22) for
the new pδ. In other words, we have to check that [DH (z1zr+1), DH (zβ+ε1)] = 0
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for all β with τβ 6= 0. But this is clear, because βr+1− (β1+ 1)= 0 for all β that
occur in the right-hand side of (25). Step 2 is complete.

Step 3: Assume (22) and (24). Then, pδ(DH (zk
1zr+1)) for any k = 1, . . . , p− 1 is

a linear combination of DH (zγ ) with 0≤ γ1 < k.
We proceed by induction on k. The basis for k = 1 follows from (22). Now

suppose the claim holds for some k ≥ 1. By (21), we have

[∂1, DH (zk+1
1 zr+1)] = (k+ 1)DH (zk

1zr+1).

Applying the operator pδ to both sides and taking into account (18) and (17) gives

(26) [pδ(∂1), DH (zk+1
1 zr+1)] + [∂1,

pδ(DH (zk+1
1 zr+1))]

= (k+ 1)(pδ)(DH (zk
1zr+1)).

Writing

(27) pδ(DH (zk+1
1 zr+1))=

∑
0<γ<τ

σγ DH (zγ )

and considering (24), (20) and (21), we can rewrite the left-hand side of (26) as∑
β :β1=p−1

τβ[DH (zβ), DH (zk+1
1 zr+1)] +

∑
γ

σγ [∂1, DH (zγ )]

= −

∑
β :β1=p−1

τβDH (((k+ 1)zk
1zr+1∂r+1− zk+1

1 ∂1)(zβ))+
∑
γ

σγ DH (∂1(zγ ))

=−

∑
β :β1=p−1

τβDH ((k+ 1)βr+1zβ+kε1 −β1zβ+kε1)+
∑
γ

σγ γ1 DH (zγ−ε1)

=−

∑
β :β1=p−1

τβ((k+ 1)βr+1+ 1)DH (zβ+kε1)+
∑
γ

σγ γ1 DH (zγ−ε1).

Setting τ ′β := τβ((k+ 1)βr+1+ 1), we can now rewrite (26) as

(28)
∑
γ

σγ γ1 DH (zγ−ε1)

= (k+ 1)(pδ)(DH (zk
1zr+1))+

∑
β :β1=p−1

τ ′βDH (zβ+kε1).

Since the induction hypothesis applies to the first term in the right-hand side of (28),
all elements DH (zα) that occur in the right-hand side have 0 ≤ α1 ≤ k− 1. Com-
paring this with the left-hand side, we conclude that for any γ with σγ 6= 0, either
γ1 = 0 or 0 ≤ γ1 − 1 ≤ k − 1. Hence the elements DH (zγ ) that occur in the
right-hand side of (27) have 0≤ γ1 ≤ k. The inductive proof of Step 3 is complete.

Step 4: We can finally obtain a contradiction. By (20), we have

[DH (z2
1zr+1), DH (z

p−1
1 zr+1)] = 3DH (zr+1)=−3∂1.
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Applying pδ and taking into account (18) and (17), we obtain

−3(pδ)(∂1)

=
[pδ(DH (z2

1zr+1)), DH (z
p−1
1 zr+1)

]
+
[
DH (z2

1zr+1),
pδ(DH (z

p−1
1 zr+1))

]
+

[
DH

( 1
1!
∂1(z2

1zr+1)
)
, DH

( 1
(p−1)!

∂
p−1
1 (z p−1

1 )zr+1

)]
+

[
DH

( 1
2!
∂2

1 (z
2
1zr+1)

)
, DH

( 1
(p−2)!

∂
p−2
1 (z p−1

1 )zr+1

)]
=
[pδ(DH (z2

1zr+1)), DH (z
p−1
1 zr+1)

]
+
[
DH (z2

1zr+1),
pδ(DH (z

p−1
1 zr+1))

]
+ 3

[
DH (z1zr+1), DH (zr+1)

]
=
[pδ(DH (z2

1zr+1)), DH (z
p−1
1 zr+1)

]
+
[
DH (z2

1zr+1),
pδ(DH (z

p−1
1 zr+1))

]
−3∂1.

So we have

(29) 3∂1 =
[pδ(DH (z2

1zr+1)), DH (z
p−1
1 zr+1)

]
+
[
DH (z2

1zr+1),
pδ(DH (z

p−1
1 zr+1))

]
+ 3(pδ)(∂1).

Step 3 gives that

pδ(DH (z2
1zr+1))=

∑
α : 0≤α1≤1

σ (2)α DH (zα),

pδ(DH (z
p−1
1 zr+1))=

∑
α : 0≤α1≤p−2

σ (p−1)
α DH (zα).

Hence, (20) implies[pδ(DH (z2
1zr+1)),DH (z

p−1
1 zr+1)

]
=

∑
α : 0≤α1≤1

σ (2)α
[
DH (zα), DH (z

p−1
1 zr+1)

]
=−

∑
α : 0≤α1≤1

σ (2)α DH ((−z p−2
1 zr+1∂r+1− z p−1

1 ∂1)(zα))

=

∑
α : 0≤α1≤1

σ (2)α (αr+1+α1)DH (zα−2ε1),

and, similarly,[
DH (z2

1zr+1),
pδ(DH (z

p−1
1 zr+1))

]
=

∑
α:0≤α1≤p−2

σ (p−1)
α

[
DH (z2

1zr+1),DH (zα)
]

=

∑
α:0≤α1≤p−2

σ (p−1)
α DH ((2z1zr+1∂r+1−z2

1∂1)(zα))

=

∑
α:0≤α1≤p−2

σ (p−1)
α (2αr+1−α1)DH (zα+ε1).
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Using these calculations and (24), we can rewrite (29) as

3∂1 =
∑

α : 0≤α1≤1

σ (2)α (αr+1+α1)DH (zα−2ε1)

+

∑
α : 0≤α1≤p−2

σ (p−1)
α (2αr+1−α1)DH (zα+ε1)+ 3

∑
β :β1=p−1

τβDH (zβ).

This equation is impossible, because p> 3 and none of the sums in the right-hand
side involves DH (zr+1). The proof of Theorem 3.5 is complete. �

Corollary 3.6. Under the assumptions of Theorem 3.5,

Liek(Aut(H (2)))= ad(C H(0)) for all k > 0.

4. Group gradings

Let G be an abelian group. In this section we will give a classification of G-
gradings on the algebra O = O(m;1) and on the simple Lie algebras W (m;1),
S(m;1)(1) for m ≥ 3 and S(2;1)(2) = H(2;1)(2).

Given a G-grading 0O :O=
⊕

g∈G Og, we obtain an induced grading on End(O).
It is easy to see that W = Der(O) is a graded subspace, so it inherits a G-grading,
which will be denoted by 0W : W =

⊕
g∈G Wg. The spaces �k also receive

G-gradings in a natural way, and one can verify that the maps d : �k
→ �k+1

respect the G-gradings. (The canonical Z-gradings of W and �k are induced by
the canonical Z-grading of O in this manner.) However, S = S(m;1), respectively
H = H(m;1), is not in general a graded subspace of W . It is certainly a graded
subspace if we assume that ωS , respectively ωH , is a homogeneous element with
respect to the G-grading on �m , respectively �2.

Definition 4.1. We will say that a G-grading 0O :O=
⊕

g∈G Og is S–admissible of
degree g0 ∈G if the form ωS is a homogeneous element of degree g0, and similarly
define H–admissible.

If 0O is S-admissible, then we denote the induced G-gradings on S and its
derived algebra(s) by 0S , and similarly use 0H when 0O is H -admissible.

We now recall the connection between group gradings on an algebra and certain
subgroupschemes of its automorphism group scheme. Let U be an algebra. For any
group G, a G-grading on U is equivalent to a structure of an FG-comodule algebra
(see, for example, [Montgomery 1993]). Assuming U finite-dimensional and G
finitely generated abelian, we can regard this comodule structure as a morphism of
algebraic group schemes G D

→Aut(U ) where G D is the Cartier dual of G, that is,
the group scheme represented by the commutative Hopf algebra FG. Two G-
gradings are isomorphic if and only if the corresponding morphisms G D

→Aut(U )
are conjugate by an automorphism of U .
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If char F = 0, then G D
= Ĝ, the algebraic group of multiplicative characters

of G, and Aut(U ) = Aut(U ), the algebraic group of automorphisms. The image
of Ĝ in Aut(U ) is a quasitorus, that is, a diagonalizable algebraic group. The
G-grading on U is, of course, the eigenspace decomposition of U with respect to
this quasitorus. Hence, group gradings on U correspond to quasitori in Aut(U ).

We are interested in the case char F= p > 0. Then we can write G=G p′ ×G p,
where G p′ has no p-torsion and G p is a p-group. So G D

= Ĝ p′×G D
p , where Ĝ p′ is

smooth and G D
p is finite and connected. The algebraic group Ĝ p′ (which equals Ĝ)

is a quasitorus, and it acts by automorphisms of U as follows:

χ ∗ X = χ(g)X for all X ∈Ug and g ∈ G.

If G p is an elementary p-group, then the distribution algebra of G D
p is the restricted

enveloping algebra u(T ) where T is the group of additive characters of G p, re-
garded as an abelian restricted Lie algebra. If {a1, . . . , as} is a basis of G p (as
a vector space over the field G Fp), then the dual basis {t1, . . . , ts} of T has the
property (ti )p

= ti for all i . Therefore, T is a torus in the sense of restricted Lie
algebras. It acts by derivations of U as follows:

t ∗ X = t (g)X for all X ∈Ug and g ∈ G.

If G p is not elementary, then the distribution algebra of G D
p is not generated by

primitive elements and hence its action on U does not reduce to derivations. Re-
gardless of what the case may be, the image of G D in Aut(U ) is a diagonalizable
subgroupscheme. In some sense, the G-grading on U is its eigenspace decompo-
sition (see, for example, [Waterhouse 1979]).

Now, Theorems 3.1 (where, as was pointed out, one can include the cases p= 2
and p = 3), 3.2 and 3.5 give us the following corollary.

Corollary 4.2. Let G be an abelian group. Let L be one of the following simple Lie
algebras: W =W (m;1) for m≥ 3 if p= 2 and m≥ 2 if p= 3, S(1)= S(m;1)(1) for
m ≥ 3 and p> 3 or H (2)

= H(m;1)(2) for m = 2r and p> 3. Then any G-grading
on L is induced by a G-grading on O= O(m;1). More precisely:

1) The correspondence 0O 7→ 0W is a bijection between the G-gradings on O

and the G-gradings on W . It induces a bijection between the isomorphism
classes of these gradings.

2) The correspondence 0O 7→ 0S is a bijection between the S-admissible G-
gradings on O and the G-gradings on S(1). It induces a bijection between
the isomorphism classes of G-gradings on S(1) and the AutS(O)-orbits of the
S-admissible G-gradings on O.

3) The correspondence 0O 7→ 0H is a bijection between the H-admissible G-
gradings on O and the G-gradings on H (2). It induces a bijection between



GROUP GRADINGS ON RESTRICTED CARTAN-TYPE LIE ALGEBRAS 309

the isomorphism classes of G-gradings on H (2) and the AutH (O)-orbits of the
H-admissible G-gradings on O.

Proof. Let 0 : L =
⊕

g∈G Lg be a G-grading. Replacing G with the subgroup
generated by the support, we may assume that G is finitely generated. In addition,
the corresponding morphism G D

→ Aut(L) is a closed imbedding.
Consider the case L = W . From the isomorphism Ad : Aut(O) → Aut(L),

we obtain a closed imbedding G D
→ Aut(O), which corresponds to a G-grading

0O : O =
⊕

g∈G Og (whose support also generates G, since otherwise we would
not have a closed imbedding). The induced G-grading 0W on W is obtained by
inducing the FG-comodule structure from O to End(O) and then restricting to L ,
which agrees with how Ad : Aut(O)→ Aut(L) is defined. Therefore, 0 = 0W .

In the case L = S(1), we obtain a closed imbedding G D
→ AutS(O), so the

subspace 〈ωS〉 of �m is G D-invariant, that is, 〈ωS〉 is an FG-subcomodule. Hence
ωS is a homogeneous element in the corresponding G-grading 0O : O=

⊕
g∈GOg.

The proof in the case L = H (2) is similar. �

Remark 4.3. It follows from the proof that the supports of the gradings 0O, 0W ,
0S and 0H generate the same subgroup in G.

We will now describe all possible G-gradings on O= O(m;1).

Proposition 4.4. Let O = O(m;1) and let M be its unique maximal ideal. Let G
be an abelian group and let O=

⊕
g∈G Og be a G-grading.

1) There exist elements y1, . . . , ym of M and 0 ≤ s ≤ m such that the elements
1+ y1, . . . , 1+ ys, ys+1, . . . , ym are G-homogeneous and {y1, . . . , ym} is a
basis of M modulo M2.

2) Let P = {g ∈ G | Og 6⊂M}. Then P is an elementary p-subgroup of G.

3) Let {b1, . . . , bs} be a basis of P. Then the elements y1, . . . , ym can be chosen
in such a way that the degree of 1+ yi is bi for all i = 1, . . . , s.

Proof. 1) Pick a basis for O consisting of G-homogeneous elements and select
a subset { f1, . . . , fm} of this basis that is linearly independent modulo F1⊕M2.
Order the elements fi so f1, . . . , fs have a nonzero constant term and fs+1, . . . , fm

belong to M. Rescale f1, . . . , fs so that the constant term is 1. Let yi = fi −1 for
i = 1, . . . , s and yi = fi for i = s + 1, . . . ,m. Then y1, . . . , ym is a basis of M

modulo M2.

2) Clearly, e ∈ P . If a, b ∈ P , then there exist elements u ∈ Oa and v ∈ Ob that are
not in M. Then the element uv ∈ Oab is not in M, so ab ∈ P . Also, since u p is a
nonzero scalar, we have a p

= e. Thus P is an elementary p-subgroup.
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3) Any element of O can be uniquely written as a (truncated) polynomial in the
variables 1+ y1, . . . , 1+ ys, ys+1, . . . , ym . Hence, for any g ∈ G,

(30) Og = Span{(1+ y1)
j1 · · · (1+ ys)

js y js+1
s+1 · · · y

jm
m | 0≤ ji < p, a j1

1 · · · a
jm
m = g},

where a1, . . . , am ∈ G are the degrees of 1+ y1, . . . , 1+ ys, ys+1, . . . , ym , respec-
tively. So a1, . . . , as generate P . Suppose they do not form a basis of P — say,
as = a`1

1 · · · a
`s−1
s−1 . Set ỹi = yi for i 6= s and

ỹs := 1+ ys − (1+ y1)
`1 · · · (1+ ys−1)

`s−1 .

Then 1 + ỹ1, . . . , 1 + ỹs−1, ỹs, . . . , ỹm are homogeneous of degrees a1, . . . , am ,
respectively. Also, ỹs ∈M and

ỹs = ys − (`1 y1+ · · ·+ `s−1 ys−1) (mod M2),

so ỹ1, . . . , ỹm still form a basis of M modulo M2. We have decreased s by 1.
Repeating this process as necessary, we may assume that {a1, . . . , as} is a basis
of P . Finally, if {b1, . . . , bs} is another basis of P , we can write b j =

∏s
i=1 a`i j

i ,
where (`i j ) is a nondegenerate matrix with entries in the field G Fp. Set

ỹ j :=

s∏
i=1

(1+ yi )
`i j − 1 for j = 1, . . . , s,

and ỹ j = y j for j = s+1, . . . ,m. Then ỹ1, . . . , ỹm form a basis of M modulo M2,
and 1+ ỹ j is homogeneous of degree b j , j = 1, . . . , s. �

Remark 4.5. Without loss of generality, assume that G is generated by the support
of the grading O=

⊕
g∈G Og. Let Q be the image of G D under the corresponding

closed imbedding G D
→ Aut(O). Let H = StabAut(O)(M). (In fact, H = Aut(O),

regarded as the largest smooth subgroupscheme of Aut(O).) Let Q0 = Q ∩ H.
Then P is the subgroup of G corresponding to the Hopf ideal of FG defining the
subgroupscheme Q0 of Q.

Proof. Let I0 be the Hopf ideal defining the subgroupscheme Q0 and let G0 be the
corresponding subgroup of G. Consider the coarsening O=

⊕
g∈G/G0

Og of the G-
grading induced by the natural homomorphism G→G/G0, that is, Og=

⊕
g∈g Og.

This coarsening corresponds to the subgroupscheme Q0 ⊂Q. Since Q0 stabilizes
the subspace M⊂ O, we have M=

⊕
g∈G/G0

(Og ∩M). Hence Og ⊂M for g 6= e
and Oe = F1⊕ (Oe ∩M). Hence Og ⊂M for all g /∈ G0, which proves P ⊂ G0.
To prove that P = G0, consider the Hopf ideal I of FG corresponding to P . Then
I ⊂ I0. The subgroupscheme Q̃ of Q defined by I acts trivially on each Og with
g ∈ P . It follows that Q̃ stabilizes M. Hence Q̃⊂Q0 and I ⊃ I0. �
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The description of the G-gradings on O(m;1) resembles the description of the
G-gradings on the matrix algebra Mn(F)— see, for example, [Bahturin and Ko-
chetov 2010; Elduque 2010]. Namely, Proposition 4.4 shows that the G-graded
algebra O(m;1) is isomorphic to the tensor product O(s;1)⊗ O(m − s;1) where
the first factor has a division grading (in the sense that each homogeneous compo-
nent is spanned by an invertible element) and the second factor has an elementary
grading (in the sense that it is induced by a grading of the underlying vector
space M/M2). The isomorphism in question is, of course, the one defined by
y1 7→ x1 ⊗ 1, . . . , ys 7→ xs ⊗ 1 and ys+1 7→ 1⊗ x1, . . . , ym 7→ 1⊗ xm−s . The
first factor, O(s;1), is isomorphic to the group algebra FP as a G-graded algebra
(where FP has the standard P-grading, which is regarded as a G-grading).

To state the classification of G-gradings on O up to isomorphism, we introduce
some notation.

Definition 4.6. Let P ⊂ G be an elementary p-subgroup of rank s for 0≤ s ≤ m.
Let t = m − s and let γ = (g1, . . . , gt) ∈ G t . Endow the algebra O = O(m;1)
with a G-grading as follows. Select a basis {b1, . . . , bs} for P and declare the
degrees of 1+ x1, . . . , 1+ xs to be b1, . . . , bs , respectively. Declare the degrees of
xs+1, . . . , xm to be g1, . . . , gt , respectively. Denote the resulting G-grading on O

by 0O(G, b1, . . . , bs, g1, . . . , gt). Since the gradings corresponding to different
choices of basis for P are isomorphic to each other, we also denote this grading
(abusing notation) by 0O(G, P, γ ).

Definition 4.7. Let γ, γ̃ ∈ G t . Write γ ∼ γ̃ if there exists a permutation π of the
set {1, . . . , t} such that g̃i ≡ gπ(i) (mod P) for all i = 1, . . . , t .

Theorem 4.8. Let F be an algebraically closed field of characteristic p> 0. Let G
be an abelian group. Let O =

⊕
g∈G Og be a grading on the algebra O = O(m;1)

over F. Then the grading is isomorphic to some 0O(G, P, γ ) as in Definition 4.6.
Two G-gradings 0O(G, P, γ ) and 0O(G, P̃, γ̃ ) are isomorphic if and only if P= P̃
and γ ∼ γ̃ (see Definition 4.7).

Proof. Let y1, . . . , ym be as in Proposition 4.4. Let g1, . . . , gt ∈ G be the degrees
of ys+1, . . . , ym , respectively. Then the automorphism of O defined by

yi 7→ xi for i = 1, . . . ,m

sends the grading O=
⊕

g∈G Og to 0O(G, b1, . . . , bs, g1, . . . , gt).
If g̃i = gπ(i), i = 1, . . . , t , for some permutation π , then the automorphism of O

defined by

(31) xi 7→ xi for i = 1, . . . , s and xs+i 7→ xs+π(i) for i = 1, . . . , t,

sends 0O(G, P, γ̃ ) to 0O(G, P, γ ).
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If g̃i = gi b`i1
1 · · · b

`is
s , then the automorphism of O defined by

(32) xi 7→ xi for i = 1, . . . , s and xs+i 7→ xs+i

s∏
j=1

(1+x j )
`i j for i = 1, . . . , t,

sends 0O(G, P, γ̃ ) to 0O(G, P, γ ).
Therefore, if γ ∼ γ̃ as in Definition 4.7, then 0O(G, P, γ̃ ) is isomorphic to

0O(G, P, γ ).
It remains to show that the subgroup P and the equivalence class of γ are

invariants of the G-graded algebra O =
⊕

g∈GOg. This is obvious for P , since
P = {g ∈ G | Og 6⊂ M}. Let G = G/P and consider the coarsening of the G-
grading, O=

⊕
g∈GOg, induced by the natural homomorphism G→ G. It follows

from the definition of P that M is a G-graded subspace of O. Consequently, M2

is also a G-graded subspace, and the quotient V :=M/M2 inherits a G-grading:

V = Va1 ⊕ · · ·⊕ Va` .

Define

ki =

{
dim Vai if ai 6= e,
dim Vai − s if ai = e.

Clearly, a1, . . . , a` and k1, . . . , k` are invariants of the G-graded algebra O =⊕
g∈G Og. If the G-grading on O is 0O(G, P, γ ), then, up to a permutation, g1 P =

· · · = gk1 P = a1, gk1+1 P = · · · = gk1+k2 P = a2, and so on. �

Remark 4.9. Instead of using γ = (g1, . . . , gt) where some of the cosets gi P may
be equal to each other, one can take multiplicities,

κ = (k1, . . . , k`), where ki are positive integers,

with |κ| := k1+ · · ·+ k` = t ,

γ = (g1, . . . , g`), where gi ∈ G are such that g−1
i g j /∈ P for all i 6= j,

and write

0O(G, P, κ, γ )= 0O(G, P, g1, . . . , g1︸ ︷︷ ︸
k1 times

, . . . , g`, . . . , g`︸ ︷︷ ︸
k` times

).

Then 0O(G, P, κ, γ ) is isomorphic to 0O(G, P̃, κ̃, γ̃ ) if and only if κ and κ̃ have
the same number of components ` and there exists a permutation π of the set
{1, . . . , `} such that k̃i = kπ(i) and g̃i ≡ gπ(i) (mod P) for all i = 1, . . . , `.

Definition 4.10. Fix 0≤ s ≤ m. For a multi-index α ∈ Zm , let

α := (α1+ pZ, . . . , αs + pZ, αs+1, . . . , αm) ∈ Zs
p×Zm−s .
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Define a Zs
p × Zm−s-grading on O = O(m;1) by declaring the degree of 1+ xi ,

i = 1, . . . , s, and the degree of xi , i = s + 1, . . . ,m, to be εi . This is the grad-
ing 0O(G, P, γ ) where G = Zs

p × Zm−s (written additively), P = Zs
p, and γ =

(εs+1, . . . , εm). Denote this grading by 0O(s).

Corollary 4.11. Let O= O(m;1). Then, up to equivalence, there are exactly m+1
fine gradings of O. They are 0O(s) for s = 0, . . . ,m. The universal group of 0O(s)
is Zs

p×Zm−s .

Proof. All homogeneous components of 0O(s) are 1-dimensional, so it is a fine
grading. All relations in the grading group Zs

p × Zm−s come from the fact that
0 6= (Og)

p
⊂ Oe for certain elements g. Hence Zs

p × Zm−s is the universal group
of 0O(s).

For any abelian group G and a p-subgroup P ⊂ G with a basis {b1, . . . , bs},
any G-grading 0O(G, b1, . . . , bs, g1, . . . , gm−s) is induced from the (Zs

p×Zm−s)-
grading 0O(s) by the homomorphism Zs

p×Zm−s
→ G defined by

εi 7→ bi for i = 1, . . . , s and εi 7→ gi−s for i = s+ 1, . . . ,m.

Hence, up to equivalence, there are no other fine gradings. The gradings 0O(s) are
pairwise nonequivalent, because their universal groups are nonisomorphic. �

Definition 4.12. The G-grading induced by 0O(G, b1, . . . , bs, g1, . . . , gt) (refer to
Definition 4.6) on the Lie algebra W will be denoted by

0W (G, b1, . . . , bs, g1, . . . , gt) or 0W (G, P, γ ).

Explicitly, we declare the degree of each element

(1+ x1)
α1 · · · (1+ xs)

αs xαs+1
s+1 · · · x

αm
m ∂i , where α ∈ Z(m;1), 1≤ i ≤ m,

to be
bα1−δi,1

1 · · · bαs−δi,s
s gαs+1−δi,s+1

1 · · · gαm−δi,m
t ,

where δi, j is the Kronecker delta. In particular, the gradings induced by 0O(s) (see
Definition 4.10) will be denoted by 0W (s).

The following is a generalization of a result in [Demuškin 1970] (see also [Strade
2004, Corollary 7.5.2]) on maximal tori of the restricted Lie algebra W , which
corresponds to the case when G is an elementary p-group.

Theorem 4.13. Let F be an algebraically closed field of characteristic p>0. Let G
be an abelian group. Let W =W (m;1) over F. Assume m ≥ 3 if p= 2 and m ≥ 2 if
p= 3. Then any grading W =

⊕
g∈G Wg is isomorphic to some 0W (G, P, γ ) as in

Definition 4.12. Two G-gradings, 0W (G, P, γ ) and 0W (G, P̃, γ̃ ), are isomorphic
if and only if P = P̃ and γ ∼ γ̃ (see Definition 4.7).

Proof. Combine Theorem 4.8 and Corollary 4.2. �
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Corollary 4.14. Let W = W (m;1). Assume m ≥ 3 if p = 2 and m ≥ 2 if p = 3.
Then, up to equivalence, there are exactly m + 1 fine gradings of W . They are
0W (s) for s = 0, . . . ,m. The universal group of 0W (s) is Zs

p×Zm−s . �

We now turn to special algebras.

Proposition 4.15. In the notation of Proposition 4.4, assume that O=
⊕

g∈G Og is
an S-admissible G-grading of degree g0. Then the elements y1, . . . , ym can be cho-
sen in such a way that the degrees a1, . . . ,am ∈G of 1+y1, . . . ,1+ys, ys+1, . . . , ym ,
respectively, satisfy the equation g0 = a1 · · · am .

Proof. Choose elements y1, . . . , ym as in Proposition 4.4. Let a1, . . . , am ∈ G be
the degrees of the elements 1+ y1, . . . , 1+ ys, ys+1, . . . , ym , respectively. We will
adjust y1, . . . , ym to make a1, . . . , am satisfy the above equation.

The form dy1∧ · · · ∧ dym is G-homogeneous of degree a0 := a1 · · · am . On the
other hand,

dy1 ∧ · · · ∧ dym = f ωS, where f = det(∂ j yi ).

Since ωS is G-homogeneous of degree g0, we conclude that f is G-homogeneous
of degree a0g−1

0 . Since f /∈M, we have a0g−1
0 ∈ P .

First consider the case s = m. Then a0 ∈ P and thus g0 ∈ P . Also, the G-
grading in this case is the eigenspace decomposition of O with respect to a torus
T ⊂Der(O)=W , where T is isomorphic to the group of additive characters of P ,
so T has rank s = m. If g0 = e, then ωS is T -invariant, so T ⊂ StabW (ωS) = S,
which is a contradiction, because the toral rank of S = S(m;1) is less than m (in
fact, it is m−1). Therefore, in this case we necessarily have g0 6= e. It follows that
there exists a basis {b1, . . . , bm} of P such that g0= b1 · · · bm . By Proposition 4.4,
we can replace y1, . . . , ym with ỹ1, . . . , ỹm so that 1+ ỹi is G-homogeneous of
degree bi for i = 1, . . . ,m. The proof in this case is complete.

Now assume that s < m. Write a0g−1
0 = a`1

1 · · · a
`s
s . Set ỹi = yi for i < m and

ỹm = ym(1+ y1)
−`1 · · · (1+ ys)

−`s .

Then ỹm is G-homogeneous of degree ãm = ama−`1
1 · · · a−`s

s and hence ỹ1, . . . , ỹm

are as desired. �

In Definition 4.6 of 0O(G, P, γ ), we had to choose a basis {b1, . . . , bs} for P .
The isomorphism class, that is, the Aut(O)-orbit, of the grading does not depend on
this choice. Clearly, the grading is S-admissible of degree g0 = b1 · · · bs g1 · · · gt

and hence it induces a G-grading on the Lie algebra S and its derived subalge-
bras. Let L = S(m;1)(1) if m ≥ 3 and L = S(m;1)(2) if m = 2. Since g0 is
AutS(O)-invariant, the induced gradings on L corresponding to different values
of g0 are not isomorphic. Conversely, suppose {b̃1, . . . , b̃s} is another basis of P
such that b̃1 · · · b̃s = b1 · · · bs (that is, this basis leads to the same value of g0).
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Write b̃ j =
∏s

i=1 bαi j
i where (αi j ) is a nondegenerate matrix with entries in the

field G Fp. Set

(33) x̃ j :=

s∏
i=1

(1+ xi )
αi j − 1 for j = 1, . . . , s,

and x̃ j = x j for j = s+1, . . . ,m. Then x̃1, . . . , x̃m form a basis of M modulo M2,
and 1+ x̃ j is homogeneous of degree b̃ j , j = 1, . . . , s. One readily computes that

(34) det(∂ j x̃i )= det(αi j )

s∏
i=1

(1+ xi )
−1+

∑s
j=1 αi j .

Now b̃1 · · · b̃s = b1 · · · bs means that
∑s

j=1 αi j = 1 for all i , so det(∂ j x̃ j ) is in F.
Therefore, the automorphism of O defined by xi 7→ x̃i , i = 1, . . . ,m, belongs to
the subgroup AutS(O). We have proved that two G-gradings on L arising from the
same data P and γ , but different choices of basis for P , are isomorphic if and only
if they have the same value of g0. This justifies the following:

Definition 4.16. Let P and γ be as in Definition 4.6. Let g0 ∈ G be such that

g0g−1
1 · · · g

−1
t ∈ P \ {e}.

Select a basis {b1, . . . , bs} for P such that g0 = b1 · · · bs g1 · · · gt . The G-grading
induced by 0O(G, b1, . . . , bt , g1, . . . , gs) on the Lie algebra S and its derived sub-
algebras will be denoted by 0S(G, b1, . . . , bt , g1, . . . , gs) or 0S(G, P, γ, g0). In
particular, the (Zs

p × Zm−s)-grading induced by 0O(s) (see Definition 4.10, with
{ε1, . . . , εs} as a basis for Zs

p), will be denoted by 0S(s).

The following is a generalization of a result in [Demuškin 1970] (see also [Strade
2004, Theorem 7.5.5]) on maximal tori of the restricted Lie algebra C S, which
corresponds to the case when G is an elementary p-group.

Theorem 4.17. Let F be an algebraically closed field of characteristic p>3. Let G
be an abelian group. Let L= S(m;1)(1) if m≥3 and L= S(m;1)(2)=H(m;1)(2) if
m=2 (a simple Lie algebra over F). Then any grading L=

⊕
g∈G Lg is isomorphic

to some 0S(G, P, γ, g0) as in Definition 4.16. Two G-gradings, 0S(G, P, γ, g0)

and 0S(G, P̃, γ̃ , g̃0), are isomorphic if and only if P = P̃ , γ ∼ γ̃ (Definition 4.7)
and g0 = g̃0.

Proof. First we show that the grading L =
⊕

g∈G Lg is isomorphic to some grad-
ing 0S(G, P, γ, g0). We can apply Corollary 4.2 to translate this problem to the
algebra O. Let 0′ :O=

⊕
g∈G O′g be the S-admissible grading on O, of some degree

g0 ∈G, that induces the grading L=
⊕

g∈G Lg. As usual, let P={g∈G |O′g 6⊂M}

and let s be the rank of P . By Proposition 4.15, there exist elements y1, . . . , ym ∈M
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that form a basis of M mod M2 and such that 1+ yi , i ≤ s, and yi , i > s, are G-
homogeneous of some degrees ai , i = 1, . . . ,m, where {a1, . . . , as} is a basis of P
and g0= a1 · · · am . We want to show that there exists an automorphism in AutS(O)

that sends 0′ to the grading 0O = 0O(G, a1, . . . , as, as+1, . . . , am). Denote the
latter grading by O =

⊕
g∈G Og. Let µ be the automorphism of O defined by

yi 7→ xi , i = 1, . . . ,m. Then µ sends 0′ to 0O, but µ may not belong to AutS(O).
Write µ(ωS) = f ωS for some f ∈ O. Now µ(ωS) has degree g0 relative to the
grading induced on �m by 0O, ωS has degree a1 · · · am relative to the said grading,
and g0 = a1 · · · am , so we conclude that f has degree e relative to 0O. If s = m,
this implies that f is in F and hence µ ∈ AutS(O), completing the proof. So we
assume s < m.

Now we follow the idea of the proof of [Strade 2004, Proposition 7.5.4], which
is due to [Kuznetsov and Yakovlev 1997]. Observe that

µ(ωS)= µ (d(x1dx2∧· · ·∧dxm))

= d (µ(x1)dµ(x2)∧· · ·∧dµ(xm))

= d
( m∑

i=1

(−1)i−1hi dx1∧· · ·∧dxi−1∧dxi+1∧· · ·∧dxm

)
=

( m∑
i=1

∂i hi

)
ωS,

where h1, . . . , hm ∈ O. Set E :=
∑m

i=1 hi∂i ∈ W . Since µ(ωS) = f ωS , we have
div(E) =

∑m
i=1 ∂i hi = f . One can immediately verify that div(Wg) ⊂ Og for all

g ∈G, where 0W :W =
⊕

g∈G Wg is the grading induced on W by 0O. (Also, this
is a consequence of the fact that div :W→ O is Aut(O)-equivariant.) Since f ∈ Oe,
replacing E with its G-homogeneous component of degree e will not affect the
equation div(E)= f , so we will assume that E ∈We.

Define a Z-grading on O by declaring the degree of x1, . . . , xs (or, equivalently,
1+x1, . . . , 1+xs) to be 0 and the degree of xs+1, . . . , xm to be 1. This Z-grading is
compatible with the G-grading 0O in the sense that the homogeneous components
of one grading are graded subspaces of O relative to the other grading. Denote the
filtration associated to this Z-grading by O{`}, `= 0, 1, 2, . . . , to distinguish it from
the filtration O(`) associated to the canonical Z-grading.

Write f =
∑

k≥0 fk , where fk has degree k in the Z-grading and degree e in the
G-grading. Observe that the constant term of f is equal to the constant term of f0,
so f0 is an invertible element of O. Let τ1 be the automorphism of O defined by

τ1(xi )= xi for i < m and τ1(xm)= f −1
0 xm .

Since f0 has degree e in the G-grading, τ1 preserves 0O, that is, τ1(Og) = Og for
all g ∈ G. We also have τ1(O{`}) = O{`} for all `. Since xm has degree 1 in the
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Z-grading, it does not occur in f0. Hence τ1( f0)= f0 and

(τ1 ◦µ)(ωS)= τ1( f ωS)= τ1( f )τ1(ωS)

= ( f0+ τ1(h̃)) f −1
0 ωS = (1+ h)ωS,

where h̃ =
∑

k≥1 fk and h = f −1
0 τ1(h̃). Note that h ∈ O{1}.

Claim. For any ` = 1, 2, . . . there exists an automorphism τ` of O that preserves
the G-grading 0O and satisfies

(35) (τ` ◦µ)(ωS)= (1+ h)ωS, where h ∈ O{`}.

We proceed by induction on `. The basis for ` = 1 was proved above. As-
sume (35) holds for some `≥ 1 and τ`. Since τ` preserves 0O, we have 1+h ∈ Oe

and hence h ∈ Oe. Write h =
∑

k≥` hk , where hk has degree k in the Z-grading
and degree e in the G-grading. As was shown above, there exists E ∈We such that
div(E) = 1+ h. Write E =

∑
k≥−1 Ek where Ek has degree k in the Z-grading

induced from our Z-grading of O and degree e in the G-grading. Since div preserves
the Z-grading, we have div Ek = hk for k ≥ 1. Let τ̃ be the automorphism of O

defined by
τ̃ (xi )= xi − E`(xi ) for i = 1, . . . ,m.

Since E` ∈ We, the automorphism τ̃ preserves the G-grading 0O. We also have
τ̃ ( f )= f (mod O{k+1}) for all f ∈ O{k} and

τ̃ (ωS)= (1− div(E`)+ f̃ )ωS = (1− h`+ f̃ )ωS

for some f̃ ∈ O{2`}. Hence

(τ̃ ◦ τ` ◦µ)(ωS)= τ̃ ((1+ h)ωS)= τ̃ (1+ h)τ̃ (ωS)

= (1+ h`+ f̂ )(1− h`+ f̃ )ωS = (1+ h̃)ωS,

where f̂ ∈ O{`+1} and h̃ = −h2
` + f̂ (1− h`)+ f̃ (1+ h` + f̂ ) ∈ O{`+1}. Setting

τ`+1 = τ̃ ◦ τ`, we complete the induction step.
Set µ̃= τ` ◦µ for `= (p− 1)(m− s)+ 1. Then µ̃ sends 0′ to 0O and belongs

to AutS(O), since µ̃(ωS)= ωS . This proves the first assertion of the theorem.
The subgroup P and the equivalence class of γ = (g1, . . . , gt) are invariants

of the G-graded algebra O, and g0 is AutS(O)-invariant. It remains to show that,
if γ ∼ γ̃ and b1 · · · bs g1 · · · gt = g0 = b̃1 · · · b̃s g̃1 · · · g̃t , where {b1, . . . , bs} and
{b̃1, . . . , b̃s} are bases of P as in Definition 4.16, then (G, b1, . . . , bs, g1, . . . , gt)

and (G, b̃1, . . . , b̃s, g̃1, . . . , g̃t) are in the same AutS(O)-orbit. Clearly, the auto-
morphism (31) of O, determined by a permutation π of {1, . . . , t}, belongs to
AutS(O). So it suffices to consider the case g̃i ≡ gi (mod P). Write b̃ j =

∏s
i=1 bαi j

i ,
where (αi j ) is a nondegenerate matrix with entries in the field G Fp. Also write
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g̃i = gi
∏s

j=1 b`i j
j for i = 1, . . . , t . Then the composition µ of the automor-

phism defined by x j 7→ x̃ j , j ≤ s, and x j 7→ x j , j > s, where x̃ j are as in
(33), and the automorphism defined by (32) sends 0O(G, b̃1, . . . , b̃s, g̃1, . . . , g̃t)

to 0O(G, b1, . . . , bs, g1, . . . , gt). Now, (34) implies that

µ(ωS)= det(αi j )

( s∏
i=1

(1+ xi )
−1+

∑s
j=1 αi j

)( t∏
i=1

s∏
j=1

(1+ x j )
`i j

)
ωS

= det(αi j )

( s∏
i=1

(1+ xi )
−1+

∑s
j=1 αi j+

∑t
j=1 ` j i

)
ωS.

On the other hand,

b̃1 · · · b̃s g̃1 · · · g̃t = g1 · · · gt

s∏
i=1

b
∑s

j=1 αi j+
∑t

j=1 ` j i

i ,

so the equality b̃1 · · · b̃s g̃1 · · · g̃t = g0 = b1 · · · bs g1 · · · gt implies that
s∑

j=1

αi j +

t∑
j=1

` j i = 1 for all i,

and hence µ ∈ AutS(O). �

Corollary 4.18. Under the assumptions of Theorem 4.17, there are, up to equiv-
alence, exactly m + 1 fine gradings of L. They are 0S(s) for s = 0, . . . ,m. The
universal group of 0S(s) is Zs

p×Zm−s . �
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