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We say a sequence {Pm(x)}m≥0 of polynomials of degree m with positive co-
efficients is interlacingly log-concave if the ratios of consecutive coefficients
of Pm(x) interlace the ratios of consecutive coefficients of Pm+1(x) for any
m ≥ 0. Interlacing log-concavity of a sequence of polynomials is stronger
than log-concavity of the polynomials themselves. We show that the Boros–
Moll polynomials are interlacingly log-concave. Furthermore, we give a
sufficient condition for interlacing log-concavity which implies that some
classical combinatorial polynomials are interlacingly log-concave.

1. Introduction

Let {Pm(x)}m≥0 be a sequence of polynomials, where

Pm(x)=

m∑
i=0

ai (m)xm

is a polynomial of degree m. Let

ri (m)=
ai (m)

ai+1(m)
.

We say that the sequence of polynomials {Pm(x)}m≥0 is interlacingly log-concave
if the ratios ri (m) interlace the ratios ri (m+1), that is,

r0(m+1)≤ r0(m)≤ r1(m+1)≤ r1(m)

≤ · · · ≤ rm−1(m+1)≤ rm−1(m)≤ rm(m+1).

Recall that a sequence {ai }0≤i≤m of positive numbers is said to be log-concave if
a0

a1
≤

a1

a2
≤ · · · ≤

am−1

am
.

It is obvious that interlacing log-concavity implies log-concavity.
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The main objective of this paper is to prove the interlacing log-concavity of the
Boros–Moll polynomials. For the background on these polynomials, see [Boros
and Moll 1999a; 1999b; 1999c; 2001; 2004; Moll 2002; Amdeberhan and Moll
2009]. From now on, we use Pm(x) to denote the Boros–Moll polynomial given by

(1) Pm(x)=
∑
j,k

(2m+1
2 j

)(m− j
k

)(2k+2 j
k+ j

)(x+1) j (x−1)k

23(k+ j) .

Boros and Moll [1999b] derived the following formula for the coefficient di (m)

of x i in Pm(x):

(2) di (m)= 2−2m
m∑

k=i

2k
(2m−2k

m−k

)(m+k
k

)(k
i

)
.

In [Boros and Moll 1999c], they showed that the sequence {di (m)}0≤i≤m is uni-
modal and that the maximum element appears in the middle. In other words,

(3) d0(m) < d1(m) < · · ·< d[m/2](m) > d[m/2]−1(m) > · · ·> dm(m).

They also established the unimodality by a different approach [Boros and Moll
1999a]; see also [Alvarez et al. 2001].

Moll [2002] conjectured that the sequence {di (m)}0≤i≤m is log-concave. Kauers
and Paule [2007] proved this conjecture based on recurrence relations found by
using a computer algebra approach. Chen and Xia [2009] showed that the sequence
{di (m)}0≤i≤m satisfies the ratio monotone property which implies log-concavity
and the spiral property. A combinatorial proof of the log-concavity of Pm(x) was
found by Chen, Pang and Qu [≥ 2011].

In addition to the Boros–Moll polynomials, we study polynomials whose coef-
ficients satisfy triangular recurrence relations. It is easy to show that the binomial
coefficients, the Narayana numbers and the Bessel numbers are interlacingly log-
concave. We also give a sufficient condition for the interlacing log-concavity of a
sequence of polynomials and prove that the rising factorials, the Bell polynomials
and the Whitney polynomials are interlacingly log-concave.

2. The interlacing log-concavity of di (m)

In this section, we show that for m ≥ 2, the Boros–Moll polynomials Pm(x) are
interlacingly log-concave.

Theorem 2.1. For m ≥ 2 and 0≤ i ≤ m, we have

di (m)di+1(m+1) > di+1(m)di (m+1),(4)

di (m)di (m+1) > di−1(m)di+1(m+1).(5)
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The proof relies on recurrence relations derived in [Kauers and Paule 2007]:

di (m+1)=
m+ i
m+1

di−1(m)+
(4m+2i+3)

2(m+1)
di (m), 0≤ i ≤ m+1,(6)

di (m+1)=
(4m−2i+3)(m+ i+1)

2(m+1)(m+1− i)
di (m)(7)

−
i(i+1)

(m+1)(m+1− i)
di+1(m), 0≤ i ≤ m,

di (m+2)=
−4i2
+8m2

+24m+19
2(m+2− i)(m+2)

di (m+1)(8)

−
(m+ i+1)(4m+3)(4m+5)

4(m+2− i)(m+1)(m+2)
di (m), 0≤ i ≤ m+1,

and for 0≤ i ≤ m+1,

(9) (m+2− i)(m+ i−1)di−2(m)−(i−1)(2m+1)di−1(m)+ i(i−1)di (m)= 0.

Moll [2007] independently derived the recurrence relations (6) and (9) from which
the other two relations can be easily deduced.

To prove Theorem 2.1(4), we need the following lemma.

Lemma 2.2. Assume that m ≥ 2. For 0≤ i ≤ m−2, we have

(10)
di (m)

di+1(m)
<

(4m+2i+3)di+1(m)

(4m+2i+7)di+2(m)
.

Proof. We proceed by induction on m. When m = 2, it is easy to check that the
result holds. Assume that the lemma is valid for n, namely,

(11)
di (n)

di+1(n)
<

(4n+2i+3)di+1(n)

(4n+2i+7)di+2(n)
, 0≤ i ≤ n−2.

We aim to show that (10) holds for n+1, that is,

(12)
di (n+1)

di+1(n+1)
<

(4n+2i+7)di+1(n+1)

(4n+2i+11)di+2(n+1)
, 0≤ i ≤ n−1.

From the recurrence relation (6), we deduce that, for 0≤ i ≤ n−1,

(2i+4n+7)d2
i+1(n+1)−(2i+4n+11)di (n+1)di+2(n+1)

= (2i+4n+7)

(
i+n+1

n+1
di (n)+

2i+4n+5
2(n+1)

di+1(n)

)2

−(2i+4n+11)

(
i+n+2

n+1
di+1(n)+

2i+4n+7
2(n+1)

di+2(n)

)
×

(
n+i
n+1

di−1(n)+
2i+4n+3

2(n+1)
di (n)

)
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=
A1(n, i)+ A2(n, i)+ A3(n, i)

4(n+1)2 ,

where A1(n, i), A2(n, i) and A3(n, i) are given by

A1(n, i)= 4(2i+4n+7)(i+n+1)2d2
i (n)

−4(n+ i)(2i+4n+11)(i+n+2)di+1(n)di−1(n),

A2(n, i)= (2i+4n+7)(2i+4n+5)2d2
i+1(n)

−(2i+4n+3)(2i+4n+11)(2i+4n+7)di (m)di+2(n),

A3(n, i)= (8i3
+40i2

+58i+32n3
+42n+80n2

+120ni+40i2n+64n2i+8)

·di+1(n)di (n)−2(n+ i)(2i+4n+11)(2i+4n+7)di+2(n)di−1(n).

We will show that A1(n, i), A2(n, i) and A3(n, i) are all positive for 0≤ i ≤ n−2.
By the induction hypothesis (11), we find that for 0≤ i ≤ n−2,

A1(n, i) > 4(2i+4n+7)(i+n+1)2d2
i (n)

−4(n+ i)(2i+4n+11)(i+n+2)
(4n+2i+1)

(4n+2i+5)
d2

i (n)

= 4
35+96n+72i+64ni+40n2

+28i2

2i+4n+5
d2

i (n),

A2(n, i) > (2i+4n+7)(2i+4n+5)2d2
i+1(n)

−(2i+4n+3)(2i+4n+11)(2i+4n+7)
(4n+2i+3)

(4n+2i+7)
d2

i+1(n)

= (40i+80n+76)d2
i+1(n),

which are both positive. Also by the induction hypothesis (11), we see that

(13) di (n)di+1(n) >
(2i+4n+5)(2i+4n+7)

(2i+4n+3)(2i+4n+1)
di−1(n)di+2(n),

for 0≤ i ≤ n−2. This implies that

A3(n, i)

> (8i3
+40i2

+58i+32n3
+42n+80n2

+120ni+40i2n+64n2i+8)di+1(n)di (n)

−2(n+ i)(2i+4n+11)(2i+4n+7)
(4n+2i+3)(4n+2i+1)

(4n+2i+5)(4n+2i+7)
di+1(n)di (n)

= 8 5+22n+30i+44ni+24n2
+16i2

2i+4n+5
di+1(n)di (n),
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which is positive for 0≤ i ≤n−2. Hence the inequality (12) holds for 0≤ i ≤n−2.
It remains to show that (12) is true for i = n−1, that is,

(14)
dn−1(n+1)

dn(n+1)
<

(6n+5)dn(n+1)

(6n+9)dn+1(n+1)
.

From (2) it follows that

dn(n+1)= 2−n−2(2n+3)
(2n+2

n+1

)
,(15)

dn+1(n+1)=
1

2n+1

(2n+2
n+1

)
,(16)

dn(n+2)=
(n+1)(4n2

+18n+21)

2n+4(2n+3)

(2n+4
n+2

)
.(17)

Consequently,

dn−1(n+1)

dn(n+1)
=

n(4n2
+10n+7)

2(2n+1)(2n+3)
<

(2n+3)(6n+5)

2(6n+9)
=

(6n+5)dn(n+1)

(6n+9)dn+1(n+1)
.

This completes the proof. �

We can now prove Theorem 2.1(4). In fact, we shall prove a stronger inequality.

Lemma 2.3. Assume that m ≥ 2. For 0≤ i ≤ m−1, we have

(18)
di (m)

di+1(m)
>

(2i+4m+5)di (m+1)

(2i+4m+3)di+1(m+1)
.

Proof. By Lemma 2.2, we have for 0≤ i ≤ m−1,

(19) d2
i (m) >

2i+4m+5
2i+4m+1

di−1(m)di+1(m).

From (19) and the recurrence relation (6), for 0≤ i ≤ m−1,

di+1(m+1)di (m)−
2i+4m+5
2i+4m+3

di+1(m)di (m+1)

=
2i+4m+5

2(m+1)
di+1(m)di (m)+

i+m+1
m+1

di (m)2

−
2i+4m+5
2i+4m+3

(2i+4m+3
2(m+1)

di (m)di+1(m)+
i+m
m+1

di−1(m)di+1(m)
)

=
i+m+1

m+1
d2

i (m)−
(4m+2i+5)(m+ i)
(4m+2i+3)(m+1)

di−1(m)di+1(m)

>

(
m+1+i

m+1
−

(4m+2i+1)(m+ i)
(4m+2i+3)(m+1)

)
d2

i (m)

=
6m+4i+3

(4m+2i+3)(m+1)
d2

i (m) > 0,

which yields (18). �
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We now turn to the proof of Theorem 2.1(5).

Lemma 2.4. Assume that m ≥ 2. For 0≤ i ≤ m−1, we have

(20)
di (m)

di+1(m)
<

di+1(m+1)

di+2(m+1)
.

Proof. We proceed by induction on m. It is easy to check the lemma holds for
m = 2. Assume that the lemma is true for n ≥ 2, that is,

(21)
di (n)

di+1(n)
<

di+1(n+1)

di+2(n+1)
, 0≤ i ≤ n−1.

It will be shown that the theorem holds for n+1, that is,

(22)
di (n+1)

di+1(n+1)
<

di+1(n+2)

di+2(n+2)
, 0≤ i ≤ n.

Recall that the sequence {di (n+1)}0≤i≤n+1 is unimodal. Furthermore, from (3) or
the ratio monotone property [Chen and Xia 2009], the maximum element appears
in the middle, namely, di (n+1) < di+1(n+1) when 0 ≤ i ≤ [(n+1)/2]−1 and
di (n+1) > di+1(n+1) when [(n+1)/2] ≤ i ≤ n.

Showing (22) for 0≤ i ≤ n−1 breaks into two cases.
The first case is di (n+1) < di+1(n+1), namely, 0≤ i ≤ [(n+1)/2]−1. From

the recurrence relation (6), we find that for 0≤ i ≤ [(n+1)/2]−1,

di+1(n+1)di+1(n+2)−di+2(n+2)di (n+1)

=
2i+4n+9

2(n+2)
d2

i+1(n+1)+
i+n+2

n+2
di (n+1)di+1(n+1)

−
2i+4n+11

2(n+2)
di (n+1)di+2(n+1)−

i+n+3
n+2

di (n+1)di+1(n+1)

=
2i+4n+9

2(n+2)
d2

i+1(n+1)−
2i+4n+11

2(n+2)
di (n+1)di+2(n+1)

−
1

n+2
di (n+1)di+1(n+1)

>
2i+4n+7

2(n+2)
d2

i+1(n+1)−
2i+4n+11

2(n+2)
di (n+1)di+2(n+1),

which is positive by Lemma 2.2. It follows that for 0≤ i ≤ [(n+1)/2]−1,

(23) di+1(n+1)di+1(n+2)−di+2(n+2)di (n+1) > 0.

This completes the proof of the first case.
The second case is when [(n+1)/2]≤ i≤n−1. From the recurrence relations (6)

and (7), it follows that for [(n+1)/2] ≤ i ≤ n−1,
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di+1(n+2)di+1(n+1)−di+2(n+2)di (n+1)

=

(
(4n−2i+5)(n+ i+3)

2(n+2)(n+1− i)
di+1(n+1)−

(i+1)(i+2)

(n+2)(n+1− i)
di+2(n+1)

)
×

(n+1+i
n+1

di (n)+
4n+2i+5

2(n+1)
di+1(n)

)
−

(n+3+i
n+2

di+1(n+1)+
4n+2i+11

2(n+2)
di+2(n+1)

)
×

(
(4n−2i+3)(n+ i+1)

2(n+1)(n+1− i)
di (n)−

i(i+1)

(n+1)(n+1− i)
di+1(n)

)
= B1(n, i)di+1(n+1)di (n)+ B2(n, i)di+1(n+1)di+1(n)

+ B3(n, i)di+2(n+1)di (n)+ B4(n, i)di+2(n+1)di+1(n),

where B1(n, i), B2(n, i), B3(n, i) and B4(n, i) are given by

B1(n, i)=
(n+ i+3)(n+1+ i)

(n+2)(n+1− i)(n+1)
,(24)

B2(n, i)=
(n+ i+3)(16n2

+40n+25+4i)
4(n+2)(n+1− i)(n+1)

,(25)

B3(n, i)=−
(n+1+ i)(41+16n2

+56n−4i)
4(n+2)(n+1− i)(n+1)

,(26)

B4(n, i)=−
(i+1)(4n+5− i)

(n+2)(n+1− i)(n+1)
.(27)

Since [(n+1)/2] ≤ i ≤ n−1, it follows from (3) that di+1(n+1) > di+2(n+1)

and di (n) > di+1(n). Thus we get

di+1(n+1)di (n) > di+1(n+1)di+1(n),(28)

di+1(n+1)di+1(n) > di+2(n+1)di+1(n).(29)

Observe that B1(n, i) and B2(n, i) are positive, and B3(n, i) and B4(n, i) are neg-
ative. By the induction hypothesis (21) and inequalities (28) and (29), we find that,
for [(n+1)/2] ≤ i ≤ n−1,

(30) di+1(n+2)di+1(n+1)−di+2(n+2)di (n+1)

> (B1(n, i)+ B2(n, i)+ B3(n, i)+ B4(n, i)) di+1(n+1)di+1(n)

=
24n+10n2

−8ni+8i2
+13

2(n+2)(n+1−i)(n+1)
di+1(n+1)di+1(n) > 0.

From the inequalities (23) and (30), it follows that (22) holds for 0≤ i ≤ n−1.
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It is still necessary to show that (22) is true for i = n, that is,

(31)
dn(n+1)

dn+1(n+1)
<

dn+1(n+2)

dn+2(n+2)
.

For the recurrence relation (9), setting i = n+2, we find that

dn(n+1)

dn+1(n+1)
=

2n+3
2

<
2n+5

2
=

dn+1(n+2)

dn+2(n+2)
,

as desired. Hence the proof is complete by induction. �

Lemmas 2.3 and 2.4 immediately imply the interlacing log-concavity of the
Boros–Moll polynomials.

3. Polynomials with triangular relations on coefficients

Many combinatorial polynomials admit triangular relations on the coefficients. The
log-concavity of polynomials of this kind has been extensively studied. We show
that many classical polynomials of this kind are also interlacingly log-concave. For
example, it is easy to check that the binomial coefficients, the Narayana numbers

N (n, k)=
1
n

(n
k

)( n
k+1

)
,

and the Bessel numbers

B(n, k)=
(2n−k−1)!

2k(n−k)!(k−1)!

are interlacingly log-concave. Moreover, we give a criterion that applies to many
combinatorial sequences such as the signless Stirling numbers of the first kind, the
Stirling numbers of the second kind and the Whitney numbers.

Theorem 3.1. Suppose that for any n ≥ 0,

Gn(x)=

n∑
k=0

T (n, k)xk

is a polynomial of degree n which has only real zeros, and suppose that the coeffi-
cients T (n, k) satisfy a recurrence relation of the form

T (n, k)= f (n, k)T (n−1, k)+g(n, k)T (n−1, k−1).

If

(n−k)k
(n−k+1)(k+1)

f (n+1, k+1)≤ f (n+1, k)≤ f (n+1, k+1),(32)

g(n+1, k+1)≤ g(n+1, k)≤
(n−k+1)(k+1)

(n−k)k
g(n+1, k+1),(33)

then the polynomials Gn(x) are interlacingly log-concave.
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Proof. Since the polynomial Gn(x) has only real zeros, by Newton’s inequality,

k(n−k)T (n, k)2
≥ (k+1)(n−k+1)T (n, k−1)T (n, k+1).

Hence

T (n, k)T (n+1, k+1)−T (n+1, k)T (n, k+1)

= f (n+1, k+1)T (n, k)T (n, k+1)+g(n+1, k+1)T (n, k)2

− f (n+1, k)T (n, k)T (n, k+1)−g(n+1, k)T (n, k−1)T (n, k+1)

≥ ( f (n+1, k+1)− f (n+1, k)) T (n, k)T (n, k+1)

+

(
(n−k+1)(k+1)

(n−k)k
g(n+1, k+1)−g(n+1, k)

)
T (n, k−1)T (n, k+1),

which is positive by (32) and (33). It follows that

(34)
T (n, k)

T (n, k+1)
≥

T (n+1, k)

T (n+1, k+1)
.

On the other hand, we have

T (n, k+1)T (n+1, k+1)−T (n, k)T (n+1, k+2)

= f (n+1, k+1)T (n, k+1)2
+g(n+1, k+1)T (n, k)T (n, k+1)

− f (n+1, k+2)T (n, k)T (n, k+2)−g(n+1, k+2)T (n, k+1)T (n, k)

≥

(
f (n+1, k+1)−

(n−k−1)(k+1)

(n−k)(k+2)
f (n+1, k+2)

)
T (n, k+1)2

+(g(n+1, k+1)−g(n+1, k+2))T (n, k+1)T (n, k).

It follows from (32) that

(35)
T (n, k)

T (n, k+1)
≤

T (n+1, k+1)

T (n+1, k+2)
.

This completes the proof. �

Employing Theorem 3.1, we can show that many combinatorial polynomials
which have only real zeros are interlacingly log-concave, for example,

(1) the polynomials

x(x+1)(x+2) · · · (x+n−1),

whose coefficients are the signless Stirling numbers of the first kind, which
satisfy the recurrence relation

c(n, k)= (n−1)c(n−1, k)+c(n−1, k−1);
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(2) the Bell polynomials whose coefficients are the Stirling numbers of the second
kind S(n, k), which satisfy the recurrence relation

S(n, k)= S(n−1, k−1)+kS(n−1, k);

(3) the Whitney polynomials

Wn(x)=

n∑
k=0

Wm(n, k)xk,

which have only real zeros; see [Benoumhani 1997; 1999]. The coefficients
Wm(n, k) satisfy the recurrence relation

Wm(n, k)= (1+mk)Wm(n−1, k)+Wm(n−1, k−1).
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