
Pacific
Journal of
Mathematics

A MEAN CURVATURE ESTIMATE
FOR CYLINDRICALLY BOUNDED SUBMANIFOLDS

LUIS J. ALÍAS AND MARCOS DAJCZER

Volume 254 No. 1 November 2011



PACIFIC JOURNAL OF MATHEMATICS
Vol. 254, No. 1, 2011

A MEAN CURVATURE ESTIMATE
FOR CYLINDRICALLY BOUNDED SUBMANIFOLDS

LUIS J. ALÍAS AND MARCOS DAJCZER

In an earlier article in coauthorship with G. P. Bessa, we obtained an esti-
mate for the mean curvature of a cylindrically bounded proper submanifold
in a product manifold where one factor is a Euclidean space. Here we extend
this estimate to a general product ambient space endowed with a warped
product structure.

Let (L`, gL) and (Pn, gP) be complete Riemannian manifolds of dimension
` and n, respectively, where L` is noncompact. Then let N n+`

= L` ×ρ Pn be
the product manifold L` × Pn endowed with the warped product metric ds2

=

dgL + ρ
2dgP for some positive warping function ρ ∈ C∞(L).

Let BP(r0) denote the geodesic ball with radius r0 centered at a reference point
o ∈ Pn . Assume that the radial sectional curvatures in BP(r0) along the geodesics
issuing from o are bounded as K rad

P ≤ b for some constant b ∈ R, and that 0 <
r0 <min{injP(o), π/2

√
b}, where injP(o) is the injectivity radius at o and π/2

√
b

is replaced by +∞ if b ≤ 0. Then the mean curvature of the geodesic sphere
SP(r0)=∂BP(r0) can be estimated from below by the mean curvature of a geodesic
sphere of a space form of curvature b, that is,

Cb(t)=


√

b cot(
√

b t) if b > 0,

1/t if b = 0,
√
−b coth(

√
−b t) if b < 0.

This is a direct consequence of the comparison theorems for the Riemannian dis-
tance, since the Hessian (respectively, Laplacian) of the distance function is nothing
but the second fundamental form (respectively, mean curvature) of the geodesic
spheres. A classical reference on this topic is [Greene and Wu 1979]. We also
refer the reader to [Petersen 2006] or [Pigola et al. 2008] for a modern approach
to the Hessian and Laplacian comparison theorems.

MSC2010: 53C40, 53C42.
Keywords: Cylindrically bounded submanifolds, Omori–Yau maximum principle, proper
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By a cylinder in the warped space N n+`, we mean a closed subset of the form

Cr0 = {(x, y) ∈ N n+`
: x ∈ L` and y ∈ BP(r0)}.

Since the submanifolds L`×{p0} ⊂ N n+` are totally geodesic, we have

|ρHCr0
| ≥

n−1
`+n−1

Cb(r0),

where HCr0
is the mean curvature vector field of the hypersurface L`× Sp(r0).

The following theorem extends the result in [Alías et al. 2009], where the cylin-
ders under consideration are contained in product spaces R`× Pn . After the state-
ment, we recall from [Alías et al. 2011] the concept of an Omori–Yau pair on a
Riemannian manifold and discuss some implications of its existence.

Theorem 1. Let f : Mm
→ L`×ρ Pn be an isometric immersion, where L` car-

ries an Omori–Yau pair for the Hessian and the functions ρ and |grad log ρ| are
bounded. If f is proper and f (M)⊂ Cr0 , then supM |H | = +∞ or

(1) sup
M
ρ|H | ≥ m−`

m
Cb(r0),

where H is the mean curvature vector field of f .

In the proof, we see that the existence in L` of an Omori–Yau pair for the Hessian
provides conditions, in a function-theoretic form, that guarantee the validity of the
Omori–Yau maximum principle on Mm in terms of the corresponding property of
L` and the geometry of the immersion.

Definition 2. The pair of functions (h, γ ), for h : R+→ R+ and γ : M→ R+, is
an Omori–Yau pair for the Hessian in M if

(a) h(0) > 0 and h′(t)≥ 0, for all t ∈ R+;

(b) lim sup
t→+∞

th
(√

t
)
/h(t) <+∞;

(c)
∫
+∞

0

dt
√

h(t)
=+∞;

(d) the function γ is proper;

(e) |grad γ | ≤ c
√
γ for some c > 0 outside a compact subset of M ; and

(f) Hess γ ≤ d
√
γ h(
√
γ ) for some d > 0 outside a compact subset of M .

Similarly, the pair (h, γ ) is an Omori–Yau pair for the Laplacian in M if it satisfies
conditions (a)–(e) and

(f ′) 1γ ≤ d
√
γ h(
√
γ ) for some d > 0 outside a compact subset of M .
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We say that the Omori–Yau maximum principle for the Hessian holds for M if
for any function g ∈C∞(M) bounded from above there exists a sequence of points
{pk}k∈N in M such that

(a) limk→∞ g(pk)= supM g,

(b) |grad g(pk)| ≤ 1/k,

(c) Hess g(pk)(X, X)≤ (1/k)gM(X, X) for all X ∈ Tpk M .

Similarly, the Omori–Yau maximum principle for the Laplacian holds for M if
these properties are satisfied with (c) replaced by

(c′) 1g(pk)≤ 1/k.

The following theorem of Pigola, Rigoli, and Setti gives sufficient conditions
for an Omori–Yau maximum principle to hold for a Riemannian manifold.

Theorem 3 [Pigola et al. 2005]. Assume that a Riemannian manifold M carries an
Omori–Yau pair for the Hessian (resp. Laplacian). Then the Omori–Yau maximum
principle for the Hessian (resp. Laplacian) holds in M.

Example 4. Let Mm be a complete but noncompact Riemannian manifold, and
write r(y)= distM(y, o) for some reference point o ∈ Mm . Assume that the radial
sectional curvature of Mm satisfies K rad

≥ −h(r), where the smooth function h
satisfies (a)–(c) in Definition 2 and is even at the origin, that is, h(2k+1)(0) = 0
for k ∈ N. Then, as shown in [Pigola et al. 2005], the functions (h, r2) form an
Omori–Yau pair for the Hessian. As for the function h, one can choose

h(t)= t2
N∏

j=1

(log( j)(t))2, t � 1,

where log( j) stands for the j-th iterated logarithm.

To conclude this section, we observe that Theorem 1 is sharp. This is clear from
(1) by taking as Pn a space-form and as M the hypersurface L`× SP(r0) in N n+`.
In view of Example 4, it also follows that by taking L` = R` and constant ρ we
recover the result in [Alías et al. 2009].

The proof

We first introduce some additional notations, and then recall a few basic facts on
warped product manifolds.

Let 〈 , 〉 denote the metrics in N n+`, L` and Mm , while ( , ) stands for the metric
in Pn . The corresponding norms are | | and ‖ ‖. In addition, let ∇ and ∇̃ denote
the Levi-Civita connections in Mm and N n+`, respectively, and ∇L and ∇ P the
ones in L` and Pn .
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We always denote vector fields in TL by T, S and in T P by X, Y . Also, we
identify vector fields in TL and T P with basic vector fields in TN by taking
T (x, y)= T (x) and X (x, y)= X (y).

For the Lie-brackets of basic vector fields, we have that [T, S]∈TL and [X, Y ]∈
T P are basic and that [X, T ] = 0. Then we have

∇̃ST =∇L
S T,

∇̃X T = ∇̃T X = T (%)X,

∇̃X Y =∇ P
X Y −〈X, Y 〉gradL%,

where the vector fields X, Y and T are basic and % = log ρ.
Our proof follows the main steps in [Alías et al. 2011], where the geometric

situation considered differs from ours in that f (M) there is contained in a cylinder
of the form

{(x, y) ∈ N n+`
: x ∈ BL(r0) and y ∈ Pn

}.

In fact, a substantial part of the argument is to show that the Omori–Yau pair for the
Hessian in L` induces an Omori–Yau pair for the Laplacian for a noncompact Mm

when |H | is bounded. Thus the Omori–Yau maximum principle for the Laplacian
holds in Mm , and the proof follows from an application of the latter.

Suppose that Mm is noncompact, and let (h, 0) be an Omori–Yau pair for the
Hessian in L`. For p ∈ Mm , write f (p) = (x(p), y(p)). Set 0̃(x, y) = 0(x) for
(x, y) ∈ N n+` and

γ (p)= 0̃( f (p))= 0(x(p)).

We show next that (h, γ ) is an Omori–Yau pair for the Laplacian in Mm . First
we argue that the function γ is proper. To see this, let pk ∈ Mm be a divergent
sequence, that is, pk → ∞ in Mm as k → +∞. Thus, f (pk) → ∞ in N n+`

because f is proper. Because f (M) lies inside a cylinder, x(pk) → ∞ in L`.
Hence, γ (pk)→+∞ as k→+∞ because 0 is proper, and thus γ is proper.

It remains to verify conditions (e) and (f ′) in Definition 2. We have from
0̃(x, y)= 0(x) that

〈gradN 0̃(x, y), X〉 = 0.

Thus
gradN 0̃(x, y)= gradL0(x).

Since γ = 0̃ ◦ f , we obtain

(2) gradN 0̃( f (p))= gradMγ (p)+ gradN 0̃( f (p))⊥,

where ( )⊥ denotes taking the normal component to f . Then

|gradMγ (p)| ≤ |gradN 0̃( f (p))| = |gradL0(x(p))| ≤ c
√
0(x(p))= c

√
γ (p)

outside a compact subset of Mm , and thus (e) holds.
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We have that
∇̃T gradN 0̃ =∇L

T gradL0.

Hence Hess 0̃(T, S)= Hess 0(T, S) and Hess 0̃(T, X)= 0. Also,

∇̃X gradN 0̃ = ∇̃X gradL0 = gradL0(%)X.

Hence
Hess 0̃(X, Y )= 〈gradL0, gradL%〉〈X, Y 〉.

For a unit vector e ∈ Tp M , set e = eL
+ eP , where eL

∈ Tx(p)L and eP
∈ Ty(p)P .

Then

Hess 0̃( f (p))(e,e)=Hess 0(x(p))(eL,eL)+
〈
gradL0(x(p)),gradL%(x(p))

〉
|eP
|
2.

Also, an easy computation using (2) yields

Hess γ (p)(e, e)= Hess 0̃( f (p))(e, e)+
〈
gradL0(x(p)), α(p)(e, e)

〉
,

where α denotes the second fundamental of f with values in the normal bundle.
Thus,

Hess γ (p)(e, e)= Hess 0(x(p))(eL , eL) +
〈
gradL0(x(p)), gradL%(x(p))

〉
|eP
|
2

+
〈
gradL0(x(p)), α(p)(e, e)

〉
.

Since Hess 0 ≤ d
√
0h(
√
0) for some positive constant d outside a compact subset

of L` and the immersion is proper, we have

Hess 0(x(p))(eL , eL)≤ d
√
γ (p)h(

√
γ (p))|eL

|
2
≤ d

√
γ (p)h(

√
γ (p))

outside a compact subset of Mm . From |gradL0| ≤ c
√

0h(
√
0) for some c outside

a compact subset of L` and supL |gradL%|<+∞, we have〈
gradL0(x(p)), gradL%(x(p))

〉
|eP
|
2
≤ c′

√
γ (p)

for some positive constant c′ outside a compact subset of Mm . Since γ is proper
and h is unbounded, by (a) and (b) in Definition 2, we have

√
γ ≤

√
γ h(
√
γ )

outside a compact subset of Mm , because γ→+∞ as p→∞ and limt→+∞ h(t)=
+∞. Thus we obtain

(3) Hess γ (e, e)≤ d1

√
γ h(
√
γ )+

〈
gradL0(x), α(e, e)

〉
for some constant d1 > 0, outside a compact subset of Mm .

On the other hand, we may assume that

(4) |H | ≤ c
√

h(
√
γ )
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for some constant c > 0, outside a compact subset of Mm . Otherwise, there exists
a sequence {pk}k∈N in Mm such that pk→∞ as k→+∞ and

|H(pk)|> k
√

h(
√
γ (pk)).

With γ being proper and h unbounded from (a) and (b) in Definition 2, we conclude
that supM |H | = +∞, in which case we are done with the proof of the theorem.

We obtain from (3) using (4) that 1γ ≤ c1
√
γ h(
√
γ ) for some constant c1 > 0

outside a compact subset of Mm , and thus (f ′) has been proved.
Consider the distance function r(y) = distP(y, o) in BP(r0) and define r̃ ∈

C∞(N ) by r̃(x, y)= r(y). Then

〈gradN r̃(x, y), T 〉 = 0.

Thus
ρ2(x)gradN r̃(x, y)= gradPr(y).

We obtain that

∇̃T gradN r̃ = ∇̃T (ρ
−2gradPr)=−ρ−2T (%)gradPr.

Therefore
Hess r̃(T, S)= 0

and
Hess r̃(T, X)=−ρ−2T (%)〈gradPr, X〉 = −T (%)(gradPr, X).

Also,

∇̃X gradN r̃ = ∇̃X (ρ
−2gradPr)= ρ−2(

∇
P
X gradPr −〈X, gradPr〉gradL%

)
.

Hence

Hess r̃(X, Y )= ρ−2
〈∇

P
X gradPr, Y 〉 = (∇ P

X gradPr, Y )= Hess r(X, Y ).

For e ∈ T M , we have

Hess r̃(e, e)=−2〈gradL%, e〉(gradPr, eP)+Hess r(eP , eP).

From the Hessian comparison theorem (see [Pigola et al. 2008, Chapter 2] for a
modern approach) we obtain

Hess r(eP , eP)≥ Cb(r)(‖eP
‖

2
− (gradPr, eP)2).

Therefore,

(5) Hess r̃(e, e)≥−2〈gradL%, e〉(gradPr, eP)+Cb(r)(‖eP
‖

2
− (gradPr, eP)2).

We define u ∈ C∞(M) by

u(p)= r(y(p)).
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Thus, u = r̃ ◦ f and

(6) gradN r̃( f (p))= gradM u(p)+ gradN r̃( f (p))⊥.

This gives

Hess u(ei , e j )= Hess r̃(ei , e j )+〈gradN r̃ , α(ei , e j )〉,

where e1, . . . , em is an orthonormal frame of TM . Thus

(7) 1u =
m∑

j=1

Hess r̃(e j , e j )+m〈gradN r̃ , H〉.

We have from e j = eL
j + eP

j that 1= 〈e j , e j 〉 = ρ
2
‖eP

j ‖
2
+
∑̀
k=1
〈e j , Tk〉

2, where
T1, . . . , T` is an orthonormal frame for TL . Hence

m = ρ2
m∑

j=1

‖eP
j ‖

2
+

∑̀
k=1

|T>k |
2,

where T> is the tangent component of T . We obtain

(8)
m∑

j=1

‖eP
j ‖

2
≥ (m− `)ρ−2.

Since (gradPr, eP
j )= 〈gradN r̃ , eP

j 〉 = 〈gradN r̃ , e j 〉 = 〈gradM u, e j 〉, we get from
(5) that

Hess r̃(e j , e j )≥−2〈gradL%, e j 〉〈gradM u, e j 〉+Cb(u)(‖eP
j ‖

2
−〈gradM u, e j 〉

2).

Taking the trace and using (8) gives

m∑
j=1

Hess r̃(e j , e j )≥−2〈gradL%, gradM u〉+Cb(u)
(
(m− `)ρ−2

− |gradM u|2
)
.

Because 〈gradN r̃ , gradN r̃〉 = ρ2(ρ−2gradPr, ρ−2gradPr)= ρ−2, we have

〈gradN r̃ , H〉 ≥ −ρ−1
|H |.

Using (7), we conclude that

1u ≥−2〈gradL%, gradM u〉+Cb(u)
(
(m− `)ρ−2

− |gradM u|2
)
−mρ−1

|H |.

Thus

ρ|H | ≥ m−`
m

Cb(u)−
ρ2

m
(
1u+ 2|gradL%||gradM u| +Cb(u)|gradM u|2

)
.
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If Mm is compact, the proof follows easily by computing the inequality at a
point of maximum of u. Thus, we may now assume that Mm is noncompact and
that (4) holds.

Since f (M) ⊂ Cr0 , we have u∗ = supM u ≤ r0 < +∞. By the Omori–Yau
maximum principle, there is a sequence {pk}k∈N in Mm such that u(pk)>u∗−1/k,
|gradM u(pk)|< 1/k, and 1u(pk) < 1/k. By assumption, we have supL ρ = K1 <

+∞ and supL |gradL%| = K2 <+∞. Hence

sup
M
ρ|H | ≥ ρ(pk)|H(pk)| ≥

m− `
m

Cb(u(pk))−
K 2

1

m

(1+ 2K2

k
+

1
k2 Cb(u(pk))

)
.

Letting k→+∞, we obtain

sup
M
ρ|H | ≥ m−`

m
Cb(u∗)≥

m−`
m

Cb(r0),

and this concludes the proof of the theorem.
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