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REFINED OPEN NONCOMMUTATIVE DONALDSON–THOMAS
INVARIANTS FOR SMALL CREPANT RESOLUTIONS

KENTARO NAGAO

We study analogs of noncommutative Donaldson–Thomas invariants corre-
sponding to the refined topological vertex for small crepant resolutions of
toric Calabi–Yau 3-folds. We give three definitions of the invariants which
are equivalent to each others and provide “wall-crossing” formulas for the
invariants. In particular, we get normalized generating functions which are
unchanged under wall-crossing.

Introduction

Donaldson–Thomas theory [Thomas 2000] is intersection theory on the moduli
spaces of ideal sheaves on a smooth variety, which is conjecturally equivalent to
Gromov–Witten theory [Maulik et al. 2006]. For a Calabi–Yau 3-fold, the virtual
dimension of the moduli space is zero and hence Donaldson–Thomas invariants are
said to be counting invariants of ideal sheaves. It is known that they coincide with
the weighted Euler characteristics of the moduli spaces weighted by the Behrend
functions [2009]. Recently, the Donaldson–Thomas invariants of Calabi–Yau 3-
folds have been studied using categorical methods; see, for example, [Joyce 2008;
2007; Toda 2009; 2010; Kontsevich and Soibelman 2008; Joyce and Song 2010].

On the other hand, a smooth variety Y sometimes has a noncommutative associa-
tive algebra A such that the derived category of coherent sheaves on Y is equivalent
to the derived category of A-modules. Derived McKay correspondence [Kapranov
and Vasserot 2000; Bridgeland et al. 2001] and Van den Bergh’s noncommuta-
tive crepant resolutions [2004] are typical examples. In such cases, B. Szendrői
proposed to study counting invariants of A-modules (noncommutative Donaldson–
Thomas invariants) and relations with the original Donaldson–Thomas invariants
on Y [Szendrői 2008]. In [Nagao and Nakajima 2011; Nagao 2011a], we pro-
vided wall-crossing formulas which relate generating functions of the Donaldson–
Thomas and noncommutative Donaldson–Thomas invariants for small crepant res-
olutions of toric Calabi–Yau 3-folds. (We say a resolution of a 3-fold is small if
the dimension of each fiber is less than or equal to 1.)

MSC2000: 14N10, 14N35.
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The aim of this paper is to propose new invariants generalizing noncommu-
tative Donaldson–Thomas invariants and to provide “wall-crossing formulas” for
small crepant resolutions of toric Calabi–Yau 3-folds. We have two directions of
generalizations:

• “open” version:1 corresponding to counting invariants of sheaves on Y with
noncompact supports,2

• refined version: corresponding to refined topological vertex [Iqbal et al. 2009].3

Let Y→ X be a projective small crepant resolution of an affine toric Calabi–Yau
3-fold. Recall that giving an affine toric Calabi–Yau 3-fold is equivalent to giving
a convex lattice polygon. Existence of a small crepant resolution is equivalent to
absence of interior lattice points in the polygon. It is easy to classify such polygons
and X is one of the following:

• X = X L+,L− := {xy= zL+wL−} ⊂ C4 for L+ > 0 and L− ≥ 0, or

• X = X(Z/2Z)2 := C3/(Z/2Z)2 where (Z/2Z)2 acts on C3 with weights (1, 0),
(0, 1) and (1, 1).

2

2
1

L−

L+

Figure 1. Polygons for X L+,L− and X(Z/2Z)2 .

In this paper, we study the first case. We put L := L++ L−. Note that X1,1 is
called the conifold and X L ,0 is isomorphic to C×C2/(Z/LZ).

Given a pair of Young diagrams ν= (ν+, ν−) and an L-tuple of Young diagrams

λ= (λ(1/2), . . . , λ(L−1/2)),
the generating function of refined open noncommutative Donaldson–Thomas in-
variants (roncDT, in short)

ZY
λ,ν(Eq)= ZY

λ,ν(q+, q−, q1 . . . , qL−1),

which is denoted by ZRTV
σ,λ,ν in the body of this paper, is defined by counting the

number of the following data:

• an (L − 1)-tuple of Young diagrams Eν = (ν(1), . . . , ν(L−1)), and

1The word “open” stems from such terminologies as “open topological string theory”. According
to [Aganagic et al. 2005], open topological string partition function is given by summing up the
generating functions of these invariants over Young diagrams.

2As far as we know, there is no definition of “open” invariants for general Calabi–Yau 3-folds.
3See [Behrend et al. 2009] for a geometric definition of refined invariants.
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• an L-tuple of 3-dimensional Young diagrams E3= (3(1/2), . . . , 3(L−1/2)) such
that 3( j) is of type (λ( j), ν( j+1/2), tν( j−1/2)) or (λ( j), tν( j−1/2), ν( j+1/2)) (see
Section 5.3 for details).

Such data parametrize torus fixed ideal sheaves on the small crepant resolution Y .
In particular,

ZY
∅,∅(Eq)

∣∣
q+=q−

coincides with the generating function of Euler characteristic versions of the Don-
aldson–Thomas invariants of Y .4

Let A be a noncommutative crepant resolution of X . Let Zh denote the set of
half integers and let θ : Zh→ Zh be a bijection such that θ(h+ L)= θ(h)+ L and
such that

θ(1/2)+ · · ·+ θ(L − 1/2)= 1/2+ · · ·+ (L − 1/2).

We will define generating functions ZA
λ,ν,θ (Eq), which are denoted by Zσ,λ,ν,θ (Eq) in

the body of this paper (see Section 3.4), satisfying these properties:

• ZA
∅,∅,id(Eq)

∣∣
q+=q−=q1/2

0
coincides with the generating function ZA

NCDT,eu of Eu-

ler characteristic versions5 of noncommutative Donaldson–Thomas invariants
for the noncommutative crepant resolution A; see [Mozgovoy and Reineke
2010] and the remark on page 184.

• “ lim
θ→∞

” ZA
λ,ν,θ (Eq)= ZY

λ,ν(Eq); see Theorem 5.4.8. (The limit in this equation is,

in fact, equivalent to a limit in the space of stability conditions for the category
of finite-dimensional A-modules.)6

Moreover, for i ∈ I :=Z/LZ we can define the new bijection µi (θ) : Zh→Zh (see
§1.2.1) and

• ZA
λ,ν,µi (θ)

(Eq)/ZA
λ,ν,θ (Eq) is given explicitly (Theorem 4.2.2 and 4.4.2).

In [Nagao and Nakajima 2011; Nagao 2011a], we realized the ZA
∅,∅,θ (Eq)

∣∣
q+=q−

as
generating functions of virtual counting of certain moduli spaces and these moduli
spaces are constructed using geometric invariant theory. In this story, θ determines
a chamber in the space of stability parameters and the chamber corresponding to
θ is adjacent to the chamber corresponding to µi (θ) by a single wall. This is the
reason we call Theorem 4.2.2 and 4.4.2 as wall-crossing formulas, even though our

4The Euler characteristic version of the Donaldson–Thomas invariant coincides with the Donald-
son–Thomas invariant up to sign [Maulik et al. 2006].

5The Euler characteristic version of the noncommutative Donaldson–Thomas invariant coincides
with the noncommutative Donaldson–Thomas invariant up to sign [Nagao 2011a; Mozgovoy and
Reineke 2010].

6A moduli space of stable A-modules with the specific numerical data gives a crepant resolution
of X [Ishii and Ueda 2008]. The direction in which we take limit in the space of stability conditions
determines a stability parameter in the construction of a crepant resolution.
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definition of the invariants and the proof of the formula are given in combinatorial
ways. In fact, in the subsequent paper [Nagao 2011b] we provide an alternative
geometric definition, in which θ determines a chamber in the space of Bridgeland’s
stability conditions for the category of finite-dimensional A-modules.

As consequences of the wall-crossing formula, we get

• Corollaries 4.5.2 and 5.5.2: ZA
λ,ν,θ /ZA

λ,∅,θ = ZY
λ,ν /ZY

λ,∅ for any θ , λ and ν.

• Corollaries 4.5.4 and 5.5.4:
(
ZA
λ,ν,θ /ZA

∅,∅,θ
)∣∣

q+=q−
= (ZY

λ,ν /ZY
∅,∅

)∣∣
q+=q−

for any θ , λ and ν such that cλ[ j] = 0 for any j (see §1.3.1 for notation).

By the results in [Nagao and Nakajima 2011; Nagao 2011a], these formulas
should be interpreted as stability of the normalized generating functions under wall
crossing. We can find such stability of normalized generating functions in other
contexts such as flop invariance and DT-PT correspondence. Categorical interpre-
tations of such normalized generating functions and their stability are expected.

Now, we summarize the prior study on noncommutative Donaldson–Thomas
invariants:

• Szendrői’s formula on the generating function of noncommutative Donaldson–
Thomas invariants of the conifold was shown by B. Young [2009] in a purely
combinatorial way. The main tool is an operation called dimer shuffling.

• J. Brian and Young [2010] generalized the Szendrői–Young formula for X L ,0

and X(Z/2Z)2 . The method is different from the one used in [Young 2009]:
they use vertex operator method.

• In [Nagao and Nakajima 2011], we gave an interpretation of Szendrői–Young
formula as a consequence of the wall-crossing formula. From our point of
view, the argument there can be translated into combinatorial language by
localization, yielding the argument in [Young 2009]. In particular, dimer
shuffling is nothing but “mutation” in the categorical language.

• In [Nagao 2011a], we generalized the results in [Nagao and Nakajima 2011]
for arbitrary small crepant resolutions of toric Calabi–Yau 3-folds.

• In [Joyce and Song 2010], the authors study noncommutative Donaldson–
Thomas invariants of small crepant resolutions of toric Calabi–Yau 3-folds as
examples of their theory of generalized Donaldson–Thomas invariants.

• T. Dimofte and S. Gukov [2010] provided a refined version of Szendrői–
Young formula for the conifold.

• See [Jafferis and Moore 2008; Chuang and Jafferis 2009; Aganagic et al.
2011; Chuang and Pan 2010; Aganagic and Yamazaki 2010; Dimofte et al.
2011] for developments in physics.
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In this paper, we define the roncDT invariants using a dimer model (Section 2),
which is purely combinatorial.

In Section 3, we give an interpretation of the dimer model as a crystal melting
model.7 We construct an A-module Mmax

σ,λ,ν,θ such that giving a dimer configura-
tion is equivalent to giving a finite-dimensional torus invariant quotient module of
Mmax
σ,λ,ν,θ . Hence the roncDT invariant coincides with the Euler characteristic of

the moduli space of finite-dimensional quotient modules of Mmax
σ,λ,ν,θ ; see [Nagao

2011b].8

In Section 4, we introduce the notion of dimer shuffling to prove the first main
result of this paper: the wall-crossing formula (Theorems 4.2.2 and 4.4.2).

Finally we study the limit behavior of the dimer model in Section 5. The second
main result is that the generating function given by the refined topological vertex
for Y appears as the limit (Theorem 5.4.8).

While preparing the papers, the author was informed from J. Bryan that he
and his collaborators C. Cadman and B. Young provided an explicit formula of
ZA
λ,ν,id|q+=q− for X L ,0 and X(Z/2Z)2 using vertex operator methods [Bryan et al.

2012; ≥ 2011]. In a subsequent paper [Nagao 2011b], we provide an explicit
formula of ZA

λ,ν,θ for X L+,L− using vertex operator methods.
A physicist may refer to [Nagao and Yamazaki 2010], in which we explain the

result of this paper in a physical context.

We conclude this introduction by definition some notation.

Indices. Let Zh denote the set of half integers and L be a positive integer. We set
I := Z/LZ and Ih := Zh/LZ. The two natural projections Z→ I and Zh→ Ih are
denoted by the same symbol π . We sometimes identify I and Ih with {0, . . . , L−1}
and {1/2, . . . , L − 1/2} respectively.

The symbols n, h, i and j are used for elements in Z, Zh, I and Ih respectively.
For n ∈ Z and h ∈ Zh, we define c(n), c(h) ∈ Z by

n = c(n) · L +π(n), h = c(h) · L +π(h).

Young diagrams. A Young diagram ν is a map ν : Z→ Z such that ν(n) = |n| if
|n| � 0 and ν(n)− ν(n− 1) = ±1 for any n ∈ Z. The map Zh→ {±1} given by
j 7→ ν( j + 1/2)− ν( j − 1/2) is also denoted by ν.

By an abuse of notation, we sometimes identify + and − with 1 and −1.

7From the geometric point of view, the crystal melting model is more natural. But in this paper we
adapt the definition using the dimer model since it is more convenient when we prove some technical
lemmas, which we also use in [Nagao 2011b].

8In the case when ν+ = ν− = ∅, the moduli spaces have symmetric obstruction theory and the
invariant in this paper coincides with the weighted Euler characteristic up to sign.
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A Young diagram can be represented by a nonincreasing sequence of positive
integers. We fix the notation as in Figure 2.

− − − + − − + + + +
Figure 2. ν = (1, 1), tν = (2).

Formal variables. Let q+, q− and q0, . . . , qL−1 be formal variables. We use q+, q−
and q1, . . . , qL−1 for generating functions of refined invariants. Substituting q+ =
q− = (q0)

1/2, we get generating functions of nonrefined invariants.
Let P := Z · I be the lattice with the basis {αi | i ∈ I }. For an element α =∑
αi ·αi ∈ P (αi ∈ Z), we put qα :=∏(qi )

αi
.

For α, α′ ∈ P , we say α < α′ or qα < qα
′

if α′−α ∈ P+ := Z≥0 · I .

1. Preliminaries

1.1. Affine root system.

1.1.1. For h, h′ ∈ Zh, we define α[h,h′] ∈ P by

α[h,h′] :=
h′−1/2∑

n=h+1/2

απ(n)

if h < h′, α[h,h′] = 1 if h = h′ and α[h,h′] =−α[h′,h] if h > h′. We set

3 := {α[h,h′] ∈ P | h 6= h′},
3re,+ := {α[h,h′] ∈3 | h < h′, h 6≡ h′ (mod L)}.

An element in3 (resp. 3re,+) is called a root (resp. positive real root) of the affine
root system of type AL−1.

1.1.2. The element δ := α0 + · · ·αL−1 ∈ P is called the minimal imaginary root.
We set

3fin,+ := {α[ j, j ′] ∈3 | 1/2≤ j < j ′ ≤ L − 1/2
}

and

(1-1) 3
re,+
+ := {α[ j, j ′]+ Nδ | α[ j, j ′] ∈3fin,+, N ≥ 0

}
.
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Example 1.1.3. In the case of L = 4, we have

3fin,+ := {α1, α2, α3, α2+α3, α1+α2, α1+α2+α3
}
.

1.1.4. For a root α ∈3, we take h and h′ such that α = α[h,h′] and set

j−(α) := π(h), and j+(α) := π(h′).
We also put

Bα := {(h, h′) ∈ (Zh
)2 ∣∣α[h,h′] = α}.

1.1.5. Let 2 denote the set of bijections θ : Zh→ Zh such that

• θ(h+ L)= θ(h)+ L for any h ∈ Zh, and

•
L−1/2∑
h=1/2

θ(h)=
L−1/2∑
h=1/2

h.

Example 1.1.6. In the case of L = 4, the correspondence

1
2 7→ − 1

2 ,
3
2 7→ 3

2 ,
5
2 7→ 5

2 ,
7
2 7→ 9

2

gives an elements in 2. Let µ0(id) denote this map (see §1.2.1 for notation).

1.1.7. For θ ∈2 and i ∈ I , we define α(θ, i) := α[θ(n−1/2),θ(n+1/2)] (n ∈ π−1(i)).

Example 1.1.8.

α(id, 0)= α0, α(µ0(id), 0)=−α0,

α(id, 1)= α1, α(µ0(id), 1)= α0+α1,

α(id, 2)= α2, α(µ0(id), 2)= α2,

α(id, 3)= α3, α(µ0(id), 3)= α0+α3.

1.1.9. If α = α[h,h′] is a positive real root, we write θ(α) > 0 if θ−1(h) > θ−1(h′),
and we write θ(α) < 0 if θ−1(h) < θ−1(h′). We set

(1-2) 3
re,+
θ := {α ∈3re,+ ∣∣ θ(α) > 0

}
.

Example 1.1.10. We have 3re,+
id =∅ and 3re,+

µ0(id) = {α0}.
Remark. As we mentioned in the introduction, we studied moduli spaces of rep-
resentations of a noncommutative crepant resolution of X L+,L− in [Nagao 2011a].
In this theory, the space of stability conditions can be canonically identified with
P∗⊗R and the walls are classified as follows:

• the walls Wα := (R ·α)⊥ ⊂ P∗⊗R (α ∈3re,+), and

• the wall Wδ := (R·δ)⊥, which separates the Donaldson–Thomas and Pandhari-
pande–Thomas chambers.

The maps θ : Zh→ Zh as above parametrize the chambers on one side of the wall
Wδ. The notation θ(α)≷ 0 respects this parametrization.
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1.2. Wall-crossing.

1.2.1. For i ∈ I , let µi : Zh→ Zh be the map given by

µi (h)=


h− 1 if π(h− 1/2)= i,
h+ 1 if π(h+ 1/2)= i,
h otherwise.

For θ ∈2, we put µi (θ) := θ ◦µi .

Remark. The chambers corresponding to θ and µi (θ) are separated by the wall
Wα(θ,i), which is the reason for the title of this subsection. From the viewpoint
of the affine root system, wall crossing corresponds to simple reflection; from the
viewpoint of noncommutative crepant resolutions, it corresponds to mutation; and
from the viewpoint of dimer models, to dimer shuffling.

1.2.2. Let i = (i1, i2, . . . ) ∈ I Z>0 be a sequence of elements in I . For b > 0, we
define

θi,b := µib−1(· · · (µi1(id)) · · · ) ∈2, αi,b := α(θi,b, ib).

We say i ∈ I Z>0 is a minimal expression if θi,b(αi,b) < 0 for any b> 0. For a
minimal expression i , we have

3
re,+
θi,b
= {αi,1, . . . , αi,b−1}.

1.3. Core and quotient of a Young diagram.

1.3.1. Let σ : Ih→ {±} and λ : Zh→ {±} be maps such that λ(h)=±σ(π(h)) if
±h� 0. We define integers cλ[ j] and Young diagrams λ[ j] for j ∈ Ih by

λ(h)= λ[π(h)](σ( j (h)) · (c(h)− cλ[π(h)] + 1/2)
)
.

Remark. In the case σ ≡+ and
∑

cλ[ j]= 0, the sequence
(
cλ[ j]

)
of integers and

the sequence
(
λ[ j]

)
of Young diagrams are called the L-core and the L-quotient of

the Young diagram λ.

1.3.2. We put

(1-3) Bα,±σ,λ := {(h, h′) ∈ Bα | −λ(h)σ (h)= λ(h′)σ (h′)=±}.
Lemma 1.3.3. ∣∣Bα,+σ,λ ∣∣− ∣∣Bα,−σ,λ ∣∣= α0+ cλ[ j−(α)] − cλ[ j+(α)].
Proof. We write simply j± for j±(α). Note that we have

Bα = {(cL + j−, (c+α0)L + j+
) ∣∣ c ∈ Z

}
.

For an integer N , we set

BαN :=
{(

cL + j−, (c+α0)L + j+
) ∣∣ c ∈ [−N , N − 1]}.
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Take a sufficiently large integer N . Then

Bα,+σ,λ , Bα,−σ,λ ⊂ BαN

and so∣∣Bα,+σ,λ ∣∣− ∣∣Bα,−σ,λ ∣∣
=−]{(h, h′) ∈ BαN

∣∣ λ(h)σ (h)=+}+ ]{(h, h′) ∈ BαN
∣∣ λ(h′)σ (h′)=+}

=−]{c ∈ [−N , N − 1] ∣∣ λ[ j−](σ( j−) · (c− cλ[ j−] + 1/2)
)= σ( j−)

}
+ ]{c ∈ [−N , N − 1] ∣∣ λ[ j+](σ( j+) · (c+α0− cλ[ j+] + 1/2)

)= σ( j+)
}

=−(N − cλ[ j−] − 1/2)+ (N +α0− cλ[ j+] − 1/2)

= α0+ cλ[ j−] − cλ[ j+]. �

For σ, λ, θ and i , we put

(1-4) Bi,±
σ,λ,θ :=

{
n ∈ π−1(i) | (θ(n− 1/2), θ(n+ 1/2)) ∈ Bα(θ,i),±σ,λ

}
.

2. Dimer model

2.1. Dimer configurations.

2.1.1. We fix the following data:

• a map σ : Ih→ {±},
• a map λ : Zh→ {±} such that λ(h)=±σ(π(h)) for ±h� 0,

• a pair of Young diagrams ν = (ν+, ν−),
• a bijection θ : Zh→ Zh in 2.

We put σ̃ := σ ◦π ◦ θ , λ̃ := λ ◦ θ and L± := |σ−1(±)|.
2.1.2. We consider the following graph in the (x, y)-plane. First, we set

H(σ, θ) :={n ∈ Z | σ̃ (n− 1/2)= σ̃ (n+ 1/2)
}
, IH (σ, θ) := π(H(σ, θ)),(2-1)

S(σ, θ) :={n ∈ Z | σ̃ (n− 1/2) 6= σ̃ (n+ 1/2)
}
, IS(σ, θ) := π(S(σ, θ))(2-2)

and for n ∈ H(σ, θ) we put σ̃ (n) := σ̃ (n± 1/2).
The set of the vertices is given by

V := {(n,m) | n ∈ S(σ, θ), n−m: odd}
t {(n− 1/2,m) | n ∈ H(σ, θ), n−m: odd}
t {(n+ 1/2,m) | n ∈ H(σ, θ), n−m: odd},

which are denoted by v(n,m), vl(n− 1/2,m) and vr(n+ 1/2,m) respectively.
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The set of the edges is given by

E := {eh(n,m) | n ∈ H(σ, θ), n−m : odd} t {es(h, k) | h, k ∈ Zh},
where

• eh(n,m) connects vl(n− 1/2,m) and vr(n+ 1/2,m),

• es(h, k) connects v(h−1/2, k+1/2) or vr(h, k+1/2) and v(h+1/2, k−1/2)
or vl(h, k− 1/2) if h− k is even, and

• es(h, k) connects v(h−1/2, k−1/2) or vr(h, k−1/2) and v(h+1/2, k+1/2)
or vl(h, k+ 1/2) if h− k is odd.

We put

(2-3) F := {(n,m) ∈ Z2 | n+m : even}, Fi := {(n,m) ∈ F | n ∈ π−1(i)}
for i ∈ I . Note that E divides the plain into disjoint hexagons and quadrilaterals.
The hexagons are parametrized by the set

FH := {(n,m) ∈ F | n ∈ H(σ, θ)}
and the quadrilaterals are parametrized by the set

FS := {(n,m) ∈ F | n ∈ S(σ, θ)}.
For (n,m) ∈ F, let f (n,m) denote the corresponding hexagon or quadrilateral.

Example 2.1.3. In Figure 3, we show the graph associated with L = 3, σ given by

σ(1/2)=+ , σ (3/2)=− , σ (5/2)=− ,
and θ = id (L+ = 1, L− = 2).

Figure 3. Graph and V+ for Example 2.1.3.
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2.1.4. We set

V± := {v(n,m) | σ̃ (n+ 1/2)=±}
t {vl(n− 1/2,m) | σ̃ (n)=∓} t {vr(n+ 1/2,m) | σ̃ (n)=±}.

Note that V=V+ tV− and each element in E connects an element in V+ and an
element in V− (see Figure 3 for example).

A perfect matching is a subset of E giving a bijection between V+ and V−.

2.1.5. We define the map Fσ,λ,θ : Z→ Z by Fσ,λ,θ (0)= 0 and

(2-4) Fσ,λ,θ (n)= Fσ,λ,θ (n− 1)− λ̃(n− 1/2).

For k ∈ Zh, we set

Pk,±
σ,λ,θ :=

{
eh
(
n, Fσ,λ,θ (n)+ 2k

) ∣∣ n ∈ Z, σ̃ (n)=∓}
t {es

(
h, 1

2(Fσ,λ,θ (h−1/2)+ Fσ,λ,θ (h+1/2))+2k
) ∣∣ h ∈Zh, σ̃ (h)=±

}
.

For a Young diagram η, define the perfect matching

P
η
σ,λ,θ :=

⊔
k∈Zh

P
k,η(k)
σ,λ,θ .

Example 2.1.6. In Figure 4, we show the perfect matching associated with σ as
in Example 2.1.3, θ = id, η =∅, and λ given by

λ(h)=

+ if h =−5/2,
− if h = 1/2,
sgn(h)σ (h) otherwise.

Figure 4. Example 2.1.6: { f (n, Fσ,λ,id(n)) | n ∈ Z} and P∅
σ,λ,id.
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2.1.7. Define the perfect matching

P±σ,λ,θ :=
{
eh(n,m) | σ̃ (n)=∓}t {es(h, k) | σ̃ (h)=±, h · λ̃(h)− k : even

}
.

Definition 2.1.8. A perfect matching D is said to be a dimer configuration of type
(σ, λ, ν, θ) if D coincides with P

ν±
σ,λ,θ in the area {±x >m} and P±σ,λ,θ in the area

{±y > m} for m� 0.

Remark. A dimer configuration of type (σ, E∅, E∅, id) is “a perfect matching con-
gruent to the canonical perfect matching” in the terminology of [Mozgovoy and
Reineke 2010].

2.1.9. For f ∈ F, let ∂ f ⊂ E denote the set of edges surrounding the face f . By
moving f around clockwise, we can determine an orientation for each element in
∂ f . Let ∂± f ⊂ ∂ f denote the subset of edges starting from elements in V±.

For an edge e ∈ E, let f ±(e) denote the unique face such that e ∈ ∂± f ±(e).

2.2. Weights.

2.2.1. For h ∈ Zh, we define the monomials wσ,λ(h) by the conditions

wσ,λ(h)=
{(

Qσ(h)
)c(h)−cλ[ j (h)]q( j (h))

σ (h) if h� 0,(
Q−σ(h)

)c(h)−cλ[ j (h)]q( j (h))
−σ(h) if h� 0,

and
wσ,λ(h)/wσ,λ(h− L)= qλ(h) · qλ(h−L) · q1 · · · · · qL−1,

where
Q± := (q±)2 · q1 · · · · · qL−1, q( j)

± := q± · q1 · · · · · q j−1/2.

Note that for h 6= h′ we have

(2-5) wλ(h′)/wλ(h)
∣∣
q+=q−=(q0)1/2

= qα[h,h′] .

Example 2.2.2. Figure 5 shows the weight wσ,λ for σ and λ as in Example 2.1.6.

q−2+ q−

q−2+ q−

q−2+ q1

q−2+ q1

q−2+ q1q2

q−2+ q1q2

q+Q+

q+Q+

q−

q−

q−q2

q−q2

q−1+ q2−Q−1−

q−1+ q2−Q−1−

q−Q−

q−Q−

Figure 5. The weight wσ,λ.
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2.2.3. To an edge e ∈ E we associate the weight wσ,λ,θ (e) by

wσ,λ,θ (es(h, k)) :=
{
wσ,λ(θ(h))σ̃ (h)·λ̃(h) if h · λ̃(h)− k is odd,

1 if h · λ̃(h)− k is even,
(2-6)

wλ,σ,θ (eh(n,m)) := 1.(2-7)

2.2.4. Fix σ and λ. Then the set
⊔

α∈3re,+
Bα,−σ,λ is finite. We define

(2-8) Fασ,λ :=
∏

(h,h′)∈Bα,−σ,λ

wσ,λ(h′)
wσ,λ(h)

, Fθσ,λ :=
∏

α∈3re,+; θ(α)<0,
σ ( j−(α)) 6=σ( j+(α)).

Fασ,λ.

2.2.5. Note that for a dimer configuration D of type (σ, λ, ν, θ) we have only a
finite number of e ∈ D such that wσ,λ,θ (e) 6= 1.

Definition 2.2.6. For a dimer configuration D of type (σ, λ, ν, θ), we define the
weight wσ,λ,θ (D) by

(2-9) wσ,λ,θ (D) := Fθσ,λ ·
∏
e∈D

wσ,λ,θ (e).

(See (2-6)–(2-8) for notation.)

Remark. We will define the generating function Zσ,λ,ν,θ by the sum of weighs of
all dimer configurations of type (σ, λ, ν, θ).9

2.2.7. For a finite subset E′ ⊂ E, we put

wσ,λ,θ (E
′) :=

∏
e∈E′

wσ,λ,θ (e)

and for a face f ∈ F we put

(2-10) wσ,λ,θ ( f ) := wσ,λ,θ (∂
− f )

wσ,λ,θ (∂+ f )
.

For an integer n we set

wσ,λ,θ (n) := wσ,λ(θ(n+ 1/2))
wσ,λ(θ(n− 1/2))

;

then
wσ,λ,θ ( f (n,m))= wσ,λ,θ (n)

for any (n,m) ∈ F. By (2-5), we have

wσ,λ,θ (n)
∣∣
q+=q−=(q0)1/2

= qα(θ,i).

9We will leave the definition of the generating function until Section 3.4 since we will use
Proposition 3.3.9 to prove that the number of dimer configurations of type (σ, λ, ν, θ) is finite.
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3. The viewpoint of noncommutative crepant resolutions

3.1. Noncommutative crepant resolutions. Let 0 be a lattice in the (x, y)-plane
generated by (L , 0) and (0, 2). The graph given in §2.1.2 is invariant under the
action of 0 and so gives a graph on the torus R2/0. This gives a quiver with a po-
tential A= (Qσ,θ , wσ,θ ) as in [Nagao 2011a]. The vertices of Qσ,θ are parametrized
by I and the arrows are given by( ⊔

j∈Ih

h+j

)
t
( ⊔

j∈Ih

h−j

)
t
( ⊔

i∈IH (σ,θ)

ri

)
(see (2-1) for notation). Here h+j (resp. h−j ) is an edge from j − 1/2 to j + 1/2
(resp. from j + 1/2 to j − 1/2) and ri is an edge from i to itself. See [Nagao
2011a, §1.2] for the definition of the potential wσ,θ .

Example 3.1.1. Here is the quiver Qσ,id for σ as in Example 2.1.6:

1

0 2

Remarks. • The center of A is isomorphic to R :=C[x, y, z,w]/(xy= zL+wL−).
In [Nagao 2011a, Theorem 1.14 and 1.19], we showed that A is a noncommu-
tative crepant resolution of X = Spec R.

• The affine 3-fold X is toric. In fact,

T = Spec R̃ := Spec C[x±, y±, z±,w±]/(xy= zL+wL−)⊂ X

is a 3-dimensional torus.

3.2. Dimer model and noncommutative crepant resolution.

3.2.1. We will construct an A-module M(D) for a dimer configuration D. Let
Vi = Vi (D) (i ∈ I ) be vector space with the basis{

b[D; x, y, z] | (x, y) ∈ Fi , z ∈ Z≥0
}

(see (2-3) for notation). We define the map h±j : V j∓1/2→ V j±1/2 by setting

h±j (b[D; x, y, z])=
{

b[D; x ± 1, y− σ̃ ( j), z] if es
(
x ± 1

2 , y− 1
2 σ̃ ( j)

)
/∈ D,

b[D; x ± 1, y− σ̃ ( j), z+ 1] if es
(
x ± 1

2 , y− 1
2 σ̃ ( j)

) ∈ D,
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z=1

z=0

Figure 6. An example of M(D).

and ri : Vi → Vi by

ri (b[D; x, y, z])=
{

b[D; x, y+ σ̃ ( j), z] if eh(x, y+ σ̃ ( j)/2) /∈ D,

b[D; x, y+ σ̃ ( j), z+ 1] if eh(x, y+ σ̃ ( j)/2) ∈ D.

3.2.2. Let C ⊂ E be a subset which gives a closed zigzag curve without self-
intersection. By moving along the zigzag curve clockwisely, we can determine an
orientation for each element in C. Let C± ⊂ C denote the subset of edges starting
from elements in V±.

Let D be a dimer configuration of type (σ, λ, ν, θ). A subset C as above is said
to be a positive cycle with respect to D if C∩D=C+, and it is said to be a negative
cycle with respect to D if C−.
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3.2.3. Given a dimer configuration D and a positive cycle C with respect to D, let
DC be the dimer configuration given by

DC = (D\C+)∪C−.

Then we can check the following lemma:

Lemma 3.2.4. The surjection M(D)→ M(DC) given by

b[D; x, y, z] 7→


0 if (x, y) ∈ C◦ and z = 0,
b[DC; x, y, z−1] if (x, y) ∈ C◦ and z ≥ 1,
b[DC; x, y, z] if (x, y) /∈ C◦,

is a homomorphism of A-modules, where C◦ is the interior of the closed zigzag
curve. Moreover,

wσ,λ,θ (DC)= wσ,λ,θ (D) ·
∏
f ∈C◦

wσ,λ,θ ( f ).

3.3. Crystal melting interpretation. In this subsection, we show that a dimer con-
figuration of type (σ, λ, ν, θ) corresponds to a (torus invariant) quotient A-module
of the A-module Mmax = Mmax

σ,λ,ν,θ . In the physicists’ terminology, studying such
quotient modules is called the crystal melting model (see [Ooguri and Yamazaki
2009]) and Mmax is called the grand state of the model.

3.3.1. We define a Young diagram Gσ,λ,θ : Z→ Z by the following conditions:

• Gσ,λ,θ (n)= |n| if |n| � 0, and

• Gσ,λ,θ (n)= Gσ,λ,θ (n− 1)+ σ̃ (n− 1/2)λ̃(n− 1/2) for any n.

We define a map Gσ,λ,θ : F→ Z by

(3-1) Gσ,λ,θ (n,m) := G(n)σ,λ,θ + 2 · |m− Fσ,λ,θ (n)|,
where Fσ,λ,θ (n) is given in (2-4).

Example 3.3.2. In the case of Example 2.1.6, we have

(Gσ,λ,id(n))n∈Z = (. . . , 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, . . . )

and Gσ,λ,id(n,m) is given in Figure 7.

3.3.3. We define two maps F±σ,λ,θ : Z→ Z by the following conditions:

• F±σ,λ,θ (n)= Fσ,λ,θ (n) if ±n� 0.

• F±σ,λ,θ (n)= F±σ,λ,θ (n− 1)∓ σ̃ (n− 1/2) for any n.

Then we define two maps Gν±,±
σ,λ,θ : F→ Z by

(3-2) Gν±,±
σ,λ,θ (n,m) := ν±(m− F±σ,λ,θ (n))± n.
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Figure 7. Gσ,λ,id(n,m).

Example 3.3.4. Figure 8 shows G∅,+
σ,λ,id and G�,−

σ,λ,id for σ and λ as in Example 2.1.6.
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Figure 8. G∅,+
σ,λ,θ (top) and G�,−

σ,λ,θ (bottom).
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3.3.5. We define a map Gν
σ,λ,θ : F→ Z by

Gν
σ,λ,θ (n,m) :=max

(
Gσ,λ,θ (n,m),Gν+,+

σ,λ,θ (n,m),Gµ−,−
σ,λ,θ (n,m)

)
.

We can verify that

Gν
σ,λ,θ ( f +(e))= Gν

σ,λ,θ ( f −(e))+ 1 or Gν
σ,λ,θ ( f −(e))− 3.

for an edge e ∈ E (see §2.1.9 for notation). We define a perfect matching Dmax =
Dmax
σ,λ,ν,θ by

e ∈ Dmax⇐⇒ Gν
σ,λ,θ ( f +(e))= Gν

σ,λ,θ ( f −(e))− 3.

Let Mmax = Mmax
σ,λ,ν,θ := M(Dmax

σ,λ,ν,θ ) denote the corresponding A-module.

Example 3.3.6. In Figure 9, we show G E∅σ,λ,id and Dmax
σ,λ, E∅,id for σ and λ as in

Example 2.1.6.
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Figure 9. G E∅σ,λ,id and Dmax
σ,λ, E∅,id.
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Remark. The graph of the map m 7→ Gν
σ,λ,θ (n,m) determines a Young diagram.

This is what we denote by Vmin(n) in [Nagao 2011b, §3.1].

Lemma 3.3.7. There is no positive cycle with respect to Dmax.

Proof. Assume that we have a positive cycle C. For an edge e∈ ∂C, let fin(e) (resp.
fout(e)) be the unique face such that e ∈ ∂ fin(e) and fin(e) ∈C◦ (resp. e ∈ ∂ fout(e)
and fout(e) /∈ C◦). Then we have

(3-3) Gν
σ,λ,θ ( fin(e)) > Gν

σ,λ,θ ( fout(e)).

Take a face (n,m) ∈ C◦. If Gν
σ,λ,θ (n,m)= Gν,±

σ,λ,θ (n,m), then

(n± n′, F±σ,λ,θ (n± n′)− F±σ,λ,θ (n)+m) ∈ C◦

for any n′ ≥ 0 by (3-2) and (3-3), and this is a contradiction. On the other hands,
if Gµ

σ,λ,θ (n,m)= Gσ,λ,θ (n,m) and ±m∓ Fσ,λ,θ (n)≥ 0, then (n,m±m′) ∈C◦ for
any m′ ≥ 0 by (3-1) and (3-3), and this is also a contradiction. Hence the claim
follows. �

3.3.8. For a map H : F→Z≥0, let V H
i ⊂Vi (Dmax) (i ∈ I ) be the subspace spanned

by the elements {
b[Dmax; x, y, z] | (x, y) ∈ Fi , z ≥ H(x, y)

}
.

The following proposition gives a one-to-one correspondence between dimer con-
figurations of type (σ, λ, ν, θ) and finite-dimensional quotient modules of Mmax

σ,λ,ν,θ .

Proposition 3.3.9. Given a monomial q, we have a natural bijection between

• the set of dimer configurations of type (σ, λ, ν, θ) with weight q, and

• the set of maps H : F→ Z≥0 satisfying the following conditions:

– H( f )= 0 except for only a finite number of f ∈ F,
– (V H

i )i∈I is stable under the action of A, and
– wσ,λ,θ (Dmax) ·∏

f
wσ,λ,θ ( f )H( f ) = q.

Proof. Let D be a dimer configuration of type (σ, λ, ν, θ). By Lemma 3.3.7,
(D ∪ Dmax)\(D ∩ Dmax) is a disjoint union tCγ of a finite number of positive
cycles. We define a map HD : F→ Z≥0 by

HD( f ) := ]{Cγ | f ∈ C◦γ }.
Then we can verify the claim using Lemma 3.2.4. �

Remark. The graph of the map m 7→Gν
σ,λ,θ (n,m)+2H(n,m) determines a Young

diagram. This is what we denote by V(n) in [Nagao 2011b, §3.1].
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3.4. Generating function. From the description given by Proposition 3.3.9, we
can verify that, fixing a monomial q, we have only a finite number of dimer con-
figurations of type (σ, λ, ν, θ) with weight q.

Definition 3.4.1. We define the generating function by

Zσ,λ,ν,θ = Zσ,λ,ν,θ (Eq) :=
∑

D

wσ,λ,θ (D),

where the sum is taken over all dimer configurations of type (σ, λ, ν, θ). In partic-
ular, we put

ZNCDT
σ,λ,ν := Zσ,λ,ν,idZh

.

Remark. Note that ZNCDT
σ,λ,ν ·wσ,λ,θ

(
Dmax
σ,λ,ν.id

)−1 is a formal power series in q+, q−
and q1, . . . , qL−1.

4. Dimer shuffling and wall-crossing formula

4.1. Dimer shuffling at a hexagon. In this and next subsections, we study the re-
lation between dimer configurations of type (σ, λ, ν, θ) and of type (σ, λ, ν, µi (θ))

for i ∈ IH (σ, θ).

4.1.1. For (n,m) ∈ F and M ∈ Z>0 t {∞}. we put

f (n,m;±,M) :=
M−1⋃
m′=0

f (n,m±m′)

We define ∂ f (n,m;±,M) and ∂± f (n,m;±,M) in the same way as in §2.1.9 and
§3.2.2.

4.1.2. For a dimer configuration D and n ∈ Bi,±
σ,λ,θ , let m(D, n) denote the unique

integer such that

∂ f (n,m(D, n); σ(i),∞)∩ D = ∂± f (n,m(D, n); σ(i),∞).
4.1.3. For a dimer configuration D and i ∈ I , we consider the following conditions:

∂ f ∩ D 6= ∂− f for any f ∈ Fi ,(4-1)

∂ f ∩ D 6= ∂+ f if f ∈ Fi\{ f (n,m(D, n)) | n ∈ Bi,±
σ,λ,θ },(4-2)

∂ f (n,m(D, n)− 2σ(i))∩ D 6= ∂− f (n,m(D, n)− 2σ(i)) for n ∈ Bi,±
σ,λ,θ .(4-3)

4.1.4. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the condition
(4-1), we set

Ei (D◦) :=
{
(n,m) ∈ Fi | ∂ f (n,m)∩ D◦ = ∂+ f (n,m)

}
,



REFINED OPEN NONCOMMUTATIVE DONALDSON–THOMAS INVARIANTS 193

and define the map M i
D◦ : Ei (D◦)→ Z>0 t {∞} by

M i
D◦(n,m) :=max{M | ∂ f (n,m; σ(i),M)∩ D◦ = ∂+ f (n,m; σ(i),M)}.

Note that (
M i

D◦
)−1
(∞)= {(n,mn) | n ∈ Bi,+

σ,λ,θ

}
.

We put Efin
i (D

◦) := Ei (D◦)\
(
M i

D◦
)−1
(∞).

Definition 4.1.5. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the
condition (4-1), let µi (D◦) be the a dimer configuration of type (σ, λ, ν, µi (θ))

given by(
D◦
∖( ⋃

(n,m)∈Ei (D◦)
∂+ f

(
n,m; σ(i),M i

D◦(n,m)
)∪ ⋃

n∈Bi,−
σ,λ,θ

∂− f (n,m; σ(i),∞)
))

t
( ⋃
(n,m)∈Ei (D◦)

∂− f
(
n,m; σ(i),M i

D◦(n,m)
)∪ ⋃

n∈Bi,−
σ,λ,θ

∂+ f (n,m; σ(i),∞)
)
.

Note that µi (D◦) satisfies the condition (4-2) and (4-3).

Example 4.1.6. Here are some examples of dimer shuffling at hexagons.
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Lemma 4.1.7. wσ,λ,µi (θ)(µi (D◦))= wσ,λ,θ (D◦).
Proof. For n ∈ π−1(i) and m ∈ Z such that n+m is odd, we put

D◦(n,m) := {es(n+ ε1,m+ ε2) (ε1, ε2 =±1/2)} ∩ D◦.

Assume that

(4-4) (n,m− 1), (n,m+ 1) /∈
⋃

(n,m)∈Ei (D◦)
f
(
n,m; σ(i),M i

D◦(n,m)
)
.

Then D◦(n,m) is one of the following:

∅, {es(n± 1/2,m± 1/2)}, {es(n± 1/2,m∓ 1/2)}.
In particular, we have

wσ,λ,θ (D◦(n,m))= wσ,λ,µi (θ)(D
◦(n,m)).

Hence
wσ,λ,θ

(
D◦ ∩µi (D◦)

)= wσ,λ,µi (θ)

(
D◦ ∩µi (D◦)

)
.

The claim follows from this and the fact that

wσ,λ,θ
(
∂± f (n,m,M)

)= wσ,λ,µi (θ)

(
∂∓ f (n,m,M)

)
for n ∈ π−1(i). �

4.2. Wall-crossing formula at a hexagon.

Lemma 4.2.1.

Zσ,λ,ν,θ =
∑
D◦
wσ,λ,θ (D◦)

∏
n∈Bi,+

σ,λ,θ

1
1+wσ,λ,θ (n)

∏
(n,m)∈Efin

i (D
◦)

1+wσ,λ,θ (n)M i
D◦ (n,m)+1

1+wσ,λ,θ (n) ,

where the sum is taken over all dimer configurations D◦ of type (σ, λ, ν, θ) satis-
fying the condition (4-1).

Proof. For a map s : Ei (D◦)→ Z≥0 such that s(n,m)≤ M i
D◦(n,m), we define the

dimer configuration

D◦s :=
(

D◦
∖ ⋃

(n,m)∈Ei (D◦)
∂+ f (n,m; σ(i), s(n,m))

)
t

⋃
(n,m)∈Ei (D◦)

∂− f (n,m; σ(i), s(n,m)).

Then
wσ,λ,θ (D◦s )= wσ,λ,θ (D◦)

∏
(n,m)∈Ei (D◦)

wσ,λ,θ (n)s(n,m).
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Note that any dimer configuration D is uniquely realized as D◦(s) by some D◦
and s. Hence we have

Zσ,λ,ν,θ =
∑
D◦
wσ,λ,θ (D◦) ·

(∑
s

∏
(n,m)∈Ei (D◦)

wσ,λ,θ (n)s(n,m)
)

=
∑
D◦
wσ,λ,ν,θ (D◦)

∏
n∈Bi,+

σ,λ,θ

1
1−wσ,λ,θ (n)

×
∏

(n,m)∈Efin
i (D

◦)

1+wσ,λ,θ (n)M i
D◦ (n,m)+1

1+wσ,λ,θ (n) . �

Theorem 4.2.2.

Zσ,λ,ν,µi (θ) = Zσ,λ,ν,θ
∏

n∈Bi,+
σ,λ,θ

(
1−wσ,λ,θ (n)

) ∏
n∈Bi,−

σ,λ,θ

1
1−wσ,λ,θ (n) .

Proof. As Lemma 4.2.1, we get

Zσ,λ,ν,µi (θ) =
∑
D•
wσ,λ,µi (θ)(D

•)
∏

n∈Bi,+
σ,λ,µi (θ)

1
1−wσ,λ,µi (θ)(n)−1

×
∏

(n,m)∈Ěi (D•)

1+wσ,λ,µi (θ)(n)
−M̌ i

D• (n,m)−1

1+wσ,λ,µi (θ)(n)−1 ,

where the sum is taken over all dimer configurations D• of type (σ, λ, ν, µi (θ))

satisfying (4-2), (4-3), and

Ěi (D•) :=
{
(n,m) ∈ Fi

∣∣ ∂ f (n,m)∩ D• = ∂− f (n,m)
}
,

M̌ i
D•(n,m) :=max

{
M
∣∣ ∂ f (n,m; σ(i),M)∩ D• = ∂− f (n,m;−σ(i),M)

}
.

Note that µi gives a one-to-one correspondence between dimer configurations of
type (σ, λ, ν, θ) satisfying (4-1) and those of type (σ, λ, ν, µi (θ)) satisfying (4-2)
and (4-3). Hence the claim follows from

• Bi,±
σ,λ,µi (θ)

= Bi,∓
σ,λ,θ ,

• wσ,λ,µi (θ)(n)= wσ,λ,θ (n)−1 for n ∈ π−1(i),

• (n,m) 7→ (n,m+σ(i) · (M i
D◦(n,m)−1)) gives a bijection between Efin

i (D
◦)

and Ěi (µi (D◦)) which respects M i
D◦ and M̌ i

µi (D◦),

and Lemma 4.2.1. �

4.3. Dimer shuffling at a quadrilateral. In this subsection, we study the relation
between dimer configurations of type (σ, λ, ν, θ) and of type (σ, λ, ν, µi (θ)) for
i ∈ IS(σ, θ).
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4.3.1. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the condition
(4-1) and n ∈ π−1(i), we define

E1
n(D

◦) := {(n,m) ∈ F | ∂ f (n,m)∩ D◦ = ∂+ f (n,m)},
E2

n(D
◦) := {(n,m) ∈ F | ∂ f (n,m)∩ D◦ =∅ }.

Lemma 4.3.2. |E1
n(D

◦)| − |E2
n(D

◦)| =
{∓1 if n ∈ Bi,±

σ,λ,θ ,

0 otherwise.
(See (1-4) for notation.)

Proof. For n,m ∈ Z such that n+m is odd, we define εD◦(n,m) by

εD◦(n,m) :=
{+ if es(n+ 1/2,m+ 1/2), es(n− 1/2,m+ 1/2) /∈ D,
− if es(n+ 1/2,m− 1/2), es(n− 1/2,m− 1/2) /∈ D.

Then for (n,m) ∈ F, we have

(n,m) ∈ E1
n(D

◦)⇐⇒ εD◦(n,m± 1)=±,
(n,m) ∈ E2

n(D
◦)⇐⇒ εD◦(n,m± 1)=∓,

and εD◦(n,m)=∓λ̃(n± 1/2) if σ̃ (n± 1/2) ·m� 0. The claim follows. �

4.3.3. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the condition
(4-1), we define a dimer configuration µi (D◦) of type (σ, λ, ν, µi (θ)) as follows:

• If π(h) 6= i ± 1/2, we have

es(h, k) ∈ D◦⇐⇒ es(h, k) ∈ µi (D◦),

• If n ∈ IH (σ, θ) and π(n) 6= i ± 1, we have

eh(n,m) ∈ D◦⇐⇒ eh(n,m) ∈ µi (D◦),

• For (n,m) ∈ Fi we have

D◦( f (n,m))=∅⇐⇒ µi (D◦)( f (n,m))= ∂−σ,µi (θ)
( f (n,m)),

D◦( f (n,m))= ∂+σ,θ ( f (n,m))⇐⇒ µi (D◦)( f (n,m))=∅,

(Here we use notation such as ∂±σ,θ ( f (n,m)) in order to emphasize that the no-
tions like ∂±( f (n,m)) given in §2.1.9 depend on σ and θ .)

• If D◦( f (n,m)) 6=∅, ∂+σ,θ ( f (n,m)) for (n,m) ∈ Fi , we have

es(n+ ε1,m+ ε2) ∈ D◦⇐⇒ es(n− ε1,m− ε2) ∈ µi (D◦) (ε1, ε2 =±1/2),

• If σ(i ± 3/2) 6= σ(i ± 1/2), we have

es(n± 1/2,m− 1), es(n± 1/2,m+ 1) /∈ D◦⇐⇒ eh(n± 1,m) ∈ µi (D◦).
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Note that µi (D◦) satisfies the condition

(4-5) D( f ) 6= ∂+ f for any f ∈ Fi .

Example 4.3.4. Here are some examples of dimer shuffling at squares.

Lemma 4.3.5. wσ,λ,µi (θ)(µi (D◦))= wσ,λ,θ (D◦).
Proof. We have wσ,λ,θ (∂+σ,θ f )= wσ,λ,µi (θ)(∂

−
σ,µi (θ)

f ) for f ∈ Fi , and

wσ,λ,θ (∂
+
σ,θ f )=

{
1 if n ∈ Bi,+

σ,λ,θ ,

wσ,λ,θ (n)−1 if n ∈ Bi,−
σ,λ,θ .

Thus, the claim follows from Lemma 4.3.2 and (2-9). �

4.4. Wall-crossing formula at a quadrilateral.

Lemma 4.4.1. Zσ,λ,ν,θ =∑D◦ wσ,λ,θ (D
◦) ·∏n∈π−1(i)

(
1+wσ,λ,θ (n)

)|E1
n (D

◦)|
.

Proof. We set

E1
i (D

◦) :=
⋃

n∈π−1(i)

E1
n(D

◦), E2
i (D

◦) :=
⋃

n∈π−1(i)

E2
n(D

◦).
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Given a subset S ⊂ E1
i (D

◦), we get a dimer configuration D◦S of type (σ, λ, ν, θ)
such that

D◦S :=
(
D\⋃ ∂+ f

)∪⋃ ∂+ f,

and we have
wσ,λ,θ (D◦S)= wσ,λ,θ (D◦)

∏
(n,m)∈S

wσ,λ,θ (n).

Note that any dimer configuration D is uniquely realized as D◦S by some D◦ and
S. Hence we have

Zσ,λ,ν,θ =
∑
D◦
wσ,λ,θ (D◦)

(∑
S

∏
(n,m)∈S

wσ,λ,θ (n)
)

=
∑
D◦
wσ,λ,θ (D◦)

∏
(n,m)∈E1

i (D
◦)

(
1+wσ,λ,θ (n)

)
=
∑
D◦
wσ,λ,θ (D◦)

∏
n∈π−1(i)

(
1+wσ,λ,θ (n)

)|E1
n (D

◦)|
. �

Theorem 4.4.2.

Zσ,λ,ν,µi (θ) = Zσ,λ,ν,θ
∏

n∈Bi,+
σ,λ,θ

(
1+wσ,λ,θ (n)

)−1 ∏
n∈Bi,−

σ,λ,θ

(
1+wσ,λ,θ (n)

)
.

Proof. Let D• be a dimer configuration of type (σ, λ, ν, µi (θ)) satisfying (4-5).
We put

Ẽ1
n(D

•) :={(n,m) ∈ F
∣∣ ∂σ,µi (θ) f (n,m)∩ D• = ∂−σ,µi (θ)

f (n,m)
}
.

Then, as Lemma 4.4.1, we get

Zσ,λ,ν,µi (θ) =
∑
D•
wσ,λ,µi (θ)(D

•)
∏

n∈π−1(i)

(
1+wσ,λ,µi (θ)(n)

−1)|Ẽ1
n (D

•)|
,

where the sum is taken over all dimer configurations D• of type (σ, λ, ν, µi (θ))

satisfying the condition (4-5). Note that µi gives a one-to-one correspondence of
dimer configurations of type (σ, λ, ν, θ) satisfying the condition (4-1) and ones of
type (σ, λ, ν, µi (θ)) satisfying the condition (4-5). Hence the claim follows from
the equalities Ẽ1

n(µi (D◦)) = E2
n(D

◦) and wσ,λ,µi (θ)(n) = wσ,λ,θ (n)−1, both valid
for n ∈ π−1(i), together with Lemma 4.4.1. �

4.5. Conclusion. For σ and α ∈3re,+, we put

(4-6) σ(α) := σ( j−(α)) · σ( j+(α)).

Combining Theorem 4.2.2 and 4.4.2, we get:
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Theorem 4.5.1. Zσ,λ,ν,θ has the value

ZNCDT
σ,λ,ν

∏
α∈3re,+

θ

( ∏
(h,h′)∈Bα,+σ,λ

(
1−σ(α)wλ(h

′)
wλ(h)

)σ(α) ∏
(h,h′)∈Bα,−σ,λ

(
1−σ(α)wλ(h

′)
wλ(h)

)−σ(α))
.

(See (1-2) and (1-3) for notation.)

Since the second term in this expression does not depend on ν, we have:

Corollary 4.5.2.
Zσ,λ,ν,θ

Zσ,λ, E∅,θ
= ZNCDT

σ,λ,ν

ZNCDT
σ,λ, E∅

.

Lemma 1.3.3 and Theorem 4.5.1 yield:

Theorem 4.5.3. (See (1-2) for notation.)

Zσ,λ,ν,θ
∣∣
q+=q−=(q0)1/2

= ZNCDT
σ,λ,ν

∣∣
q+=q−=(q0)1/2

∏
α∈3re,+

θ

(
1− σ(α) · qα)σ(α)[α0+cλ( j−(α))−cλ( j+(α))]

.

Since the second term on the right depends only on the cλ[ j] and not on λ and
ν, we have:

Corollary 4.5.4. If cλ[ j] = 0 for any j , we have

Zσ,λ,ν,θ

Zσ, E∅, E∅,θ
∣∣
q+=q−

= ZNCDT
σ,λ,ν

ZNCDT
σ, E∅, E∅

∣∣
q+=q−

.

5. Refined topological vertex via dimer model

5.1. Refined topological vertex for C3.

5.1.1. A Young diagram can be regarded as a subset of (Z≥0)
2. For a Young

diagram λ, let

3x(λ)= {(x, y, z) ∈ (Z≥0)
3 | (y, z) ∈ λ},

3y(λ)= {(x, y, z) ∈ (Z≥0)
3 | (z, x) ∈ λ},

3z(λ)= {(x, y, z) ∈ (Z≥0)
3 | (x, y) ∈ λ}.

5.1.2. Given a triple (λx , λy, λz) of Young diagrams, define

3min :=3x(λx)∪3y(λy)∪3z(λz)⊂ (Z≥0)
3.
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5.1.3. A subset 3 of (Z≥0)
3 is said to be a 3-dimensional Young diagram of type

(λx , λy, λz) if the following conditions are satisfied:

• If (x, y, z) /∈3, then (x+1, y, z), (x, y+1, z), (x, y, z+1) /∈3.

• 3⊃3min.

• |3\3min|<∞.

5.1.4. For a Young diagram λ, we define a monomial wλ(m) for each m ∈ Z by

(5-1) wλ(m)= qλ(m−1/2) · qλ(m+1/2) · q1 · · · · · qL−1.

For a finite subset S of (Z≥0)
3 we define the weight w(S) by

w(S) :=
∏

(x,y,z)∈S

wλx (y− z).

For a positive integer N , we set CN := [0, N ]3. Given a 3-dimensional Young
diagram 3 of type (λx , λy, λz), we take a sufficiently large N such that 3\3min⊂
CN and define the weight w(3) of 3 by

w(3) := w(3∩CN )

w(3x(λx)∩CN )w(3y(λy)∩CN ) w(3z(λz)∩CN )
.

Note that this is well-defined.

Remarks. • In the definition of w(3), the three axes do not play the same role.
The x-axis is called the preferred axis for the refined topological vertex.

• If we replace the definition (5-1) with

(qλ(m−1/2))
2 · q1 · · · · · qL−1,

then the weight coincides with the one in [Iqbal et al. 2009]. Our weight coin-
cides with the one in [Dimofte and Gukov 2010].

We define the generating function

Gλx ,λy ,λz (Eq ) :=
∑

w(3),

where the sum is taken over all 3-dimensional Young diagrams of type (λx , λy, λz).

5.2. Dimer model for L =1. In the case L=1, the graph in §2.1.2 gives a hexagon
lattice. As we have only two choices of σ , we put σ(1/2) = +. We take id as θ .
We omit σ and id from the notation in this subsection. Note that λ is a single
2-dimensional Young diagram.

It is well-known that giving a dimer configuration of type (λ, ν) is equivalent
to giving a 3-dimensional Young diagram of type (λ, ν+, tν−). Let D(3) be the
dimer configuration corresponding to a 3-dimensional Young diagram 3.
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For a Young diagram η = (η(1), η(2), . . . ) and a monomial p, we put

w(η; p, Q) :=
∏(

pQi−1)η(i) .
Then we can verify the following:

(5-2) wλ(D(3))= w(ν−; q+, Q+) w(ν+; q−, Q−) w(3).

Example 5.2.1. As we show in Figure 10, we have

w∅(3
min
∅,(1),∅) = w((1); q−, Q−) = q−,

w∅(3
min
∅,(2),∅) = w((2); q−, Q−) = q2

−,

w∅(3
min
∅,(1,2),∅)= w((2, 1); q−, Q−)= q3

−Q−.

q+

q+

q+q−

q−

q−

q−Q−

q−Q−

q−Q−

q+Q+

q+Q+

q+Q+

q−

q−

q−

q−

q−
q−Q−

Figure 10. D(3min
∅,(1),∅), D(3min

∅,(2),∅) and D(3min
∅,(1,2),∅).

In particular, we have

Zλ,ν = w(ν−; q+, Q+) ·w(ν+; q−, Q−) ·Gλ,ν+,tν−,

where Zλ,ν is the generating function given in Definition 3.4.1.

5.3. Refined topological vertex for a small resolution. We will define generating
functions ZRTV

σ,λ,ν(Eq ). First, we consider the following data: let Eν=(ν(1), . . . , ν(L−1))

be an (L − 1)-tuple of Young diagrams and E3 = (3(1/2), . . . , 3(L−1/2)) be an L-
tuple of 3-dimensional Young diagrams such that 3( j) is
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• of type (λ( j), ν( j+1/2), tν( j−1/2)) if σ( j)=+ ,

• of type (λ( j), tν( j−1/2), ν( j+1/2)) if σ( j)=− ,

where we put ν(0) := ν− and ν(L) := ν+. We say that the data ( E3, Eν) is of type
(σ, λ, ν). We define the weight w( E3, Eν) of the data ( E3, Eν) by

wσ ( E3, Eν) := w(ν+; q−, Q−) ·w(ν−; q+, Q+)
( L−1/2∏

j=1/2

w(3( j))

)( L−1∏
i=1

wi
σ (µ

(i))

)
,

where wi
σ (µ

(i)) is given by

(5-3) wi
σ (µ

(i)) :=
∏

(α,β)∈µi


qi · Q2α+1 if σ(i − 1

2)= σ(i + 1
2)=+ ,

qi · Q2β+1 if σ(i − 1
2)= σ(i + 1

2)=− ,
qi · Q · Qα+ · Qβ

− if σ(i − 1
2)=+, σ (i + 1

2)=− ,
qi · Q · Qα− · Qβ

+ if σ(i − 1
2)=−, σ (i + 1

2)=+ .
We consider the generating function

ZRTV
σ,λ,µ(Eq ) :=

∑
wσ ( E3, Eν)

where the sum is taken over all the data as above.

Remark. This is the generating function of the refined topological vertex associ-
ated to Yσ , where Yσ→ X is the crepant resolution constructed from σ (see [Nagao
2011a, §1.1] for the construction of Yσ ). Here is the polygon corresponding to Yσ ,
for σ given by

(σ (1/2), . . . , σ (11/2))= (+,−,+,+,−,+) :

5.4. Limit behavior of the dimer model.

5.4.1. Let i ∈ I Z>0 be a minimal expression such that for any N ∈ Z≥0 we have
b(N ) ∈ Z>0 such that αi,b > Nδ for any b > b(N ).

Lemma 5.4.2. Given σ , λ and a monomial q, there exists an integer B1 such that
the following condition holds: for any b ≥ B1,

• any dimer configuration of type (σ, λ, ν, θi,b) with weight q satisfies (4-1),

• any dimer configuration of type (σ, λ, ν, θi,b+1) with weight q satisfies (4-2),
and

• µib gives a one-to-one correspondence between dimer configurations of type
(σ, λ, ν, θi,b) with weight (σ, λ, ν, θi,b+1) with weight q.
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Proof. Take N2 such that

q N2δ > q ·wσ,λ,θ
(
Dmax
σ,λ,ν.id

)−1
.

By Theorem 4.5.3 and the remark just before Section 4,

Zσ,λ,ν,θ ·wσ,λ,θ
(
Dmax
σ,λ,ν.id

)−1∣∣
q+=q−=(q0)1/2

is a polynomial in q0, . . . , qL−1. Thus, there does not exist any dimer configuration
with weight q−α(i, b) for any b> b(N2)=: B1, where b(N2) is taken as in §5.4.1.

Assume that we have a dimer configuration type (σ, λ, ν, θi,b) with weight q
and f ∈ F such that D( f ) = ∂−( f ). Then we get a dimer configuration D ∪
∂+( f )\∂−( f ) with weight q−α(θ, i), which is a contradiction. We can check the
second claim similarly and the third claim immediately follows from the first and
second ones. �

5.4.3. Given σ , λ, we can take an integer N2 such that

• σ̃ (h)=±λ̃(h) for any h ∈ Zh such that ±h > N2L ,

• es(h, k) /∈ Dmax
σ,λ,θi,B1

for any h and k such that h < N2L and h · σ̃ (h)− k is
even, and

• es(h, k) /∈ Dmax
σ,λ,θi,B1

for any h and k such that h> N2L and h · σ̃ (h)−k is odd.

Take a monomial q. Since we have only a finite number of dimer configuration
of type (σ, λ, ν, θi,B1) with weight q and each dimer configuration has only finite
difference with Dmax

σ,λ,ν,θi,B1
, we can take an integer N4 such that

• σ̃ (h)=±λ̃(h) for any h ∈ Zh such that ±h > L N4,

• es(h, k) /∈ D for any h and k such that h < L N4 and h · σ̃ (h)− k is even, and

• es(h, k) /∈ D for any h and k such that h > L N4 and h · σ̃ (h)− k is odd.

Lemma 5.4.4. Let D be a dimer configuration of type (σ, λ, ν, θ) satisfying the
condition (4-1). Take h ∈ π−1(i + 1/2) such that σ̃ (h) = λ̃(h) and assume that
es(h, k) /∈ D for any k ∈ Zh such that hσ̃ (h)− k is odd. Then es(h− 1, k − σ̃ (h))
is not in µi (D).

Similarly, take h ∈ π−1(i + 1/2) such that σ̃ (h) = −λ̃(h) and assume that
es(h, k) /∈ D for any k ∈ Zh such that hσ̃ (h)− k is even. Then es(h+ 1, k+ σ̃ (h))
is not in µi (D).

Proof. In the case i ∈ IS , for any h, k ∈ Zh such that σ̃ (h) = λ̃(h) and hσ̃ (h)− k
is odd, we can verify

es(h, k) /∈ D H⇒ es(h− 1, k− σ̃ (h)) /∈ µi (D)

from the definition of µi (D) in §4.3.3.
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In the case i ∈ IS , assume we have k ∈ Zh such that hσ̃ (h) − k is odd and
es(h−1, k−σ̃ (h))∈µi (D). From Definition 4.1.5, we have es(h−1, k−σ̃ (h))∈D.
Since es(h, k−2σ̃ (h)) /∈ D, we have es(h, k−σ̃ (h))∈ D. Then, since σ̃ (h)= λ̃(h),
there exists m such that σ(i)(m−k)>0 and ∂ f (h−1/2,m)∩D=∂− f (h−1/2,m),
which is a contradiction. �

5.4.5. Given σ , λ and a monomial q, take B1 and N4 as in Lemma 5.4.2 and
§5.4.3. By the definition of N4 and Lemma 5.4.4, we have the following lemma:

Lemma 5.4.6. For any b ≥ B1 and any dimer configuration of type (σ, λ, ν, θi,b)

with weight q, we have

• es(h, k) /∈ D for any h and k such that h<θ−1
i,b (π(h))−2L N4 and h · σ̃ (h)−k

is even, and

• es(h, k) /∈ D for any h and k such that h<θ−1
i,b (π(h))+2L N4 and h · σ̃ (h)−k

is odd.

5.4.7. We assume that

θ−1
i,b (1/2) < θ

−1
i,b (3/2) < · · ·< θ−1

i,b (L − 1/2)

for any b > 0.
Given σ , λ and a monomial q, take B5 such that B5> b(2N4) and B5> B1. The

following theorem is the main result of this section:

Theorem 5.4.8. For any b > B5, we have a bijection between

• the set of dimer configurations of type (σ, λ, ν, θi,b) with weights q, and

• the set of data ( E3, Eν) as in Section 5.3 of type (σ, λ, ν) with weights q.

Proof. First, we divide the (x, y)-plane into the following 2L + 1 areas:

C j := {θ−1( j)− 2L N4 < x < θ−1( j)+ 2L N4} ( j ∈ Ih),

C0 := {x < θ−1(1/2)− 2L N4},
Ci := {θ−1(i − 1/2)+ 2L N4 < x < θ−1(i + 1/2)− 2L N4} (1≤ i ≤ L − 1),

CL := {θ−1(L − 1/2)+ 2L N4 < x}.
By Lemma 5.4.6, in the area C j we have

• es[h, k] /∈ D for any h and k such that π(h) > j and h · σ̃ (h)− k is even;

• es[h, k] /∈ D for any h and k such that π(h) < j and h · σ̃ (h)− k is odd.

Removing these edges, we get a new graph. A face of the new graph is a union
of L-tuple of elements in F. If we regard such a union as a hexagon, the dimer con-
figuration D gives a dimer configuration for the hexagon lattice — in other words, a
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three-dimensional diagram. Let 3( j) denote this three-dimensional diagram. (See
Example 5.4.9.)

Similarly, in the area C j we have

• es[h, k] /∈ D for any h and k such that π(h) > i and h · σ̃ (h)− k is even;

• es[h, k] /∈ D for any h and k such that π(h) < i and h · σ̃ (h)− k is odd.

Removing these edges, we get a new graph, which is an infinite disjoint union
of zigzag paths. For each zigzag path, we have two choices of perfect matching
and so the dimer configuration D gives a Young diagram ν(i). We can verify that
the datum ( E3, Eν) satisfies the conditions in Section 5.3. Note that the reverse
construction also works.

We have to check the correspondence above respects the weights. Note that all
edges of in the area Ci have weights = 1. By (5-2), the contribution of the part in
the area C j is given by

w
(
ν( j−1/2); q(si ( j))

+ , Q+
)
w
(
ν( j+1/2); (q(si ( j))

+ )
−1

Q, Q−
)
w(3( j))if σ( j)=+ ,

w
(tν( j−1/2); q(si ( j))

+ , Q+
)
w
(tν( j+1/2); (q(si ( j))

+ )
−1

Q, Q−
)
w(3( j))if σ( j)=− .

Combining these contributions, we get the claim. �

Example 5.4.9. We take σ as in Example 2.1.3 and λ=∅. Assume that θ(1/2)=
N + 1/2 and θ(5/2) = −N + 5/2 for N � 0. In Figure 11, we show the weight
(after putting q+= q−= q1/2

0 ) of edges in the area C1/2. We can idenfity the graph
in the area C1/2 with a hexagon lattice as shown in Figure 12.
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Figure 11. The graph in the area C1/2.
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Figure 12. Identification with a hexagon lattice.

Remark. In general, we have the permutation si ∈SIh of the set Ih satisfying the
following condition: for sufficiently large b we have

θ−1
i,b (si (1/2)) < θ−1

i,b (si (3/2)) < · · ·< θ−1
i,b (si (L − 1/2)).

The permutation si determines the direnction in which we take limit in the space
of stability conditions. It is the refine topological vertex associated to Yσ◦si what
we get in the limit.

5.5. Conclusion. Note that
∞⋃

b=1

3
re,+
θi,b
=3re,+

+ .

Combining Theorem 4.5.1 and Theorem 5.4.8, we have:

Theorem 5.5.1. ZRTV
σ,λ,ν has the value

ZNCDT
σ,λ,ν

∏
α∈3re,+

+

( ∏
(h,h′)∈Bα,+σ,λ

(
1− σ(α)wλ(h

′)
wλ(h)

)σ(α) ∏
(h,h′)∈Bα,−σ,λ

(
1− σ(α)wλ(h

′)
wλ(h)

)−σ(α))
.

(See (1-1), (1-3) and (4-6) for notation.)

Since the second term in this expression does not depend on ν, we have:

Corollary 5.5.2.
ZRTV
σ,λ,ν

ZRTV
σ,λ, E∅

= ZNCDT
σ,λ,ν

ZNCDT
σ,λ, E∅

.
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Combining Theorem 4.5.3 and Theorem 5.4.8, we have:

Theorem 5.5.3.

ZRTV
σ,λ,ν

∣∣
q+=q−=(q0)1/2

= ZNCDT
σ,λ,ν

∣∣
q+=q−=(q0)1/2

∏
α∈3re,+

+

(
1− σ(α) · qα)σ(α)·[α0+cλ( j−(α))−cλ( j+(α))]

.

(See (1-1), (1-3) and (4-6) for notation.)

Since the second term in the right-hand side depend only on cλ[ j]’s but not on
λ and ν, we have the following:

Corollary 5.5.4. If cλ[ j] = 0 for any j , we have

ZRTV
σ,λ,ν

ZRTV
σ, E∅, E∅

∣∣
q+=q−

= ZNCDT
σ,λ,ν

ZNCDT
σ, E∅, E∅

∣∣
q+=q−

.
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