A NOTE ON \(p \)-HARMONIC \(l \)-FORMS
ON COMPLETE MANIFOLDS

LIANG-CHU CHANG AND CHIUNG-JUE ANNA SUNG
A NOTE ON \(p \)-HARMONIC \(l \)-FORMS
ON COMPLETE MANIFOLDS

LIANG-CHU CHANG AND CHIUNG-JUE ANNA SUNG

Let \((M^m, g)\) be an \(m\)-dimensional complete noncompact manifold. We show that for all \(p > 1\) and \(l > 1\), any bounded set of \(p\)-harmonic \(l\)-forms in \(L^q(M)\), with \(0 < q < \infty\), is relatively compact with respect to the uniform convergence topology if the curvature operator of \(M\) is asymptotically nonnegative.

1. Introduction

Let \((M^m, g)\) be an \(m\)-dimensional complete oriented Riemannian manifold with associated Riemannian metric \(g\). Let \(d\) be the exterior differential operator and let

\[\delta \equiv \ast d \ast \]

be the codifferential operator, where the linear operator \(\ast\) is defined pointwise by

\[\ast (\omega_1 \wedge \cdots \wedge \omega_l) \equiv \omega_{l+1} \wedge \cdots \wedge \omega_m, \]

for a positively oriented orthonormal coframe \(\{\omega_1, \omega_2, \ldots, \omega_m\}\) at the point. The Hodge–Laplace–Beltrami operator \(\triangle\) acting on the space of smooth \(l\)-forms \(\Lambda^l(M)\) is defined by

\[\triangle \equiv -(d\delta + \delta d). \]

Definition 1.1. An \(l\)-form \(\omega\) on \(M\) is a \(p\)-harmonic \(l\)-form if \(\omega\) satisfies \(d\omega = 0\) and \(\delta(|\omega|^{p-2}\omega) = 0\) for all \(p > 1\).

When \(p = 2\), the \(p\)-harmonic \(l\)-form \(\omega \in \Lambda^l(M)\) is called a harmonic \(l\)-form on \((M, g)\), that is,

\[\triangle_g \omega = 0. \]

When \(l = 0\), let \(\Omega\) be a compact domain on the Riemannian manifold \((M, g)\), and let \(\omega\) be a real smooth function on \(M\). For \(p > 1\), the \(p\)-energy of \(\omega\) on \(\Omega\) is

\[E_p(\Omega, \omega) \equiv \frac{1}{p} \int_{\Omega} |\nabla \omega|^p dV_g. \]
The function ω is said to be p-harmonic on M if ω is a critical point of $E_p(\Omega, \cdot)$ for all $\Omega \subset M$, that is, if ω satisfies the Euler–Lagrange equation

$$\text{div}(|\nabla \omega|^{p-2}\nabla \omega) = 0.$$

A curvature operator K_l on manifold M^m is defined as follows:

$$K_l = \begin{cases}
 \text{lower bound of the curvature operator on } M & \text{for } l > 1; \\
(m - 1)^{-1} \times \text{(lower bound of the Ricci curvature)} & \text{for } l = 1.
\end{cases}$$

We call this curvature operator K_l of M asymptotically nonnegative if $K_l \geq -K(r)$, where

$$K(r) : [0, \infty) \to [0, \infty)$$

is a nonnegative and nonincreasing continuous function of distance r to a fixed point $z \in M$, with

$$\int_0^\infty r K(r) < \infty.$$

Yau [1975] proved that any positive harmonic function on a manifold with nonnegative Ricci curvature must be constant. Much work has been done in the finite dimension of space of polynomial growth harmonic functions of growth order at most d [Li 1997; Colding and Minicozzi 1997; Li and Tam 1995; Li and Wang 1999]. Concerning general harmonic l-forms, Li [1980] established a dimension estimate of the space of polynomial growth harmonic forms. In this paper, we study general p-harmonic l-forms and p-harmonic maps on complete noncompact manifolds, for $p > 1$ and $l \neq 0$. For $p = 2$, Chen and Sung [2007] considered the space consisting of all harmonic l-forms of polynomial growth for all $l \geq 1$, and gave a dimension estimate of such a space when M has asymptotically nonnegative curvature. Since the set of p-harmonic l-forms is no longer linear, it is interesting to study the set of p-harmonic l-forms and to seek topological and geometrical links. Interestingly, Zhang [2001] proved that any $L^q(M)$ p-harmonic 1-forms must be zero on a manifold with nonnegative Ricci curvature for $p > 1$ and $0 < q < \infty$. Chang et al. [2010] generalized Zhang’s result to a complete manifold M with asymptotically nonnegative curvature and finite first Betti number. They proved that a bounded set of $L^q(M)$ p-harmonic 1-forms on (M, g) has a uniformly convergent subsequence.

Next we introduce the Sobolev inequality. A geodesic ball $B_x(r)$ in a complete manifold M is said to admit a Sobolev inequality $S(C, \nu)$ if there exist constants $C > 0$ and $\nu > 2$ such that for all $f \in C_0^\infty(B_x(r))$, we have

$$\left(\int_{B_x(r)} |f|^{2\nu/(\nu-2)} \right)^{(\nu-2)/\nu} \leq Cr^2 V_x^{-2/\nu}(r) \int_{B_x(r)} (|\nabla f|^2 + r^{-2} f^2),$$
where $V_x(r)$ is the volume of geodesic ball $B_x(r)$. Using the Bochner formula, the Moser iteration [1961] and the Sobolev inequality, Chang et al. [2010] showed that any bounded set of p-harmonic 1-forms in $L^q(M)$, with $0 < q < \infty$, is relatively compact with respect to the uniform convergence topology if M has asymptotically nonnegative Ricci curvature and finite first Betti number. However, the Bochner formula does not work for p-harmonic l-forms for $l > 1$. We derive a new type of Bochner formula to overcome this obstacle. We study the set of p-harmonic l-forms, for $l > 1$, on a complete noncompact manifold M, and then study the set of p-harmonic maps from a complete manifold M to a complete manifold N. In Section 2, we derive a different type of Bochner formula for p-harmonic l-forms and prove that any bounded set of p-harmonic l-forms in $L^q(M)$, with $0 < q < \infty$, must be relatively compact with respect to the uniform convergence topology if the curvature operator of M is asymptotically nonnegative. Of course, this implies that the linear space of harmonic l-forms must be finite-dimensional when $p = 2$ and $l \geq 0$. Also, there is no nonzero p-harmonic l-form on M in $L^q(M)$ if the curvature operator of M is nonnegative. In Section 3, we also derive a different type of Bochner formula for p-harmonic maps from M with asymptotically nonnegative Ricci curvature to N with nonpositive sectional curvature. We prove that the set of such p-harmonic maps with finite p-energy on M has a uniformly convergent subsequence. The p-harmonic map is constant if M is compact with nonnegative Ricci curvature, which is an extension of the fact in the harmonic map case ($p = 2$).

2. p-harmonic l-forms

Any smooth l-form on an m-dimensional manifold M satisfies the Kato inequality:

Lemma 2.1 [Wan and Xin 2004; Calderbank et al. 2000; Herzlich 2000]. Let ω be a differentiable l-form on M. Then

$$|\nabla|\omega|^2| \leq 2|\omega||\nabla\omega|.$$

Lemma 2.2 [Bochner 1946]. Let $\omega = \sum_I a_I \omega_I$ be an l-form on M. Then

$$\Delta|\omega|^2 = 2\langle\Delta\omega, \omega\rangle + 2|\nabla\omega|^2 + 2K_1\langle\omega, \omega\rangle.$$

Let (M, g) be a complete noncompact manifold. We wish to study the set of L^q p-harmonic l-forms on M for $l > 1$ and $0 < q < \infty$. To prove the main theorem for all $l > 1$, we show a different type of Bochner formula for p-harmonic l-forms:

Lemma 2.3 (Bochner-type formula for p-harmonic forms). Let ω be a p-harmonic l-form on an m-dimensional complete Riemannian M^m. Then

$$|\omega|\Delta|\omega|^{p-1} = \langle\Delta(|\omega|^{p-2}\omega), \omega\rangle + |\omega|^{2-p}\left(|\nabla(|\omega|^{p-2}\omega)|^2 - |\nabla|\omega|^{p-1}|^2\right) + K_1|\omega|^p,$$

in the sense of distributions.
Proof. The Bochner–Weitzenböck formula for $|\omega|^{p-2}\omega$ asserts that

\[\frac{1}{2} \Delta |\omega|^{p-2}\omega |^2 = \left(\Delta (|\omega|^{p-2}\omega), |\omega|^{p-2}\omega \right) + |\nabla (|\omega|^{p-2}\omega)|^2 + K_l |\omega|^{p-2}\omega|^2. \]

The left side of (2-1) is given by

\[\frac{1}{2} \Delta |\omega|^{p-2}\omega |^2 = \frac{1}{2} \Delta |\omega|^{2p-2} = \frac{1}{2} \Delta (|\omega|^{p-1})^2 = |\omega|^{p-1} \Delta |\omega|^{p-1} + |\nabla |\omega|^{p-1}|^2. \]

Hence,

\[|\omega|^{p-1} \Delta |\omega|^{p-1} + |\nabla |\omega|^{p-1}|^2 = \left(\Delta (|\omega|^{p-2}\omega), |\omega|^{p-2}\omega \right) + |\nabla (|\omega|^{p-2}\omega)|^2 + K_l |\omega|^{2p-4}|\omega|^2. \]

It follows that

\[|\omega|^{p-1} \Delta |\omega|^{p-1} = |\omega|^{p-2}(\Delta (|\omega|^{p-2}\omega), \omega) + (|\nabla (|\omega|^{p-2}\omega)|^2 - |\nabla |\omega|^{p-1}|^2) + K_l |\omega|^{2p-2}. \]

For l-forms with $l > 1$, the volume comparison property holds on M with asymptotically nonnegative curvature operator [Li and Tam 1995]. Therefore, inside geodesic ball $B_x(R)$ with $r(x) = 2R$, the volume doubling property holds [Li and Tam 1995]. Also, by [Saloff-Coste 1992], a local weak Poincaré inequality holds on geodesic ball $B_x(R)$, and hence we have the Sobolev inequality $S(C, v)$ on $B_x(R)$ [Hajłasz and Koskela 1995]; that is, there exists a real number $v > 2$ such that

\[\left(\int_{B_x(R)} |f|^{2v/(v-2)} \, dV \right)^{(v-2)/v} \leq C \cdot r^2 \cdot V^{-2/v}(B) \int_{B_x(R)} |\nabla f|^2 \, dV, \]

for all $f \in C_0^\infty(B_x(r))$, where $r \leq R$.

Theorem 2.4 (main theorem). Let M^m be an m-dimensional complete Riemannian manifold with asymptotically nonnegative curvature operator K_l, for $l > 1$. Then a bounded set of $L^q(M)$ p-harmonic l-forms on (M^m, g) has a uniformly convergent subsequence, for $1 < p < \infty$ and $0 < q < \infty$.

Proof. Let ω be a p-harmonic l-form on M^m. Lemma 2.3 asserts that

\[|\omega|^{p-1} \Delta |\omega|^{p-1} = |\omega|^{p-2}(\Delta (|\omega|^{p-2}\omega), \omega) + (|\nabla (|\omega|^{p-2}\omega)|^2 - |\nabla |\omega|^{p-1}|^2) + K_l |\omega|^{2p-2}. \]

By the Kato inequality, we have

\[|\nabla |\omega|^{p-1}| = |\nabla ||\omega|^{p-2}\omega|| \leq |\nabla(|\omega|^{p-2}\omega)|. \]
Therefore,

\[|\omega|^{p-1} \Delta |\omega|^{p-1} \geq |\omega|^{p-2}(\Delta (|\omega|^{p-2} \omega), \omega) - K(R)|\omega|^{2p-2}, \]

where \(-K(R)\) is the pointwise lower bound of the curvature operator. Let \(\eta\) be a compactly supported nonnegative smooth function on \(M\).

\[
\int_M \eta^2 |\omega|^{p-1} \Delta |\omega|^{p-1} \geq \int_M \eta^2 |\omega|^{p-2}(\Delta (|\omega|^{p-2} \omega), \omega) - K(R) \int_M \eta^2 |\omega|^{2p-2} \\
= \int_M \eta^2 |\omega|^{p-2} \delta d(|\omega|^{p-2} \omega), \omega) - K(R) \int_M \eta^2 |\omega|^{2p-2} \\
= -K(R) \int_M \eta^2 |\omega|^{2p-2}.
\]

Integration by parts yields

\[
K(R) \int_M \eta^2 |\omega|^{2p-2} \\
\geq \int_M \nabla(\eta^2 |\omega|^{p-1}) \cdot \nabla |\omega|^{p-1} \geq \frac{(p-1)^2}{4} \int_M \eta^2 |\omega|^{2p-6} |\nabla |\omega|^2|^2 - (p-1) \int_M \eta |\nabla \eta| |\omega|^{2p-4} |\nabla |\omega|^2|.
\]

It follows that

\[
(2-2) \quad \frac{(p-1)^2}{4} \int_M \eta^2 |\omega|^{2p-6} |\nabla |\omega|^2|^2 \\
\leq (p-1) \int_M \eta |\nabla \eta| |\omega|^{2p-4} |\nabla |\omega|^2| + K(R) \int_M \eta^2 |\omega|^{2p-2},
\]

for all \(p > 1\).

By Young’s inequality, we have

\[
(p-1)\eta |\nabla \eta| |\omega|^{2p-4} |\nabla |\omega|^2| \leq \frac{(p-1)^2}{8} \eta^2 |\omega|^{2p-6} |\nabla |\omega|^2|^2 + 2 |\nabla \eta|^2 |\omega|^{2p-2}.
\]

Since

\[
|\omega|^{2p-6} |\nabla |\omega|^2|^2 = \frac{4}{(p-1)^2} |\nabla |\omega|^p|^2,
\]

then (2-2) can be written as

\[
(2-3) \quad \int_M \eta^2 |\nabla |\omega|^p|^2 \leq 4 \int_M |\nabla \eta|^2 |\omega|^{2p-2} + 2K(R) \int_M \eta^2 |\omega|^{2p-2},
\]

for all \(p > 1\).

For \(R > 0\) and \(x \in \partial B_x(2R)\), let \(\eta \in \mathcal{C}^\infty_0(B_x(R))\) be a cut-off function satisfying

\[
\eta(y) = \begin{cases}
1 & \text{if } y \in B_x(\rho R), \\
0 & \text{if } y \in M \setminus B_x(\gamma R).
\end{cases}
\]
Note that \(\eta \in [0, 1] \) on \(M \) and \(|\nabla \eta| \leq 2/((\gamma - \rho) R) \), for \(0 < \rho < \gamma \leq 1 \).

By the Sobolev inequality and (2-3),

\[
\left(\int_{B_x(\rho R)} (|\omega|^{p-1})^\alpha \right)^{1/\alpha} \leq \left(\int_{B_x(\gamma R)} (\eta|\omega|^{p-1})^\alpha \right)^{1/\alpha} \leq c_s(\nu) V_x(R)^{-2/\nu} R^2 16 \left(\frac{1}{(\gamma - \rho)^2 R^2} + K(R) \right) \int_{B_x(\gamma R)} |\omega|^{2p-2},
\]

where \(\alpha = \nu/(\nu - 2) \), and \(c_s(\nu) \) is the Sobolev constant.

By the assumption on function \(K(R) \), it is easy to see that

\[
K(R) \leq \frac{c}{R^2}
\]

on ball \(B_x(R) \). Therefore,

(2-4) \[
\left(\int_{B_x(\rho R)} |\omega|^{2(p-1)\alpha} \right)^{1/\alpha} \leq c_s(\nu) V_x(R)^{-2/\nu} 4^2 4 \left(\frac{1}{(\gamma - \rho)^2} \right) \int_{B_x(\gamma R)} |\omega|^{2p-2},
\]

where \(\alpha = \nu/(\nu - 2) \).

Define

\[
p = q_0 \alpha^i + 1 \quad \text{and} \quad R_i = (\rho + 2^{-i}(\gamma - \rho)) R,
\]

for \(i = 0, 1, 2, 3, \ldots \). Observe that \(\lim_{i \to \infty} R_i = \rho R \). Let \(\rho R = R_{i+1} \) and \(\gamma R = R_i \) in inequality (2-4) and iterate the inequality; then

(2-5) \[
\sup_{B_x(\rho R)} |\omega|^{2q_0} \leq CV_x(R)^{-1} \left(\frac{1}{\gamma - \rho} \right)^\nu \int_{B_x(\gamma R)} |\omega|^{2q_0}.
\]

When \(q \geq 2q_0 \), by (2-5), we have

\[
|\omega|(x) \leq C \left(V_x(R)^{-1} \int_{B_x(R)} |\omega|^q \right)^{1/q},
\]

for some constant \(C \).

When \(0 < q < 2q_0 \), let \(h_i = \sum_{j=1}^{i+1} 2^{-j} \), \(\rho = h_i \), and \(\gamma = h_{i+1} \), for all \(i = 0, 1, 2, 3 \ldots \). By (2-5), we have

(2-6) \[
\sup_{B_x(h_i R)} |\omega|^{2q_0} \leq CV_x(R)^{-1} 2^{(i+2)\nu} \int_{B_x(h_{i+1} R)} |\omega|^q \sup_{B_x(h_{i+1} R)} |\omega|^{2q_0-q}.
\]

Write \(M(i) = \sup_{B_x(h_i R)} |\omega|^{2q_0} \). Inequality (2-6) becomes

(2-7) \[
M(i) \leq CV_x(R)^{-1} 2^{(i+2)\nu} \int_{B_x(R)} |\omega|^q M(i + 1)^{(2q_0-q)/2q_0}.
\]
Let $\lambda = 1 - q/2q_0 \in (0, 1)$; iterating inequality (2-7), we have

$$M(0) \leq \prod_{i=0}^{j-1} \tilde{c}^{\lambda^i} M^{\lambda^i}(j) = \prod_{i=0}^{j-1} \left(C V_x(R)^{-1} 2^{i(j+1)} \int_{B_x(R)} |\omega|^q \right)^{\lambda^i} M^{\lambda^i}(j).$$

Let $j \to \infty$; we have

$$M(0) \leq (C)^{2q_0/q} V_x(R)^{-2q_0/q} \left(\int_{B_x(R)} |\omega|^q \right)^{2q_0/q}.$$

Hence,

$$|\omega|(x) \leq (C)^{1/q} V_x(R)^{-1/q} \left(\int_{B_x(R)} |\omega|^q \right)^{1/q} \leq C V_x(R)^{-1/q} \left(\int_{B_x(R)} |\omega|^q \right)^{1/q},$$

for some constant C.

For ω a p-harmonic l-form on M, and $x \in \partial B_z(2R)$, we have

$$|\omega|(x) \leq C \left(V_x(R)^{-1} \int_{B_x(R)} |\omega|^q \right)^{1/q}.$$

When the $L^q(M)$ norm of ω is assumed to be bounded by a fixed constant, since we also have $V_x(R) \geq cR$, we conclude that for any given $\epsilon > 0$, by taking R to be sufficiently large, $|\omega| < \epsilon$ on $M \setminus B_z(R)$. On the other hand, using the standard elliptic PDE theory, on ball $B_z(R)$, the length of ω and all its covariant derivatives can be bounded by the $L^q(M)$ norm of ω. In particular, we conclude that any bounded sequence of such ω admits a uniformly convergent subsequence on M. This finishes the proof of the theorem.

An immediate corollary is obtained from the proof of Theorem 2.4.

Corollary 2.5. Let (M^m, g) be a complete noncompact manifold with nonnegative curvature operator. Then any bounded $L^q(M)$ p-harmonic l-forms on (M, g) must be zero.

3. p-Harmonic maps

Here we derive a different type of Bochner formula for p-harmonic maps and study the set of p-harmonic maps with finite p-energy. Let (M^m, g) be a complete Riemannian manifold (without boundary) of dimension m with metric g, and let (N^n, g') be a complete manifold of dimension n with metric g'. For any smooth map $f : M \to N$ and compact domain $\Omega \subset M$, we define the p-energy of f on Ω:

$$E_p(\Omega, f) \equiv \frac{1}{p} \int_{\Omega} |df(x)|^p \, dV_g,$$
where \(|df(x)|\) is the norm of the differential \(df(x)\) of \(f\) at \(x \in \Omega\), \(dV_g\) is the volume element of \(M\), and \(1 < p < \infty\) is a fixed number. Let \(f^{-1}TN\) be the induced vector bundle by \(f\) over \(M\). Then \(df\) can be viewed as a section of the bundle \(\Lambda^1(f^{-1}TN) = T^*M \otimes f^{-1}TN\). We denote by \(|df(x)|\) its norm at a point \(x\) of \(M\), induced by the metrics \(g\) and \(g'\).

A map \(f\) is called \(p\)-harmonic if it is a critical point of \(p\)-energy functional \(E_p(\Omega, \cdot)\) for any compact domain \(\Omega \subset M\). That is, \(f\) is a \(p\)-harmonic map if and only if

\[
\frac{dE_p(f_s)}{ds} = 0
\]

at \(s = 0\) for any one-parameter family of maps \(f_s : M \to N\) with \(f_0 = f\) and \(f_s(x) = f(x)\) if \(x \in M \setminus \Omega\). We define the \(p\)-tension field \(\tau_p(f)\) of \(f\) by

\[
\tau_p(f) = -\delta(|df|^{p-2}df),
\]

where \(\delta : \Lambda^1(f^{-1}TN) \to \Lambda^0(f^{-1}TN)\) is the codifferential operator. Equivalently, a smooth map \(f : M \to N\) is \(p\)-harmonic if and only if \(\tau_p(f) = 0\).

Assume that \((M, g)\) is a complete noncompact manifold with asymptotically nonnegative Ricci curvature, and that \((N, g')\) is a complete manifold with nonpositive sectional curvature. We denote the Ricci tensor of \((M, g)\) by \(\text{Ricci}_M\), and the curvature tensor of \((N, g')\) by \(R_N\). Let \(\{e_1, \ldots, e_m\}\) be a local orthonormal frame on \(M\); by the Weitzenböck formula [Eells and Lemaire 1983], we have

\[
\frac{1}{2} \Delta|df|^2 = \langle \Delta df, df \rangle + |\nabla df|^2 + \sum_{i=1}^{m} \left\langle df(\text{Ricci}_M(e_i)), df(e_i) \right\rangle
\]

\[
- \sum_{i,j=1}^{m} \left\langle R_N(df(e_j), df(e_i))df(e_i), df(e_j) \right\rangle
\]

\[
geq \langle \Delta df, df \rangle + |\nabla df|^2 - K|df|^2.
\]

Lemma 3.1 (Bochner-type formula for \(p\)-harmonic maps). Let \(u : M \to N\) be a smooth \(p\)-harmonic map and \(\{e_i\}_{i=1}^{m}\) be an orthonormal basis of the tangent space of \(M\). Then

\[
|du|^{p-1} \Delta|du|^{p-1} = |du|^{p-2} \left(\Delta(|du|^{p-2} du), du \right)
\]

\[
+ \left(|\nabla(|du|^{p-2} du)|^2 - |\nabla|du|^{p-1}|^2 \right)
\]

\[
+ |du|^{2p-4} \sum_{i} \left\langle \text{Ricci}_M(du(e_i)), du(e_i) \right\rangle
\]

\[
- |du|^{2p-4} \sum_{i,j} \left\langle R_N(du(e_i), du(e_j))du(e_i), du(e_j) \right\rangle,
\]

in the sense of distributions. Also, if \(\text{Ricci}_M \geq 0\) and \(K_N \leq 0\), then
\[|du|^{p-1} \Delta |du|^{p-1} \]
\[\geq |du|^{p-2} \{ \Delta (|du|^{p-2} du), \ du \} + \left(|\nabla (|du|^{p-2} du)|^2 - |\nabla |du|^{p-1}|^2 \right). \]

Proof. The Bochner–Weitzenböck formula for $|du|^{p-1}$ asserts that
\[
\frac{1}{2} \Delta |du|^{2p-2} = \frac{1}{2} \Delta \left(|du|^{p-2} du \right)^2
\]
\[= \{ \Delta (|du|^{p-2} du), |du|^{p-2} du \} + |\nabla (|du|^{p-2} du)|^2
\]
\[+ \sum_{i}^{m} |du|^{p-2} (\text{Ricci}_M(du(e_i)), |du|^{p-2} du(e_i))
\]
\[- \sum_{i,j=1}^{n} |du|^{p-2} R_N(du(e_i), du(e_j)) du(e_i), |du|^{p-2} du(e_j))
\]
\[= \{ \Delta (|du|^{p-2} du), |du|^{p-2} du \} + |\nabla (|du|^{p-2} du)|^2
\]
\[+ |du|^{2p-4} \sum_{i}^{m} \{ \text{Ricci}_M(du(e_i)), du(e_i) \}
\]
\[- |du|^{2p-4} \sum_{i,j=1}^{n} \{ R_N(du(e_i), du(e_j)) du(e_i), du(e_j) \}. \]

On the other hand,
\[
\frac{1}{2} \Delta |du|^{2p-2} = \frac{1}{2} \Delta (|du|^{p-1})^2 = |du|^{p-1} \Delta |du|^{p-1} + |\nabla |du|^{p-1}|^2.
\]

Hence,
\[
|du|^{p-1} \Delta |du|^{p-1} + |\nabla |du|^{p-1}|^2
\]
\[= \{ \Delta (|du|^{p-2} du), |du|^{p-2} du \} + |\nabla (|du|^{p-2} du)|^2
\]
\[+ |du|^{2p-4} \sum_{i}^{m} \{ \text{Ricci}_M(du(e_i)), du(e_i) \}
\]
\[- |du|^{2p-4} \sum_{i,j=1}^{n} \{ R_N(du(e_i), du(e_j)) du(e_i), du(e_j) \}. \]

It follows that
\[
|du|^{p-1} \Delta |du|^{p-1}
\]
\[= |du|^{p-2} \{ \Delta (|du|^{p-2} du), du \} + \left(|\nabla (|du|^{p-2} du)|^2 - |\nabla |du|^{p-1}|^2 \right)
\]
\[+ |du|^{2p-4} \sum_{i}^{m} \{ \text{Ricci}_M(du(e_i)), du(e_i) \}
\]
\[- |du|^{2p-4} \sum_{i,j=1}^{n} \{ R_N(du(e_i), du(e_j)) du(e_i), du(e_j) \}. \]
If $\operatorname{Ricci}_M \geq 0$ and $K_N \leq 0$, then
\[
|\partial^p| \partial|\partial|^{p-1}
\geq |\partial|^{p-2}\{\partial(|\partial|^{p-2}\partial), \partial\} + \left(|\nabla(|\partial|^{p-2}\partial)|^2 - |\nabla|\partial|^{p-1}|^2\right).
\]

\[\square\]

Theorem 3.2. Let (M, g) be a complete noncompact manifold with asymptotically nonnegative Ricci curvature, and let (N, g') be a complete Riemannian manifold with nonpositive sectional curvature. Then the set of p-harmonic maps u from M to N with
\[
\int_M |\partial|^p dV_g \leq C,
\]
for some $C > 0$ and $1 < p < \infty$, has a uniformly convergent subsequence.

Proof. Let u be a p-harmonic map; if $K_N < 0$, the Bochner type formula (3-2) asserts that
\[
|\partial|^{p-1}\partial|\partial|^{p-1} \geq |\partial|^{p-2}\{\partial(|\partial|^{p-2}\partial), \partial\} + \left(|\nabla(|\partial|^{p-2}\partial)|^2 - |\nabla|\partial|^{p-1}|^2\right) - |\partial|^{2p-2}K(R).
\]

By the Kato inequality, we have
\[
|\nabla|\partial|^{p-1}| = |\nabla|\partial|^{p-2}\partial| \leq |\nabla(|\partial|^{p-2}\partial)|.
\]

Thus,
\[
|\partial|^{p-1}\partial|\partial|^{p-1} \geq |\partial|^{p-2}\{\partial(|\partial|^{p-2}\partial), \partial\} - |\partial|^{2p-2}K(R).
\]

Dividing both sides of (3-3) by $|\partial|^{p-2}$, we get
\[
|\partial|\partial|\partial|^{p-1} \geq \{\partial(|\partial|^{p-2}\partial), \partial\} - |\partial|^pK(R).
\]

Let η be a compactly supported nonnegative smooth function on M; then
\[
\int_M \eta^2|\partial|\partial|\partial|^{p-1} \geq \int_M \eta^2((d\eta + \delta d)|\partial|^{p-2}\partial, \partial) - \int_M \eta^2|\partial|^pK(R)
\]
\[
= \int_M \eta^2(d|\partial|^{p-2}\partial, d(\partial)) - \int_M \eta^2|\partial|^pK(R)
\]
\[
= - \int_M \eta^2|\partial|^pK(R).
\]

On the other hand, by integration by parts,
\begin{align*}
(3-4) \quad - & \int_M \eta^2 |d\eta|^{p} K(R) \leq \int_M \eta^2 |d\eta| \Delta |d\eta|^{p-1} \\
& = - \int_M \nabla (\eta^2 |d\eta|) \cdot \nabla |d\eta|^{p-1} \\
& = - \int_M (\eta^2 \nabla |d\eta| + |d\eta| 2\eta \cdot \nabla \eta) \cdot ((p-1)|d\eta|^{p-2} \nabla |d\eta|) \\
& = -(p-1) \int_M \eta^2 |d\eta|^{p-2} \nabla |d\eta|^{2} \\
& \quad - 2(p-1) \int_M \eta \cdot \nabla \eta |d\eta|^{p-1} \cdot \nabla |d\eta|.
\end{align*}

Since
\[\frac{4}{p^2} |\nabla |d\eta|^{p/2}|^2 = \frac{4}{p^2} \left(\frac{p}{2} |d\eta|^{(p/2)-1} \nabla |d\eta| \right)^2 = |d\eta|^{p-2} \nabla |d\eta|^{2} \]
and
\[\frac{2}{p} |d\eta|^{p/2} \nabla |d\eta|^{p/2} = \frac{2}{p} |d\eta|^{p/2} \left(\frac{p}{2} |d\eta|^{(p/2)-1} \nabla |d\eta| \right) = |d\eta|^{p-1} \nabla |d\eta| , \]
inequality (3-4) can be rewritten as
\begin{align*}
- & \int_M \eta^2 |d\eta|^{p} K(R) \\
\leq & - \frac{4(p-1)}{p^2} \int_M \eta^2 |\nabla |d\eta|^{p/2}|^2 \quad - \frac{4(p-1)}{p} \int_M |d\eta|^{p/2} \cdot \nabla \eta \cdot \eta \cdot \nabla |d\eta|^{p/2}.
\end{align*}

By Young’s inequality,
\begin{align*}
- & \int_M \eta^2 |d\eta|^{p} K(R) \\
\leq & - \frac{4(p-1)}{p^2} \int_M \eta^2 |\nabla |d\eta|^{p/2}|^2 \quad + \left(\zeta \int_M \eta^2 |\nabla |d\eta|^{p/2}|^2 \quad + \frac{c_1}{\zeta} \int_M |\nabla \eta|^2 |d\eta|^{p} \right),
\end{align*}
for some positive constants \(c_1\) and \(0 < \zeta < 1\). Therefore,
\begin{align*}
(3-5) \quad \left(\frac{4(p-1)}{p^2} - 2\zeta \right) & \int_M \eta^2 |\nabla |d\eta|^{p/2}|^2 \\
\leq & \frac{c_2}{\zeta} \left(\int_M |\nabla \eta|^2 |d\eta|^{p} + \int_M \eta^2 |d\eta|^{p} K(R) \right).
\end{align*}

For \(R > 0\) and \(x \in \partial B_x(2R)\), let \(\eta \in C_0^\infty (B_x(R))\) be a cut-off function such that
\[\eta(y) = \begin{cases}
1 & \text{if } y \in B_x(\rho R), \\
0 & \text{if } y \in M \setminus B_x(\gamma R).
\end{cases} \]
Note that $\eta \in [0, 1]$ on M and $|\nabla \eta| \leq c_3/R$, for $0 < \rho < \gamma \leq 1$ and some positive constant c_3.

By the curvature assumption on function $K(R)$, we have

$$K(R) \leq \frac{c_4}{R^2},$$

for some constant c_4. Let $\zeta = (p-1)/p^2$; then inequality (3-5) becomes

$$\int_{B_x(R)} |\nabla|du|^{p/2}|^2 \leq \frac{c_5}{R^2} \int_{B_x(R)} |du|^p + \int_{B_x(R)} \frac{c_6}{R^2} |du|^p \leq \frac{C}{R^2} \int_{B_x(R)} |du|^p.$$

Therefore, for u a p-harmonic map from M to N and $x \in \partial B_z(2R)$, we have

$$\int_{B_x(R)} |\nabla|du|^{p/2}|^2 \leq \frac{C}{R^2} \int_{M} |du|^p.$$

When $\int_{M} |du|^p$ is assumed to be bounded by a fixed constant, by taking R to be sufficiently large, for any $\epsilon > 0$, we have $|\nabla|du|^{p/2}| < \epsilon$ on $M \setminus B_z(R)$. On the other hand, $|\nabla|du|^{p/2}|$ can be bounded by the finite energy of u on ball $B_z(R)$. We conclude that the set of such p-harmonic maps admits a uniformly convergent subsequence. If M is a compact manifold with nonnegative Ricci curvature, then the p-harmonic map is constant, which is an extension of the fact in the harmonic map case ($p = 2$) [Eells and Sampson 1964].

Acknowledgement

Part of this work was done when the second author was visiting the Department of Mathematics at Princeton University. She thanks the members of the department for their hospitality during her visit.

References

Received January 12, 2011.

LIANG-CHU CHANG
CENTER FOR GENERAL EDUCATION
NATIONAL FORMOSA UNIVERSITY
HUWEI, YUNLIN COUNTY 632
TAIWAN
lachu4@gmail.com

CHIUNG-JUE ANNA SUNG
DEPARTMENT OF MATHEMATICS
NATIONAL TSING HUA UNIVERSITY
HSINCHU 30013
TAIWAN
cjsung@math.nthu.edu.tw
Curvatures of spheres in Hilbert geometry
ALEXANDER BORISENKO and EUGENE OLIN

A formula equating open and closed Gromov–Witten invariants and its applications to mirror symmetry
KWOKWAI CHAN

A note on p-harmonic l-forms on complete manifolds
LIANG-CHU CHANG and CHIUNG-JUE ANNA SUNG

The Cheeger constant of curved strips
DAVID KREJČÍŘÍK and ALDO PRATELLI

Structure of solutions of 3D axisymmetric Navier–Stokes equations near maximal points
ZHEN LEI and QI S. ZHANG

Local comparison theorems for Kähler manifolds
GANG LIU

Structurable algebras of skew-rank 1 over the affine plane
SUSANNE PUMPLÜN

An analogue of Krein’s theorem for semisimple Lie groups
SANJOY PUSTI

Une remarque de dynamique sur les variétés semi-abéliennes
GAËL RÉMOND

Fourier transforms of semisimple orbital integrals on the Lie algebra of SL_2
LOREN SPICE

On noncompact τ-quasi-Einstein metrics
LIN FENG WANG

Decomposition of de Rham complexes with smooth horizontal coefficients for semistable reductions
QIHONG XIE

A differentiable sphere theorem inspired by rigidity of minimal submanifolds
HONG-WEI XU and LING TIAN