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JENNIFER BEINEKE, BENJAMIN BRUBAKER AND SHARON FRECHETTE

We develop the theory of Weyl group multiple Dirichlet series for root sys-
tems of type C. For a root system of rank r and a positive integer n,
these are Dirichlet series in r complex variables with analytic continuation
and functional equations isomorphic to the associated Weyl group. They
conjecturally arise as Whittaker coefficients of Eisenstein series on a meta-
plectic group with cover degree n. For type C and n odd, we construct an
infinite family of Dirichlet series and prove they satisfy the above analytic
properties in many cases. The coefficients are exponential sums built from
Gelfand–Tsetlin bases of certain highest weight representations. Previous
attempts to define such series by Brubaker, Bump, and Friedberg required
n sufficiently large, so that coefficients were described by Weyl group orbits.
We demonstrate that these two radically different descriptions match when
both are defined. Moreover, for n = 1, we prove our series are Whittaker
coefficients of Eisenstein series on SO(2r + 1).

1. Introduction

Let 8 be a reduced root system of rank r . Weyl group multiple Dirichlet series
(associated to 8) are Dirichlet series in r complex variables which initially con-
verge on a cone in Cr , possess analytic continuation to a meromorphic function on
the whole complex space, and satisfy functional equations whose action on Cr is
isomorphic to the Weyl group of 8.

For various choices of 8 and a positive integer n, infinite families of Weyl
group multiple Dirichlet series defined over any number field F containing the
2n-th roots of unity were introduced in [Chinta and Gunnells 2007; 2010; Brubaker
et al. 2007; 2008]. The coefficients of these Dirichlet series are intimately related
to the n-th power reciprocity law in F . It is further expected that these families
are related to metaplectic Eisenstein series as follows. If one considers the split,
semisimple, simply connected algebraic group G over F whose Langlands L-group
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has root system 8, then it is conjectured that the families of multiple Dirichlet
series associated to n and8 (or the dual root system, depending on n) are precisely
the Fourier–Whittaker coefficients of minimal parabolic Eisenstein series on the n-
fold metaplectic cover of G. See Remark 3 for more details.

In light of this suggested relationship with Eisenstein series, one should be able
to provide definitions of multiple Dirichlet series for any reduced root system8 and
any positive integer n having the desired analytic properties. However a satisfactory
theory of the connections between various Dirichlet series and their relation to
metaplectic Eisenstein series has only recently emerged for type A. This paper
improves the current theory by developing some of the corresponding results for
type C , suggesting that such representations of Eisenstein series should hold in
great generality.

We begin by describing the basic shape of the Weyl group multiple Dirichlet
series, which can be done uniformly for any reduced root system 8 of rank r .
Given a number field F containing the 2n-th roots of unity and a finite set of
places S of F (chosen with certain restrictions described in Section 2.2), let OS

denote the ring of S-integers in F and O×S the units in this ring. Then to any r -
tuple of nonzero OS integers m= (m1, . . . ,mr ), we associate a Weyl group multiple
Dirichlet series in r complex variables s = (s1, . . . , sr ) of the form

(1) Z9(s1, . . . , sr ;m1, . . . ,mr )= Z9(s;m)=
∑

c=(c1,...,cr )

∈(OS/O
×

S )
r

H (n)(c;m)9(c)
|c1|2s1 · · · |cr |

2sr
,

where the coefficients H (n)(c;m) carry the main arithmetic content. The func-
tion 9(c) guarantees the numerator of our series is well-defined up to O×S units
and is defined precisely in Section 2.3. Finally |ci | = |ci |S denotes the norm of the
integer ci as a product of local norms in FS =

∏
v∈S Fv.

The coefficients H (n)(c;m) are not multiplicative, but nearly so and (as we will
demonstrate in (17) and (19) of Section 2.4) can nevertheless be reconstructed from
coefficients of the form

(2) H (n)(pk
; pl) := H (n)(pk1, . . . , pkr ; pl1, . . . , plr ),

where p is a fixed prime in OS and ki = ordp(ci ), li = ordp(mi ).
There are two approaches to defining these prime-power contributions. Chinta

and Gunnells [2007; 2010] use a remarkable action of the Weyl group to define
the coefficients H (n)(pk

; pl) as an average over elements of the Weyl group for
any root system 8 and any integer n ≥ 1, from which functional equations and
analytic continuation of the series Z follow. By contrast, for 8 of type A and any
n ≥ 1, Brubaker, Bump, and Friedberg [2007] define the prime-power coefficients
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as a sum over basis vectors in a highest weight representation for GL(r+1,C) as-
sociated to the fixed r -tuple l in (2). They subsequently prove functional equations
and analytic continuation for the multiple Dirichlet series via intricate combina-
torial arguments in [Brubaker et al. 2009; 2011b]. It is therefore natural to ask
whether a definition in the mold of [Brubaker et al. 2007] exists for the prime-
power coefficients H (n)(pk

; pl) for every root system 8.
For 8 of type C , we present a positive answer to this question, in the form of

the following conjecture and its subsequent proof in many special cases.

Conjecture. For 8 = Cr for any r and for n odd, the Dirichlet series Z9(s;m)
described in (1), with coefficients of the form H (n)(pk

; pl) as defined in Section 3,
has the following properties:

(I) Z9(s;m) possesses analytic continuation to a meromorphic function on Cr

and satisfies a group of functional equations isomorphic to W (Sp(2r)), the
Weyl group of Sp(2r), of the form (24), where the W action on Cr is as given
in (21).

(II) Z9(s;m) is the Whittaker coefficient of a minimal parabolic Eisenstein series
on an n-fold metaplectic cover of SO(2r + 1, FS).

Part (II) of this conjecture would imply part (I) according to the general Lang-
lands–Selberg theory of Eisenstein series extended to metaplectic covers as in
[Mœglin and Waldspurger 1995]. In practice, other methods to prove part (I)
have resulted in sharp estimates for the scattering matrix involved in the func-
tional equations that would be difficult to obtain from the general theory; see, for
example, [Brubaker et al. 2006] .

In this paper, we make progress toward this general conjecture by proving the
following two results, which will be restated more precisely in later sections once
careful definitions have been given.

Theorem 1. For n sufficiently large (as given in (41)), Z9(s;m) matches the mul-
tiple Dirichlet series defined in [Brubaker et al. 2008] for the root system 8= Cr .
Therefore, for such odd n, the multiple Dirichlet series possess the analytic prop-
erties cited in part (I) of the Conjecture.

Theorem 2. For n = 1, Z9(s;m) is a multiplicative function whose prime-power
coefficients match those of the Casselman–Shalika formula for Sp(2r). Hence
Z9(s;m) agrees with the minimal parabolic (nonmetaplectic) Eisenstein series
for SO(2r + 1, FS). Thus both parts of the Conjecture hold for n = 1.

These theorems are symplectic analogs of those proven for type A in [Brubaker
et al. 2007; 2008]. Theorem 2 is proved using a combinatorial identity from [Hamel
and King 2002]. Theorem 1, our main result, also has a combinatorial proof using
rather subtle connections between the Weyl group and Gelfand–Tsetlin patterns
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(henceforth GT-patterns) that parametrize basis vectors for highest weight repre-
sentations of Sp(2r,C), the Langlands dual group of SO(2r + 1).

Remark 3. The restriction that n must be odd is natural in light of earlier work by
Savin [1988] showing that the structure of the Iwahori–Hecke algebra depends on
the parity of the metaplectic cover and by Bump, Friedberg, and Ginzburg [2006]
on conjectural dual groups for metaplectic covers. Indeed, though the construction
of the Dirichlet series we propose in Section 3 makes sense for any n, attempts to
prove functional equations for n even and m fixed using the techniques of [Beineke
et al. 2010] suggest the coefficients have the wrong shape. In view of this evidence,
we expect a similar combinatorial definition to hold for n even, but making use of
the highest weight representation theory for SO(2r + 1,C) (in contrast with the
case n odd, and weights from Sp(2r,C) as in the Conjecture and the two subsequent
theorems).

As noted above, the analog of the Conjecture is known for type A for any n≥ 1.
Its proof, completed in [Brubaker et al. 2009; 2011b], makes critical use of the
outer automorphism of the Dynkin diagram for type A. Thus mimicking the proof
techniques to obtain results for type C is not possible. However, given any fixed
m and n, one can verify the functional equations and meromorphic continuation
with a finite amount of checking. See [Beineke et al. 2010] for the details of this
argument in a small rank example.

The type A analog of part (II) of the Conjecture is proved in [Brubaker et al.
2011a] by computing the Fourier–Whittaker coefficients of Eisenstein series di-
rectly by inducing from successive maximal parabolics. The result is essentially a
complicated recursion involving exponential sums and lower rank Eisenstein series.
Then one checks the definition given in [Brubaker et al. 2007] satisfies the recur-
sion. A similar approach should be possible in type C , and this will be the subject
of future work. Such an approach depends critically on having a proposed solution
to satisfy the recursion, so the methods of this paper are a necessary first step.

The precise definition of the prime-power coefficients (2) for type C is somewhat
complicated, so we postpone it until Section 3. As alluded to earlier, coefficients
H (n)(pk

; pl) will be described in terms of basis vectors for highest weight rep-
resentations of Sp(2r,C) with highest weight corresponding to l . As noted in
Remark 6, the definition produces Gauss sums which encode subtle information
about Kashiwara raising/lowering operators in the crystal graph associated to the
highest weight representation. As such, this paper offers the first evidence that mys-
terious connections between metaplectic Eisenstein series and crystal bases may
hold in much greater generality, persisting beyond the type A theory in [Brubaker
et al. 2007; 2011a; 2011b]. These connections may not be properly understood
until a general solution to our problem for all root systems 8 is obtained.
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Finally, the results of this paper give infinite classes of Dirichlet series with
analytic continuation. One can then use standard Tauberian techniques to extract
mean-value estimates for families of number-theoretic quantities appearing in the
numerator of the series (or the numerator of polar residues of the series). For the
n-cover of Ar , this method yielded the mean-value results of [Chinta 2005] for r =
5, n=2 and [Brubaker and Bump 2006b] for r=3, n=3. It would be interesting to
explore similar results in type C (remembering that our Conjecture may be verified
for any given example with n, r , and m fixed with only a finite amount of checking,
as sketched in [Beineke et al. 2010]).

Note. Since the initial submission of this paper, Chinta and Offen [2009] have
given a proof in type A that the multiple Dirichlet series constructed by Chinta and
Gunnells is in fact a metaplectic Whittaker coefficient. This argument has been
extended in great generality by McNamara [2011]. Further, Ivanov [2010] has used
the results of this paper to give an alternate definition of the prime-power coeffi-
cients (2) in terms of two-dimensional lattice models defined by Kuperberg [2002].
In the case n = 1, his methods give an alternate proof of Theorem 2. All of these
results make a resolution of the Conjecture given above more desirable.

2. Definition of the multiple Dirichlet series

In this section, we present general notation for root systems and the corresponding
Weyl group multiple Dirichlet series.

2.1. Root systems. Let 8 be a reduced root system contained in V , a real vector
space of dimension r . The dual vector space V∨ contains a root system 8∨ in
bijection with 8, where the bijection switches long and short roots. Writing the
dual pairing

(3) V × V∨→ R, (x, y) 7→ B(x, y),

then B(α, α∨) = 2. Moreover, the simple reflection σα : V → V corresponding
to α is given by

σα(x)= x − B(x, α∨)α.

Note that σα preserves 8. Similarly, define a dual reflection σα∨ : V∨→ V∨ by
σα∨(x)= x − B(α, x)α∨ with σα∨(8∨)=8∨.

For our purposes, without loss of generality, we may take 8 to be irreducible
(that is, there do not exist orthogonal subspaces 81,82 with 81∪82 =8). Then
set 〈 · , · 〉 to be the Euclidean inner product on V and ‖α‖=

√
〈α, α〉 the Euclidean

norm, where we normalize so that 2〈α, β〉 and ‖α‖2 are integral for all α, β ∈ 8.
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With this notation,

(4) σα(β)= β −
2〈β, α〉
〈α, α〉

α for any α, β ∈8.

Partition 8 into positive roots 8+ and negative roots 8− and denote by 1 =
{α1, . . . , αr } ⊂8

+ the subset of simple positive roots. Further, denote the funda-
mental dominant weights by εi for i = 1, . . . , r satisfying

(5)
2〈εi , α j 〉

〈α j , α j 〉
= δi j ,

where δi j is the Kronecker delta. Any dominant weight λ is expressible in terms
of the εi , and a distinguished role in the theory is played by the Weyl vector ρ,
defined by

(6) ρ =
1
2

∑
α∈8+

α =

r∑
i=1

εi .

2.2. Algebraic preliminaries. Keeping with the established foundations on Weyl
group multiple Dirichlet series (see [Brubaker et al. 2006; 2008]), we define our
Dirichlet series as indexed by integers rather than ideals. By using this approach,
the coefficients of the Dirichlet series will closely resemble classical exponential
sums, but some care needs to be taken to ensure the resulting series remains well-
defined up to units.

Given a fixed positive odd integer n, let F be a number field containing the
2n-th roots of unity, and let S be a finite set of places containing all ramified places
over Q, all archimedean places, and enough additional places so that the ring of
S-integers OS is a principal ideal domain. Recall that the OS integers are defined as

OS = {a ∈ F | a ∈ Ov ∀v 6∈ S}

and can be embedded diagonally in

FS =
∏
v∈S

Fv.

There exists a pairing

( · , · )S : F×S × F×S → µn defined by (a, b)S =
∏
v∈S

(a, b)v,

where the (a, b)v are local Hilbert symbols associated to n and v.
Further, to any a ∈ OS and any ideal b ⊆ OS , we may associate the n-th power

residue symbol (a
b )n as follows. For prime ideals p, the expression (a

p )n is the
unique n-th root of unity satisfying the congruence(a

p

)
n
≡ a(N (p)−1)/n (mod p).
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Extend the symbol to arbitrary ideals b by multiplicativity, with the convention that
the symbol is 0 whenever a and b are not relatively prime. Since OS is a principal
ideal domain by assumption, we will write(a

b

)
n
=

(a
b

)
n

for b= bOS

and often drop the subscript n on the symbol when the power is understood from
context.

Then if a, b are coprime integers in OS , we have the n-th power reciprocity law
(see [Neukirch 1999, Theorem 6.8.3])

(7)
(a

b

)
= (b, a)S

(b
a

)
,

which, in particular, implies that if ε ∈ O×S and b ∈ OS , then(
ε

b

)
= (b, ε)S.

Finally, for a positive integer t and a, c∈OS with c 6=0, we define the Gauss sum
gt(a, c) as follows. First, choose a nontrivial additive character ψ of FS trivial on
the OS integers (see [Brubaker and Bump 2006a] for details). Then the n-th power
Gauss sum is given by

(8) gt(a, c)=
∑

d mod c

(d
c

)t

n
ψ
(ad

c

)
,

where we have suppressed the dependence on n in the notation on the left. The
Gauss sum gt is not multiplicative, but rather satisfies

(9) gt(a, cc′)=
( c

c′
)t

n

(c′

c

)t

n
gt(a, c)gt(a, c′)

for any relatively prime pair c, c′ ∈ OS .

2.3. Kubota’s rank-1 Dirichlet series. Many of the definitions for Weyl group
multiple Dirichlet series are natural extensions of those from the rank-1 case, so
we begin with a brief description of these.

A subgroup � ⊂ F×S is said to be isotropic if (a, b)S = 1 for all a, b ∈ �. In
particular,�=OS(F×S )

n is isotropic (where (F×S )
n denotes the n-th powers in F×S ).

Let Mt(�) be the space of functions 9 : F×S → C that satisfy the transformation
property

(10) 9(εc)= (c, ε)−t
S 9(c) for any ε ∈�, c ∈ F×S .
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For 9 ∈Mt(�), consider the generalization of Kubota’s Dirichlet series:

(11) Dt(s, 9, a)=
∑

06=c∈Os/O
×
s

gt(a, c)9(c)
|c|2s .

Here |c| is the order of OS/cOS , gt(a, c) is as in (8) and the term gt(a, c)9(c)|c|−2s

is independent of the choice of representative c, modulo S-units. Standard esti-
mates for Gauss sums show that the series is convergent if R(s) > 3

4 . Our func-
tional equation computations will hinge on the functional equation for this Kubota
Dirichlet series. Before stating this result, we require some additional notation. Let

(12) Gn(s)= (2π)−2(n−1)sn2ns
n−2∏
j=1

0

(
2s− 1+

j
n

)
.

In view of the multiplication formula for the Gamma function, we may also write

Gn(s)= (2π)−(n−1)(2s−1)0(n(2s− 1))
0(2s− 1)

.

Let

(13) D∗t (s, 9, a)= Gm(s)[F :Q]/2ζF (2ms−m+ 1)Dt(s, 9, a),

where m=n/ gcd(n, t), 1
2 [F :Q] is the number of archimedean places of the totally

complex field F , and ζF is the Dedekind zeta function of F .
If v ∈ Sfin let qv denote the cardinality of the residue class field Ov/Pv, where

Ov is the local ring in Fv and Pv is its prime ideal. By an S-Dirichlet polynomial
we mean a polynomial in q−s

v as v runs through the finite number of places in Sfin.
If 9 ∈Mt(�) and η ∈ F×S , denote

(14) 9̃η(c)= (η, c)S 9(c−1η−1).

Then we have the next result, which follows from [Brubaker and Bump 2006a].

Theorem [Brubaker et al. 2008, Theorem 1]. Let 9 ∈ Mt(�) and a ∈ OS . Let
m=n/gcd(n, t). Then D∗t (s, 9, a) has meromorphic continuation to all s, analytic
except possibly at s = 1/2±1/(2m), where it might have simple poles. There exist
S-Dirichlet polynomials P t

η(s) depending only on the image of η in F×S /(F
×

S )
n

such that

(15) D∗t (s, 9, a)= |a|1−2s
∑

η∈F×S /(F
×

S )
n

P t
aη(s)D

∗

t (1− s, 9̃η, a).

This result, based on ideas of Kubota [1969], relies on the theory of Eisenstein
series. The case t = 1 is handled in [Brubaker and Bump 2006a]; the general
case follows as discussed in the proof of [Brubaker et al. 2006, Proposition 5.2].
Notably, the factor |a|1−2s is independent of the value of t .
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2.4. The form of higher rank multiple Dirichlet series. We now begin explicitly
defining the multiple Dirichlet series, retaining our previous notation. By analogy
with the rank-1 definition in (10), given an isotropic subgroup �, let M(�r ) be the
space of functions 9 : (F×S )

r
→ C that satisfy the transformation property

(16) 9(εc)=
( r∏

i=1

(εi , ci )
‖αi‖

2

S

∏
i< j

(εi , c j )
2〈αi ,α j 〉

S

)
9(c)

for all ε = (ε1, . . . , εr ) ∈�
r and all c= (c1, . . . , cr ) ∈ (F×S )

r .
Recall from the introduction that, given a reduced root system8 of fixed rank r ,

an integer n ≥ 1, m ∈ Or
S , and 9 ∈ M(�r ), we consider a function of r complex

variables s = (s1, . . . , sr ) ∈ Cr of the form

Z9(s1, . . . , sr ;m1, . . . ,mr )= Z9(s;m)=
∑

c=(c1,...,cr )

∈(OS/O
×

S )
r

H (n)(c;m)9(c)
|c1|2s1 · · · |cr |

2sr
.

The function H (n)(c;m) carries the main arithmetic content. It is not defined as
a multiplicative function, but rather a “twisted multiplicative” function. For us, this
means that for S-integer vectors c, c′ ∈ (OS/O

×

S )
r with gcd(c1 · · · cr , c′1 · · · c

′
r )= 1,

(17) H (n)(c1c′1, . . . , cr c′r ;m)= µ(c, c′)H (n)(c;m)H (n)(c′;m),

where µ(c, c′) is an n-th root of unity depending on c, c′. It is given precisely by

(18) µ(c, c′)=
r∏

i=1

(ci

c′i

)‖αi‖
2

n

(c′i
ci

)‖αi‖
2

n

∏
i< j

( ci

c′j

)2〈αi ,α j 〉

n

( c′i
c j

)2〈αi ,α j 〉

n

where ( ·· )n is the n-th power residue symbol defined in Section 2.2. In the special
case 8= A1, the twisted multiplicativity in (17) and (18) agrees with the identity
for Gauss sums in (9) in accordance with the numerator for the rank-1 case in (11).

Remark 4. We often think of twisted multiplicativity as the appropriate generaliza-
tion of multiplicativity for the metaplectic group. In particular, for n= 1 we reduce
to the usual multiplicativity on relatively prime coefficients. Moreover, many of
the global properties of the Dirichlet series follow (upon careful analysis of the
twisted multiplicativity and associated Hilbert symbols) from local properties, for
example, functional equations as in [Brubaker et al. 2006; 2008]. For more on this
perspective, see [Friedberg 2010].

The transformation property of functions in M(�r ) in (16) is motivated by the
identity

H (n)(εc;m)9(εc)= H (n)(c;m)9(c) for all ε ∈ Or
S, c,m ∈ (F×S )

r .

The proof can be verified using the n-th power reciprocity law from Section 2.2.
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Now, given any m,m′, c ∈ Or
S with gcd(m′1 · · ·m

′
r , c1 · · · cr )= 1, let

(19) H (n)(c;m1m′1, . . . ,mr m′r )=
r∏

i=1

(m′i
ci

)−‖αi‖
2

n
H (n)(c;m).

The definitions in (17) and (19) imply that it is enough to specify the coefficients
H (n)(pk1, . . . , pkr ; pl1, . . . , plr ) for any fixed prime p with li = ordp(mi ) in order
to completely determine H (n)(c;m) for any pair of S-integer vectors m and c.
These prime-power coefficients are described in terms of data from highest-weight
representations associated to (l1, . . . , lr ) and will be given precisely in Section 3.

2.5. Weyl group actions. In order to precisely state a functional equation for the
Weyl group multiple Dirichlet series, we require an action of the Weyl group W
of 8 on the complex parameters (s1, . . . , sr ). This arises from the linear action
of W , realized as the group generated by the simple reflections σα∨ , on V∨. From
the perspective of Dirichlet series, it is more natural to consider this action shifted
by ρ∨, half the sum of the positive coroots. Then each w ∈ W induces a transfor-
mation V∨

C
= V∨⊗C→ V∨

C
(still denoted by w) if we require that

B
(
wα,w(s)− 1

2ρ
∨
)
= B

(
α, s− 1

2ρ
∨
)
.

We introduce coordinates on V∨
C

using simple roots1={α1, . . . , αr } as follows.
Define an isomorphism V∨

C
→ Cr by

(20) s 7→ (s1, s2, . . . , sr ), si = B(αi , s).

This action allows us to identify V∨
C

with Cr , and so the complex variables si

that appear in the definition of the multiple Dirichlet series may be regarded as
coordinates in either space. It is convenient to describe this action more explicitly
in terms of the si , and it suffices to consider simple reflections which generate W .
Using the action of the simple reflection σαi on the root system 8 given in (4) in
conjunction with (20) above gives:

Proposition 5. The action of σαi on s = (s1, . . . , sr ) defined implicitly in (20) is
given by

(21) s j 7→ s j −
2〈α j , αi 〉

〈αi , αi 〉

(
si −

1
2

)
, j = 1, . . . , r.

In particular, σαi : si 7→ 1− si .

2.6. Normalizing factors and functional equations. The multiple Dirichlet series
must also be normalized using Gamma and zeta factors in order to state precise
functional equations. Let

n(α)= n
gcd(n, ‖α‖2)

, α ∈8+.
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For example, if 8=Cr and we normalize short roots to have length 1, this implies
that n(α)= n unless α is a long root and n is even (in which case n(α)= n/2). By
analogy with the zeta factor appearing in (13), for any α ∈8+, let

ζα(s)= ζ
(
1+ 2n(α)B(α, s− 1

2ρ
∨)
)
,

where ζ is the Dedekind zeta function attached to the number field F . Further,
for Gn(s) as in (12), we may define

(22) Gα(s)= Gn(α)
( 1

2 + B(α, s− 1
2ρ
∨)
)
.

Then for any m ∈ Or
S , the normalized multiple Dirichlet series is given by

(23) Z∗9(s;m)=
( ∏
α∈8+

Gα(s)ζα(s)
)

Z9(s,m).

By considering the product over all positive roots, we guarantee that the other zeta
and Gamma factors are permuted for each simple reflection σi ∈W , and hence for
all elements of the Weyl group.

Given any fixed n, m and root system8, we seek to define H (n)(c;m) (or equiv-
alently, given twisted multiplicativity, to define H at prime-power coefficients) so
that Z∗9(s;m) satisfies functional equations of the form

(24) Z∗9(s;m)= |mi |
1−2si Z∗σi9

(σi s;m)

for all simple reflections σi ∈W . Here, σi s is as in (21) and the function σi9, which
essentially keeps track of the rather complicated scattering matrix in this functional
equation, is defined as in [Brubaker et al. 2008, (37)]. As noted in [Brubaker et al.
2008, Section 7], given functional equations of this type, one can obtain analytic
continuation to a meromorphic function of Cr with an explicit description of polar
hyperplanes.

3. Definition of the prime-power coefficients

In this section, we give a precise definition of the coefficients H (n)(pk
; pl) needed

to complete the description of the multiple Dirichlet series for root systems of
type Cr and n odd. All the previous definitions are stated in sufficient generality
for application to multiple Dirichlet series for any reduced root system 8 and any
positive integer n. Only the prime-power coefficients require specialization to our
particular root system 8 = Cr , though this remains somewhat complicated. We
summarize the definition at the end of the section.

The vector l = (l1, l2, . . . , lr ) appearing in H (n)(pk
; pl) can be associated to a

dominant weight for Sp2r (C) of the form

(25) λ= (l1+ l2+ · · ·+ lr , . . . , l1+ l2, l1).
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The contributions to H (n)(pk
; pl) will then be parametrized by basis vectors of the

highest weight representation of highest weight λ+ρ, where ρ is the Weyl vector
for Cr defined in (6), so that

(26) λ+ ρ = (l1+ l2+ · · ·+ lr + r, . . . , l1+ l2+ 2, l1+ 1)=: (Lr , . . . , L1).

In [Brubaker et al. 2007], prime-power coefficients for multiple Dirichlet series
of type A were attached to Gelfand–Tsetlin patterns, which parametrize highest
weight vectors for SLr+1(C) (see [Gelfand and Tsetlin 1950]). Here, we use
an analogous basis for the symplectic group, according to branching rules given
in [Zhelobenko 1962]. We will continue to refer to the objects comprising this
basis as Gelfand–Tsetlin patterns, or GT-patterns.

More precisely, a GT-pattern P has the form

(27) P =

a0,1 a0,2 · · · a0,r

b1,1 b1,2 · · · b1,r−1 b1,r

a1,2 · · · a1,r
. . .

. . .
...

ar−1,r

br,r

where the ai, j , bi, j are nonnegative integers and the rows of the pattern interleave.
That is, for all ai, j , bi, j in the pattern P above,

min(ai−1, j , ai, j )≥ bi, j ≥max(ai−1, j+1, ai, j+1),

min(bi+1, j−1, bi, j−1)≥ ai, j ≥max(bi+1, j , bi, j ).

The set of all patterns with top row (a0,1, . . . , a0,r ) = (Lr , . . . , L1) form a basis
for the highest weight representation with highest weight λ+ ρ. Hence, we will
consider GT-patterns with top row (Lr , . . . , L1) as in (26), and refer to this set of
patterns as GT(λ+ ρ).

The contributions to each H (n)(pk
; pl) with both k and l fixed come from a

single weight space corresponding to k = (k1, . . . , kr ) in the highest weight rep-
resentation λ+ ρ corresponding to l . We first describe how to associate a weight
vector to each GT-pattern. Let

(28) sa(i) :=
r∑

m=i+1

ai,m and sb(i) :=
r∑

m=i

bi,m

be the row sums for the respective rows of a’s and b’s in P . (Here we under-
stand that sa(r)= 0 corresponds to an empty sum.) Then define the weight vector
wt(P)= (wt1(P), . . . ,wtr (P)) by

(29) wti = wti (P)= sa(r − i)− 2sb(r + 1− i)+ sa(r + 1− i), i = 1, . . . , r.
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As the weights are generated in turn, we begin at the bottom of the pattern P and
work our way up to the top. Our prime-power coefficients will then be supported
at (pk1, . . . , pkr ) with

(30) k1 =
1
2

r∑
j=1

wt j +L j , ki =

r∑
j=i

(
wt j +L j

)
, i = 2, . . . , r,

so that in particular, the ki are nonnegative integers.
In terms of the GT-pattern P , the reader may check that

k(P)= (k1(P), k2(P), . . . , kr (P)),

with

k1(P)= sa(0)−
r∑

m=1

(sb(m)− sa(m)) ,

ki (P)= sa(0)− 2
r+1−i∑
m=1

(sb(m)− sa(m))− sa(r + 1− i)+
r+1−i∑
m=1

a0,m

(31)

for 1< i ≤ r .
Then we define

(32) H (n)(pk
; pl)= H (n)(pk1, . . . , pkr ; pl1, . . . , plr )=

∑
P∈GT(λ+ρ)

k(P)=(k1,...,kr )

G(P),

where the sum is over all GT-patterns P with top row (Lr , . . . , L1) as in (26) sat-
isfying the condition k(P)= (k1, . . . , kr ) and G(P) is a weighting function whose
definition depends on the following elementary quantities. To each pattern P ,
define the corresponding data

(33) vi, j =

j∑
m=i

(ai−1,m − bi,m), wi, j =

r∑
m= j

(ai,m − bi,m), ui, j = vi,r +wi, j ,

where we understand the entries ai, j or bi, j to be 0 if they do not appear in the
pattern P .

Remark 6. The integers ui, j and vi, j have representation-theoretic meaning in
terms of Kashiwara raising and lowering operators in the crystal graph associ-
ated to the highest weight representation of highest weight λ+ ρ for Uq(sp(2r)),
the quantized universal enveloping algebra of the Lie algebra sp(2r). See [Littel-
mann 1998] for details, particularly Corollary 2 of Section 6. See also [Brubaker
et al. 2011a; 2011b] for a more complete description in crystal language, focus-
ing mainly on type A. We find this interpretation quite striking in light of the
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connection to Whittaker models on the metaplectic group. Ultimately, this can
be seen as another instance of connections between quantum groups and principal
series representations in the spirit of [Lusztig 2003]. This is not a perspective we
emphasize here, but this line of inquiry is discussed further in [Beineke et al. 2010].

To each entry bi, j in P , associate

(34) γb(i, j)

=


gδ jr+1(pvi, j−1, pvi, j ) if bi, j = ai−1, j+1,

φ(pvi, j ) if ai−1, j < bi, j < ai−1, j+1, n | vi, j · (δ jr + 1),
0 if ai−1, j < bi, j < ai−1, j+1, n - vi, j · (δ jr + 1),
qvi, j if bi, j = ai−1, j ,

where gt(pα, pβ) is an n-th power Gauss sum as in (8), φ(pa) is the Euler phi func-
tion for OS/paOS , q = |OS/pOS|, and δ jr is the Kronecker delta function. These
cases may be somewhat reduced, using elementary properties of Gauss sums, to

(35) γb(i, j)=
{

qvi, j if bi, j = ai−1, j ,

gδ jr+1(pvi, j+bi, j−ai−1, j+1−1, pvi, j ) else.

To each entry ai, j in P , with i ≥ 1, we may associate

(36) γa(i, j)=


g1(pui, j−1, pui, j ) if ai, j = bi, j−1,

φ(pui, j ) if bi, j < ai, j < bi, j−1, n | ui, j ,

0 if bi, j < ai, j < bi, j−1, n - ui, j ,

qui, j if ai, j = bi, j ,

which can similarly be compacted to

(37) γa(i, j)=
{

qui, j if ai, j = bi, j ,

g1(pui, j−ai, j+bi, j−1−1, pui, j ) else.

We introduce terminology to describe relationships between elements in a pat-
tern P:

Definition 7. A GT-pattern P is minimal at bi, j if bi, j = ai−1, j . It is maximal
at bi, j if 1 ≤ j < r and bi, j = ai−1, j+1, or if bi,r = 0. If none of these equalities
holds, we say P is generic at bi, j .

Likewise, P is minimal at ai, j if ai, j = bi, j , and maximal at ai, j if ai, j = bi, j−1.
If neither equality holds, we say P is generic at ai, j .

Definition 8. A GT-pattern P is strict if its entries are strictly decreasing across
each horizontal row.



WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C 25

Define the coefficients

(38) G(P)=
{∏

1≤i≤ j≤r γa(i, j)γb(i, j) if P is strict,
0 otherwise,

where we again understand γa(r, r) to be 1 since ar,r is not in the pattern P . Com-
bining these definitions gives a definition of the prime-power coefficients in the
series:

Definition 9 (summary of definitions for H ). Given any prime p, define

(39) H (n)(pk
; pl)=

∑
P∈GT(λ+ρ)

k(P)=k

G(P),

where the sum is over all GT-patterns with top row corresponding to λ+ ρ and
row sums fixed according to (31), and G(P) is given as in (38) above with γa(i, j)
and γb(i, j) of (37) and (35), respectively, defined in terms of vi, j and ui, j in (33).

In the right-hand side of (39), we have suppressed the dependence on n. This
is appropriate since the expressions in (35) and (37) are given in terms of Gauss
sums, which are defined uniformly for all n.

The coefficients H (n)(c;m) appearing in (1) are now implicitly defined by (39)
together with the twisted multiplicativity given in (17) and (19). The resulting
multiple Dirichlet series Z9(s;m) is initially absolutely convergent for <(si ) suf-
ficiently large. Indeed, if a pattern P has weight k = (k1, . . . , kr ), then

|G(P)|< qk1+···+kr ,

and the number of patterns in a given weight space is bounded as a function of m
corresponding to the highest weight vector.

4. Comparison in the stable case

We now compare our multiple Dirichlet series, having p-th-power coefficients as
defined in (39), with the multiple Dirichlet series defined for arbitrary root sys-
tems 8 in [Brubaker et al. 2008], when n is sufficiently large. In this section,
we determine the necessary lower bound on n explicitly, according to a stability
assumption introduced in [Brubaker et al. 2006]. With this lower bound, we can
then prove that for n odd, the two prescriptions agree.

Let m = (m1, . . . ,mr ) be a fixed r -tuple of nonzero OS integers. To any fixed
prime p in OS , set li = ordp(mi ) for i = 1, . . . , r . Then define λp as in (25), so
that in terms of the fundamental dominant weights εi , we have

λp =

r∑
i=1

liεi .
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Then we may define the function dλp on the set of positive roots 8+ by

(40) dλp(α)=
2〈λp + ρ, α〉

〈α, α〉
.

For ease of computation in the results that follow, normalize the inner product 〈 , 〉
so that ‖α‖2 = 〈α, α〉 = 1 if α is a short root, while ‖α‖2 = 2 if α is a long root.

Stability Assumption. Let α=
∑r

i=1 tiαi be the largest positive root in the partial
ordering for 8. Then for every prime p, we require that the positive integer n
satisfies

(41) n ≥ gcd(n, ‖α‖2) · dλp(α)= gcd(n, ‖α‖2) ·
r∑

i=1

ti (li + 1).

When the Stability Assumption holds, we say we are “in the stable case.” This
is well-defined since li = 0 for all i = 1, . . . , r for all but finitely many primes p.
For the remainder of this section, we work with a fixed prime p, and so write λ in
place of λp when no confusion can arise.

For 8 = Cr , let α1 denote the long simple root, so the largest positive root is
α1+

∑r
i=2 2αi . Moreover if n is odd, the condition (41) becomes

(42) n ≥ l1+ 1+
r∑

i=2

2(li + 1).

For any w ∈ W (8), define the set 8w = {α ∈ 8+ | w(α) ∈ 8−}. Following
[Brubaker et al. 2006; 2008], the p-th-power coefficients of the multiple Dirichlet
series in the stable case are given by

(43) H (n)
st (p

k1, . . . , pkr ; pl1, . . . , plr )=
∏
α∈8w

g‖α‖2(p
dλ(α)−1, pdλ(α)),

where the dependence on n occurs only in the n-th-power residue symbol in the
Gauss sums. In [Brubaker et al. 2008], it was established that the above defini-
tion of H (n)

st (p
k
; pl) produces a Weyl group multiple Dirichlet series Z∗(s,m)

with analytic continuation and functional equations (of the form in the Conjecture)
provided the Stability Assumption on n holds. The proof works for any reduced
root system 8. In this section, we demonstrate that our definition H (n)(pk

; pl) in
terms of GT-patterns as in (39) matches that in (43) for n satisfying the (41) of the
Stability Assumption.

Definition 10. If P ∈ GT(λ+ ρ) is a GT-pattern and G(P) is defined as in (38),
then P is said to be stable if G(P) 6= 0 for some (odd) n satisfying (41) of the
Stability Assumption.
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As we will see in the following result, if P is stable for one such n, then G(P) is
nonzero for all n satisfying (41). These are the relevant patterns we must consider in
establishing the equivalence of the two definitions H (n)

st (p
k
; pl) and H (n)(pk

; pl)

in the stable case, and we begin by characterizing all such patterns.

Proposition 11. A pattern P ∈ GT(λ+ ρ) is stable if and only if , in each pair of
rows in P with index i (that is, pattern entries {bi, j , ai, j }

r
j=i ), the ordered set

{bi,i , bi,i+1, . . . , bi,r , ai,r , ai,r−1, . . . , ai,i+1}

has an initial string in which all elements are minimal (as in Definition 7) and all
remaining elements are maximal.

Proof. If any element ai, j or bi, j in the pattern P is neither maximal nor min-
imal, that is, is “generic” in the sense of Definition 7, then γa(i, j) (or γb(i, j),
respectively) is nonzero if and only if n | ui, j according to (36) (or n | vi, j (δ jr + 1)
according to (34), respectively). But one readily checks that n is precisely chosen
in the Stability Assumption so that n>maxi, j {ui, j , (δ jr+1)vi, j } and hence neither
divisibility condition can be satisfied. Therefore all entries of any stable P must
be maximal or minimal. The additional necessary condition that P be strict (as
in Definition 8) so that G(P) is not always zero according to (38) guarantees that
neighboring entries in the ordered set can never be of the form (maximal,minimal),
which gives the result. �

The number of stable patterns P is thus 2rr ! = |W (Cr )|, the order of the Weyl
group of Cr .

4.1. Action of W on Euclidean space. In demonstrating the equality of the two
prime-power descriptions, it was necessary to use an explicit coordinatization of
the root system embedded in Rr ; it would be desirable to find a coordinate-free
proof. Let ei be the standard basis vector (1 in i-th component, 0 elsewhere) in Rr .
Choose the following coordinates for the simple roots of Cr :

(44) α1 = 2e1, α2 = e2− e1, . . . , αr = er − er−1.

Consider an element w ∈ W (Cr ), the Weyl group of Cr . As an action on Rr , this
group is generated by all permutations σ of the basis vectors e1, . . . , er and all
reflections ei 7→ −ei for i = 1, . . . , r . Thus we may describe the action explicitly
using ε(i)w ∈ {+1,−1} for i = 1, 2, . . . , r so that

(45) w(t1, t2, . . . , tr )= (ε(1)w tσ−1(1), ε
(2)
w tσ−1(2), . . . , ε

(r)
w tσ−1(r)).

In the following proposition, we associate a unique Weyl group element w with
each GT-pattern P that is stable. In this result, and in the remainder of this section,
it will be convenient to refer to the rows of P beginning at the bottom rather than
the top. We will therefore discuss rows ar−i , for 1≤ i ≤ r , for instance.
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Proposition 12. Let P be a stable strict GT-pattern with top row Lr Lr−1 · · · L1,
hence with associated dominant weight vector λ =

∑r
i=1 `iεi . Let nonnegative

integers k1(P), . . . , kr (P) be defined as in (31), and let kr+1(P) = 0. Then there
exists a unique element w ∈W (Cr ) such that

(46) λ+ ρ−w(λ+ ρ)= (2k1− k2, k2− k3, . . . , kr−1− kr , kr )=

r∑
i=1

kiαi .

In fact, for i = 2, . . . , r ,

(47) ki+1− ki + L i =−wti = ε(i)w Lσ−1(i),

where Lσ−1(i) is the unique element in row ar−i that is not in row ar+1−i , and the
weight coordinate wti is as in (29). Similarly,

(48) k2− 2k1+ L1 =−wt1 = ε(1)w Lσ−1(1),

where Lσ−1(1) is the unique element in row ar−1 that is not in row ar .

Proof. The definitions for ρ and λ give λ+ρ = (L1, . . . , Lr ) in Euclidean coordi-
nates. Compute the coordinates of (λ+ ρ)−

∑r
i=1 kiαi using (31) gives

(49) L1+ k2− 2k1 =−
(
sa(r − 1)− 2sb(r)+ sa(r)

)
=−wt1

and similarly, for i = 2, . . . , r ,

(50) L i + ki+1− ki =−
(
sa(r − i)− 2sb(r + 1− i)+ sa(r + 1− i)

)
=−wti ,

so that

(51) λ+ ρ−

r∑
i=1

kiαi =−(wt1,wt2, . . . ,wtr ).

Each pattern P has a unique weight vector. Since P is a stable pattern, it is easy
to see that the i-th weight consists of the unique entry that is in row ar−i but not in
row ar+1−i , with a negative sign if this entry is present in row br+1−i , or a positive
sign if not. Thus the weight vector is simply a permutation of the entries in the top
row, with a choice of sign in each entry. We may find a unique w (whose action is
described above), for which

(52) w(λ+ ρ)= (ε(1)w Lσ−1(1), . . . , ε
(r)
w Lσ−1(r))=−(wt1,wt2, . . . ,wtr ).

Thus Lσ−1(i) is the unique element in row ar−i that is not present in row ar+1−i . �

Corollary 13. Let P be a stable strict GT-pattern with top row Lr Lr−1 · · · L1.
For 1≤ i ≤ r , the set of elements in row ar−i satisfies

(53) {ar−i,r+1−i , ar−i,r+2−i , . . . , ar−i,r } = {Lσ−1(i), Lσ−1(i−1), . . . , Lσ−1(1)}.
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Proof. From Proposition 12, Lσ−1( j) is the unique element in row ar− j that is not in
row ar+1− j . Working downwards, eliminate these elements for j = i, i+1, . . . , r ,
in order to reach row ar− j . This leaves the remaining set. �

4.2. Agreement of the multiple Dirichlet series.

Theorem 1. Let 8 = Cr and choose a positive integer n such that (41) of the
Stability Assumption holds.

(i) Let P be a stable strict GT-pattern, and let G(P) be the product of Gauss
sums defined in (38) in Section 2. Let w be the Weyl group element associated
to P as in Proposition 12. Then

G(P)=
∏
α∈8w

g‖α‖2(p
dλ(α)−1, pdλ(α)),

matching the definition given in (43), with dλ(α) as defined in (40).

(ii) Hst(c1, . . . , cr ;m1, . . .mr )= H (n)(c1, . . . , cr ;m1, . . .mr ).

That is, the Weyl group multiple Dirichlet series in the twisted stable case is identi-
cal to the series defined by the Gelfand–Tsetlin description for n sufficiently large.

Remark 14. The Conjecture presented in the introduction states that n should be
odd. In fact, the proof of Theorem 1 works for any n satisfying the Stability As-
sumption, regardless of parity. However, we believe this is an artifact of the relative
combinatorial simplicity of the “stable” coefficients. As noted in Remark 3, one
expects a distinctly different combinatorial recipe than the one presented in this
paper to hold uniformly for all even n.

Proof. It is clear that part (i) implies part (ii), since both coefficients are obtained
from their prime-power parts by means of twisted multiplicativity.

In proving part (i), let P be the GT-pattern with top row Lr Lr−1 · · · L1 associ-
ated to w by Proposition 12. Since P is stable, we have ui, j = 0 if P is minimal
at ai, j , and vi, j = 0 if P is minimal at bi, j . Thus

G(P)=
∏

ai, j maximal

g1(pui, j−1, pui, j )
∏

bi, j maximal

gδ jr+1(pvi, j−1, pvi, j ).

It suffices to show that the set of Gauss sum exponents ui, j and vi, j at maximal
entries in P coincides with the set of dλ(α) as α runs over 8w. (In fact, we show a
slightly sharper statement, which matches Gauss sum exponents at maximal entries
in pairs of rows of P with values of dλ(α) as α runs over certain subsets of 8w.)

The number of maximal elements in a pair of rows br+1−i and ar+1−i is de-
scribed in the next result. First, we say that (i, j) is an i -inversion for w−1 if j < i
and σ−1( j) > σ−1(i). The number of these pairs, as well as the number of those
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for which the inequality is preserved rather than inverted, will play an important
role in counting Gauss sums. To this end, define the quantities

invi (w
−1)= #{(i, j) | σ−1( j) > σ−1(i) and j < i},

pri (w
−1)= #{(i, j) | σ−1( j) < σ−1(i) and j < i}.

(54)

Proposition 15. Let P be a stable strict GT-pattern with top row Lr Lr−1 · · · L1,
and let w ∈ W be the Weyl group element associated to P as in Proposition 12.
Let invi (w) and pri (w) be as defined in (54), and let mi (P) denote the number of
maximal entries in rows br+1−i and ar+1−i together. Then,

(55) mi (P)=
{

invi (w
−1) if ε(i)w =+1,

i + pri (w
−1) if ε(i)w =−1.

Proof. Recall from our means of associating w to P that ε(i)w is opposite in sign
from the i-th Gelfand–Tsetlin weight. Consider row br+1−i together with the rows
immediately above and below:

ar−i,r+1−i ar−1,r+2−i · · · · · · ar−i,r

br+1−i,r+1−i · · · · · · br+1−i,r

ar+1−i,r+2−i · · · · · · ar+1−i,r

Suppose ε(i)w =+1, so Lσ−1(i) is missing from row ar+1−i but present in row br+1−i .
Then there are no maximal entries in row br+1−i , and mi maximal entries in
row ar+1−i , so

br+1−i,r+ j−i = ar−i,r+ j−i for 1≤ j ≤ i,(56)

ar+1−i,r+( j+1)−i =

{
br+1−i,r+ j−i for 1≤ j ≤ mi ,

br+1−i,r+( j+1)−i for mi + 1≤ j ≤ i.
(57)

Moreover, the entry Lσ−1(i) in row br+1−i marks the switch from maximal to min-
imal as we move from left to right in row ar+1−i . That is, all entries in row ar+1−i

to the left of Lσ−1(i) are maximal, while all those to the right are minimal. By
Corollary 13, row ar+1−i consists of the elements in the set {Lσ−1( j) | j < i}. Since
the rows of P are strictly decreasing, this means the maximal entries in row ar+1−i

are given by

{Lσ−1( j) | j < i and σ−1( j) > σ−1(i)}.

This set clearly has order invi (w
−1).

Now suppose ε(i)w = −1, so that Lσ−1(i) is missing from both row ar+1−i and
row br+1−i . Then all entries in row ar+1−i are maximal, and the last mi − i + 1
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entries in row br+1−i are maximal, so

ar+1−i,r+( j+1)−i = br+1−i,r+ j−i for 1≤ j ≤ i − 1,(58)

br+1−i,r+ j−i =


ar−i,r+ j−i for 1≤ j ≤ 2i − 1−mi ,

ar−i,r+( j+1)−i for 2i −mi ≤ j ≤ i − 1,
0 for j = i.

(59)

The entry Lσ−1(i) in row ar−i marks the switch from minimal to maximal as we
move to the right in row br+1−i . That is, all entries below and to the left of Lσ−1(i)
are minimal, while those below and to the right are maximal. Since rows br+1−i and
ar+1−i are identical, the entries of row br+1−i are {Lσ−1( j) | j < i}, by Corollary 13.
Moreover, since rows are strictly decreasing, the maximal entries in row br+1−i are
given by

{Lσ−1( j) | j < i and σ−1( j) < σ−1(i)} ∪ {0}.

This set has order pri (w
−1)+1. Counting maximal entries in both rows, we obtain

mi = (i − 1)+ pri (w
−1)+ 1= i + pri (w

−1). �

Next, we establish a finer characterization of 8w = {α ∈8+ |w(α) ∈8−}. For
8 = Cr , the roots in 8+ take different forms; the positive long roots are 2e` for
1 ≤ ` ≤ r , while the positive short roots are em ± e` for 1 ≤ ` < m ≤ r . We will
express 8w as a disjoint union of subsets indexed by i ∈ {1, 2, . . . , r}. To this end,
let i be fixed, and let j be any positive integer such that j < i . Consider positive
roots of the following three types:

Type L: αi,w := 2eσ−1(i).

Type S+: α+i, j,w := eσ−1( j)+ eσ−1(i).

Type S−: α−i, j,w :=

{
eσ−1( j)− eσ−1(i) if σ−1( j) > σ−1(i),

eσ−1(i)− eσ−1( j) if σ−1( j) < σ−1(i).

Clearly we encounter each positive root exactly once as i and j vary as indicated.
Let 8(i)w ⊆8w denote the set of all αi,w, α+i, j,w, α−i, j,w belonging to 8w. The next
lemma completely characterizes 8(i)w .

Lemma 16. Let i ∈ {1, 2, . . . , r} be fixed, let j be any positive integer with j < i ,
and let 8(i)w be as defined above.

(1) αi,w ∈8
(i)
w if and only if ε(i)w =−1.

(2) α−i, j,w ∈8
(i)
w if and only if σ−1( j)<σ−1(i) and ε(i)w =−1, or σ−1( j)>σ−1(i)

and ε(i)w =+1.

(3) α+i, j,w ∈8
(i)
w if and only if ε(i)w =−1.

Consequently, |8(i)w | = mi (P), as defined in Proposition 15.
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Proof. As defined in (45), w acts on a basis vector e` simply as w(e`)= ε
(`)
w eσ(`),

and this action extends linearly to each of the roots. Part (1) is immediate from the
definition of 8w.

For part (2), if σ−1( j) < σ−1(i) then

w(α−i, j,w)= ε
(i)
w ei − ε

( j)
w e j .

If ε(i)w = +1, then since j < i , we have w(α−i, j,w) ∈ 8
+ regardless of the value

of ε( j)
w . Thus α−i, j,w /∈ 8

(i)
w . Similarly, if ε(i)w = −1, then since j < i , we have

w(α−i, j,w) ∈8
− regardless of the value of ε( j)

w . Thus α−i, j,w ∈8
(i)
w .

On the other hand, if σ−1( j) > σ−1(i) then

w(α−i, j,w)= ε
( j)
w e j − ε

(i)
w ei .

Considering the cases ε(i)w = +1,−1 in turn, we find that regardless of the value
of ε( j)

w , we have w(α−i, j,w) ∈8
(i)
w if and only if ε(i)w =+1.

For part (3), we have

w(α+i, j,w)= ε
( j)
w e j + ε

(i)
w ei .

Using a similar argument, we see that independently of the value of ε( j)
w , w(α+i, j,w)

is a negative root when ε(i)w is negative, and a positive root otherwise.
Finally, we count elements in 8(i)w . If ε(i)w =+1, the conditions yield invi (w

−1)

elements of type S−, and zero elements of types L and S+. On the other hand, if
ε
(i)
w =−1, there is one element of type L, i−1 elements of type S+, and pri (w

−1)

elements of type S−. In either case, |8(i)w | = mi (P). �

For each of the roots in 8(i)w , we compute the corresponding dλ (as defined
in (40)) below.

Lemma 17. With the notation as above, we have

(1) dλ(αi,w)= Lσ−1(i).

(2) dλ(α−i, j,w)=

{
Lσ−1( j)− Lσ−1(i) if σ−1( j) > σ−1(i),
Lσ−1(i)− Lσ−1( j) if σ−1( j) < σ−1(i).

(3) dλ(α+i, j,w)= Lσ−1( j)+ Lσ−1(i).

Proof. First, we compute dλ(αi,w)= dλ(2eσ−1(i)). Using (44), we have

(60) αi,w = α1+

σ−1(i)∑
k=2

2αk,
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where we regard the sum to be 0 if σ−1(i) = 1. Since 〈αi,w, αi,w〉 = 〈α1, α1〉 = 2
and 〈αk, αk〉 = 1 for k = 2, . . . , r , we have

(61) dλ(αi,w)=
2〈λ+ ρ, αi,w〉

〈αi,w, αi,w〉
=

r∑
m=1

(lm + 1)
σ−1(i)∑

k=1

2〈εm, αk〉

〈αk, αk〉
= Lσ−1(i).

Next, we compute dλ(α−i, j,w) = dλ(eσ−1(i)− eσ−1( j)) if σ−1( j) < σ−1(i). (The
computations if σ−1( j) > σ−1(i) are analogous.) In this case, (44) gives

(62) α−i, j,w =

σ−1(i)∑
k=σ−1( j)+1

αk,

where the sum is nonempty as σ−1( j) < σ−1(i). Since 〈α−i, j,w, α
−

i, j,w〉 = 1,

(63) dλ(α−i, j,w)=

r∑
m=1

(lm + 1)
σ−1(i)∑

k=σ−1( j)+1

2〈εm, αk〉

〈αk, αk〉
= Lσ−1(i)− Lσ−1( j).

Finally, we compute dλ(α+i, j,w)= dλ(eσ−1(i)+ eσ−1( j)). Here, (44) gives

(64) α+i, j,w = α1+

σ−1( j)∑
k=2

2αk +

σ−1(i)∑
k=σ−1( j)+1

αk,

where the first sum is 0 if σ−1( j)= 1. Since 〈α+i, j,w, α
+

i, j,w〉 = 1 as well, we have

dλ(α+i, j,w)=

r∑
m=1

(lm + 1)
( σ−1( j)∑

k=1

4〈εm, αk〉

〈αk, αk〉
+

σ−1(i)∑
k=σ−1( j)+1

2〈εm, αk〉

〈αk, αk〉

)
(65)

= Lσ−1(i)+ Lσ−1( j),

which completes the proof. �

Now let Di ={dλ(α) |α ∈8
(i)
w }. By Lemmas 16 and 17, we see that if ε(i)w =+1,

then

(66) Di = {Lσ−1( j)− Lσ−1(i) | j < i and σ−1( j) > σ−1(i)},

while if ε(i)w =−1, then

(67) Di = {Lσ−1(i)} ∪ {Lσ−1( j)+ Lσ−1(i) | j < i}

∪ {Lσ−1(i)− Lσ−1( j) | j < i and σ−1( j) < σ−1(i)}.

Now we examine the Gauss sums obtained from the GT-pattern P with top row
Lr Lr−1 · · · L1 associated to w. Suppose there are mi = mi (P) maximal entries
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in rows br+1−i and ar+1−i combined. First, suppose there are no maximal entries
in row br+1−i . Then the first mi entries in row ar+1−i (reading from the left) are
maximal. Since there are i − 1 entries in row ar+1−i , in this case we have mi < i .
We may apply (56) and (57) to compute the sums defining uk,` and vk,`. These
sums telescope, and we have

vr+1−i,r+ j−i = 0 for 1≤ j ≤ i − 1,

ur+1−i,r+( j+1)−i =

{
0 for mi + 1≤ j ≤ i,
ar−i,r+ j−i − br+1−i,r+(mi+1)−i for 1≤ j ≤ mi .

By Proposition 12, br+1−i,r+(mi+1)−i = Lσ−1(i), so to compute ur+1−i,r+( j+1)−i as
j varies, we must determine the set of values for ar−i,r+ j−i with 1≤ j ≤mi . Recall
that by Corollary 13, the entries in row ar−i are given by

(68) {Lσ−1( j) | 1≤ j ≤ i}.

The rows are strictly decreasing, so the entries appearing left of ar−1,r+(mi+1)−i =

Lσ−1(i) have an index greater than σ−1(i). That is,

(69) {ar−i,r+ j−i | 1≤ j ≤ mi } = {Lσ−1( j) | j < i and σ−1( j) > σ−1(i)}.

Thus the nonzero Gauss sum exponents for rows br+1−i and ar+1−i are given by
ur+1−i,r+( j+1)−i = Lσ−1( j) − Lσ−1(i) with j < i and σ−1( j) > σ−1(i). Finally,
ε
(i)
w =+1, since there are no maximal entries in row br+1−i in this case. Thus our

set of nonzero Gauss sum exponents matches the set Di as given in (66).
Second, suppose there are maximal entries in row br+1−i . Consequently, all

entries in row ar+1−i are maximal, so there are ni := mi − i + 1 maximal entries
in row br+1−i . We may apply (58) and (59) to compute the sums defining uk,` and
vk,`. These sums telescope, and we have

vr+1−i,r+ j−i =


0 for 1≤ j ≤ i − ni ,

ar−i,r+1−ni − ar−i,r+( j+1)−i for i + 1− ni ≤ j ≤ i − 1,
ar−i,r+1−ni for j = i,

ur+1−i,r+( j+1)−i = ar−i,r+1−ni + ar+1−i,r+( j+1)−i for 1≤ j ≤ i − 1.

By Proposition 12, ar+1−i,r+1−ni = Lσ−1(i), and thus vr+1−i,r= Lσ−1(i). To compute
the remaining exponents vr+1−i,r+ j−i as j varies, we again appeal to (68). Since
the rows are strictly decreasing, the entries appearing to the right of Lσ−1(i) in
row ar−1 must have an index smaller than σ−1(i). That is,

{ar−i,r+( j+1)−i | i + 1− ni ≤ j ≤ i − 1} = {Lσ−1( j) | j < i and σ−1(i) > σ−1( j)}.

Thus vr+1−i,r+ j−i = Lσ−1(i)−Lσ−1( j) with i+1−ni ≤ j < i and σ−1(i)>σ−1( j).
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To compute the exponents ur+1−i,r+( j+1)−i , we note that by Corollary 13, the
entries in row ar+1−i are the Lσ−1( j) for which 1≤ j ≤ i − 1. Thus

(70) ur+1−i,r+( j+1)−i = Lσ−1(i)+ Lσ−1( j),

with 1 ≤ j ≤ i − 1. Finally, ε(i)w = −1, since there are maximal entries in row
br+1−i . Combining the cases above, we match the set Di given in (67).

This completes the proof of Theorem 1. �

5. Comparison with the Casselman–Shalika formula

The main focus of this section is the proof of Theorem 2, using a generating func-
tion identity given in [Hamel and King 2002]. This identity may be regarded as
a deformation of the Weyl character formula for Sp(2r), though it is stated in the
language of symplectic, shifted tableaux (whose definition we will soon recall) so
we postpone the precise formulation. Recall that our multiple Dirichlet series take
the form

Z9(s;m)=
∑

c=(c1,...,cr )∈(OS/O
×

S )
r

H (n)(c;m)9(c)
|c1|2s1 · · · |cr |

2sr
.

In brief, we show that for n= 1 our formulas for the prime-power supported contri-
butions of Z9(s,m) match one side of Hamel and King’s identity, while the other
side of the identity is given in terms of a character of a highest weight representation
for Sp(2r). By combining the Casselman–Shalika formula with Hamel and King’s
result, we will establish Theorem 2.

5.1. Specialization of the multiple Dirichlet series for n = 1. Many aspects of
the definition Z9 are greatly simplified when n = 1. First, we may take 9 to be
constant, since the Hilbert symbols appearing in the definition (16) are trivial for
n = 1. Moreover, the coefficients H (n)(c;m) for n = 1 are perfectly multiplicative
in both c and m. That is, according to (18),

H (1)(c · c′;m)= H (1)(c;m)H (1)(c′;m) when gcd(c1 · · · cr , c′1 · · · c
′

r )= 1,

and according to (19),

H (1)(c;m ·m′)= H (1)(c;m) when gcd(m′1 · · ·m
′

r , c1 · · · cr )= 1.

Hence the global definition of Z9(s;m) for fixed m is easily recovered from its
prime-power supported contributions as follows:

(71) Z9(s;m)=
∏
p∈OS

( ∑
k=(k1,...,kr )

H (1)(pk
; pl)

|p|2k1s1 · · · |p|2kr sr

)
,
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with l = (l1, . . . , lr ) given by ordp(mi ) = li for i = 1, . . . , r . The sum on the
right-hand side runs over the finite number of vectors k for which H (n)(pk

; pl)

has nonzero support for fixed l according to (39).
We now simplify our formulas for H (n)(pk

; pl) when n = 1. As before, set
q = |OS/pOS|. With definitions as given in (34) and (36), let

γ̃a(i, j) := q−ui, jγa(i, j) and γ̃b(i, j) := q−vi, jγb(i, j).

Then by analogy with the definitions (38) and (39), define

G̃(P) :=
∏

1≤i≤ j≤r

γ̃a(i, j)γ̃b(i, j),

H̃ (1)(pk
; pl)= H̃ (1)(pk1, . . . , pkr ; pl1, . . . , plr ) :=

∑
k(P)=(k1,...,kr )

G̃(P),

where again the sum is taken over GT-patterns P with fixed top row (Lr , . . . , L1)

as in (26). By elementary properties of Gauss sums, when n = 1 we have, for a
strict GT-pattern P ,

(72) γ̃a(i, j)=


1 if P is minimal at ai, j ,

1− 1/q if P is generic at ai, j ,

−1/q if P is maximal at ai, j ,

recalling the language of Definition 7 and similarly,

(73) γ̃b(i, j)=


1 if P is minimal at bi, j ,

1− 1/q if P is generic at ai, j ,

−1/q if P is maximal at bi, j .

When P is generic at ai, j (respectively bi, j ), the condition n | ui, j (respectively
n | vi, j ) is trivially satisfied, since n = 1.

We claim that

(74) H (1)(pk
; pl)= H̃ (1)(pk

; pl) qk1+···+kr .

This equality follows from the definitions of H (1)(pk
; pl) and H̃ (1)(pk

; pl), after
matching powers of q on each side by applying the following combinatorial lemma.

Lemma 18. For each GT-pattern P ,

(75)
r∑

i=1

ki (P)=
r∑

i=1

( r∑
j=i

vi, j +

r∑
j=i+1

ui, j

)
.
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Proof. We proceed by expanding each side in terms of the entries ai, j and bi, j in
the GT-pattern P , using the definitions above. Applying (31), we have

r∑
i=1

ki (P)=
(

r sa(0)+
r−1∑
m=1

sa(m)+
r∑

i=2

r+1−i∑
m=1

(2 sa(m)+a0,m)−

r∑
i=2

sa(r+1− i)
)

−

( r∑
m=1

sb(m)+
r∑

i=2

r+1−i∑
m=i

2 sb(m)
)
.

Since
∑r

i=2 sa(r+1−i)=
∑r−1

m=1 sa(m), the corresponding terms in the first paren-
theses cancel. After interchanging order of summation and evaluating sums over i ,
we obtain

r∑
i=1

ki (P)= r sa(0)+
r∑

m=1

(r −m) a0,m

+

r−1∑
m=1

2(r −m) sa(m)−
r∑

m=1

(1+ 2(r −m)) sb(m).

Finally, applying (28) and combining the first two terms, we conclude that

(76)
r∑

i=1

ki (P)=
r∑

m=1

(2r −m) a0,m +

r−1∑
m=1

r∑
`=m+1

2(r −m) am,`

−

r∑
m=1

r∑
`=m

(1+ 2(r −m)) bm,`.

On the other hand, from (33), after recombining terms we have
r∑

i=1

( r∑
j=i

vi, j +

r∑
j=i+1

ui, j

)

=−

r∑
i=1

(
bi,i +

r∑
j=i+1

(
bi, j + 2

r∑
m=i

bi,m

))

+

r∑
i=1

(
ai−1,i +

r∑
j=i+1

( j∑
m=i

2 ai−1,m +

r∑
m= j+1

ai−1,m +

r∑
m= j

ai,m

))
.

After interchanging order of summation and evaluating sums on j , this equals
r∑

i=1

(
(1+ 2(r − i)) ai−1,i +

r∑
m=i+1

(2r + 1− (i +m)) ai−1,m +

r∑
m=i+1

(m− i) ai,m

)
−

r∑
i=1

r∑
m=i

(1+ 2(r − i)) bi,m .
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The i = 1 terms from the first two summands in the big parentheses evaluate to∑r
m=1(2r−m) a0,m , the first term in (76). After reindexing, the remaining terms in

the parentheses give
∑r−1

i=1
∑r

m=i+12(r− i) ai,m . Relabeling indices where needed
gives the result. �

We now manipulate the prime-power supported contributions to the multiple
Dirichlet series as in (71). Setting yi = |p|−2si for i = 1, . . . , r and using (74) gives

(77)
∑

k=(k1,...,kr )

H (1)(pk1, . . . , pkr )

|p|2k1s1 · · · |p|2kr sr

=

∑
k=(k1,...,kr )

H̃ (1)(pk1, . . . , pkr ) (qy1)
k1 · · · (qyr )

kr .

After making the change of variables

qy1 7→ x2
1 , qy2 7→ x−1

1 x2, . . . , qyr 7→ x−1
r−1xr ,

the right-hand side of (77) becomes∑
(k1,...,kr )

H̃ (1)(pk1, . . . , pkr ) x2k1
1 (x−1

1 x2)
k2 · · · (x−1

r−1xr )
kr .

By the relationship between the coordinates ki and the weight coordinates wti given
in (30), this is just

x L1
1 · · · x

Lr
r

∑
(k1,...,kr )

H̃ (1)(pk1, . . . , pkr ) xwt1
1 · · · x

wtr
r ,

where the L i relate to li as in (26). Finally, letting

gen(P)= #{generic entries in P} and max(P)= #{maximal entries in P}

and using the simplifications for n = 1 in (72) and (73) for H̃ (1) in terms of G̃(P),
then

(78)
∑

k=(k1,...,kr )

H (1)(pk1, . . . , pkr )

|p|2k1s1 · · · |p|2kr sr

= x L1
1 · · · x

Lr
r

∑
(k1,...,kr )

(
−1
q

)max(P)(
1− 1

q

)gen(P)
xwt1

1 · · · x
wtr
r ,

with the xi given in terms of |p|−2si by the composition of the above changes of
variables. The right-hand side of (78) is now amenable to comparison with the
identity of Hamel and King.
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5.2. Symplectic shifted tableaux. In order to state the needed identity of Hamel
and King, we introduce some additional terminology. To each strict GT-pattern P ,
we may associate an Sp(2r)-standard shifted tableau of shape λ+ ρ. Below, we
follow [Hamel and King 2002], specializing Definition 2.5 to our circumstances.
Consider the partition µ of λ+ρ, whose parts are given by µi = l1+· · · li+r−i+1
for i = 1, . . . , r . (These are simply the entries in the top row of the pattern P
in GT(λ+ ρ).) Such a partition defines a shifted Young diagram constructed as
follows: |µ| boxes are arranged in r rows of lengths µ1, µ2, . . . , µr , and the rows
are left-adjusted along a diagonal line. For instance, if µ = (7, 4, 2, 1), then our
tableau has the following shape:

It remains to define how the tableau is to be filled. The alphabet will consist of the
set A= {1, 2, . . . , r}∪{1, 2, . . . r}, with ordering 1< 1< 2< 2< · · ·< r < r . We
place an entry from A in each of the boxes of the tableau so that the entries are:
(1) weakly increasing from left to right across each row and from top to bottom
down each column, and (2) strictly increasing from top-left to bottom-right along
each diagonal.

An explicit correspondence between Sp(2r)-standard shifted tableaux and strict
GT-patterns is given in [Hamel and King 2002, Definition 5.2]. Below we de-
scribe the prescription for determining SP , the tableau corresponding to a given
GT-pattern P , with notation as in (27).

(1) For j = i, . . . , r , the entries ai−1, j of P count, respectively, the number of
boxes in the ( j−i+1)–st row of SP whose entries are less than or equal to the
value r − i + 1.

(2) For j = i, . . . , r , the entries bi, j of P count, respectively, the number of boxes
in the ( j−i+1)–st row of SP whose entries are less than or equal to the value
r − i + 1.

An example of this bijection is given in Figure 1.
We also associate the following statistics to any symplectic shifted tableau S:

(1) wt(S)= (wt1(S),wt2(S), . . . ,wtr (S)) for wti (S)= #(i entries)−#(ı̄ entries).

(2) conk(S) is the number of connected components of the ribbon strip of S con-
sisting of all the entries k.

(3) rowk(S) is the number of rows of S containing an entry k, and similarly
rowk(S) is the number of rows of S containing an entry k.
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9 6 5 3 2
7 6 5 3 2

7 5 4 2
5 4 3 1

5 3 1
4 2 1

4 2
3 2

3
1

←→

1 1 1 2 3 4 4 5 5
2 2 3 4 4 5

3 4 4 4 5
4 4 5

5 5

Figure 1. The bijection between GT-patterns and symplectic
shifted tableaux.

(4) str(S) is the total number of connected components of all ribbon strips of S.

(5) bar(S) is the total number of barred entries in S.

(6) hgt(S)=
∑r

k=1(rowk(S)− conk(S)− rowk(S)).

It is easy to see that the weights associated with the tableaux SP are identical to
the previously defined weights associated with the pattern P .

Theorem [Hamel and King 2002, Theorem 1.2]. Let λ be a partition into at most
r parts, and let ρ = (r, r − 1, . . . , 1). Then defining

(79) DSp(2r)(x; t)=
r∏

i=1

xr−i+1
i

r∏
i=1

(1+ t x−2
i )

∏
1≤i< j≤r

(1+ t x−1
i x j )(1+ t x−1

i x−1
j ),

and letting spλ(x) := spλ(x1, . . . , xr ) be the character of the highest weight repre-
sentation of Sp(2r) with highest weight λ, we have

(80) DSp(2r)(t x; t) spλ(x)=
∑

S∈STλ+ρ(Sp(2r))

thgt(S)+r(r+1)/2(1+ t)str(S)−r xwt(S),

where STλ+ρ(Sp(2r)) denotes the set of all Sp(2r)-standard shifted tableaux of
shape λ+ ρ.

Remark 19. The identity appears in the theorem cited in the form

(81) DSp(2r)(x; t) spλ(x; t)=
∑

S∈STλ+ρ(Sp(2r))

thgt(S)+2 bar(S)(1+ t)str(S)−r xwt(S),

where spλ(x; t) is a simple deformation of the usual symplectic character given
in [Hamel and King 2002, (1.13)]. To relate (81) to (80), put xi → t xi for each
i = 1, . . . , r , which introduces a factor of t

∑
wti (S) on the right-hand side. From
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the definition of wt(S) and the correspondence with P , we see that

(82)
r∑

i=1

wti (S)=
r(r + 1)

2
− 2 bar(S)+

r∑
i=1

(r − i + 1)li .

Moreover, it is a simple exercise to show that

(83) spλ(t x; t)= t
∑
(r−i+1)li spλ(x).

Applying the previous two identities to (81) gives (80).

We now show that the right-hand side of (80) may be expressed in terms of the
right-hand side of (78), leading to an expression for the generating function for
H(pk1, . . . , pkr ) in terms of a symplectic character. The following lemma relates
the exponents in this equation back to our GT-pattern P and the statistics of (78).

Lemma 20. Let P be a strict GT-pattern of rank r and SP its associated standard
shifted tableau. Then we have the following relationships:

(a) gen(P)= str(SP)− r .

(b) max(P)= hgt(SP)+ r(r + 1)/2.

This is stated without proof implicitly in [Hamel and King 2002, Corollary 5.3],
using slightly different notation. The proof is elementary, but we include it in the
next section for completeness. Assuming the lemma, letting t =−1/q in (80), and
using (78) with |p| = q , we see that

(84)
∑

(k1,...,kr )

H(pk1, . . . , pkr )q−2k1s1 · · · q−2kr sr

= x L1
1 · · · x

Lr
r DSp(2r)(−x1/q, . . . ,−xr/q;−1/q) spλ(x1, . . . , xr ),

with the identification

(85) q1−2s1 = x2
1 , q1−2s2 = x−1

1 x2, . . . , q1−2sr = x−1
r−1xr .

One checks by induction on the rank r that, with xi assigned as above,

x1x2
2 · · · x

r
r DSp(2r)(−x1/q, . . . ,−xr/q;−1/q)=

∏
α∈8+

(1− q−(1+2B(α,s−(1/2)ρ∨)))

with B(α, s − 1
2ρ
∨) as defined in (3). Moving this product to the left-hand side

of (84), we can rewrite that equality as

(86)
∏
α∈8+

(1− q−(1+2B(α,s−(1/2)ρ∨)))−1
∑

(k1,...,kr )

H(pk1, . . . , pkr )q−2k1s1 · · · q−2kr sr

= x L1−1
1 · · · x Lr−r

r spλ(x1, . . . , xr ).
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The terms in the product are precisely the Euler factors for the normalizing zeta
factors of Z∗9(s;m) defined in (23) for the case n = 1. Hence, the terms on the
left-hand side of (86) constitute the complete set of terms in the multiple Dirichlet
series Z∗9(s;m) supported at monomials of the form |p|−k1s1−···−kr sr .

Finally, we can restate and prove our second main result.

Theorem 2. Let m = (m1, . . . ,mr ) ∈ OS with mi nonzero for all i . For each
prime p ∈ OS , let ordp(mi ) = li . Let H (n)(pk1, . . . , pkr ; pl1, . . . , plr ) with n = 1
be defined as in Section 5.1. Then the resulting multiple Dirichlet series Z∗9(s;m)
agrees with the (m1, . . . ,mr )-th Fourier–Whittaker coefficient of a minimal para-
bolic Eisenstein series on SO2r+1(FS).

Proof. In the case n=1, the multiple Dirichlet series Z∗9(s;m) is Eulerian. Indeed,
the power residue symbols used in the definition of twisted multiplicativity in (17)
and (19) are all trivial. Hence it suffices to check that the Euler factors for Z∗9
match those of the corresponding minimal parabolic Eisenstein series at each prime
p ∈ OS .

The Euler factors for the minimal parabolic Eisenstein series can be computed
using the Casselman–Shalika formula [1980, Theorem 5.4]. We briefly recall the
form of this expression for a split, reductive group G over a local field Fv with
usual Iwasawa decomposition G= AN K = BK . Let χ be an unramified character
of the split maximal torus A and consider the induced representation indG

B (χ).
Given an unramified additive character ψ of the unipotent N−(Fv), opposite the
unipotent N of B, there is an associated Whittaker functional

(87) Wψ(φ)=

∫
N−(Fv)

φ(n)ψ(n) dn,

where φ(ank) := χ(a)δB(a)1/2 is the normalized spherical vector with δB is the
modular quasicharacter. The associated Whittaker function is given by setting
Wφ(g) :=W (gφ) and is determined by its value on π−λ for λ ∈ X∗, the coweight
lattice and π a uniformizer for Fv. Then the Casselman–Shalika formula states
that Wφ(π

−λ)= 0 unless λ is dominant, in which case

(88) δB(π
−λ)1/2Wφ(π

−λ)=

( ∏
α∈8+

(1− q−1 t−α
∨

)

)
chλ(t),

where chλ is the character of the irreducible representation of the Langlands dual
group G∨ with highest weight λ and t denotes a diagonal representative of the
semisimple conjugacy class in G∨ associated to indG

B (χ) by Langlands via the Sa-
take isomorphism (see [Borel 1979] for details). In the special case G=SO(2r+1),
for relations with the above multiple Dirichlet series, we determine t= (x1, . . . , xr )

according to (85) where |π |−1
v = q . Since G∨ = Sp(2r) in this case, the character

chλ(t) in (88) is just spλ(x1, . . . , xr ) as in the right-hand side of (86). Furthermore,
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the product over positive roots in (88) matches the Euler factors for the normalizing
zeta factors of Z∗9 appearing on the left-hand side of (86).

While the Casselman–Shalika formula is stated for principal series over a local
field, because the global Whittaker coefficient is Eulerian, there is no obstacle
to obtaining the analogous global result for FS from the local result via passage
to the adele group. Moreover, the minimal parabolic Eisenstein series Whittaker
functional∫

N (A)/N (F)
Eφ(ng)ψm(n) dn =

∫
N (A)/N (F)

∑
γ∈B(F)\G(F)

φ(γ ng)ψm(n) dn

can be shown to match the integral in (87) with ψ = ψm by the usual Bruhat
decomposition for G(F) and a standard unfolding argument.

Hence according to (86), the Euler factor for Z∗9(s;m) matches that of the
Fourier–Whittaker coefficient except possibly up to a monomial in the |p|−2si with
i = 1, . . . , r . This disparity arises from the fact that the Whittaker functions in the
Casselman–Shalika formula are normalized by the modular quasicharacter δ1/2

B ,
whereas our multiple Dirichlet series should correspond to unnormalized Whit-
taker coefficients in accordance with the functional equations σi as in (21) sending
si 7→ 1− si . Hence, to check that the right-hand side of (86) exactly matches the
unnormalized Whittaker coefficient of the Eisenstein series, it suffices to verify that

x L1−1
1 · · · x Lr−r

r spλ(x1, . . . , xr )

satisfies a local functional equation σ j given in (21) as Dirichlet polynomials in
|p|−2si for i = 1, . . . , r . �

5.3. Proof of Lemma 20. For part (a) of the lemma, we induct on the rank. When
r = 2, there are at most six connected components among all the ribbon strips
of SP , since 1 and 1 may only appear in the top row. Moreover, since P is strict
there must be at least two connected components. Thus 0 ≤ str(SP)− 2 ≤ 4. At
each of the four entries in P below the top row, one shows that if the given entry
is generic, it increases the count str(SP) by 1.

Suppose that for a GT-pattern of rank r − 1, each of the r2 entries below the
top row increases the count str(P) by 1. Then consider a GT-pattern P of rank r ,
and consider the collection of entries ai, j , bi, j below the double line. These entries
control the number of connected components consisting of copies of 1, 1, . . . , r−1,
and r−1 in P , in precisely the same way as the full collection of entries below the
top row in a pattern of rank r−1. Thus inductively, for each generic entry ai, j with
2≤ i ≤ r − 1 and 3≤ j ≤ r or bi, j with 2≤ i, j ≤ r , the count str(P) is increased
by 1. Finally, for i = 1, one easily checks that the value of str(SP) is increased
by 1 for every generic a1, j or b1, j .
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For (b), we first establish the correct range for hgt(SP)+r(r+1)/2. For each k,
it is clear that 0≤ rowk(SP)−conk(SP)≤ k−1 and 0≤ rowk(SP)≤ k. Combining
these inequalities and summing over k, we have 0≤ hgt(SP)+r(r+1)/2≤ r2. We
proceed by showing that each of the maximal entries increases the count hgt(S)
by 1. The cases are as follows.

(1) If ai, j is maximal, then ai, j = bi, j−1, hence there are no r + 1− i entries in
row j−i of the tableau. This decreases

∑r
k=1 rowk(SP) by 1, hence increasing

hgt(SP) by 1.

(2) If bi,r is maximal, then bi,r = 0, which implies there are no r + 1− i entries
in row r − i + 1. This similarly increases hgt(SP) by 1.

(3) If bi, j is maximal with 1 ≤ j ≤ r − 1, then bi, j = ai−1, j+1. Since P is a
strict pattern, it must follow that bi, j < ai−1, j and bi, j+1 < ai−1, j+1. By these
strict inequalities, r+1−i occurs in both row j + 1− i and row j + 2− i .
However, by the equality defining bi, j as maximal, the occurrences in each
of these two rows form one connected component. (See, for instance, the 4
component in the example in Figure 1.) This decreases

∑r
k=1 conk(SP) by 1,

hence increasing hgt(SP) by 1. �
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