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KHALID BOU-RABEE AND ASAF HADARI

We consider the fundamental group π of a surface of finite type equipped
with the infinite generating set consisting of all simple closed curves. We
show that every nilpotent quotient of π has finite diameter with respect to
the word metric given by this set. This is in contrast with a result of Danny
Calegari that shows that π has infinite diameter with respect to this set. We
also give a general criterion for a finitely generated group equipped with a
generating set to have this property.

1. Introduction

A surface of finite type is a surface whose fundamental group is finitely generated.
Given such a surface, there is no canonical choice of generating set. If one wishes
to define a suitably canonical generating set of a geometric nature, then it becomes
necessary to consider infinite generating sets. One such set is the set of all elements
whose conjugacy class can be represented by a simple closed curve. These are in
some sense the simplest elements of the fundamental group, and are thus a natural
choice for a generating set.

Benson Farb posed the question whether the fundamental group, endowed with
the word metric given by this set, has finite diameter. This question was answered
negatively by Danny Calegari [2008]. In this paper, our goal is to investigate the
same question for some quotients of the fundamental group. In contrast with Cale-
gari’s result, we find the following.

Theorem 1.1. Let 6 be a surface of finite type, π = π1(6), and let S ⊂ π be
any generating set containing at least one element in each conjugacy class that
is represented by a nonseparating simple closed curve. Let ρ : π → N be a
homomorphism into any nilpotent group. Then ρ(π) has finite diameter in the
word metric with respect to the set ρ(S).
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In surfaces of genus greater than 1, π has many nilpotent quotients of every
degree of nilpotency. Furthermore, it is residually nilpotent; that is, for every
x ∈ π , there is some nilpotent quotient q : π→ N such that q(x) 6= 1.

We say that a group G is nilpotent-bounded with respect to the set S if any
nilpotent quotient of G has finite diameter with respect to the word metric given
by the image of S. As part of the proof, we prove the following more general result.

Theorem 1.2. Let G be a finitely generated group, and let S ⊂ G be a generating
set such that G/[G,G] has finite diameter with respect to the word metric given
by S. Then G is nilpotent-bounded with respect to S.

2. Nilpotent groups and lower central series

Given a group 0, we define a decreasing sequence of subgroups of 0 called the
lower central series of 0 by the following rule:

00 = 0, 0n+1 = [0,0n].

A group is nilpotent if 0n = 〈1〉 for some n. A group is called n-step nilpotent if
0n = 1 and 0n−1 6= 1. For every n, the group Ln := 0/0n is a nilpotent group.
These groups have the property that any nilpotent quotient of G factors through
one of the projections 0→ Ln .

Put An :=0n−1/0n . It is a standard fact that An< Z(Ln), the center of Ln . Also,
if 0 is finitely generated, then An is also finitely generated. Given a generating set S
of 0, the group An is generated by the images of elements of the form [a1, . . . , an],
where a1, . . . , an ∈ S and [a1, . . . , an] denotes a generalized commutator, that is,

[a1, . . . , an] = [. . . [a1, a2], a3], . . . , an].

In the course of the proof, we require the following technical lemma about gener-
alized commutators in nilpotent groups.

Lemma 2.1. Let 0 be any group, let n, k ∈ N, and let a1, . . . , an ∈ 0. Then

[a1, . . . , an]
k
≡n+1 ([ak

1, . . . , an]),

where ≡i is understood as having equal images in L i .

Proof. First, recall that An < Z(Ln+1). Let x ∈ 0n−1 and y ∈ 0. Note that
[x, y] ∈ 0n . Thus we have that

[xk, y] ≡n+1 xk yx−k y−1
≡n+1 xk y[x, y]k y−1x−k

≡n+1 [x, y]k .

The last equality stems from the fact that [x, y]k is central in Ln+1, and thus is
invariant under conjugation. This proves the claim for the case n = 1. We now
proceed by induction.



CLOSED CURVES, WORD LENGTH, AND NILPOTENT QUOTIENTS 69

By the case n = 1, we have that:

[a1, . . . , an]
k
≡n+1 [[a1, . . . , an−1], an]

k
≡n+1 [[a1, . . . , an−1]

k, an].

By induction, we can write:

[a1, . . . , an−1]
k
≡n+1 [[a1, . . . , an−2]

k, an−1]γn,

where γn ∈ 0n . Since the image of 0n is central in Ln+1, we have that

[[a1, . . . , an−1]
kγ−1

n , an] ≡n+1 [a1, . . . , an−1]
k, an].

Proceeding similarly, we get the claim of the lemma. �

3. Proof of the main theorems

Lemma 3.1. Let n ∈N and let e1, . . . , e2n be the standard basis for Z2n . Then the
set S= Sp2n(Z) · e1 generates Z2n with finite diameter.

Proof. We prove this fact first for n = 1. In this case, Sp2n(Z) = SL2(Z). Given
a vector v =

( a
b
)
∈ Z2 such that gcd(a, b) = 1, there exist x, y ∈ Z such that

ax + by = 1. In this case,

A =
(a −y

b x

)
∈ SL2(Z)

and A · e1 = v, and thus v ∈ S. For a general vector v =
( a

b
)
, notice that

v =
(a−1

1

)
+

( 1
b−1

)
and that gcd(1, a−1)= gcd(1, b−1)= 1, and thus v ∈ S+S.

Now consider the case n > 1. In this case, we have that D < Sp2n(Z), where
D∼=

∏n
i=1 SL2(Z) is the group of matrices containing n copies of SL2(Z) along the

diagonal and zeroes in all other entries. Also, ê= e1+e3+· · ·+e2n−1 is in S. Given( ai
bi

)n
i=1 ∈ Z2n , by the case n = 1 there are 2n matrices A1, . . . , An, B1, . . . Bn ∈

SL2(Z) such that

Ai · e1 =

(ai−1
1

)
, Bi · e1 =

( 1
bi−1

)
.

Let A = diag(A1, . . . , An) and B = diag(B1, . . . , Bn). Then

v = A · ê+ B · ê.

Thus Z2n is generated by S with finite diameter. �

Lemma 3.2. Let 0 be a finitely generated group, and let n ∈ N. Suppose that
S⊂ 0 generates 0 and generates Ln with finite diameter. Then S generates Ln+1

with finite diameter.
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Proof. By assumption, there exists an N0 such that for any w ∈ 0, there exist
s1, . . . sm ∈ S (with m < N0) such that

(s1 . . . sm)
−1w ∈ 0n.

Thus, it is enough to show that the image of S in Ln+1 generates An with finite
diameter. The group An is a finitely generated abelian group that is generated by
elements of the form [s1, . . . , sn], where s1, . . . sn,∈ S. Choose such a generating
set: γ1, . . . , γp. Consider γ1 = [s1, . . . , sn]. Given any k ∈ N, by Lemma 2.1, we
have that γ k

1 ≡n+1 [sk
1 , . . . , sn]. Further, there exist elements σ1, . . . , σm ∈ S with

m < N0 and an element γ ∈ 0n such that

sk
1 = σ1 · · · σmγ.

The elements σ1, . . . , σm, γ depend on γ1 and k, but their number does not. Thus

γ k
1 ≡n+1 [σ1 · · · σmγ, . . . , sn] ≡n+1 [σ1 · · · σm, . . . , sn],

where the last equality stems from the centrality of 0n . The last expression is a
word in the elements of S, whose length is bounded from above by a number that
does not depend on k. This is true not just for γ1, but for γ2, . . . , γp. Since the
group An is abelian, and every element in it can be written as a product of powers
of γ1, . . . , γp, we get that An is generated by S with finite diameter, as required. �

Proof of Theorem 1.2. It is a direct consequence of Lemma 3.2 and induction. �

Proof of Theorem 1.1. Let H = H1(S,Z). There exists a simple closed curve in π
that is mapped to e1 under this mapping. The mapping class group acts on H , and
it is well-known that this action induces a surjective homomorphism onto Sp2g(Z)

[Farb and Margalit 2012, Proposition 8.4]. Furthermore, the nonseparating simple
closed curves form a single mapping class group orbit. Thus, by Lemma 3.1 and
Theorem 1.2, π is nilpotent-bounded with respect to S. �

4. Finding smaller generating sets

Using Theorem 1.2, it is possible to find smaller generating sets for which π is
nilpotent-bounded. We give one such set here, but it is relatively simple to find
many of them. In order to do so, we need a simple corollary.

Corollary 4.1. Let G be a finitely generated group. Let H=H1(G,Z)∼=G/[G,G].
Suppose that H ∼= H1 ⊕ · · · ⊕ Hk , and that for each i = 1, . . . , k we are given a
set Si ⊂ 6 whose projection to H is contained in Hi and generates Hi with finite
diameter. Then G is nilpotent-bounded with respect to S1 ∪ · · · ∪ Sk .

Proof of Corollary 4.1. This is a direct result of Theorem 1.2 and the fact that any
element of x ∈ H can be written as x = h1+ · · ·+ hk with hi ∈ Hi . �
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An example of an application of Corollary 4.1 is the following. Let 6 be an
orientable surface of genus g> 1. It is common to choose a generating set for π =
π1(6) of the form S ′={α1, β1, . . . , αg, βg}, where all of the above are represented
by simple closed curves, the geometric intersection number of αi and βi is one,
and they can be realized disjointly from all the other curves. Let 0i = 〈αi , βi 〉.
The group 0i is the fundamental group of an embedded torus with one boundary
component. Let H = H1(6), and let Hi be the projection to H of 0i . Then H =
H1⊕· · ·⊕Hg. Thus, if we let S be any set containing at least one representative in
each conjugacy class of a simple closed curve that lies in one of the g tori described
above, then π is nilpotent-bounded with respect to S.

5. Further questions

The contrast between the result in this paper and Calegari’s result that π has infinite
diameter with respect to S gives rise to several questions.

Question 1. Recall that Ln = π/πn . By Theorem 1.1, Ln has finite diameter with
respect to S. Call this diameter dn . The sequence {dn}

∞

n=1 is nondecreasing. Is
this sequence bounded? If so, by what value? If not, what is its asymptotic growth
rate?

If the sequence {dn}
∞

n=1 were indeed unbounded, that would imply that π has
infinite diameter with respect to S. However, the converse implication is not nec-
essarily true. One way to see this is to consider the following example: Suppose
that π is a free group. Choose a free generating set for π , and let | . | be the word
metric given by this set. The set

⋃
∞

i=1 L i is countable. Choose an enumeration of
all of its elements: {`i }

∞

i=1. Each of the `i ’s is a coset of an infinite subgroup of π .
For each i , choose an element li ∈ `i such that |li+1| > 2|li |. Let L = {li }

∞

i=1. The
group π is nilpotent-bounded with respect to the set L. Indeed, by construction, L

surjects onto every nilpotent quotient, and thus generates each nilpotent quotient
with diameter 1. However, by using the triangle inequality for | . |, it is simple to
see that L cannot generate π with finite diameter.

Question 2. The lower central series is but one of the important series of nested
subgroups of π . Another such series is the derived series, whose elements are
quotients of surjections onto solvable groups. This sequence is defined by

0(0) = 0, 0(n+1)
= [0(n), 0(n)].

Is the conclusion of Theorem 1.1 true if we replace the word nilpotent with the
word solvable?
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