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We first prove that the first eigenvalue of the p-Laplace operator and the
Yamabe invariant are both locally Lipschitz along geometric flows under
weak assumptions without assumptions on curvature. Secondly, the Yam-
abe invariant is found to be directionally differentiable along geometric
flows. As an application, an open question about the Yamabe metric and
Einstein metric is partially answered.

1. Introduction

Motivated by the Hamilton’s Ricci flow, the method of geometric flow has been
widely used to deal with geometric and topological properties of manifolds. We
often encounter the derivative of geometric quantities when applying the method
of geometric flow. Cao [2007; 2008] and Li [2007] consider the monotonicity of
the first eigenvalue of −1 + cR (c ≥ 1

4) based on their derivatives along Ricci
flow. Ling [2007] proved a comparison theorem for the eigenvalue of the Laplace
operator based on its derivative along Ricci flow. Unfortunately, there are many
geometric quantities about which we don’t know whether they are differentiable
along the flow. Chang and Lu [2007] derive a formula for the derivative of the
Yamabe constant along Ricci flow under a crucial technical assumption. Recently
Wu, Wang and Zheng [Wu et al. 2010] considered the first eigenvalue of the p-
Laplace operator, whose differentiability along Ricci flow is unknown.

For the first eigenvalue of a linear operator, we may assume that there is a C1-
family of smooth eigenvalues and eigenfunctions along geometric flow by eigen-
value perturbation theory. We have no uniform method to deal with the smoothness
of the first eigenvalue of a nonlinear operator — even the continuity is unknown.

As the first eigenvalue can be seen as a minimum of a functional, we consider
the regularity of geometric quantities of this type along geometric flow. Inspired
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by the method used in [Hamilton 1986; Chow and Lu 2002] to prove the maximum
principle for systems, we first study the relationship between the local Lipschitz
property of continuous functions and their Dini derivatives.

Theorem 1.1. Let m(t) be a continuous function on an interval I ⊂ R. Suppose
that for any t ∈I there exists a C1 function M(t, s) of s defined on a neighborhood
of t such that M(t, t)= m(t) and M(t, s)≥ m(s).

(1) If (∂M/∂s)(t, t) is locally bounded, then m(t) is locally Lipschitz.

(2) For any t in the interior of I, if m(t) is differentiable at t , then m′(t) =
(∂M/∂s)(t, t).

Remark. By (2), if m(t) is differentiable at an interior point t , then the derivative
of m(t) at this point is exactly (∂M/∂s)(t, t), regardless of the choice of function
M(t, s).

Corollary 1.1.1. In the same setting of Theorem 1.1, if (∂M/∂s)(t, t) is locally
bounded, then m(t) is differentiable almost everywhere and m ′(t)= (∂M/∂s)(t, t)
almost everywhere.

Applying Theorem 1.1, we get the following results on the regularities of the
first eigenvalues λ1,p of the p-Laplace operator and the Yamabe invariant along
the general C1 family of smooth geometric flows in this paper. We find that the
first eigenvalue λ1,p of the p-Laplace operator is in general locally Lipschitz con-
tinuous. We also get local Lipschitz continuity of the Yamabe invariant and find
its derivative with respect to t almost everywhere.

Theorem 1.2. Let g(x, t) be a C1 family of smooth metrics on a n-dimensional
compact Riemannian manifold M. Then the first eigenvalue λ1,p(g(t)) of the p-
Laplace operator is locally Lipschitz if p ≥ 2 and M is closed or if p > 1 and M
has nonempty boundary.

Remark. In [Wu et al. 2010], a similar result on local Lipschitz continuity was
obtained, but under some assumptions on curvature. Theorem 1.2 implies that local
Lipschitz continuity should be available for more general smooth geometric flows
without any curvature conditions.

Theorem 1.3. Suppose M is an n-dimensional (n≥ 3) closed connected Riemann-
ian manifold, and g(t), t ∈ [0, T ), is a C1 family of smooth metrics on M. If g(t) is
the Yamabe metric in the conformal class [g(t)] for any t ∈ [0, T ), then the Yamabe
invariant Y(g(t)) is locally Lipschitz with respect to t , and

(1-1)
dY(g(t))

dt
a.e.
= −

∫
g(t)
g(t)

〈∂g
∂t
(t),Rc0(g(t))

〉
g(t)

dµg(t) vol(g(t))−2/p,

where a.e. stands for “almost everywhere”, p = 2n
n−2

, and Rc0(g(t)) is the trace-
free part of Ricci curvature of g(t).
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Let g0 be a smooth metric on manifold M , [g0] be the conformal class of g0,
3[g0] be the collection of Yamabe metrics in [g0] and h be a smooth (0, 2)-type
symmetric tensor on M . Denote by Gh(g0, t) the collection of C1 family of smooth
metrics g(t), t ∈[0, ε)with g(0)= g0 and (∂g/∂t)(0)=h for some ε>0, we define
3h[g0] by

3h[g0] :=
⋃

g(t)∈Gh(g0,t)

{ g0∈3[g0] :g0 is an accumulation point of3[g(t)] as t→0 },

where g0 generally exists by the compactness of 3[g0] when [g0] 6= [gcan], where
gcan denotes the canonical metric on Sn [Anderson 2005]. (They prove that if
[gi ]→ [g0] 6= [gcan] smoothly, then every sequence of Yamabe metrics (g j )i ∈ [gi ]

has a subsequence converging smoothly to a Yamabe metric [g j
] ∈ [g0].) It is easy

to see that if g0 ∈3h[g0] then cg0 ∈3h[g0] and g0 ∈3ch[g0] for any c > 0.
Recently, Brendle [2008] with Marques [2009] gave counterexamples to the

compactness for a full set of solutions to the Yamabe equation if the dimension
of the manifold greater than 24. Later, Khuri, Marques and Schoen [Khuri et al.
2009] proved compactness if the dimension equal or less than 24.

In addition to Theorem 1.3, we have the following derivative calculation at t=0.

Theorem 1.4. Let g(t), t ∈ [0, T ), be a C1 family of smooth metrics on a mani-
fold M and gcan be the canonical metric on Sn . If g(0) = g0 and [g0] 6= [gcan],
then

(1-2)
dY(g(t))

dt

∣∣∣∣
t=0
= min

g̃0∈3[g0]

{
−

∫
g̃0

g0

〈
∂g
∂t
(0),Rc0(g̃0)

〉
g̃0

dµg̃0 vol(g̃0)
−2/p

}
=−

∫
g0

g0

〈
∂g
∂t
(0),Rc0(g0)

〉
g0

dµg0 vol(g0)
−2/p,

where p = 2n/(n− 2), g0 ∈3(∂g/∂t)(0)[g0], Rc0(g̃0) is the trace-free part of Ricci
curvature with respect to g̃0 and vol(g̃0) is the volume of M respect to g̃0. In
particular, Y is directionally differentiable at g0.

Remark. This formula generalizes similar calculations in [Anderson 2005] where
tr(∂g/∂t)(0)= 0, vol(g(t))= 1, and g0 has constant scalar curvature. Meanwhile,
when g0 ∈ 3(∂g/∂t)(0)[g0], Equation (1-2) becomes more convenient to calculate,
compared to the derivative calculation in [Anderson 2005] (in another form):

(1-3) min
g̃0

{
−

∫
g̃0

g0

〈
Rc0(g̃0),

∂g
∂t
(0)
〉

g̃0

dµg̃0

}
,

where g̃0 ∈31[g0] is taken over all accumulation points of 31[g(t)] as t→ 0 for
31[g0] the set of unit volume Yamabe metrics in [g0]. The derivative is difficult to
calculate using this formula, but by Theorem 1.4 we can calculate this derivative
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if we know a Yamabe metric g0 in 3(∂g/∂t)(0)[g0]. Moreover, the set to minimize
in (1-3) has only one element by the last equality in (1-2).

In addition to the local Lipschitz property of the Yamabe invariant, we have:

Corollary 1.4.1. With the same assumptions as in Theorem 1.3, the Yamabe in-
variant Y(g(t)) is directionally differentiable at all t where [g(t)] 6= [gcan].

In particular, in formula (1-2), if (∂g/∂t)(0) = −2 Rc(g0) and g0 is a Yamabe
metric in 3−Rc(g0)[g0], then g0 ∈3−2 Rc(g0)[g0] and R(g0) is constant, hence

dY(g(t))
dt

∣∣∣∣
t=0
=

∫
〈Rc(g0),Rc0(g0)〉g0 dµg0 vol(g0)

−2/p

=

∫ ∣∣Rc0(g0)
∣∣2 dµg0 vol(g0)

−2/p
≥ 0.

Ricci flow evolves sphere to sphere, so we have the following conclusion along the
Ricci flow.

Corollary 1.4.2. Let Mn be a closed and connected manifold with n ≥ 3 and
g(t), t ∈ [0, T ), be a solution of Ricci flow ∂g/∂t = −2 Rc on M with g(0) = g0.
If g0 ∈3−Rc[g0], then dY(g(t))/dt |t=0 ≥ 0 and dY(g(t))/dt |t=0 = 0 if only if g0

is a Einstein metric.

Remark. There is a similar result in [Chang and Lu 2007] under the assumption
that there exists a C1 family of φ(t) > 0 such that φ(t)4/(n−2)g(t) is a Yamabe
metric and φ(0) is constant. From the definition of 3−Rc[g0] we can see that our
assumption is weaker.

Let C denote the set of unit volume constant scalar curvature metrics on a con-
nect closed manifold M ; it is well-known (see [Besse 1987]) that generically C

is an infinite-dimensional manifold. Let s : C 7→ R be the scalar curvature func-
tion. It has long been an open problem whether a Yamabe metric which is a local
maximizer of s is necessarily an Einstein metric [Besse 1987]. Some progress on
this question was made in [Bessieres et al. 2003] in dimension 3 and in [Anderson
2005] in any dimension. Let M be the collection of all smooth metrics on M
and Y :M 7→R be the Yamabe invariant function. By the definition of the Yamabe
invariant, s(g)≥Y(g) for any g∈C, hence if a Yamabe metric is a local maximizer
of s, it must be a local maximizer of Y. Now, we consider whether a Yamabe metric
that is a local maximizer of the Yamabe invariant is necessarily an Einstein metric.
Following from Corollary 1.4.2, the next result gives a partial answer.

Corollary 1.4.3. Let Mn be a closed and connected manifold with n ≥ 3 and
suppose a Yamabe metric g is a local maximum of the Yamabe invariant func-
tional Y( · ). If g ∈3−Rc[g], then g is Einstein.
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In Section 2, we give a basic introduction to Dini derivatives and the proof of
Theorem 1.1. In Section 3, we prove the Lipschitz property of the first eigenvalue
of the p-Laplace operator along geometric flows. In Section 4, we show that the
Yamabe invariant is locally Lipschitz and directionally differentiable along geo-
metric flows.

2. Dini derivatives and the proof of Theorem 1.1

In this section, we first recall the definitions of Dini derivatives and semiconti-
nuity. Then we give some propositions about Dini derivatives. Lastly, we prove
Theorem 1.1.

Hamilton [1986] studied properties of Lipschitz functions by means of their Dini
derivatives, and from this derived the maximum principle for systems on closed
manifolds. Chow [2002] proved similar results in weaker settings. Dini derivatives
provide a powerful way to deal with nonregular functions.

These definitions of Dini derivatives and semicontinuity also appear in [Chow
et al. 2008].

Definition 2.1 (Dini derivatives). Let f (t) be a function on (a, b). The upper Dini
derivative is the lim sup of forward difference quotients:

d+ f
dt

(t) := lim sup
h→0+

f (t + h)− f (t)
h

.

The lower Dini derivative is the lim inf of forward difference quotients:

d− f
dt

(t) := lim inf
h→0+

f (t + h)− f (t)
h

.

The upper converse Dini derivative is the lim sup of backward difference quotients:

d+ f
dt

(t) := lim sup
h→0+

f (t)− f (t − h)
h

.

The lower converse Dini derivative is the lim inf of backward difference quotients:

d− f
dt

(t) := lim inf
h→0+

f (t)− f (t − h)
h

.

If the function f is also defined at a, we can define its upper Dini derivative and
lower Dini derivative at a; and if the function f is also defined at b, we can define
its upper converse Dini derivative and lower converse Dini derivative at b.

Since we don’t make any assumption on the function f (t), it is possible that
any one of the Dini derivatives of f (t) above may take the value +∞ or −∞.

Definition 2.2 (semicontinuity). Let f (t) be a function on an interval. We say f
is right upper semicontinuous if lim suph→0+ f (t + h) ≤ f (t); we say f is right
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lower semicontinuous if lim infh→0+ f (t+h)≥ f (t); we say f is left upper semi-
continuous if lim suph→0+ f (t−h)≤ f (t); we say f is left lower semicontinuous
if lim infh→0+ f (t − h)≥ f (t).

Lemma 2.3. If f (t) :(a, b)→R is left lower semicontinuous with (d+ f/dt)(t)≤0,
then f (t) is decreasing.

Proof. Given ε > 0, define fε(t) := f (t)− εt . We shall show that fε(t) ≤ fε(s)
for any a < s ≤ t < b. The lemma then follows from taking ε→ 0.

Since (d+ f/dt)(s)≤ 0, we have (d+ fε/dt)(s)≤−ε, then there exists a number
δ(s, ε) > 0 such that ( fε(s + h)− fε(s))/h ≤ −ε/2 < 0 for all h ∈ (0, δ(s, ε)),
hence fε(t)≤ fε(s) on h ∈ [s, s+ δ(s, ε)). Define τ(ε, s) ∈ [s, b] by

τ := sup
{
τ ′ ∈ [s, b] : fε(t)≤ fε(s) for all t ∈ [s, τ ′)

}
.

then τ ≥ s+δ(s, ε) > s. One can check that, in fact, fε(t)≤ fε(s) for all t ∈ [s, τ ).
We now prove τ = b to complete the proof. If for some s and ε > 0, we have τ < b,
then there exists a sequence of times {τi }↗ τ , such that fε(s)≥ fε(τi−1/2i ) when
i is large enough. Hence

fε(s)≥ lim inf
i→∞

fε(τi − 1/2i )≥ lim inf
h→0+

fε(τ − h)≥ fε(τ )

follows from the left lower semicontinuity of fε(t). Applying the above procedure
again by replacing s with τ gives fε(t)≤ fε(τ )≤ fε(s) when t ∈ [τ, τ + δ(τ, ε)),
hence fε(t) ≤ fε(s) when t ∈ [s, τ + δ(τ, ε)). This is a contradiction since the
definition of τ implies δ(τ, ε)≤ 0. �

Note. A similar conclusion can be found in [Chow et al. 2008]. There, the domain
of f is [0, T ), hence f must be both left lower semicontinuous and right upper
semicontinuous. Here we choose the domain of f to be (a, b), so we can weaken
the assumptions on f .

Proposition 2.4. (a) If f (t) : (a, b) → R is left lower semicontinuous, then
d+ f/dt ≤ 0 if and only if f (t) is decreasing.

(b) If f (t) : (a, b)→ R is right upper semicontinuous, then d+ f/dt ≤ 0 if and
only if f (t) is decreasing.

(c) If f (t) : (a, b) 7→R is left upper semicontinuous, then d− f/dt ≥ 0 if and only
if f (t) is increasing.

(d) If f (t) : (a, b) 7→ R is right lower semicontinuous, then d− f/dt ≥ 0 if and
only if f (t) is increasing.

Proof. (a) If f (t) is decreasing then d+ f/dt ≤ 0. The other direction follows from
Lemma 2.3.
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(b)–(d) follows from applying part (a) to the functions− f (−t),− f (t), and f (−t),
respectively. �

From this propositions, we see that a semicontinuous function is monotonic if
certain types of its Dini derivatives have a definite sign. A further analysis shows
that monotonicity can be a nice bridge between Dini derivatives of different type.

Claim 2.5. Let I⊂ R be an interval and I̊ be its interior.

(a) If f (t) : I 7→ R is right upper semicontinuous and left lower semicontinuous,

d+ f
dt
≤ 0 in I̊ ⇐⇒ f (t) is decreasing on I ⇐⇒

d+ f
dt
≤ 0 in I̊.

(b) If f (t) : I 7→ R is right lower semicontinuous and left upper semicontinuous,

d− f
dt
≥ 0 in I̊ ⇐⇒ f (t) is increasing on I ⇐⇒

d− f
dt
≥ 0 in I̊.

Proof. We prove the first part; the second is similar. If f (t) : I 7→R is right upper
semicontinuous and left lower semicontinuous, then f (t) is decreasing on I if and
only if f (t) is decreasing on I̊. The conclusion then follows from parts (a) and (b)
of Proposition 2.4. �

Theorem 2.6. If f : (a, b) 7→ R is a continuous function with d+ f/dt or d+ f/dt
locally bounded from above and d− f/dt or d− f/dt locally bounded from below,
then f is locally Lipschitz.

Proof. Given any s∈ (a, b), let U (s) be a compact and connected neighborhood of s
in (a, b). Then on U (s), without loss of generality, we can assume d+ f/dt ≤ A or
d+ f/dt ≤ A and d− f/dt ≥−A or d− f/dt ≥−A, where A>0 is a constant. Hence
d+( f − At)/dt ≤ 0 (or d+( f − At)/dt ≤ 0) by parts (a) and (b) of Proposition 2.4,
and d−( f +At)/dt ≥0 (or d−( f +At)/dt ≥ 0) by parts (c) and (d). Then f −At is
decreasing and f + At is increasing on U (s) by Claim 2.5. Thus | f (t2)− f (t1)| ≤
A |t2− t1| for any t1, t2 ∈U (s), so f is locally Lipschitz. �

Proof of Theorem 1.1. Since M(t, t)=m(t) and M(t, s)≥m(s) in a neighborhood
of t , we have

d+m
dt

(t)= lim sup
h→0+

m(t+h)−m(t)
h

≤ lim sup
h→0+

M(t, t+h)−M(t, t)
h

(2-1)

=
∂M
∂s
(t, t),

d−m
dt

(t)= lim inf
h→0+

m(t)−m(t−h)
h

≥ lim inf
h→0+

M(t, t)−M(t, t−h)
h

(2-2)

=
∂M
∂s
(t, t).
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Since (∂M/∂s)(t, t) is locally bounded, (d+m/dt)(t) is bounded from above and
(d−m/dt)(t) is bounded from below. Then by Theorem 2.6, the function m(t) is
locally Lipschitz in the interior of I.

Let a be the left endpoint of I, b be the right endpoint of I. If a ∈ I, let c =
min{a+1, (a+b)/2}. Since (∂M/∂s)(t, t) is locally bounded on I, we can assume
that |(∂M/∂s)(t, t)| ≤ A (A is a constant) on [a, c]. Then d+(m(t)− At)/dt ≤ 0
on [a, c) and d−(m(t)+ At)/dt ≥ 0 on (a, c] by (2-1) and (2-2). Hence by part
(a) of Claim 2.5, the function m(t)− At , is decreasing on [a, c], and by part (b),
the function m(t)+ At is increasing on [a, c]. Then |m(t1)−m(t2)| ≤ A |t1− t2|
for any t1, t2 ∈ [a, c], so m(t) is locally Lipschitz at t = a. Similarly, if b ∈ I, then
m(t) is locally Lipschitz at t = b. In conclusion, m(t) is locally Lipschitz on I.

For any t in the interior of I, if m(t) is differentiable at this point, then by (2-1)
we have m′(t) = (d+m/dt)(t) ≤ (∂M/∂s)(t, t), and by (2-2) we have m′(t) =
(d−m/dt)(t)≥ (∂M/∂s)(t, t). Hence m′(t)= (∂M/∂s)(t, t). �

3. First eigenvalue of the p-Laplacian

In this section we consider the local Lipschitz property of the p-Laplace operator
along general geometric flows. Let (M, g) be a compact connected Riemannian
manifold. Define

G( f, g) :=

∫
M |∇ f |pg dµg∫
M | f |

p dµg
,

where∇ f =d f is a covariant vector. Recalling the definition of the first eigenvalue
λ1,p(g) of the p-Laplace operator, it is known that if ∂M 6=∅ then

λ1,p(g) := inf
{
G( f, g) : f ∈W 1,p

0 (M), f 6= 0
}

and if M is closed then

λ1,p(g) := inf
{
G( f, g) : f ∈W 1,p(M),

∫
M | f |

p−2 f dµg = 0, f 6= 0
}
.

The minimum (a positive number) is achieved by a C1,α (0 < α < 1) eigenfunc-
tion f (see [Serrin 1964; Tolksdorf 1984]). This eigenfunction f satisfies the
Euler–Lagrange equation

1p f =−λ1,p(g)| f |p−2 f,

where 1p (p > 1) is the p-Laplace operator with respect to g given by

1p f = divg(|∇ f |p−2
g ∇ f ).

The following theorem implies that λ(g(t)) is continuous with respect to t along
general geometric flows.
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Theorem 3.1 [Wu et al. 2010]. If g1 and g2 are two metrics on M which satisfy
(1+ ε)−1g1 ≤ g2 ≤ (1+ ε)g1, then for any p > 1, we have

(1+ ε)−(n+p/2)
≤
λ1,p(g1)

λ1,p(g2)
≤ (1+ ε)(n+p/2).

Let f ∈ C1,α(M) be nonconstant and g(x, t), t ∈ [0, T ), be a C1 family of
smooth metrics on M . Define a function of c ∈ (−∞,∞) and t ∈ [0, T ):

P(c, t) :=
∫

M
| f + c|p−2 ( f + c) dµg(t), p ≥ 2.

The function P(c, t) is C1 with respect to c and t , since

∂P
∂c
= (p− 1)

∫
M
| f + c|p−2 dµg(t) > 0.

Then by the implicit function theorem, given any c0 and t0 there exists a C1 func-
tion c(t) defined on a neighborhood of t0 such that P(c(t), t)= P(c0, t0).

In this and the next sections, if f is a real function on M , we simply write sup f
instead of supx∈M f (x). Let g(t) be a family of Riemannian metrics on manifold.
If α(t) is a family of (0, 2)-type tensors, we denote by trα(t) = gi j (t)αi j (t) its
trace with respect to g(t) and by

|α(t)|g(s) =
√

gi j (s)gkl(s)αik(t)αjl(t)

its norm with respect to g(s); if β(t) is also a family of (0, 2)-type tensors, we
denote by

〈α(t), β(t)〉g(s) =
√

gi j (s)gkl(s)αik(t)βjl(t)

the inner product derived from the metric g(s). Moreover, we use |α(t)| instead of
|α(t)|g(t) and 〈α(t), β(t)〉 instead of 〈α(t), β(t)〉g(t) for simplicity.

Proof of Theorem 1.2. For any t0, let f (t0) be a minimizer of G( · , g(t0)). If M is
closed and p ≥ 2, then f (t0) is a nonconstant C1 function on M with∫

M
| f (t0)|p−2 f (t0) dµg(t0) = 0.

Hence there is a continuous differentiable function c(t0, s) of s defined in a neigh-
borhood of t0 such that c(t0, t0)= 0 and∫

M
| f (t0)+ c(t0, s)|p−2 ( f (t0)+ c(t0, s)) dµg(s) = 0.

Otherwise if ∂M 6=∅ and p > 1, we can just take c(t0, s)≡ 0.
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Let N (t, s)= G( f (t)+ c(t, s), g(s)). Then N (t, t)= λ1,p(g(t)) and N (t, s)≥
λ1,p(g(s)). A simple calculation gives

∂N
∂s
(t, t)

=
∂

∂s

∣∣∣
s=t

∫
M |∇( f (t)+ c(t, s))|pg(s) dµg(s)∫

M | f (t)+ c(t, s)|p dµg(s)

=

(∫
M

(
|∇ f (t)|pg(t)

tr(∂g/∂s)(t)
2

−
p
2
|∇ f (t)|p−2

g(t)
∂g
∂s
(t)(∇ f (t),∇ f (t))

)
dµg(t)

− λ1,p(g(t))
∫

M

(
| f (t)|p

tr(∂g/∂s)(t)
2

+ p | f (t)|p−2 f (t)∂c
∂s
(t, t)

)
dµg(t)

)

×

(∫
M
| f (t)|p dµg(t)

)−1

.

To simplify this formula, we use that∫
M

p | f (t)|p−2 f (t)∂c
∂s
(t, t) dµg(t) = 0.

When M is closed, this follows from
∫

M p | f (t)|p−2 f (t) dµg(t) = 0, and when
∂M 6=∅, from c(t, s)≡ 0. Hence we get

(3-1) ∂N
∂s
(t, t)=

(∫
M

(
|∇ f (t)|pg(t)

tr(∂g/∂s)(t)
2

−
p
2
|∇ f (t)|p−2

g(t)
∂g
∂s
(t)(∇ f (t),∇ f (t))

)
dµg(t)

− λ1,p(g(t))
∫

M
| f (t)|p

tr(∂g/∂s)(t)
2

dµg(t)

)

×

(∫
M
| f (t)|p dµg(t)

)−1

.

Now apply the Cauchy–Schwarz formula∣∣∣∣∂g
∂s
(t)(∇ f (t),∇ f (t))

∣∣∣∣≤ ∣∣∣∣∂g
∂s
(t)
∣∣∣∣
g(t)
|∇ f (t)|2

and the fact that∣∣∣∣tr ∂g
∂s
(t)
∣∣∣∣= ∣∣∣∣〈g(t), ∂g

∂s
(t)
〉∣∣∣∣≤ |g(t)| ∣∣∣∣∂g

∂s
(t)
∣∣∣∣
g(t)
=
√

n
∣∣∣∣∂g
∂s
(t)
∣∣∣∣
g(t)

to obtain ∣∣∣∂N
∂s
(t, t)

∣∣∣≤ (√n+
p
2

)
λ1,p(g(t)) sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣
g(t)

.
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By the compactness of M , λ1,p(g(t)) and sup |(∂g/∂s)(t)|g(t) are both continuous.
Then |(∂N/∂s)(t, t)| is locally bounded, so Theorem 1.1 implies Theorem 1.2. �

4. The Yamabe invariant

In this section, we consider the local Lipschitz property of the Yamabe invariant
along general geometric flows and use the constants

p = 2n
n−2

, a = 4(n−1)
n−2

, b = 4
n−2

.

With no specification, M is a n-dimensional (n ≥ 3) connected closed smooth
Riemannian manifold, g is a smooth metric on it. Denote by R its scalar curvature,
by Rc its Ricci curvature, and by Rc0

= Rc− 1
n Rg its trace-free Ricci curvature.

The conformal class [g] of metric g is defined by

[g] := {φbg : φ ∈ C∞(M), φ > 0},

and the homogeneous total scalar curvature S(g) is defined by

S(g) :=
∫

M
R dµg

/∫
M

dµg,

where dµg is the volume form with respect to metric g. Then the Yamabe invariant
is defined by

(4-1) Y(g) := inf
g∈[g]

S(g).

The minimizer metric is called a Yamabe metric. For the conformal transformation
of the scalar curvature R(g) and the trace-free Ricci curvature Rc0(g), we have (see
[Besse 1987])

φ p−1 R(φbg)= R(g)φ− a1φ,(4-2)

Rc0(φ2g)= Rc0(g)+ (n− 2)φ(∇∇φ−1)0,(4-3)

where 1 is the Laplace–Beltrami operator with respect to the metric g, α0
=

α− 1
n tr (α) α is the trace-free part of (0, 2)-type tensor α. If we define

E(φ, g) :=
∫
(a |∇φ|2g + R(g)φ2) dµg,

Q(φ, g) :=
E(φ, g)(∫
φ p dµg

)2/p = E(φ, g) ‖φ‖−2
p,g ,

where ∇φ = dφ is a covariant vector and ‖φ‖p,g =
(∫
φ p dµg

)1/p is the L p norm
with respect to metric g. Then the Yamabe invariant Y(g) can also be defined by

(4-4) Y(g) := inf{Q(φ, g) : φ ∈ C∞(M), φ > 0}.
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The existence of a minimizer u follows from the solution of the Yamabe prob-
lem (see [Lee and Parker 1987] for the history). Hence ubg is a Yamabe metric,
moreover the minimizer u satisfies the Euler–Lagrange function

(4-5) R(g)u− a1u = α u p−1,

where
α = E(u, g) ‖u‖−p

p,g = Y(g) ‖u‖2−p
p,g .

Denote by gcan the canonical metric on Sn , and consider the set3[g] of all smooth
Yamabe metrics in a given conformal class [g]. By the solution to the Yamabe
problem, the sets 3[g] as g varies are also compact in the following sense (see
[Anderson 2005]): if gi → g smoothly and [g] 6= [gcan], then any sequence of
Yamabe metrics gi ∈ 3[gi ] has a subsequence converging smoothly to a Yamabe
metric g ∈3[g].

The Yamabe constant Y(g) is continuous with respect to g under the C2-topo-
logy of the space of metrics on M (see [Besse 1987, Proposition 4.31]).

Proof of Theorem 1.3. Since each g(t)∈ [g(t)] is a Yamabe metric, we can assume
g(t)= φb(t)g(t). Then 0<φ(t) ∈C1(M) and φ(t) minimizes Q( · , g(t)). Defin-
ing N (t, s) := Q(φ(t), g(s)), then Y(g(t)) = N (t, t) and Y(g(s)) ≤ N (t, s). We
compute

(4-6) ∂N
∂s
(t, t)

=
∂

∂s

∣∣∣
s=t

(∫
(a |∇φ(t)|2g(s)+ R(s)φ(t)2) dµg(s)(∫

φ(t)p dµg(s)
)2/p

)

=

∫ (
−a

∂g
∂s
(t)(∇φ(t),∇φ(t))+∂R

∂s
(t)φ(t)2

)
dµg(t)

(∫
φ(t)p dµg(t)

)−2/p

+

∫
1
2
(
a |∇φ(t)|2g(s)+ R(t)φ(t)2

)
tr
∂g
∂s
(t)dµg(t)

(∫
φ(t)p dµg(t)

)−2/p

−
1
p

Y(g(t))
∫
φ(t)p tr

∂g
∂s
(t)dµg(t)

(∫
φ(t)p dµg(t)

)−1

,

so that

(4-7)
∣∣∣∂N
∂s
(t, t)

∣∣∣
≤

(
1+
√

n
2

)
sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣·
∫

a |∇φ(t)|2g(t) dµg(t)(∫
φ(t)p dµg(t)

)2/p +

√
n |Y(g(t))|

p
sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣

+

(
sup

∣∣∣∂R
∂s
(t)
∣∣∣+ √n

2
sup |R(g(t))| · sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣)

∫
φ(t)2 dµg(t)(∫
φ(t)p dµg(t)

)2/p .
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Next, we process the two integral terms in the above formula. Since p>2, applying
Hölder’s inequality gives

(4-8)

∫
φ2 dµg(∫
φ p dµg

)2/p ≤ vol(g)1−2/p.

By the definition of Q(φ, g), we have

(4-9)

∫
a |∇φ|2g dµg(∫
φ p dµg

)2/p = Q(φ, g)−

∫
R φ2 dµg(∫
φ p dµg

)2/p

≤ Q(φ, g)+ sup |R(g)|

∫
φ2 dµg(∫
φ p dµg

)2/p

≤ Q(φ, g)+ sup |R(g)| vol(g)1−2/p.

Substituting (4-8) and (4-9) into (4-7), we come to∣∣∣∂N
∂s
(t, t)

∣∣∣≤ ((1+√n
)

sup
∣∣∣∣∂g
∂s
(t)
∣∣∣∣ · sup |R(g(t))| + sup

∣∣∣∂R
∂s
(t)
∣∣∣) vol(g(t))1−2/p

+

(
1+
√

n
2
+

√
n

p

)
sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣ · |Y(g(t))| .

Since sup |∂g/∂s(t)|, sup |∂R/∂s(t)|, sup |R(g(t))|, vol(g(t))1−2/p, and |Y(g(t))|
are all continuous on the closed manifold M , we conclude that (∂N/∂s)(t, t) is
locally bounded, hence Y(g(t)) is locally Lipschitz by Theorem 1.1.

Next, we simplify the formula (4-6). By (4-5) we have

Rφ(t)− a1φ(t)= Y(g(t))‖φ(t)‖2−p
p,g(t)φ(t)

p−1.

Multiplying both sides by φ(t) tr(∂g/∂s)(t) and integrating by parts gives

(4-10) Y(g(t))‖φ(t)‖2−p
p,g(t)

∫
φ(t)p tr

∂g
∂s
(t) dµg(t)

=

∫ (
Rφ(t)2+ a |∇φ(t)|2− a

2
1
(
φ(t)2

))
tr
∂g
∂s
(t) dµg(t).

Substituting (4-10) into (4-6), we get

(4-11)
∂N
∂s
(t, t)

=

(∫
a

2p
1(φ(t)2) tr

∂g
∂s
(t)+φ(t)2

(
∂R
∂s
(t)+ 1

n
R tr

∂g
∂s
(t)
)

dµg(t)

−

∫
a
〈(
∂g
∂s
(t)
)0

,∇φ(t)⊗∇φ(t)
〉

dµg(t)

)
‖φ(t)‖−2

p,g(t).
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The evolution function of scalar curvature R is

∂R
∂s
= div

(
div

∂g
∂s

)
−1 tr

∂g
∂s
−

〈
Rc,

∂g
∂s

〉
.

Substituting this into (4-11) gives

∂N
∂s
(t, t)

=

∫ 〈
∂g
∂s
(t),

(
∇∇φ(t)2−φ(t)2 Rc−a∇φ(t)⊗∇φ(t)

)0
〉

dµg(t)‖φ(t)‖−2
p,g(t)

=−

∫ 〈
∂g
∂s
(t), φ(t)2

(
Rc+(n− 2)φ(t)b/2∇∇φ(t)−b/2)0

〉
dµg(t)‖φ(t)‖−2

p,g(t).

By the conformal transformation of trace-free Ricci curvature (4-3),

∂N
∂s
(t, t)=−

∫
φ−b(t)

〈
∂g
∂s
(t),Rc0(φb(t)g(t))

〉
dµφb(t)g(t) vol(φb(t)g(t))−2/p.

Since φb(t)= g(t)/g(t), we get

(4-12) ∂N
∂s
(t, t)=−

∫
g(t)
g(t)

〈
∂g
∂s
(t),Rc0(g(t))

〉
g(t)

dµg(t) vol(g(t))−2/p.

Then the theorem follows from Corollary 1.1.1. �

Proof of Theorem 1.4. Let φ(t) be any minimizer of Q( · , g(t)). Then

g̃(t)= φb(t)g(t)

is the Yamabe metric in the conformal class [g(t)]. Define

N(g̃(s), g(t)) := Q(φ(s), g(t)).

Then

Y(g(t))= N(g̃(t), g(t)), Y(g(t))≤ N(g̃(s), g(t)).

Hence, when t > 0,

(4-13)
N(g̃(t), g(t))−N(g̃(t), g(0))

t
≤

Y(g(t))−Y(g(0))
t

≤
N(g̃(0), g(t))−N(g̃(0), g(0))

t
.

By (4-12) and the definitions of N and N , we get

(4-14) ∂N
∂t
(g̃(t), g(t))=−

∫
g̃(t)
g(t)

〈
∂g
∂t
(t),Rc0(g̃(t))

〉
g̃(t)

dµg̃(t) vol(g̃(t))−2/p.
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It is easy to see that N(g̃(s), g(t)) and (∂N/∂t)(g̃(s), g(t)) as functionals of g̃(s)
and g(t) are continuous with the C2-topology on the space of metrics. Applying
the mean value theorem to the variable t in the function N(g̃(s), g(t)), there exists
a number 0< β(s, t) < t such that

N(g̃(s), g(t))−N(g̃(s), g(0))= t ∂N
∂t
(g̃(s), g(β(s, t))).

Substituting into (4-13), we come to

(4-15) ∂N
∂t
(g̃(t), g(β(t, t)))≤

Y(g(t))−Y(g(0))
t

≤
∂N
∂t
(g̃(0), g(β(0, t))).

Letting t → 0, then β(0, t)→ 0 and β(t, t)→ 0 follows from 0 < β(s, t) < t .
Hence

(4-16) lim sup
t→0

Y(g(t))−Y(g(0))
t

≤
∂N
∂t
(g̃(0), g(0)) for all g̃(0) ∈3[g(0)].

Pick ti > 0, ti → 0 such that

(4-17) lim inf
t→0

Y(g(t))−Y(g(0))
t

= lim
i→∞

Y(g(ti ))−Y(g(0))
ti

.

Using the compactness of 3[g0], there exists a subsequence of ti (denoted again
by ti for simplicity) and a Yamabe metric g0 ∈3[g0] such that

lim
i→∞

g̃(ti )= g0.

Then by the first inequality in (4-15),

(4-18) lim
i→∞

Y(g(ti ))−Y(g(0))
ti

≥ lim
i→∞

∂N
∂t
(g̃(ti ), g(β(ti , ti )))

=
∂N
∂t
(g0, g(0)).

Hence by (4-16) and (4-17), Y(g(t)) is differentiable at t = 0 and

(4-19) lim
t→0

Y(g(t))−Y(g(0))
t

=
∂N
∂t
(g0, g(0)).

This implies the first equality in (1-2) by (4-16) and (4-14). We now know that
the ti chosen after (4-17) can be any sequence of ti > 0, ti → 0. Then the g0

in (4-19) can be any accumulation point of g(t) as t → 0 in 3[g0], hence any
accumulation point of 3[g(t)] as t → 0 in 3[g0]. The second equality in (1-2)
follows from applying this to other metrics g(t) ∈ G(∂g/∂t)(0)(g0, t). �
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