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The structure of almost projective modules can be better understood in the
case when the following Condition (P) holds: The union of each countable
pure chain of projective modules is projective. We prove this condition, and
its generalization to pure-projective modules, for all countable rings, using
the new notion of a strong submodule of the union.

However, we also show that Condition (P) fails for all Prüfer domains of
finite character with uncountable spectrum, and in particular, for the poly-
nomial ring K [x], where K is an uncountable field. One can even prescribe
the 0-invariant of the union. Our results generalize earlier work of Hill,
and complement recent papers by Macías-Díaz, Fuchs, and Rangaswamy.

By a classic theorem of Kaplansky, the structure theory of projective modules
over an arbitrary ring reduces to that of countably generated ones. In stark contrast,
almost projective modules (modules possessing a rich supply of small projective
submodules) generally have a very complex structure. Perhaps the most successful
invariant measuring their complexity is the 0-invariant. A projective module has a
trivial 0-invariant [Eklof 1993; Eklof and Mekler 2002].

There are additional conditions on almost projective modules that guarantee
projectivity. In his work on Whitehead groups, Hill [1970] discovered a remarkable
condition in the particular case of abelian groups: if A is the union of a countable
pure chain of (arbitrarily large) projective groups, then A is projective. Here, we
call the analogous property for modules over an arbitrary ring Condition (P).

In the past decade, several authors have attempted to extend Hill’s result and
establish Condition (P) for large classes of rings, notably for commutative domains
and noetherian rings [Fuchs and Rangaswamy 2011; Fuchs and Salce 2001]. So
far, Macías-Díaz [2010] has obtained the strongest result, that Prüfer domains with
countable spectrum have Condition (P).

Section 1 of our paper gives more motivation for considering Condition (P), by
showing its role in relating various notions of almost projectivity appearing in the
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literature. In Section 2, we prove Condition (P) and some of its generalizations for
all countable rings, using the new notion of a strong submodule.

However, in Section 3, we show that Condition (P) fails completely for all Prüfer
domains of finite character with uncountable spectrum (and thus, for example, for
the polynomial ring K [x], where K is any uncountable field). Here, “completely”
refers to the fact that there are essentially no restrictions on the 0-invariant of A.

In what follows, R denotes a ring (that is, an associative ring with 1), and the
term module means a right R-module.

1. Almost projective modules

The following definition is the analogue of [Eklof and Mekler 2002, IV.1.1] for
general rings, with “free” replaced by “projective”.

Definition 1.1. Let R be a ring and κ a regular uncountable cardinal. A module M
is called κ-projective if there exists a set S consisting of < κ-generated projective
submodules of M such that

(i) each subset of M of cardinality < κ is contained in an element of S, and

(ii) S is closed under unions of well-ordered chains of length < κ .

We recall some other relevant notions for the study of almost projectivity (see,
for example, [Eklof and Mekler 2002, IV.1; Trlifaj 1995]).

Definition 1.2. Let R be a ring and κ a regular uncountable cardinal. A module
M is called weakly κ-projective if each subset of M of cardinality<κ is contained
in a pure submodule N of M that is < κ-generated and projective.

Recall that a module M is flat if the functor M ⊗R − is exact, and that M is
Mittag-Leffler if the canonical map

M ⊗R

∏
i∈I

Qi →
∏
i∈I

(M ⊗R Qi )

is monic for each family of left R-modules (Qi | i ∈ I ).

Lemma 1.3 [Raynaud and Gruson 1971; Herbera and Trlifaj 2009]. Let R be a
ring and M a module. Then the following conditions are equivalent:

(i) M is ℵ1-projective.

(ii) M is weakly ℵ1-projective.

(iii) Each finite subset of M is contained in a projective, countably generated and
pure submodule of M.

(iv) M is flat Mittag-Leffler.
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Also, if κ is a regular uncountable cardinal and M is κ-projective, then M is ℵ1-
projective.

Proof. The equivalence of (i), (ii) and (iii) is proved in [Raynaud and Gruson 1971]
(see also [Drinfeld 2006]), while (i) and (iv) are equivalent by [Herbera and Trlifaj
2009, Theorem 2.9(i)] (see also [Rothmaler 1994; 1997]). The last statement is
[Herbera and Trlifaj 2009, Theorem 2.9(ii)]. �

The implication (i)⇒ (ii) extends to arbitrary regular uncountable cardinals κ:

Lemma 1.4. Let R be a ring, M a module, and κ an infinite cardinal.

(i) Assume that M is ℵ1-projective. Then each subset of M of cardinality ≤ κ is
contained in a ≤ κ-generated pure submodule of M.

(ii) Assume that κ is regular uncountable and M is κ-projective. Then M is
weakly κ-projective.

Proof. (i) We prove the claim by induction on κ . The case of κ = ℵ0 follows by
Lemma 1.3.

Assume κ ≥ℵ1, and let X = {xα | α < κ} be a subset of M of cardinality κ . For
each α < κ , let Xα = {xβ | β < α}. By induction on α, we define an increasing
chain (Pα | α < κ) of < κ-generated pure submodules of M as follows: P0 = 0,
Pα+1 is a < κ-generated pure submodule of M containing Xα ∪ Pα (which exists
by the inductive premise), and Pα =

⋃
β<α Pβ when α < κ is a limit ordinal. Then

P =
⋃
α<κ Pα is a ≤ κ-generated pure submodule of M containing X .

(ii) Let S be as in Definition 1.1, and let X be a subset of M of cardinality < κ .
By condition (i) of Definition 1.1, X is contained in a < κ-generated projective
submodule P0 ∈ S. By the last statement of Lemma 1.3 and by Lemma 1.4(i), P0

is contained in a < κ-generated pure submodule Q0 of M . Proceeding similarly,
we obtain a countable chain

P0 ⊆ Q0 ⊆ P1 ⊆ Q1 ⊆ · · · ⊆ Pn ⊆ Qn ⊆ · · · ,

where Pn ∈S, so Pn is <κ-generated and projective, and Qn is <κ-generated and
pure in M , for all n<ω. Let P =

⋃
n<ω Pn =

⋃
n<ω Qn . Then P ∈S by condition

(ii) of Definition 1.1, and P is pure in M . �

Whatever the cardinality of the ring R, Lemma 1.4(i) makes it possible to purify
a submodule without increasing the number of generators. So in the particular case
when R is a right hereditary ring, κ-projectivity and weak κ-projectivity are equiv-
alent (to the property that each < κ-generated submodule is projective). However,
the converse of Lemma 1.4(ii) fails in general:

Example 1.5. Let κ > ℵ1 be a regular cardinal, let K be a field, and let R denote
the endomorphism ring of a κ-dimensional K -linear space modulo its maximal
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ideal. Then there exists a κ-generated right ideal I in R such that I is weakly
κ-projective, but not κ-projective [Trlifaj 1995, Theorem 8].

Another relevant property is the following (where a chain (Pn | n <ω) is a pure
chain if Pn is a pure submodule of Pn+1 for each n < ω):

Definition 1.6. Let R be a ring. Then R satisfies Condition (P) if for each pure
chain (Pn | n < ω) consisting of projective modules, the module P =

⋃
n<ω Pn is

projective.

Condition (P) yields a characterization of weak κ-projectivity:

Proposition 1.7. Let R be a ring satisfying Condition (P). Let M be a module and
κ a regular infinite cardinal. Then M is weakly κ-projective if and only if there
exists a set S consisting of < κ-generated projective submodules of M such that

(i) each subset of M of cardinality < κ is contained in an element of S, and

(ii) S is closed under unions of countable chains.

Proof. By [Herbera and Trlifaj 2009, Corollary 2.3], assumptions (i) and (ii) assure
ℵ1-projectivity of M , so the “if” implication is proved as in Lemma 1.4. For the
“only if”, let S be the set of all<κ-generated projective and pure submodules of M .
Then (i) holds by the assumption. If M0 ⊆ · · · ⊆ Mn ⊆ Mn+1 ⊆ · · · is a countable
chain of elements of S, then Mω =

⋃
n<ω Mn is projective by Condition (P), so

Mω ∈ S. �

Condition (P) holds for R=Z. This was shown by Hill [1970], who proved thus
the singular compactness of almost free abelian groups of cardinality ℵα, where α
has cofinality ω.

More generally, Condition (P) is known to hold for all Prüfer domains with
countably many maximal ideals [Macías-Díaz 2010, Corollary 15], and hence for
all valuation domains. In Theorem 2.5 below, we prove it for all countable rings.

However, attempts to prove Condition (P) for arbitrary domains in [Fuchs and
Salce 2001, XVI.1.4] and [Fuchs and Rangaswamy 2011, Theorem 1.3] have gaps;
in fact, as we see in Theorem 3.1, Condition (P) fails even for R = K [x], where
K is an uncountable field.

The main goal of the next section is to prove Condition (P), and hence the
equivalence in Proposition 1.7, for all countable rings. Before proceeding to that
point, we note that under additional assumptions on R and M , the equivalence
holds even without assuming Condition (P):

Proposition 1.8. Let κ be an infinite cardinal, and let R be a ring that is either a
domain or is right<κ-noetherian (that is, every right ideal is<κ-generated). Let
M be a module of projective dimension ≤ 1. Then M is weakly κ-projective if and
only if there exists a set S consisting of<κ-generated projective submodules of M
such that
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(i) each subset of M of cardinality < κ is contained in an element of S, and

(ii) S is closed under unions of countable chains.

The following lemma helps in finding projective submodules:

Lemma 1.9. Let M be a module of projective dimension at most 1. Let N be a
tight submodule; that is, let M/N have also projective dimension at most 1. If N
is contained in a projective submodule of M , then N is projective.

Proof. Let P be a projective module such that N ⊆ P ⊆ M . We can estimate the
projective dimensions of various modules built from N , P and M using the long
exact sequence for Ext as follows:

proj.dim M/P ≤max{proj.dim M, proj.dim P + 1} ≤ 2,(1)

proj.dim P/N ≤max{proj.dim M/N , proj.dim M/P − 1} ≤ 1,(2)

proj.dim N ≤max{proj.dim P, proj.dim P/N − 1} ≤ 0.(3)

The last line shows that N is projective. �

Proof of Proposition 1.8. As in the proof of Proposition 1.7, the conditions (i) and
(ii) of Proposition 1.8 imply that M is κ-projective (because neither Condition (P)
nor any of our additional assumptions are needed there).

For the other direction, we note that by the assumptions on R, there is a Hill
family consisting of tight submodules of M : when R is a domain, this follows by
[Fuchs and Salce 2001, Proposition VI.5.1] and [Göbel and Trlifaj 2006, 4.2.6],
and when R is<κ-noetherian, we apply [Göbel and Trlifaj 2006, 4.1.11 and 4.2.6].

Let S be the subfamily of the<κ-generated members of this family. Conditions
(i) and (ii) automatically hold. Finally, the assumption of weak κ-projectivity and
Lemma 1.9 imply that S consists of projective modules. �

2. Hill families of strong submodules

We start this section by considering a general version of Condition (P), where the
chain (Pn | n < ω) is not necessarily pure, and the modules Pn (n < ω) are direct
sums of modules from a given class C consisting of countably presented modules or
modules of countable rank. The relevant notion here is that of a strong submodule.
It is introduced in the following definition, where, for a class of modules C, we
denote by Sum (C) the class of all direct sums of copies of modules from C.

Definition 2.1. Let R be a ring and C a class of modules.
Let (Pn | n < ω) be a countable increasing chain of modules, and suppose

P =
⋃

n<ω Pn . Assume that Pn ∈ Sum (C) for each n < ω; that is, there exists a
decomposition Pn =

⊕
α<κn

Pn,α, where Pn,α is isomorphic to an element of C for
each α < κn .
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We fix these decompositions, and for each n<ω and each subset S⊆ κn , define
P(n, S)=

⊕
α∈S Pn,α. So, in particular, Pn = P(n, κn).

A submodule N of P is called strong if there exist (An |n<ω) such that An⊆κn

and N∩Pn = P(n, An) for each n<ω. The sequence (An | n<ω) is then uniquely
determined by N ; it is the witnessing sequence for N .

In this section, P denotes the union
⋃

n<ω Pn , where (Pn | n<ω) is a countable
increasing chain of modules, as in Definition 2.1.

In the case when C is the class of all countably presented projective modules,
Definition 2.1 covers the setting of Condition (P), because by a classic theorem of
Kaplansky, each projective module is a direct sum of modules in C.

Note that 0 and P are strong submodules of P . Also, unions of chains of strong
submodules are strong, and so are arbitrary intersections of strong submodules.
Indeed, in Theorem 2.9, we prove that strong submodules are abundant.

If N is strong in P and the chain (Pn |n<ω) is pure, then N is a pure submodule
of P , because N =

⋃
n<ω N ∩ Pn and N ∩ Pn is a direct summand in the pure

submodule Pn of P for each n < ω.
For the next lemma, we recall that a ring R is right ℵ0-noetherian provided that

each right ideal of R is countably generated. For example, all right noetherian
rings, and all countable rings, are right ℵ0-noetherian. It is easy to see that a ring
R is right ℵ0-noetherian if and only if each submodule of a countably generated
module is countably generated.

Lemma 2.2. Assume that R is right ℵ0-noetherian and C consists of countably
presented modules, or that R is a commutative domain and C consists of torsion-
free modules of countable rank, respectively. Let N be a strong submodule of P
with witnessing sequence (An | n < ω). Let C be a countable subset of P or a
subset of P such that 〈C〉 has countable rank, respectively.

Then there is a strong submodule N ′ of P such that N ∪C ⊆ N ′, the witnessing
sequence (A′n | n <ω) for N ′ satisfies An ⊆ A′n , and A′n \ An is countable for each
n < ω.

Proof. We simultaneously and recursively construct chains (Cn,i : i <ω) of subsets
of κn .

As a start, for each n < ω, put An ⊆ Cn,0 ⊆ κn , with Cn,0 \ An countable and
C ∩ Pn ⊆ P(n,Cn,0).

For i ≥ 0, let Cn,i ⊆ Cn,i+1 ⊆ κn , with Cn,i+1 \Cn,i countable and

P(m,Cm,i )∩ Pn ⊆ P(n,Cn,i+1)

for all m.
Finally, we define A′n =

⋃
i<ω Cn,i for each n < ω. Then An ⊆ A′n ⊆ κn , and

A′n\An is countable for each n<ω. Let N ′=
⋃

n<ω P(n, A′n)=
⋃

n,i<ω P(n,Cn,i ).
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The P(n,Cn,i ) form an upper directed system of submodules, so their union is a
submodule.

Recall that P(m,Cm,i )∩ Pn ⊆ P(n,Cn,i+1) for all m, n, i <ω, and hence N ′∩
Pn = P(n, A′n). All in all, N ′ is a strong submodule of P with witnessing sequence
(A′n | n < ω).

Since C ∩ Pn ⊆ P(n, A′n) for each n < ω, we conclude that N ∪C ⊆ N ′. �

Lemma 2.2 serves as inductive step for proving the following:

Proposition 2.3. Assume either that R is right ℵ0-noetherian and C consists of
countably presented modules, or that R is a commutative domain and C consists
of torsion-free modules of countable rank, respectively.

Then P is the union of a continuous increasing chain M = (Mα | α < λ) of
strong submodules of P , such that for each α < λ, there is a countably generated
or countable-rank submodule Nα of P , respectively, with Mα+1 = Mα + Nα.

Proof. Let {pα | α < λ} be an R-generating subset of P . Since M0 = 0 is strong,
and the union of a chain of strong submodules is strong, it remains to perform the
nonlimit step of the construction. However, applying Lemma 2.2 for N = Mα and
C = {pα}, we can take Nα =

∑
n<ω P(n, A′n \ An) and Mα+1 = N ′. �

We can prove more in the particular case of countable rings. We consider a class
of modules C to have Property (C) if for each increasing pure chain of modules
(Qn | n <ω) such that Qn ∈ Sum (C) for all n <ω, and each countably presented
pure submodule C of

⋃
n<ω Qn , the module C is C-filtered. Also, C has Property

(C+) if the same assumptions yield the stronger conclusion of C ∈ Sum (C).
For example, the class of all countably presented modules and the class of all

projective modules have Property (C+), because the union of a pure chain of pro-
jective modules is always ℵ1-projective, by Lemma 1.3.

Lemma 2.4. Let R be a countable ring. Let C be a class of countably presented
modules that has Property (C). Let (Pn | n < ω) be an increasing pure chain of
modules such that Pn ∈ Sum (C) for all n < ω, and let P =

⋃
n<ω Pn . Then P is

C-filtered.
Also, if C has Property (C+), then P is the union of a continuous increasing

chain M= (Mα |α<λ) consisting of strong submodules of P such that Mα+1/Mα ∈

Sum (C).

Proof. Let (Pn | n<ω) be an increasing pure chain of modules with Pn ∈ Sum (C)

for all n < ω. Since R is countable, the continuous chain M from Proposition 2.3
can be taken with the additional property of Mα+ Pn being pure in P for all n<ω
and α < κ . This is arranged by improving Lemma 2.2 for countable R: when
for the strong submodule N , all the submodules N + Pn are pure, then N ′ can be
chosen with the N ′+ Pn also pure.
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It follows that for each α < κ , the factor Q = P/Mα is the union of the pure
chain (Qn | n < ω), where Qn = (Mα + Pn)/Mα. Also, Qn ∼= Pn/(Pn ∩ Mα) ∈

Sum (C), because Mα is strong. Similarly, the countably presented submodule
C=Mα+1/Mα is pure in Q, so C is C-filtered by Property (C). Then P=

⋃
α<κ Mα

is C-filtered as well.
Also, if C has Property (C+), then C = Mα+1/Mα ∈ Sum (C). �

The assumptions of Lemma 2.4 are satisfied for R countable and C the class
of all countably generated projective modules. Since in this case C-filtered is the
same as projective, we get:

Theorem 2.5. Let R be a countable ring. Then R satisfies Condition (P).

As another consequence, we obtain the general version of Condition (P) for the
case when R is countable, C has Property (C+), and C consists of finitely presented
modules:

Corollary 2.6. Let R be a countable ring, and let C be a class of finitely presented
modules that has Property (C+). Let (Pn | n < ω) be an increasing pure chain
of modules such that Pn ∈ Sum (C) for all n < ω and that P =

⋃
n<ω Pn . Then

P ∈ Sum (C).

Proof. By Lemma 2.4, P is the union of a continuous increasing chain

M= (Mα | α < λ),

consisting of strong submodules of P such that Mα+1/Mα ∈Sum (C). In particular,
Mα is pure in Mα+1 for each n < ω. As C consists of finitely presented modules,
Mα+1/Mα is pure-projective, and the embedding Mα ↪→ Mα+1 splits. This proves
that P ∈ Sum (C). �

A variation of Corollary 2.6 gives the version of Condition (P) for pure-projective
modules over countable rings.

Theorem 2.7. Let R be a countable ring, (Pn | n<ω) be an increasing pure chain
of pure-projective modules, and P =

⋃
n<ω Pn . Then P is pure-projective.

Proof. By [Raynaud and Gruson 1971, Seconde partie, Corollaire 2.2.2], a count-
ably presented module is pure-projective if and only if it is Mittag-Leffler, and the
latter property is clearly inherited by pure submodules. As in Lemma 2.4, we infer
that P is the union of a continuous chain M consisting of strong submodules of
P such that all consecutive factors in M are pure-projective, and hence P is pure-
projective as well. �

Alternatively, we can deduce Theorem 2.5 from Theorem 2.7, because projective
= flat + pure-projective.
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Of course, the union of a nonpure countable chain of projective modules need
not be projective even for countable rings: just consider R = Z and Q as the union
of the chain of free groups (1/n! ·Z | n < ω).

Also, the general version of Condition (P) for pure chains consisting of modules
from Sum (C) may fail even for countable rings and C having Property (C). That
is, even though P is C-filtered by Lemma 2.4, P /∈ Sum (C) in general:

Example 2.8. Let R be a simple, countable von Neumann regular ring that is not
artinian — for example, let R be the directed union of the full matrix rings M2n (Q)

(n < ω) with the block diagonal embeddings

Q⊆ M2(Q)⊆ M4(Q)⊆ · · · ⊆ M2n (Q)⊆ M2n+1(Q)⊆ · · · .

Consider a simple nonprojective module S, and let C be the class of all finitely
{S}-filtered modules. Then C is a class of countable modules and has Property (C).

Define a chain of finite length modules (Pn | n < ω) such that P0 = S and that
Pn+1 fits in a nonsplit short exact sequence 0→ Pn ⊆ Pn+1 → S → 0 for each
n < ω. This is possible by [Trlifaj 1996, Proposition 3.3]. This chain is pure
because R is von Neumann regular, so all R-modules are flat.

Let P =
⋃

n<ω Pn . Then Pn ∈ C for all n < ω, and P is C-filtered, but P /∈

Sum (C). Indeed, S = P0 is an essential submodule of P , so P is uniform, and
hence indecomposable.

Returning to the general setting and using an idea by Hill, we can extend the
chain M from Proposition 2.3 further, to a large family of strong submodules:

Theorem 2.9. Assume that R is right ℵ0-noetherian and C consists of countably
presented modules, or that R is a commutative domain and C consists of torsion-
free modules of countable rank, respectively. Let M= (Mα :α<λ) be a continuous
increasing chain of strong submodules of P as in Proposition 2.3. There is a family
H of strong submodules of P such that:

(i) M⊆H.

(ii) H is closed under arbitrary sums and intersections; in fact, H is a complete
distributive sublattice of the modular lattice of all submodules of P.

(iii) Let N , N ′ ∈H be such that N ⊆ N ′. Then there exists a continuous increasing
chain (Nβ | β ≤ τ) consisting of elements of H such that τ ≤ λ, N0 = N ,
Nτ = N ′, and for each β < τ there is α < κ such that Nβ+1/Nβ is isomorphic
to Mα+1/Mα.

(iv) Let N ∈H, and let X be a countable subset of P (a subset of P such that 〈X〉
has countable rank, respectively). Then there are N ′ ∈ H and a submodule
Y ⊆ P such that Y is countably generated (of countable rank, respectively)
and N ∪ X ⊆ N ′ = N + Y .
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Proof. For all α < λ and n<ω, let Dα,n = Aα+1,n \ Aα,n , where (Aα,n | n<ω) and
(Aα+1,n |n<ω) are the witnessing sequences for Mα and Mα+1. By the assumption
on the chain M, all the sets Dα,n are countable. Let 1α =

∑
n<ω P(n, Dα,n). Then

1α is countably generated, and Mα+1 = Mα +1α for each α < λ.
As in [Göbel and Trlifaj 2006, §4.2], we call a subset S of σ closed when

1α ∩Mα ⊆

∑
β<α, β∈S

1β

for each α ∈ S. We define H= {
∑

α∈S 1α | S is closed in λ}.
Since each ordinal σ ≤ λ is closed, M ⊆ H, and (i) holds. Properties (ii) and

(iii) are proved in [Göbel and Trlifaj 2006, 4.2.6]. If R is ℵ0-noetherian, then (iv)
is proved in [Göbel and Trlifaj 2006, 4.2.6], while in the domain case, (iv) follows
by [Göbel and Trlifaj 2006, 4.2.8].

It remains to show that all modules in H are strong. Let S be a closed subset
of λ, and let N =

∑
α∈S 1α and Bn =

⋃
α∈S Dα,n . It suffices to prove that N∩Pn =

P(n, Bn) for each n < ω. The inclusion ⊇ is clear from the definitions above.
Assume there exists x ∈ (N ∩ Pn) \ P(n, Bn). Then there is one of the form

x = xα1+· · ·+xαi , where α1< · · ·<αi are elements of S, and xαk ∈1αk \P(n, Bn)

for all 1≤ k ≤ i . Without loss of generality, we can assume that α= αi is minimal.
Since x ∈ Mα+1 ∩ Pn = P(n, Aα+1,n), we also have x = yβ1 + · · · + yβ j , where
β1< · · ·<β j are elements of Aα+1,n and yβl ∈ Pn,βl for each 1≤ l ≤ j . If βl ∈ Dα,n

for some 1≤ l≤ j , then xα−yβl ∈1α\P(n, Bn). Possibly replacing x by x−yβl , we
can assume that βl ∈ Aα,n for all 1≤ l≤ j . But then xα ∈1α∩Mα⊆

∑
β<α,β∈S 1β ,

in contradiction with the minimality of α.
This proves that N is strong in P . �

We can now improve the second part of Lemma 2.4:

Corollary 2.10. Let R be a countable ring. Let C be a class of countably presented
modules that has Property (C+). Let (Pn | n < ω) be an increasing pure chain of
modules such that Pn ∈ Sum (C) for all n < ω, and let P =

⋃
n<ω Pn .

Then P is the union of a continuous increasing pure chain N = (Nα | α < ℵ1)

consisting of strong submodules of P such that Nα+1/Nα ∈Sum (C) for all α<ℵ1.

Proof. Let M be the chain constructed in the second part of Lemma 2.4, and
consider the corresponding family H, as in Theorem 2.9. By [Št́ovíček 2012], one
can select from H an increasing continuous chain N= (Nα | α < ℵ1) of length no
greater than ℵ1, such that Nα+1/Nα is isomorphic to a direct sum of some of the
successive factors of the original chain M, for all α <ℵ1. By Lemma 2.4, all these
factors are in Sum (C). Since H consists of strong (and hence pure) submodules
of P , so does N. �
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3. The failure of Condition (P)

In this section we prove that Condition (P) fails for Prüfer domains of finite charac-
ter with uncountable spectrum, and, notably, for every principal ideal domain with
an uncountable spectrum. We adopt [Eklof and Mekler 2002, Theorem VII.1.4] to
illustrate that failure of Condition (P) has little, if any, restriction on the 0-invariant
of even large almost-projective modules.

Recall from [Fuchs and Salce 2001, Chapter III, Lemma 2.7] that in a Prüfer
domain of finite character, every maximal ideal contains a finitely generated ideal,
which is not contained in any other maximal ideal. Selecting one for every maximal
ideal, we obtain a system of pairwise coprime proper invertible ideals. In fact, all
we need is such a system of ideals:

Theorem 3.1. Let R be a commutative domain with uncountably many pairwise
coprime invertible proper ideals. Let κ be a regular uncountable cardinal, and E
be a nonreflecting stationary subset of κ , all of whose elements have cofinality ω.
Then there is a κ-projective κ-generated R-module M with 0-invariant Ẽ that is a
union of a countable pure chain of projective submodules.

Before proving Theorem 3.1, we follow the suggestion of the referee and present
a simple particular case of the construction.

Example 3.2. Let R be a principal ideal domain with uncountably many maximal
ideals (pα) for 0< α < ℵ1.

We define our module via generators and relations:

(4) P := 〈eα,n : α < ω1, n < ω
∣∣ pαeα,n+1 = eα,n + e0,n+1 : α > 0〉.

(This is an example for the theorem with κ =ℵ1, and E = {α < ℵ1 | cf(α)=ℵ0}.)
We leave it to the reader to verify that for every 0 < α ≤ ℵ1 and i < ω, the

submodule

(5) Nα,i = 〈eβ, j : j ≤ i, β < α〉

is actually free, with a basis formed by the e0, j for j ≤ i and the eβ,i for 0<β <α.
Since

Nα,i+1/Nα,i ∼= 〈R, p−1
β : 0< β < α〉

(with e0,i+1 corresponding to 1 and eβ,i+1 corresponding to p−1
β ) is torsion-free,

Nα,i is a pure submodule of Nα,i+1. Hence, P is a union of a pure chain Pi = Nℵ1,i

of projective submodules.
On the other hand, P is a union of a continuous chain

(6) Nα =
⋃
i<ω

Nα,i = 〈eβ,i : β < α, i < ω〉, 0< α < ℵ1
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of (strong) submodules with nonprojective factors Nα+1/Nα ∼= R[p−1
α ] (with eα,i

corresponding to p−i
α ), and hence is not projective.

The proof of Theorem 3.1 is mostly the same as that of [Eklof and Mekler 2002,
Theorems VII.1.3–4], so we present only the differences. To include the sequence
of submodules in the structure, we work in the category of ω-filtered modules, that
is, modules M together with an increasing sequence (M(n) : n<ω) of submodules
satisfying

⋃
∞

n=0 M(n)=M . A filtered submodule of M is a submodule N together
with the filtration N (n) := M(n) ∩ N . Note that M/N is also a filtered module,
with the filtration (M(n)/N (n)∼= (M(n)+ N )/N : n < ω).

For the free module R(λ×ω), we always use the filtration (R(λ×n)
: n < ω).

For a module N , let N [n] denote the filtered module

(7) N [n](m) :=
{

0, m < n,
N , m ≥ n.

For example, R(λ×ω) =
∞⊕

n=0

R(λ)[n+ 1] as filtered modules.

Proof of Theorem 3.1. We distinguish the cases κ > ℵ1 and κ = ℵ1. To avoid
repetition, we first provide the common part of both cases, and then fill out the
missing parts separately.

We build a continuous increasing chain of ω-filtered modules (Mµ : µ < κ)

whose filtrations consist of pure and projective submodules. By “increasing”, we
mean that Mν is a filtered submodule of Mµ for µ < ν.

The union M of the chain is our κ-projective module with 0-invariant Ẽ .
To ensure that all the Mµ(n) and M(n) are projective, we make the filtrations

of the Mµ+1/Mµ consist of projective modules.
We fix an infinite cardinal λ < κ . For µ /∈ E , let

Mµ+1 := Mµ⊕ Pµ, Pµ := R(λ×ω) =
∞⊕

n=0

R(λ)[n+ 1]eµ,n.

For the case µ ∈ E , we select a template as in [Eklof and Mekler 2002, Corol-
lary VII.1.2], that is, a nonprojective λ-generated module Nµ with an ω-filtration
by projective modules. By adding a projective module, we may assume that the
filtration consists of λ-generated free modules; that is, Nµ(n)∼= R(λ). The filtration
induces a short exact sequence

0→ Kµ→ Fµ→ Nµ→ 0

of ω-filtered modules, where

(8) Fµ :=
∞⊕

n=0

Nµ(n)[n]en, Kµ :=

∞⊕
n=0

Nµ(n)[n+ 1]en ∼= R(λ×ω).



STRONG SUBMODULES OF ALMOST PROJECTIVE MODULES 85

The embedding of Kµ into Fµ maps xen into xen+1−xen , and the homomorphism
Fµ→ Nµ maps xen into x for any x ∈ Nµ(n) and natural number n. In particular,
the filtrations of Kµ and Fµ consist of direct summands, and hence of pure and
projective submodules. We see that the modules

Fµ/(Kµ(n))=
∞⊕

m=n

Nµ(m)

are projective for all N .
We define Mµ+1 as the pushout of the inclusion Kµ ⊆ Fµ by a suitable embed-

ding Kµ→ Mµ identifying Kµ with the direct summand

∞⊕
n=0

R(λ)[n+ 1]eµn,n

of the filtered submodule
⊕
∞

n=0 Pµn for an increasing sequence of successor ordi-
nals µn with supremum µ. Then

Mµ+1/Mµ
∼= Nµ

as filtered modules, and therefore Mµ+1/Mµ is filtered by projective submodules.
The rest of [Eklof and Mekler 2002, Theorems VII.1.3–4] apply to show that

M is a κ-free module of 0-invariant Ẽ . The filtration of M consists of projective
submodules by construction.

All that is left is to find λ and the Nµ and to verify that the filtration of M
actually consists of pure submodules.

When κ > ℵ1, we choose λ= ℵ1, and let Nµ be an ℵ1-generated nonprojective
module with an ω-filtration by pure and projective submodules. (We may choose
all the Nµ the same.) Such an Nµ exists by the κ = ℵ1 case. Since the filtration
of Nµ is by pure submodules, it follows that all the Mµ(n) and M(n) are pure
submodules.

When κ = ℵ1, we let λ = ℵ0. Let (Iα : α < ℵ1) be a collection of pairwise
coprime invertible proper ideals of R. We define the Nµ as submodules of the
quotient field of R:

(9) Nµ(n) := I−n
µ , Nµ := I−∞µ .

Clearly, Nµ is nonprojective and its filtration is by projective submodules.
To show that the filtration of the Mµ is pure, we show that its localization by

any maximal ideal Q is pure. When Iµ * Q and µ∈ E , then Nµ,Q = RQ[0], so the
short exact sequence Kµ,Q→ Fµ,Q→ Nµ,Q of filtered modules splits, and hence
Mµ+1,Q = Mµ,Q ⊕ Nµ,Q as filtered modules.
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There is at most one µ ∈ E with Iµ ⊆ Q. Hence, by the previous paragraph, if
there is such a µ, then Mν,Q is a direct summand of Mν+1,Q as filtered modules,
for all ν < µ. So

Mµ,Q ∼=
⊕
ν<µ

Mν+1,Q/Mν,Q,

with an arbitrary choice of split preimages of the Mν+1,Q/Mν,Q . Recall that Kµ,Q

is a direct summand of a sum of some of these preimages, so it is actually a direct
summand of Mµ,Q ; that is, Mµ,Q = Kµ,Q ⊕ Hµ. It follows that

Mµ+1,Q = Fµ,Q ⊕ Hµ.

These decompositions of filtered modules show that the filtrations of Hµ and
Mµ+1,Q consist of pure submodules. �

We finish with:

Problem 3.3. Characterize the rings R satisfying Condition (P).
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