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The main goal of this paper is to study the Dirichlet problem on a compact
set K ⊂Rn. Initially we consider the space H(K ) of functions on K that can
be uniformly approximated by functions harmonic in a neighborhood of K
as possible solutions. As in the classical theory, we show C(∂ f K ) ∼= H(K )

for compact sets with ∂ f K closed, where ∂ f K is the fine boundary of K .
However, in general, a continuous solution cannot be expected, even for
continuous data on ∂ f K . Consequently, we show that for any bounded
continuous boundary data on ∂ f K , the solution can be found in a class of
finely harmonic functions. Also, in complete analogy with the classical situ-
ation, this class is isometrically isomorphic to the set of bounded continuous
functions on ∂ f K for all compact sets K .

1. Introduction

The Dirichlet problem for harmonic functions on domains in Rn is important not
only for its own sake but also because of its influence on potential theory. Many
now-standard notions — regular points, fine topology, etc. — first appeared in the
study of this problem. The main goal of this paper is to extend the classic theory
to compact sets K ⊂ Rn .

One possible extension can be found in the abstract theory of balayage spaces
[Bliedtner and Hansen 1986; Hansen 1985]. However, we feel that the gain in
transparency resulting from a direct geometric approach more than justifies the use
of new techniques.

The Dirichlet problem can be thought of as having two components: the data set
and the data itself. One uses an initial function defined on the data set to construct
a solution (a harmonic function) on the rest of the domain, which must have a
prescribed regularity as it approaches the data set. Classically, the data set is taken
to be the topological boundary of the domain. One of the main goals of this paper
is to establish that the natural choice for the data set on compact sets is the fine
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boundary ∂ f K of K , which is shown in Lemma 5.1 to be the Choquet boundary
of K with respect to subharmonic functions on K . We limit ourselves to initial
functions that are continuous and bounded on ∂ f K , as in the classical case.

In Section 3, we introduce Jensen measures as our main tool and extend potential
theory to compact sets K ⊂ Rn by defining harmonic functions and subharmonic
functions on K . We devote Section 4 to the construction and study of harmonic
measures on compact sets. The harmonic measure on K is shown to be a maximal
Jensen measure. This is used to see that harmonic measures are concentrated on
the fine boundary (Corollary 5.3). In Section 6 we study the Dirichlet problem for
compact sets. As in the classical theory, our Theorem 6.1 shows C(∂ f K )∼= H(K )
for a class of compact sets. However, in general, a continuous solution cannot
be expected, even for continuous data on ∂ f K , as we illustrate in Example 6.2.
Therefore we show that the solution can be found in the class of finely harmonic
functions introduced in that section. By Theorem 6.5, in complete analogy with
the classical situation, this class is isometrically isomorphic to the set of bounded
continuous functions on ∂ f K , denoted Cb(∂ f K ), for all compact sets K .

2. Basic facts

Let M(�) denote the space of finite signed Radon measures on�⊂Rn , and C0(R
n)

the space of continuous functions on Rn that vanish at infinity. We often use µ( f )
to denote

∫
f dµ.

Classical potential theory. Let D be an open set in Rn , with n ≥ 2. For any
f ∈ C(∂D), the Dirichlet problem on D is to find a unique function h that is
harmonic on D and continuous on D such that h|∂D = f . The function f is
commonly referred to as the boundary data, and the corresponding h is said to be
the solution of the Dirichlet problem on D with boundary data f . The punctured
disk in R2 is a fundamental example that shows that the Dirichlet problem cannot
be solved for any continuous boundary data. However, for a bounded open set U ,
the method of Perron allows one to assign a function that is harmonic on U to any
continuous (or simply measurable) boundary data. The concept of a regular domain
was developed to establish the continuity of the Perron solution to the boundary. A
bounded connected open set D⊂Rn is a regular domain if the Dirichlet problem is
solvable on D for any continuous boundary data. Therefore, on a regular domain,
C(∂D) is isometrically isomorphic to H(D), the space of continuous functions
on D that are harmonic on D. For any f ∈ C(∂D), let h f ∈ H(D) denote the
solution of the Dirichlet problem on D with boundary data f . Put z ∈ D. The
point evaluation

Hz : f 7→ h f (z)
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is a positive bounded linear functional on C(∂D). By the Riesz representation
theorem, there is a Radon measure ωD(z, · ) on ∂D that represents Hz; that is,

h f (z)=
∫
∂D

f (ζ ) dωD(z, ζ )

for all f ∈C(∂D). The measure ωD(z, · ) is called the harmonic measure of D with
barycenter at z. See [Armitage and Gardiner 2001] for more details on potential
theory.

Jensen measures. If D is an open set in Rn , we call µ a Jensen measure on D with
barycenter z ∈ D if µ is a probability measure (a positive Radon measure of unit
mass) whose support is compactly contained in D and if for every subharmonic
function f on D the subaveraging inequality f (z)≤µ( f ) holds. The set of Jensen
measures on D with barycenter z ∈ D we denote by Jz(D).

One could define the set of Jensen measures Jc
z(D) with respect to the continu-

ous subharmonic functions on D. However, the following theorem shows that the
set of Jensen measures would not be changed.

Theorem 2.1. Let D be a bounded open subset of Rn . For every z ∈ D, the sets
Jz(D) and Jc

z(D) are equal.

Proof. Since clearly Jz(D)⊆ Jc
z(D) for all z ∈ D, we show the reverse inclusion.

Pick some z0 ∈ D and let µ ∈ Jc
z0
(D). Then we must show f (z0) ≤ µ( f )

for every function f that is subharmonic on D. The support of µ is compactly
contained in D.

Because f is subharmonic on D, we can find a decreasing sequence { fn} of
continuous subharmonic functions that converge to f . Since µ ∈ Jc

z0
(D), we have

f (z0) ≤ µ( fn) for every fn . By the Lebesgue monotone convergence theorem, it
follows that f (z0)≤ µ( f ). Thus µ ∈ Jz0(D). �

Since Jz(D)=Jc
z(D) for all z ∈ D, to check that µ∈Jz(D) it suffices to check

that µ has the subaveraging property for every continuous subharmonic function.
Examples of Jensen measures with barycenter at z∈D include the Dirac measure

at z, that is, δz , the harmonic measure with barycenter at z for any regular domain
that is compactly contained in D, and the average over any ball (or sphere) centered
at z that is contained in D. The following proposition demonstrates some basic
properties of sets of Jensen measures.

Proposition 2.2 [Cole and Ransford 2001, Proposition 2.1]. Let D1 and D2 be
open subsets of Rn with D1 ⊂ D2. Let z ∈ D1.

(i) If µ ∈ Jz(D1), then also µ ∈ Jz(D2).

(ii) If µ ∈ Jz(D2) and supp(µ)⊂ D1, and if each bounded component of Rn
\ D1

meets Rn
\ D2, then µ ∈ Jz(D2).
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Jensen measures and subharmonic functions are, in a sense, dual to each other.
This duality is illustrated by the following theorem.

Theorem 2.3 [Cole and Ransford 1997, Corollary 1.7]. Let D be an open subset
of Rn that possesses a Green’s function. Let

φ : D→ [−∞,∞)

be a Borel measurable function that is locally bounded above. Then

sup{v(z) : v ∈ S(D), v ≤ φ} = inf{µ(φ) : µ ∈ Jz(D)}

for each z ∈ D, where S(D) denotes the set of subharmonic functions on D.

Fine topology. The two books [Brelot 1971; Fuglede 1972] are classical references
on the fine topology, and many books on potential theory contain chapters on the
topic, for example [Armitage and Gardiner 2001, Chapter 7].

The fine topology on Rn is the coarsest topology on Rn such that all subharmonic
functions are continuous in the extended sense of taking values in [−∞,∞].

When referring to a topological concept in the fine topology, we follow the
standard policy of either using the words “fine” or “finely” prior to the topological
concept, or attaching the letter f to the associated symbol. For example, the fine
boundary of K , ∂ f K , is the boundary of K in the fine topology. The fine topology
is strictly finer than the Euclidean topology.

Many of the key concepts of classical potential theory have analogous definitions
in relation to the fine topology. We recall a few of them. Relative to a finely open
set V in Rn , the harmonic measure δV c

x is defined as the swept-out of the Dirac
measure δx on the complement of V . A function u is said to be finely hypoharmonic
on a finely open set U if it is upper finite, finely upper semicontinuous, and if

u(x)≤ δV c

x (u) <∞

for all x ∈ V and all relatively compact finely open sets V with fine closure con-
tained in U . A function h is said to be finely harmonic if h and−h are finely hypo-
harmonic. Also, the fine Dirichlet problem on U for a finely continuous function
f defined on the fine boundary of a bounded finely open set U consists of finding
a finely harmonic extension of f to U . The development of the fine Dirichlet
problem is quite similar to that of the classical. Fuglede [1972, Theorem 14.6]
establishes a Perron solution for the fine Dirichlet problem, showing that there
exists a Perron solution HU

f that is finely harmonic on U for any numerical function
f on ∂ f U that is δ∂ f U

x integrable for every x ∈U . The same theorem also provides
us with the desired continuity at the boundary, showing that the fine limit of HU

f (x)
tends to f (y) as x ∈U goes to y for every finely “regular” boundary point y ∈ ∂ f U
at which f is finely continuous.
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3. Harmonic and subharmonic functions on compact sets

We now begin our study of potential theory on compact sets. For compact sets
that are not connected, the Hausdorff property allows us to reduce Dirichlet-type
problems on the compact set to solving separate problems on each connected com-
ponent. Therefore, in what follows, we work on compact sets K in Rn that need
not be connected, with the understanding that we can always separate the problem
by working on the connected components of K individually.

There are currently three equivalent ways to define harmonic and subharmonic
functions on compact sets.

Definition 3.1 (exterior). Let H(K ) (resp. S(K )) be the uniform closures of all
functions in C(K ) that are restrictions of harmonic (resp. subharmonic) functions
on a neighborhood of K .

Definition 3.2 (interior). One can define H(K ) and S(K ) as the subspaces of
C(K ) consisting of functions that are finely harmonic and finely subharmonic,
respectively, on the fine interior of K .

The equivalence of these definitions of H(K )was shown in [Debiard and Gaveau
1974], and of S(K ) in [Bliedtner and Hansen 1975; 1978].

For the third definition of H(K ), we extend the notion of Jensen measures to
compact sets.

Definition 3.3. We define the set of Jensen measures on K with barycenter at z∈K
as the intersection of all sets Jz(U ), that is,

Jz(K )=
⋂

K⊂U

Jz(U ),

where U is any open set containing K .

Another definition of H(K ) was introduced in [Poletsky 1997] using the notion
of Jensen measures.

Definition 3.4 (via Jensen measures). The set H(K ) is the subspace of C(K ) con-
sisting of functions h such that h(x)= µ(h) for all µ ∈ Jx(K ) and x ∈ K .

It was shown in [Poletsky 1997] that this definition is equivalent to the exterior
definition above.

The next lemma shows that this last construction extends to subharmonic func-
tions in the ideal way.

Lemma 3.5. A function is in S(K ) if and only if it is continuous and satisfies the
subaveraging property with respect to every Jensen measure on K ; that is,

S(K )= { f ∈ C(K ) : f (z)≤ µ( f ), for all µ ∈ Jz(K ) and every z ∈ K }.
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Proof. We use the exterior definition of S(K ) to show “⊆”. Take f ∈C(K ) and let
{ f j } be a sequence of subharmonic functions defined in a neighborhood of K such
that { f j } is converging uniformly to f . Then f j (z) ≤ µ( f j ) for any µ ∈ Jz(K ).
Because the convergence is uniform, we have f (z)≤ µ( f ).

Now suppose that f is in the set on the right. The subaveraging condition
implies that f is finely subharmonic on the fine interior of K , and by assumption,
f is continuous. Therefore f satisfies the interior definition of S(K ). �

Recall the exterior definition of S(K ) as the uniform limits of continuous func-
tions subharmonic in neighborhoods of K . Proposition 3.6 shows that the defining
sequence for any function in S(K ) may be taken to be increasing. This is a simple
consequence of a duality theorem of Edwards [Gamelin 1978, Theorem 1.2; Cole
and Ransford 1997].

Proposition 3.6. Every function in S(K ) is the limit of an increasing sequence of
continuous subharmonic functions defined on neighborhoods of K .

Proof. Edwards’s theorem states that if p is a continuous function on K , then for
all z ∈ K we have

Ep(z) := sup{ f (z) : f ∈ S(K ), f ≤ p} = inf{µ(p) : µ ∈ Jz(K )}.

From the proof of this theorem, it follows that Ep is lower semicontinuous and
is the limit of an increasing sequence of continuous subharmonic functions on
neighborhoods of K . The result follows by observing that p = Ep whenever
p ∈ S(K ). �

4. Harmonic measure on a compact set

To use the exterior definition of H(K ), we typically want to approximate K by
a decreasing sequence of regular domains. A decreasing sequence of regular do-
mains {U j } is said to be converging to K if for every ε > 0, there is a j0 such that
U j contains K and lies in the ε-neighborhood Kε of K when j ≥ j0. Furthermore,
we require that U j+1 be compactly contained in U j ; that is, U j+1 ⊂ U j for all j .
The existence of such a sequence is provided by [Hervé 1962, Proposition 7.1].

Theorem 4.1 allows us to define a harmonic measure on K . For a decreasing
sequence of regular domains {U j }, we let ωU j (z, · ) denote the harmonic measure
on U j with barycenter at z ∈U j .

Theorem 4.1. If {U j } is a sequence of regular domains converging to a compact
set K ⊂Rn , then for every z∈K , the harmonic measures ωU j (z, · ) converge weak∗.
Also, this limit does not depend on the choice of the sequence of domains {U j }.

Proof. Since ωU j are measures of unit mass supported on a compact set in Rn , by
Alaoglu’s theorem they must have a limit point. To show that this point is unique,
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it suffices to show that for every z ∈ K , the limit

(1) lim
j→∞

∫
∂U j

u(ζ ) dωU j (z, ζ )

exists for every u ∈ C(U 1).
First, we show that the limit in (1) exists when u is continuous and subharmonic

in a neighborhood of K . The solution u j of the Dirichlet problem on U j with
boundary value u is equal to

u j (z)=
∫
∂U j

u(ζ ) dωU j (z, ζ ).

Since u is subharmonic, we have u j ≥u on U j . Then, since u j+1=u on ∂U j+1 and
u j ≥ u = u j+1 on ∂U j+1, the maximum principle for harmonic functions implies
that u j ≥ u j+1 on U j+1. Thus {u j } is a decreasing sequence on K , and we see that
for every z ∈ K , the limit in (1) exists.

If u ∈C2(U 1), then we may represent u as a difference of two C2(U 1) functions
that are subharmonic on U1. By the argument above, the limit in (1) exists.

Because C2(U 1) is dense in C(U 1), we see that the limit in (1) always exists. �

Definition 4.2. We define the harmonic measure ωK (z, · ) on a compact set K with
barycenter z ∈ K as the weak∗ limit of ωU j (z, · ), chosen as above.

To use this definition for the Dirichlet problem, we must check that the support
of ωK (z, · ) lies on the boundary of K . Actually, in Section 5, we are able to give
more specific information about ωK (z, · ); see Corollary 5.3.

Lemma 4.3. The support of ωK (z, · ) is contained in ∂K .

Proof. Let W be a neighborhood of ∂K . Let {U j } be a sequence of domains
converging to K , and take a sequence z j ∈ ∂U j . Then there exists a subsequence
{z jk } that must be converging to some z0 ∈ K . Because z j ∈ ∂U j , we know z j is
not in K . Therefore, the limit of z jk cannot be in the interior of K . Thus z0 is in
∂K ⊂W . Consequently, there is j0 such that ∂U j ⊂W for each j ≥ j0.

Let x ∈ Rn
\ ∂K , and take W to be a neighborhood of ∂K such that x 6∈ W .

There is an r > 0 such that B(x, r)∩W =∅. Since ωU j (z, · ) has support on ∂U j ,
which is contained in W for large j , we have ωU j (z, B(x, r))= 0. since b(x, r) is
open, the portmanteau theorem shows that

lim inf
j→∞

ωU j (z, B(x, r))≥ ωK (z, B(x, r)).

Hence, ωK (z, B(x, r))= 0, and x is not in the support of ωK (z, · ). �

The following theorem brings our study back to the topic of Jensen measures.

Theorem 4.4. The harmonic measure on K is a Jensen measure on K .
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Proof. Because ωK (z, · ) is defined as the weak∗ limit of probability measures,
ωK (z, · ) is a probability measure.

Recall that for z ∈ K , we defined Jz(K ) = ∩Jz(U ), where K ⊂ U . However,
it suffices to see that Jz(K ) = ∩Jz(U j ), where {U j } is any sequence of domains
converging to K . We show ωK (z, · ) ∈ Jz(U j ) for all j .

Pick some j . Then let f be a continuous subharmonic function on U j . Then

f (z)≤
∫
∂Ul

f (ζ ) dωUl (z, ζ )

for all l > j . Then, taking the weak∗ limit, we have

f (z)≤
∫
∂K

f (ζ ) dωK (z, ζ ).

Therefore, ωK (z, · ) satisfies the subaveraging inequality for every continuous sub-
harmonic function on U j , and ωK (z, · ) is a probability measure with support con-
tained in U j . Thus ωK (z, · ) must be in Jc

z(U j ), which is equal to Jz(U j ) by
Theorem 2.1. Thus ωK (z, · ) ∈ Jz(K ). �

Following [Gamelin 1978, p. 16], a partial ordering on the set of Jensen mea-
sures is defined below. The notation J(K ) is used to stand for the union of all
Jensen measures on K ; that is,

J(K )=
⋃
z∈K

Jz(K ).

Definition 4.5. For µ, ν ∈J(K ), we say that µ� ν if for every φ ∈ S(K ) we have
µ(φ) ≥ ν(φ). Furthermore, a Jensen measure µ is maximal if there is no ν � µ
with ν 6= µ where ν ∈ J(K ).

Lemma 4.6. If µ ∈ Jz1(K ) and ν ∈ Jz2(K ) with z1 6= z2, then µ and ν are not
comparable.

Proof. Recall that the coordinate functions πi are harmonic. Because z1 6= z2,
they must differ in at least one coordinate, say, the i-th. Assume without loss
of generality that πi (z1) > πi (z2). Then µ(πi ) > ν(πi ). However, −πi is also
harmonic, and so ν(−πi ) > µ(−πi ). Therefore, µ and ν are not comparable, and
if µ� ν, then they have a common barycenter. �

We now demonstrate that the harmonic measure is maximal with respect to this
ordering. The maximality of the harmonic measure proved below is the Littlewood
subordination principle [Duren 1970, Theorem 1.7] when K is the closed unit ball
in the plane.

Theorem 4.7. For all z ∈ K , the measure ωK (z, · ) is maximal in J(K ).
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Proof. By Lemma 4.6, it suffices to show that ωK (z, · ) is maximal in Jz(K ) for
any z ∈ K .

Pick any z0 ∈ K . We show that ωK (z0, · ) majorizes every measure µ∈Jz0(K ).
Consider a decreasing sequence of regular domains {U j } converging to K . Take
any φ∈ Sc(K ). By Proposition 3.6, we may find a sequence φ j ∈ Sc(U j ) increasing
to φ. Furthermore, we extend φ as φ̃ ∈ C0(R

n), while keeping φ̃ ≥ φ j for all j .
Define harmonic functions 8 j on U j by

8 j (x)=
∫
∂U j+1

φ j (ζ ) dωU j+1(x, ζ ).

Therefore, since φ j is subharmonic, 8 j ≥ φ j on U j+1, so∫
∂U j+1

φ j (ζ ) dωU j+1(z0, ζ )=8 j (z0)= µ(8 j )≥ µ(φ j ).

Because φ̃ ≥ φ j , we have

(2)
∫
∂U j+1

φ̃(ζ ) dωU j+1(z0, ζ )≥ µ(φ j )

for all j . By taking weak∗ limits, we have that

lim
j→∞

∫
∂U j+1

φ̃(ζ ) dωU j+1(z0, ζ )=

∫
∂K
φ(ζ ) dωK (z0, ζ ).

The Lebesgue monotone convergence theorem gives

lim
j→∞

µ(φ j )= µ(φ).

Therefore, by taking the limit by j of (2), we see∫
∂K
φ(ζ ) dωK (z0, ζ )≥ µ(φ).

We now have ωK (z0, · )�µ. If any ν ∈Jz0(K ) has the property ν �ωK (z0, · ), by
the antisymmetry property of partial orderings, we have ν = ωK (z0, · ). Thus the
measure ωK (z0, · ) is maximal in Jz0(K ). �

The maximality of harmonic measures implies that they are trivial at the points
z∈K such that Jz(K )={δz}, which, by Lemma 5.1, are precisely the fine boundary
points.

Corollary 4.8. The harmonic measure ωK (z0, · ) is equal to δz0 if and only if
Jz0(K )= {δz0}.
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Proof. Suppose ωK (z0, · )= δz0 . Consider the function ρ(z)= ‖z− z0‖
2
∈ Sc(K ).

Then for any µ ∈ Jz0 , by the maximality of ωK (z0, · ), we have

0= ρ(z0)≤ µ(ρ)≤

∫
∂K
ρ(ζ ) dωK (z0, ζ )= ρ(z0)= 0.

Because ρ(z)> 0 for all z 6= 0, and µ is a probability measure, we see that µ= δz0 .
Thus Jz0(K )= {δz0}.

For the reverse implication, we have ωK (z0, · ) ∈ Jz0(K ) from Theorem 4.4. �

5. The boundary

Gamelin [1978] introduces a version of Choquet theory for cones of functions on
compact sets. (Actually, it applies to sets of functions that are slightly more general
than the cones we define.)

Following his guidance, we consider a set R of functions mapping a compact
set K ⊂ Rn to [−∞,∞), with the following properties:

(i) R includes the constant functions;

(ii) if c ∈ R+ and f ∈R, then c f ∈R;

(iii) if f, g ∈R, then f + g ∈R; and

(iv) R separates the points of K .

One then considers a set of R-measures for z∈K defined as the set of probability
measures µ on K such that

f (z)≤ µ( f )

for all f ∈R.
Naturally, our model for R will be S(K ). It then follows that when R= S(K ),

the R-measures for z ∈ K are precisely Jz(K ). We now state some classic results
from [Gamelin 1978] that we need in the following sections.

One can define the Choquet boundary of K with respect to S(K ) as

ChS(K ) K = {z ∈ K : Jz(K )= {δz}}.

Many nice properties of the Choquet boundary are known. In particular, we need
the following characterization; see also, for example, [Bliedtner and Hansen 1986,
VI.4.1; Hansen 1985].

Lemma 5.1. The Choquet boundary of K with respect to S(K ) is the fine boundary
of K ; that is,

ChS(K ) K = ∂ f K .
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Proof. Since the fine topology is strictly finer than the Euclidean topology, any
point in the interior of K will also be in the fine interior of K , and any point of
Rn
\K can be separated from K by a Euclidean (and therefore fine) open set. Thus

the fine boundary of K is contained in ∂K . The result follows immediately from
[Poletsky 1997, Theorem 3.3] or [Bliedtner and Hansen 1986, Proposition 3.1],
which states that Jz(K )= {δz} if and only if the complement of K is non-thin at z,
that is, z is a fine boundary point of K . �

The set ∂ f K is also called the stable boundary of K . In fact, Lemma 5.1 shows
that ChS(K ) K is the finely regular boundary of the fine interior of K . For details
on finely regular boundary points and related concepts, see [Bliedtner and Hansen
1986, VII.5–7; Hansen 1985].

With this association, the result of Brelot [1971, p. 89] about the stable boundary
points of K shows that ChS(K ) K is dense in ∂K .

Theorem 5.2. The fine boundary of K (and therefore the Choquet boundary of K
with respect to S(K )) is dense in the topological boundary of K .

In general, the fine boundary is not closed, as Example 6.2 of Section 6 shows.
So we cannot claim that it is the support of measures. Also, as Theorem 5.2 shows,
the closure of Ok is the boundary of K . In particular, it may coincide with K for
porous Swiss cheeses [Gamelin 1969, pp. 25–26].

Recall that a measure µ ∈ M(K ) is concentrated on a set E if for every set
F ⊂ K \ E , we have µ(F)= 0. A probability measure µ is concentrated on a set
E if and only if µ(E)= 1. From [Gamelin 1978, p. 19], we know that all maximal
measures are concentrated on ChS(K ) K = ∂ f K . With this observation, the next
corollary immediately follows from Theorem 4.7 (which states that the harmonic
measure is maximal).

Corollary 5.3. For every z in K , the harmonic measure with barycenter at z is
concentrated on ∂ f K .

6. The Dirichlet problem on compact sets

In the classical setting, we know that any continuous function in the boundary of
a domain D ⊂ Rn extends harmonically to D and continuously to D if and only if
every point of the boundary is regular. For general compact sets in Rn , we have:

Theorem 6.1. If K is a compact set in Rn , then any function φ ∈ C(∂ f K ) extends
to a function in H(K ) if and only if the set ∂ f K is closed. Also, the solution is
given by

8(z)=
∫
∂ f K

φ(ζ ) dωK (z, ζ ), z ∈ K ,

and H(K ) is isometrically isomorphic to C(∂ f K ).
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From this it also follows that the swept-out point mass at z onto the complement
of K is just ωK (z, · ).

Proof. Suppose the set ∂ f K is closed. Consider a continuous function φ on ∂ f K .
Assume that

8(z)=
∫
∂ f K

φ(ζ ) dωK (z, ζ ), z ∈ K .

Because ∂ f K is closed, by Theorem 5.2, we have ∂ f K = ∂K . Also, because
ωK (z, · )= δz for every z ∈ ∂ f K , we see that 8= φ on ∂ f K .

Let z j be a sequence in K converging to z0 ∈ ∂ f K . Because z0 is in ∂ f K =
ChS(K ) K , we have Jz0(K ) = {δz0}. Because J(K ) is weak∗ compact [Gamelin
1978, p. 3], any sequence of measures µ j ∈ Jz j (K ) must converge weak∗ to δz0 .
In particular, ωU j (z j , · ) is weak∗ converging to δz0 . Hence, 8(z j ) is converging
to 8(z0)= φ(z0), and 8 is continuous at the boundary of K .

Because ∂ f K is closed, φ ∈ C(∂ f K ) = C(∂K ). We extend φ continuously as
φ̃ ∈ C0(R

n), and then define the harmonic functions

h j (z)=
∫
∂U j

φ̃(ζ ) dωU j (z, ζ ).

Because φ̃ is continuous and ωU j (z, · ) converges weak∗ to ωK (z, · ),

lim
j→∞

h j (z)= lim
j→∞

∫
∂U j

φ̃(ζ ) dωU j (z, ζ )=
∫
∂K
φ(ζ ) dωK (z, ζ )=8(z).

Therefore, 8 is the pointwise limit of a sequence {h j } of functions harmonic in
a neighborhood of K . Also, we can take the extension φ̃ of φ in such a way that
the sequence {h j } is uniformly bounded. It now easily follows that8 is continuous
on the interior of K . Indeed, consider a point z in the interior of K . Then there
exists a ball B centered at z contained in the interior of K . The h j are harmonic
functions on B converging pointwise to 8. Therefore, 8 is continuous on B by
the Harnack principle, and so 8 is continuous on K . Thus we have a continuous
function 8 with representation

8(z)=
∫
∂K
φ(ζ ) dωK (z, ζ ), z ∈ K .

Since 8 is continuous on K by [Poletsky 1997], to check that 8 ∈ H(K ), all
that remains is to show that 8 is averaging with respect to Jensen measures, that
is, the equivalence of the external definition of H(K ) and the definition by Jensen
measures. So we need to see that 8(z) = µz(8) for every µz ∈ Jz(K ) and for
every z ∈ K . Because h j is harmonic on U j , we have h j (z) = µz(h j ). However,
by the Lebesgue dominated convergence theorem,

µz(8)= lim
j→∞

µz(h j )= lim
j→∞

h j (z)=8(z).
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Thus 8 ∈ H(K ).
For the converse, suppose ∂ f K is not closed. Then there is a point z0∈∂K \∂ f K .

Since z0 is not in ∂ f K , by Corollary 4.8, ωK (z0, · ) is not trivial. Therefore, we can
find a set E ⊂ ∂K such that ωK (z0, E) > 0, with E in the complement of B(z0, r)
for some r > 0. Consider a continuous function f on ∂K such that f = 1 on ∂K
outside B(z0, r) and f = 0 on B(z0, r/2)∩ ∂K . Then∫

∂K
f (ζ ) dωK (z0, ζ ) > ωK (z0, E), z ∈ K .

However, f (z0) = 0. Thus there can be no function in H(K ) that agrees with f
on the boundary of K . �

Example 6.2. The following is a simple example of a compact set K ⊂Rn , n ≥ 3,
in which the fine boundary is not closed. The set K is obtained from the closed
unit ball B⊂Rn by deleting a sequence {B(zn, rn)}

∞

n=1 of open balls whose centers
and radii tend to zero. We take the centers to be zn = (2−n, 0, . . . , 0) ∈Rn and the
radii 0< rn < 2−n−2. This is analogous to the “road runner” example of Gamelin
[1969, Figure 2] and the Lebesgue spine [2001, p. 187].

By Theorem 6.1, one cannot expect a continuous solution for the Dirichlet prob-
lem on an arbitrary compact set, even with continuous boundary data. Therefore,
at this point we consider the following broader class of solutions with weaker
continuity requirement.

Definition 6.3. Let f H c(K ) be the class of finely continuous functions on K that
are finely harmonic on the fine interior of K and continuous and bounded on ∂ f K .

We saw in Definition 3.4 (via Jensen measures) that H(K ) consists of the
functions in C(K ) satisfying the averaging property with respect to J(K ), and
by Definition 3.2 (interior) that it can also be seen as the C(K ) that are finely
harmonic on the fine interior of K . Therefore, in the definition of f H c(K ), we
have maintained the finely harmonic requirement while requiring continuity only
on the boundary ∂ f K (to match the boundary data). In fact, Theorem 6.5 below
shows that the functions in f H c(K ) also satisfy the averaging property with respect
to J(K ).

Theorem 6.5 shows that the Dirichlet problem on compact sets K ⊂Rn is solv-
able in the class of functions f H c(K ) for boundary data that is continuous and
bounded on ∂ f K . The functions that are continuous and bounded on ∂ f K are
denoted Cb(∂ f K ). For this we need the following theorem.

Theorem 6.4 [Fuglede 1972, Theorem 11.9]. The pointwise limit of a pointwise
convergent sequence of finely harmonic functions um in U , a finely open subset of
Rn , is finely harmonic, provided that supm |um | is finely locally bounded in U.
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Theorem 6.5. For every φ lying in Cb(∂ f K ), that is, continuous and bounded on
∂ f K , there is a unique hφ ∈ f H c(K ) equal to φ on ∂ f K . Moreover, hφ satisfies
the averaging property for J(K ), and in particular,

hφ(x)=
∫
∂ f K

φ(ζ ) dωK (x, ζ ), x ∈ K .

Proof. Let φ ∈ Cb(∂ f K ), and for x ∈ ∂ f K define

φ̃(x)= lim sup
y→x, y∈∂ f K

φ(y).

Since φ is continuous on ∂ f K , if x ∈∂ f K , then φ̃(x)=φ(x). Also, φ̃ is upper semi-
continuous, and thus we may find a decreasing sequence of functions {φk} that are
continuous on ∂ f K and converge pointwise to φ̃. Then we extend the φk to C0(R

n)

as φ̂k . By taking φ̃k=min{φ̂1, φ̂2, . . . , φ̂k}, we can make the extensions be decreas-
ing. Consider a decreasing sequence of regular domains U j converging to K . Let
u j, k be the solution of the Dirichlet problem on U j for φ̃k . Since the measures
ωU j (x, · ) weak∗ converge to ωK (x, · ), we have that lim j u j, k =

∫
φ̃k dωK := uk .

Since the φ̃k are decreasing, uk must also be decreasing. Indeed, we let hφ= lim uk .
Take any µ ∈ J(K ). Then µ ∈ Jz0(U j ) for all j and some z0 ∈ K . Since u j, k

is harmonic, we have µ(u j, k) = u j, k(z0). However, by the Lebesgue dominated
convergence theorem, we have lim j µ(u j, k)=µ(uk), and soµ(uk)=uk(z0). Since
the sequence {uk} is decreasing pointwise to hφ , we have µ(hφ) = hφ(z0), by the
same theorem. Thus hφ satisfies the averaging property on J(K ). Since ωK (z, · )
lies in J(K ) for all z ∈ K , we see that

hφ(z)=
∫
∂ f K

hφ(ζ ) dωK (z, ζ ).

We now show that hφ = φ on ∂ f K . For any x ∈ Ok , we know ωK (x, · )= δx , and

uk(x)= lim
j→∞

u j, k(x)=
∫
φ̃k(ζ ) dωK (x, ζ )= φ̃k(x).

Thus uk(x)= φ̃k(x) for all x ∈ ∂ f K , and so

hφ(x)= lim
k→∞

uk(x)= lim
k→∞

φ̃k(x)= φ(x)

for all x ∈ ∂ f K .
To see that hφ is finely harmonic, we use Theorem 6.4. Observe that uk is the

pointwise limit of the harmonic (and therefore finely harmonic) functions u j, k ,
and the solution hφ is the pointwise limit of uk . From the construction of these
functions, it is clear that they are bounded. �

Corollary 6.6. The set Cb(∂ f K ) is isometrically isomorphic to f H c(K ).



THE DIRICHLET PROBLEM FOR HARMONIC FUNCTIONS ON COMPACT SETS 225

Proof. The previous theorem establishes the homomorphism taking Cb(∂ f K ) to
f H c(K ). Observe that h|∂ f K ∈ Cb(∂ f K ) for every h ∈ f H c(K ). The uniqueness
of the solution shows that h|∂ f K extends as h. Furthermore, the isometry follows
directly from the integral representation in the previous theorem. �
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