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THE CHEEGER CONSTANT OF CURVED STRIPS

DAVID KREJČIŘÍK AND ALDO PRATELLI

We study the Cheeger constant and Cheeger set for domains obtained as
strip-like neighborhoods of curves in the plane. If the reference curve is
complete and finite (a “curved annulus”), then the strip itself is a Cheeger
set and the Cheeger constant equals the inverse of the half-width of the strip.
The latter holds true for unbounded strips as well, but there is no Cheeger
set. Finally, for strips about noncomplete finite curves, we derive lower and
upper bounds to the Cheeger set, which become sharp for infinite curves.
The paper is concluded by numerical results for circular sectors.

1. Introduction

Let � be an open connected set in the plane R2. The Cheeger constant of � is
defined as

(1) h(�) := inf
S⊆�

P(S)
|S|

,

where the infimum is taken over all sets S ⊆ � of finite perimeter. We use P(S)
and |S| to denote the perimeter and the area of S, respectively. Any minimizer
of (1), if it exists, is called a Cheeger set of � and is denoted by C�.

The problems of existence, uniqueness, and regularity of Cheeger sets have
been widely studied in recent years; see, for example, [Kawohl and Fridman 2003;
Hebey and Saintier 2006; Saintier 2007; Caselles et al. 2007]. We briefly list and
discuss here some of the known general properties.

Theorem 1.1 (general facts). (i) While for a general � neither existence nor
uniqueness is guaranteed, there is always some Cheeger set if � is a bounded
open set.

(ii) If �1 ⊆ �2, then h(�1) ≥ h(�2), but the strict inclusion does not imply the
strict inequality.
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(iii) The boundary of any Cheeger set C� intersects the boundary of the set �.

(iv) The part of ∂C� which is inside � is made by arcs of circle, each of which
starts and ends touching the boundary of � and is of radius 1/h(�).

(v) A Cheeger set cannot have corners (that is, discontinuities in the tangent vec-
tor to the boundary giving rise to an angle smaller than π ). In particular, the
arcs of circle of ∂C ∩� must intersect the boundary of � tangentially or in
“open corners” (that is, angles bigger than π ).

(vi) If there is a Cheeger set, there is a connected Cheeger set.

Concerning property (i), examples of nonexistence or nonuniqueness can be
found in [Kawohl and Lachand-Robert 2006], while the existence is immediate by
the compactness results for BV functions; see, for example, [Evans and Gariepy
1992; Ambrosio et al. 2000]. Property (ii) is immediate by the definition (1), and
examples for the nonstrict inequality can be found in [Kawohl and Lachand-Robert
2006]. Property (iii) comes immediately by a rescaling of C with a factor bigger
than 1, since this lowers the ratio in (1). Property (iv) comes from a standard
variational argument; see, for example, [Kawohl and Fridman 2003, Remark 9].
Property (v) comes directly by noticing that “cutting a corner” of a small length ε
decreases |C�| by at most Cε2 and the perimeter by at least cε. By “corner” we
mean a point of the boundary where the tangent vector is discontinuous and makes
an angle smaller than π (with respect to the internal part of �). In the case of
angles bigger than π , we talk about “open corners”, and they cannot be excluded
from ∂C, since, as pointed out in [Kawohl and Lachand-Robert 2006], there are
open corners (or “reentrant corners” in their terminology) in an L-shaped set. Fi-
nally, property (vi) is immediate because if a Cheeger set has different connected
components, each of these components must also be a Cheeger set thanks to the
characterization (1).

Apart from the above-mentioned general properties, it is usually a difficult task
to find the Cheeger constant or the Cheeger set of a given domain �. The situation
is simplified when � is a bounded convex set, which is a well-studied situation. In
fact, in this case it is known that there is a unique open Cheeger set, which is also
convex; see [Alter et al. 2005; Kawohl and Lachand-Robert 2006; Caselles et al.
2007]. Moreover, it is possible to give the following characterization.

Theorem 1.2 [Kawohl and Lachand-Robert 2006]. Let � be a bounded convex
subset of R2. For r ≥ 0, define

�r
:= {x ∈� : dist(x, ∂�) > r}.

There exists a unique value r = r∗ > 0 such that

(2) |�r
| = πr2.
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Then h(�)= 1/r∗ and the Cheeger set of� is the Minkowski sum C�=�
r∗
+Br∗ ,

with Br∗ denoting the disc of radius r∗.

This theorem can be used to find explicitly h(�) and C� in some cases (for
example for discs, rectangles and triangles). In particular, the Cheeger sets of rect-
angles and triangles are obtained by suitably “cutting the corners”. Furthermore,
it provides a constructive algorithm for the determination of the Cheeger constant
and Cheeger set for general convex domains; in particular for convex polygons.

Unfortunately, there is no such constructive method for nonconvex domains.
Only one particular case seems to be explicitly known in the literature, namely the
annulus, for which it is known that C� =�. In general, while a trivial strategy to
find upper estimates for h(�) is to choose a suitable “test domain” S in (1), it is
less clear how to obtain lower estimates. One possibility is given by the following
result concerning “test vector fields”.

Theorem 1.3 [Grieser 2006]. Let V :�→R2 be a smooth vector field on�, h ∈R,
and assume that the pointwise inequalities |V | ≤ 1 and divV ≥ h hold in �. Then
h(�)≥ h.

An example of the applicability of this criterion is the above-mentioned result for
the annulus, which can be obtained by employing the vector field of [Bellettini et al.
2002, Section 11, Example 4] (see also Remark 2.6 below, where the corresponding
vector field can be found explicitly). However, for a general set � it is not easy at
all to find a vector field producing nontrivial lower bounds by this criterion.

The purpose of this paper is to introduce a class of nonconvex planar domains
for which the Cheeger constant and the Cheeger set can be determined explicitly,
namely the curved strips. This class of sets has been intensively studied in the last
two decades as an effective configuration space for curved quantum waveguides
(see [Duclos and Exner 1995; Krejčiřík and Kříž 2005] and the references therein).

More precisely, we call a tubular neighborhood of a curve without boundary in
the plane a “curved strip”. There are then few possibilities: a “curved annulus”,
a “finite curved strip”, an “infinite curved strip”, or a “semi-infinite curved strip”;
see Figure 1 (we leave the formal definitions to Section 1).

Our main results, Theorems 3.1 and 3.2, describe the situation in all of these
cases. In particular, for a curved annulus the situation is analogous to the stan-
dard annulus, that is, the strip itself is the unique Cheeger set and the Cheeger
constant only depends on the width of the strip, irrespectively of the curvature of
the curve. More precisely, the Cheeger constant is the inverse of the half-width
(Theorem 3.1, part (i)). For an infinite or a semi-infinite curved strip, again the
Cheeger constant equals the inverse of the half-width of the strip, but there is no
Cheeger set (Theorem 3.1, part (ii)). Finally, for a finite curved strip, the situation
is analogous to the standard rectangle, that is, there exists a Cheeger set, which
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infinite curved strip semi-infinite curved strip

finite curved strip curved annulus

Figure 1. The four possible types of strips.

is not the whole strip because of the corners, and the Cheeger constant is strictly
bigger than the inverse of the half-width. Moreover, in this last case we can also
give a (sharp) upper and a lower bound, which depend only on the width and length
of the strip (Theorem 3.2).

We conclude this introductory section with a couple of comments. First of all,
it should mentioned that in the study of the Cheeger problem an important role is
played by those sets� which are Cheeger sets of themselves. This is what happens
in many situations, such as the discs, the annuli, and, as we show in the present
paper, the “curved annuli”. Those sets are called calibrable and are intensively
studied in the image processing literature; see, for instance, [Bellettini et al. 2002].

A second remark has to be made on the connection between the Cheeger constant
and the eigenvalue problems. In fact, the Cheeger inequality tells us that

(3) λp(�)≥
(h(�)

p

)p

for any p ∈ (1,∞), where λp(�) is the first eigenvalue of the p-Laplacian. More-
over, as shown in [Kawohl and Fridman 2003], h(�) = limp↘1 λp(�). In this
regard, it is interesting to notice one property of the curved strips. It is well known
that the first eigenvalue of the Dirichlet Laplacian (or, more generally, the infimum
of the Rayleigh quotient, in the case of unbounded strips for which there might
be no eigenvalues) for a curved strip strongly depends on its curvature; see, for
instance, [Duclos and Exner 1995; Exner et al. 2004; Krejčiřík and Kříž 2005].
On the other hand, the Cheeger constant is much less sensitive, because, as we will
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show, for infinite and semi-infinite curve strips, as well as for curved annuli, the
Cheeger constant depends not on the curvature of the strip, but on its width.

The geometrical setting. In this section we set the notations for the geometrical
situation that we will consider throughout the paper. Let 0 be a C2, connected
curve in R2 (that is, the homeomorphic image of (0, 1) or S1 under a C2 function),
and let us denote by |0| =

∫
0

dq its length, dq being the arclength element of 0.
Additionally, let N : 0→ R2 be a C1 vector field giving the normal vector in the
points of 0, and let κ : 0→ R be the associated curvature (notice that the sign of
κ depends on the choice of the orientation of N ). We recall that to define κ it is
enough to take a unit-speed parametrization γ of 0, and hence it is

(4) κ(q)= γ̈ (γ−1(q)) · N (q),

where the dot denotes the standard scalar product in R2. We now introduce a
mapping L from 0×R to R2,

L(q, t) := q + t N (q),

and we introduce the set

�0,a := L(0× (−a, a)),

for any positive a. We are interested in sets �0,a that are non-self-intersecting
tubular neighborhoods of 0. More precisely, we will always assume that

(5) L is injective in 0×[−a, a],

hence the set is as in Figure 2. Using the expression for the bilinear form

(6) dL2
= (1− κ(q)t)2 dq2

+ dt2

that follows from (4), we can easily see that, by the inverse function theorem, the
assumption (5) forces a to be small compared to the curvature. More precisely, (5)
implies that |κ(q)|a ≤ 1 for any q ∈ 0, the boundary of �0,a is C1,1, and L is in
fact a C1 diffeomorphism between 0× (−a, a) and �0,a .

G

Figure 2. The geometry of a curved strip �0,a and the corre-
sponding curve 0; the parallel lines correspond to the curves
s 7→ L(s, t) with fixed t ∈ (−a, a).
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Summing up, under the hypothesis (5) �0,a has the geometrical meaning of an
open non-self-intersecting strip contained between the parallel curves

q 7→ q ± aN (q),

with q ∈ 0, and it can be identified with the Riemannian manifold 0 × (−a, a)
equipped with the metric (6).

In this paper, we will call any set �0,a satisfying the assumption (5) a curved
strip. Notice that when 0 is contained in a line, � reduces to a rectangle. But the
most interesting situation is when 0 has a more complicated geometry, since then
the associated set is not convex, hence not covered by the preceding known results
for the Cheeger problem. It is easy to characterize the four possible situations
occurring for a curved strip, to each of which we will associate a name to fix the
ideas. The four kinds of strips are shown in Figure 1. First of all, if the curve 0 is
not finite, it may be either infinite or semi-infinite (that is, not finite but complete,
or not finite and not complete, respectively). We will call the corresponding sets
�0,a an infinite curved strip and a semi-infinite curved strip. On the other hand, if
the curve is finite, then it can be either compact or not compact (homeomorphic to
a circle or to an open segment, respectively). In the first case, we will speak about
a curved annulus, the annulus corresponding to the case when 0 is exactly a circle,
and in the other case about a finite curved strip.

2. The main geometrical results

In this section we give some general technical properties, which will be used later
to show our main results. We can easily obtain an upper bound for the curved
strips. In the next result, for a curve 0 which is not finite, we consider a unit-speed
parametrization γ : (0,+∞)→R2 (respectively, γ : (−∞,+∞)→R2) if the strip
is semi-infinite (respectively, infinite). We will denote by 0L the subset of 0 given
by γ (0, L) or γ (−L , L) for the semi-infinite or infinite case, respectively.

Lemma 2.1 (upper bound). Let 0 be infinite or compact (that is, �0,a is a semi-
infinite or infinite curved strip, or a curved annulus). Then

h(�0,a)≤
1
a
.

In particular, if �0,a is a curved annulus,

P(�0,a)
|�0,a|

=
1
a
,

while if �0,a is a semi-infinite or infinite curved strip,

P(�0L ,a)

|�0L ,a|
−−−→
L→∞

1
a
.
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Proof. If �0,a is a curved annulus, then we take the whole S = �0,a as a test
domain in (1). Recalling (6), we then have

P(S)
|S|
=

∫
0
(1+ κ(q)a) dq +

∫
0
(1− κ(q)a) dq∫

0

∫ a
−a(1− κ(q)t) dt dq

=
2|0|

2a|0|
=

1
a
.

Notice that, by the symmetry of the set S, the curvature term cancels both in the
numerator and in the denominator.

On the other hand, if 0 is not finite, then the whole strip is not admissible
because it has both infinite area and perimeter. However, for any L > 0, we can
consider the finite curved strip S = �0L ,a , which is of course contained in �0,a .
Therefore, one can easily evaluate

(7) P(S)
|S|
=

4a+
∫
0L

(
1+ κ(q)a

)
dq +

∫
0L

(
1− κ(q)a

)
dq∫

0L

∫ a
−a

(
1− κ(q)t

)
dt dq

=
4a+ 2|0L |

2a|0L |
−−−→
L→∞

1
a
.

In the formula for the perimeter, notice the term 4a corresponding to the two “ver-
tical” parts of ∂S at the start and at the end. Thanks to the definition (1), the two
above estimates give the thesis. �

The lower bound is much more complicated to obtain. To find it, we introduce
an operation that, in a sense, fills in the “holes” and the “bays” in the test domains
S. More precisely, let us take an open set S ⊆�0,a , and define the set 0S as

0S := {q ∈ 0 : L({q}× (−a, a))∩ S 6=∅},

and the functions f± : 0S→ [−a, a] as

f−(q) := inf{t ∈ (−a, a) : (q, t) ∈ S}, f+(q) := sup{t ∈ (−a, a) : (q, t) ∈ S}.

Therefore, S is contained between the two graphs of f+ and f−. Notice now that,
if S is connected, then of course so is 0S . In particular, there are two possibilities:
either 0S is a subinterval of 0 and, in this case, we call ql and qr its extremes,
or 0S is a closed curve. Observe that if 0 is not compact (that is, always except
when �0,a is a curved annulus), then 0S must necessarily be a subinterval of 0;
on the other hand, if �0,a is a curved annulus, then both the situations — that 0S is
a subinterval of 0, and that 0S is a closed curve — are possible, and, in particular,
0S is a closed curve if and only if 0S = 0.

Definition 2.2. Let S be an open subset of �0,a with finite perimeter, and let 0S

and f± be defined as above. We define

S∗ := {L(q, t) ∈�0,a : q ∈ 0S, f−(q) < t < f+(q)}.
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We can now show the main property of the set S∗, which will be fundamental
for our purposes.

Lemma 2.3 (area and perimeter of S∗). Let S be an open, bounded, and connected
subset of � of finite perimeter. Then

|S∗| ≥ |S|, P(S∗)≤ P(S),

and f± ∈ BV (0S). Moreover, calling f ′
±

dq the absolute continuous part of D f±,
and Ds f± its singular part, we have the validity of the formula

(8) P(S∗)=
∫
0S

√
(1− κ(q) f+(q))2+ f ′+(q)2 dq

+

∫
0S

√
(1− κ(q) f−(q))2+ f ′−(q)2 dq + |Ds f+| (0S)

+ |Ds f−| (0S)+ ( f+(ql)− f−(ql)+ ( f+(qr )− f−(qr )),

where if 0S is a subinterval of 0, we denote by ql and qr its extremes, and if 0S is
compact, the term ( f+(ql)− f−(ql))+ ( f+(qr )− f−(qr )) has to be intended as 0.

Proof. First of all, the fact that |S∗| ≥ |S| is obvious, since by definition S∗ ⊇ S.
Concerning the inequality for the perimeter, we start by noticing that, by standard
arguments, it is admissible to assume that S is smooth. In fact, by the compactness
theorem for BV functions [Ambrosio et al. 2000], we can take a sequence S j of
smooth sets converging in the L1 sense to S in such a way that P(S j )→ P(S).
By definition, the corresponding sets S∗j converge to S∗, and by the lower semi-
continuity of the perimeter this yields P(S∗) ≤ lim inf P(S∗j ). As an immediate
consequence, once we establish the validity of this lemma for smooth sets, it will
directly follow also in full generality.

The inequality P(S∗) ≤ P(S) for smooth sets is very easy to guess, but a bit
boring to prove. For simplicity, we will divide the proof into several steps.

Step I. Nonintersecting curves cannot pass “from above to below”. In this first
step, we underline the following very easy topological fact.

Claim. Let γ1, γ2 ⊆ R2 be continuous, nonintersecting plane curves such that
minπ1γ1 = minπ1γ2 = q0 ∈ R, where π1 : R

2
→ R denotes the first projection.

If max{t : (q0, t) ∈ γ1} = t1 and max{t : (q0, t) ∈ γ2} = t2, with t1 > t2, then
max{t : (q, t) ∈ γ1}>max{t : (q, t) ∈ γ2} for all q ∈ π1γ1 ∩π1γ2.

The meaning of this claim is very simple: if one has two continuous and non-
intersecting curves in the plane, and the least abscissa of points in the two curves
coincide (otherwise, it is obvious that the claim is false), then the curve which
starts above always remains above.
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Figure 3. Left: the situation of Step I in the proof of Lemma 2.3.
Right: a possible ∂S+ in Step III.

To show the validity of the claim, suppose it is not true, and let q̄ ∈ π1γ1∩π1γ2

be a point for which

t̄1 :=max{t : (q̄, t) ∈ γ1}<max{t : (q̄, t) ∈ γ2} =: t̄2.

Because the curves do not intersect the equality cannot hold true. Figure 3, left,
shows the situation.
The curve γ1, then, is contained by definition in

(9) A := {(q, t) ∈ R2
\ γ2 : q ≥ q0, } \ {(q̄, t) ∈ R2

: t > t̄1}.

This is a contradiction with the continuity of the curve γ1, since the points (q0, t1)
and (q̄, t̄1) are in γ1 but belong to two distinct connected components of A. There-
fore, the Claim is proved.

Step II. First properties and some definitions. We can immediately observe some
simple properties of ∂S and give some related definitions. First of all, since S is
smooth, ∂S is the union of finitely many closed curves γi , 1≤ i ≤ N . Exactly one
of them, say γ1, encloses all of S.

Let us then consider the two cases (0S is either compact or not) separately.
If 0S is not compact and is thus an interval (ql, qr ), then it is immediate to ob-
serve that for every q ∈ 0S the points L(q, f±(q)) belong to γ1. Let us then call
∂S+ the part of γ1 starting from L(l, f+(l)), ending at L(r, f+(r)) and containing
L(q, f+(q)) for every q ∈ 0S; similarly, we denote by ∂S− the part of γ1 starting
from L(r, f−(r)), ending at L(l, f−(l)), and containing L(q, f−(q)) for every
q ∈ 0S . An easy geometric argument ensures that ∂S+ and ∂S− are well defined
and do not intersect each other. We then obtain

(10) ∂S ⊇ γ1 = ∂S+ ∪ ∂Sr
∪ ∂S− ∪ ∂Sl,

being ∂Sr (respectively ∂Sl) the part of γ \ (∂S+ ∪ ∂S−) connecting L(r, f+(r))
and L(r, f−(r)) (respectively L(l, f−(l)) and L(l, f+(l))).
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Consider now the case when 0S is compact (0S = 0). In this case, we can
directly call ∂S+ = γ1, and again it is easy to observe that for every q ∈ 0 one has
L(q, f+(q)) ∈ ∂S+. On the other hand, all the points L(q, f−(q)) belong to the
same connected component of ∂S different from γ1, say γ2. We then call ∂S−= γ2

and ∂Sr
= ∂Sl

=∅, so that also in this case (10) holds true.
We conclude this step noticing that, for the set S∗, the inclusion (10) is in fact

an equality by construction.

Step III. The “upper boundary” is well-ordered. We show that the curve ∂S+

reaches all the points L(q, f+(q)) in the “correct order”. This means that, if we
parametrize ∂S+ as γ ([0, 1])with γ (0)=L(l, f+(l)) and γ (1)=L(r, f+(r)), then

(11) If γ (σ1)=L(q1, f+(q1)), γ (σ2)=L(q2, f+(q2)), then σ1<σ2⇐⇒q1<q2.

Notice that this fact is not trivial, since the curve ∂S+ does not have to be a graph on
0S , and, therefore, it can sometimes move to the left, as in Figure 3, right. However,
the figure itself suggests that the points (q, f+(q)) are in any case reached “from
left to right”. Let us now show (11). To do so, suppose by contradiction that it
is not true. Hence, there exist σ1, σ2, q1, and q2 such that γ (σi ) = L(qi , f+(qi ))

for i = 1, 2, but one has σ1 > σ2 and q1 < q2. We can then give the following
definitions, π being the projection from � to 0.

σ3 =min{σ ∈ (σ1, 1) : π(γ (σ ))= q2}

q∗ =min{π(γ (σ )) : σ ∈ (σ1, σ3)},

σ0 =max{σ ∈ (0, σ2) : π(γ (σ ))= q∗}.

By construction one has 0 < σ0 < σ2 < σ1 < σ3 < 1, as well as q∗ ≤ q1 < q2.
Now consider the two curves γ1=L−1(γ|[σ0,σ2]) and γ2=L−1(γ|[σ1,σ3]), which are
continuous and nonintersecting. Moreover, minπ1γ1 =minπ1γ2 = q∗, so we can
apply Step I to derive that γ1 is either “always above” or “always below” γ2, in
the sense of the Claim. By checking q = q1, we observe that γ1 is below γ2, since
max{σ : (q1, σ ) ∈ γ2} = f+(q1) is greater than max{σ : (q1, σ ) ∈ γ1}, by definition
of f+. On the other hand, by checking q = q2, the very same reasoning shows that
γ1 is above γ2, being max{σ : (q2, σ )∈ γ1} = f+(q2). The contradiction shows the
validity of (11).

Step IV. The functions f± are in BV (0S). Let us fix an arbitrary N ∈ N, and an
arbitrary sequence l = q0 < q1 < · · ·< qN < qN+1 = r in 0S . We claim that

(12)
N∑

i=0

| f+(qi )− f+(qi+1)| ≤H1(∂S+),
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H1 being Hausdorff measure of dimension one (length). Notice that this inequality
would show that f+ ∈ BV (0S), since S is of finite perimeter.

To show the estimate, let us call γi the part of the curve ∂S+ which connects
L(qi , f+(qi )) with L(qi+1, f+(qi+1)). By the preceding steps, we know that ∂S+

consists of the disjoint union of the curves γi , so that

H1(∂S+)=
N∑

i=0

H1(γi ).

Hence (12) will follow because for any i = 0, . . . , N , one has

(13) H1(γi )≥
∣∣L(qi , f+(qi ))−L(qi+1, f+(qi+1))

∣∣> | f+(qi )− f+(qi+1)|.

The first inequality is trivial, since it just says that the length of the curve γi is
greater than the distance of its extreme points. Concerning the strict inequality let
us instead use the following notation for brevity.

P := L(qi , f+(qi )), Q := L(qi+1, f+(qi+1)), Q′ := L(qi , f+(qi+1)),

S′ := L(qi , 0), S := L(qi+1, 0).

Hence, assuming that f+(qi )≥ f+(qi+1)≥ 0 (it is then trivial to modify the argu-
ment to cover the other cases), one has

P Q′+ Q′S′ = P S′ < P S < P Q+ QS = P Q+ Q′S′,

where the first inequality is due to the fact that, by definition, S′ is the closest point
to P inside 0. The inequality above says that P Q′ < P Q, which is precisely the
missing inequality in (13). As explained above, this implies the validity of (12),
hence the fact that f+ ∈ BV (0S).

Of course, the very same argument shows that f− ∈ BV (0S).

Step V. One has H1(∂S+) ≥ H1(∂S∗+). Let us define {qi , i ∈ N} ⊆ 0S the jump
points of f+, which are countably many since f+ ∈ BV (0S). For any i , set

f l
+
(qi )= lim

q↑qi
f+(q), f r

+
(qi )= lim

q↓qi
f+(q).

Since f+ ∈ BV (0S), these two limits exist and correspond to the lim inf and the
lim sup of f+ for q→ qi . In particular, one has that

∂(S∗+)= {L(q, f+(q)) : q ∈ 0S} ∪
⋃
i∈N

Ji ,

where Ji is the segment joining L(qi , f l
+
(qi )) and L(qi , f r

+
(qi )). Let us now fix

ε > 0, so that there exists N ∈ N such that∑
i>N

|Ji |< ε.
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We can assume that the points qi are ordered so that l < q1 < · · · < qn < r . We
can now pick, for any 1≤ i ≤ N , two points ql

i < qi < qr
i in 0S so that

• the different intervals (ql
i , qr

i ) are disjoint,

• | f+(ql
i )− f l

+
(qi )| + | f+(qr

i )− f r
+
(qi )| ≤

ε

N
for any i , and

• H1((∂S∗+)∩L((ql
i , qr

i )× (−a, a))
)
≤ |Ji | +

ε

N
= | f l

+
(qi )− f r

+
(qi )| +

ε

N
.

We now consider the “bad” intervals Bi = (ql
i , qr

i ), where there are high jumps, and
the “good” intervals Gi = (qr

i , ql
i+1), where there are not. Define also G0= (l, ql

1),
while G N = (qr

N , r). Therefore, we have decomposed 0S =∪i≤N Bi ∪Gi . For any
good interval Gi , one has

∂S∗+ ∩L(Gi × (−a, a))= {L(q, f+(q)) : q ∈ Gi } ∪
⋃
j∈N

J̃i, j ,

where J̃i, j are the jumps of f+ contained in the interval Gi . Of course all the
jumps J̃i, j , varying 0 ≤ i ≤ N and j ∈ N, correspond to different jumps Ji for
i > N . For any bad interval Bi , moreover, call γi the part of the curve ∂S+ from
L(ql

i , f+(ql
i )) to L(qr

i , f+(qr
i )). Thanks to Step III, all the curves γi are disjoint,

and, in particular, L(q, f+(q)) belongs to γi if and only if q ∈ Bi . Since we know
that L(q, f+(q)) ∈ ∂S+ for all q ∈ 0S , this implies that

H1(∂S+)≥H1
({

L(q, f+(q)) : q ∈
⋃N

i=0
Gi

})
+

N∑
i=1

H1(γi ).

Notice also that, as shown with (13) in Step IV, we have that for each 1≤ i ≤ N

H1(γi ) > | f+(ql
i )− f+(qr

i )|.

Finally, using all the properties listed above, we conclude that

H1(∂S∗+)

=

N∑
i=0

H1
(
∂S∗+ ∩L(Gi × (−a, a))

)
+

N∑
i=1

H1(∂S∗+ ∩L(Bi × (−a, a))
)

≤

N∑
i=0

(
H1(
{L(q, f+(q)) : q ∈Gi }

)
+

∑
j∈N

∣∣ J̃i, j
∣∣)+ N∑

i=1

(
| f l
+
(qi )− f r

+
(qi )|+

ε

N

)

≤H1
({

L(q, f+(q)) : q ∈
N⋃

i=0
Gi

})
+

∑
i>N

|Ji | +

N∑
i=1

(
| f+(ql

i )− f+(qr
i )| + 2 ε

N

)
≤H1

({
L
(
q, f+(q)

)
: q ∈

⋃N
i=0Gi

})
+ ε+

N∑
i=1

(
H1(γi )+ 2 ε

N

)
≤H1(∂S+)+ 3ε.



THE CHEEGER CONSTANT OF CURVED STRIPS 321

Since ε > 0 was arbitrary, this step is concluded.

Step VI. Conclusion. By (10), we know that

∂S ⊇ ∂S+ ∪ ∂S− ∪ ∂Sl
∪ ∂Sr ,

and the union is disjoint. But, as noticed at the end of Step II, we have

∂S∗ = ∂S∗+ ∪ ∂S∗− ∪ ∂S∗l ∪ ∂S∗r .

By Step V we know that H1(∂S+)≥H1(∂S∗+), and, in the same way, we know that
H1(∂S−)≥H1(∂S∗−). Let us then focus for a moment on ∂Sl and on ∂S∗l . If 0S is
compact, they are both empty. Otherwise, ∂Sl is a curve between L(l, f−(l)) and
L(l, f+(l)), while ∂S∗l is the segment joining the same points. As a consequence,
one has H1(∂Sl)≥H1(∂S∗l), and, similarly, H1(∂Sr )≥H1(∂S∗r ). Adding up the
four inequalities, we finally get that H1(∂S)≥H1(∂S∗).

Concerning formula (8), it is immediate to obtain for smooth functions f− and
f+, while the generalization for BV functions is standard. �

With the above result at hand, it will be quite easy to obtain the lower bound.

Lemma 2.4 (lower bound). For a curved strip �0,a of any kind, one has

h(�0,a)≥
1
a
.

Moreover, if the inequality above is an equality and there is a Cheeger set, then
this Cheeger set must be �0,a itself.

Proof. Let S be any open connected set of finite perimeter in �0,a , and let S∗ be
as in Definition 2.2. Setting

t− := inf{ f−(q) : q ∈ 0S},

t+ := sup{ f+(q) : q ∈ 0S},

we can easily estimate

(14) |S∗| =
∫
0

∫ f+(q)

f−(q)

(
1− κ(q)t

)
dt dq

=

∫
0

(
f+(q)− f−(q)

)(
1− κ(q)

f+(q)+ f−(q)
2

)
dq

≤ (t+− t−)
∫
0

(
1− κ(q)

f+(q)+ f−(q)
2

)
dq.
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On the other hand, by (8) it is easy to estimate the perimeter of S∗ as

P(S∗)=
∫
0S

√
(1− κ(q) f+(q))2+ f ′+(q)2 dq

+

∫
0S

√
(1− κ(q) f−(q))2+ f ′−(q)2 dq + |Ds f+| (0S)

+ |Ds f−| (0S)+ ( f+(q0)− f−(q0))+ ( f+(q1)− f−(q1))

≥ 2
∫
0S

(
1− κ(q)

f+(q)+ f−(q)
2

)
dq

simply by neglecting both the absolutely continuous and the singular part of D f .
Hence, thanks to Lemma 2.3, we can readily deduce that

P(S)
|S|
≥

P(S∗)
|S∗|

≥
2

t+−t−
≥

1
a
,

where the last inequality is due to the trivial bounds −a ≤ t− < t+ ≤ a. Finally,
if h(�0,a)= 1/a and there is some Cheeger set C= C�0,a , then all the preceding
inequalities must be equalities for S = C, from which it immediately follows that
f+ and f− are constant, and that t± =±a. Thus C=�0,a . �

Remark 2.5. As a consequence of (3) for p = 2, from the above result we get the
lower bound

λ2(�0,a)≥
1

4a2 ,

which is in fact weaker than the bound

λ2(�0,a)≥
j2
0,1

4a2

known from [Exner et al. 2004]. Here, j0,1 ≈ 2.4 denotes the first positive zero of
the Bessel function J0. In fact, an even better bound, reflecting the local geometry
of 0 and valid in arbitrary dimensions, is established in [Exner et al. 2004].

Remark 2.6. It is possible to establish the lower bound of Lemma 2.4 directly from
Theorem 1.3 without using the “stripization” procedure S∗ of Definition 2.2 and its
properties stated in Lemma 2.3. Inspired by the formula of [Bellettini et al. 2002,
Sec. 11, Ex. 4] for the annulus, we introduce the function Vt : 0× (−a, a)→ R,

Vt(q, t) :=


(1− κ(q)a)(1+ κ(q)a)− (1− κ(q)t)2

2aκ(q)(1− κ(q)t)
if κ(q) 6= 0,

t
a

if κ(q)= 0.

The value for vanishing curvature corresponds to taking the limit κ(q)→ 0 in the
formula for positive curvatures. We check that, where the components are consid-
ered with respect to the coordinates (q, t), the vector field V (q, t) := (0, Vt(q, t))
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satisfies ‖V ‖L∞(0×(−a,a)) = 1 and

(divV )(q, t)= 1
1−κ(q)t

∂t [(1− κ(q)t)Vt(q, t)] = 1
a

for every (q, t) ∈ 0× (−a, a). Hence the searched lower bound is a consequence
of Theorem 1.3. However, Lemma 2.3 is needed to establish some finer properties
of the Cheeger constant and Cheeger set.

3. The main results

This section is devoted to show our two main results, namely Theorem 3.1, which
deals with the case of curved annuli or non-finite curved strips, and Theorem 3.2,
which deals with finite curved strips.

The case of a curved annulus and that of a non-finite curved strip.

Theorem 3.1. Let 0 be compact, infinite, or semi-infinite. Then

(15) h(�0,a)=
1
a
.

In particular:

(i) If 0 is compact (that is, �0,a is a curved annulus), then the infimum of (1) is
attained and the unique Cheeger set is C�0,a =�0,a .

(ii) If 0 is infinite or semi-infinite (that is, �0,a is an infinite or semi-infinite
curved strip), then the infimum of (1) is not attained, but the sequence �0L ,a

of Lemma 2.1 is an optimizing sequence for L→∞.

Proof. The equality (15) follows directly from the upper estimate of Lemma 2.1
and the lower estimate of Lemma 2.4.

From the characterization of Lemma 2.4, moreover, we know that the unique
possible Cheeger set is the whole �0,a . Since this set has an infinite area and
perimeter in the case of an infinite or semi-infinite curved strip, we get the nonexis-
tence result of a minimizer for the case (ii), while the fact that�0L ,a is a minimizing
sequence for L →∞ follows by Lemma 2.1. On the other hand, in case (i) we
know by compactness that some Cheeger set must exist, hence the existence and
uniqueness of the whole �0,a as a Cheeger set again comes by Lemma 2.4. �

The case of a finite curved strip.

Theorem 3.2. Let 0 be noncomplete and finite (hence, �0,a is a finite curved
strip). Then there exists a positive universal constant c such that

(16) 1
a
+

c
|0|
≤ h(�0,a)≤

1
a
+

2
|0|
.
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For instance, one may take c = 1
400 . Moreover, the infimum in (1) is attained for

some connected set C�0,a (�0,a .

Proof. Concerning the existence of a Cheeger set C = C�0,a , and in particular of
a connected one, this follows by Theorem 1.1. From the same Theorem, we know
also that ∂C ∩�0,a is made by arcs of circle of radius h(�0,a)−1, and, again by
Theorem 1.1, it cannot coincide with the whole set �0,a , since C may not have
corners. As a consequence, by the characterization of Lemma 2.4 we deduce that
h(�0,a) > 1/a. To conclude, we have then only to give a proof of the bounds (16),
which will be done in several steps.

Step I. The upper bound. Obtaining the upper bound is very easy: it is enough to
recall that

P(�0,a)= 2|0| + 4a, |�0,a| = 2a|0|,

which was already checked, for instance in (7), and then

h(�0,a)≤
P(�0,a)
|�0,a|

=
2|0|+4a

2a|0|
=

1
a
+

2
|0|
.

Step II. The lower bound: the behavior of the arcs of ∂C ∩ �0,a . Thanks to
Theorem 1.1, we know that ∂C cannot have corners. Hence ∂C∩�0,a is not empty,
and it is done by some arcs of circle, all of radius 1/h(�0,a) and hence strictly
smaller than a as noticed above, such that all four corners of �0,a are ruled out
from C. Denoting by q0 and q1 the extreme points of 0, let us call for simplicity
“up”, “down”, “left”, and “right” the four parts of ∂�0,a given by the points of
the form L(q, a), L(q,−a), L(q0, t), and L(q1, t) for q ∈ 0 and t ∈ (−a, a)
respectively. We aim to show this:

Claim. All the arcs of circle of ∂C∩�0,a connect two points of �0,a , at least one
of which is either in the left or in the right part.

To show this claim, we have to exclude the case of an arc of circle starting and
ending in the upper part, and the case of an arc connecting the up and the down
(the case of an arc starting and ending in the bottom part is exactly the same as the
first one).

Suppose first that there is an arc of circle connecting the points P and Q, both
in the upper part. Thus P = L(q ′, a) and Q = L(q ′′, a). By Theorem 1.1, we
know that the circle is tangent to ∂�0,a at P and Q, hence its center O is the
intersection between the two lines which are normal to ∂�0,a at P and Q, which
are t 7→L(q ′, t) and t 7→L(q ′′, t). Since the radius r of these circles is at most a,
the two lines must intersect at the point

L(q ′, a− r)≡ L(q ′′, a− r),

while this is impossible for any r ≤ 2a because L is one-to-one.
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A very similar argument works assuming that an arc of circle connects the point
P = L(q ′, a) in the upper part with the point Q = L(q ′′,−a) in the lower part.
Indeed, again the circle would be tangent to ∂�0,a at both P and Q, so that its
center would be at the intersection of the segments t 7→L(q ′, t) and t 7→L(q ′′, t).
This is impossible if the circle has radius smaller than 2a for q ′ 6= q ′′, but it is also
impossible for a radius strictly smaller than a in the case q ′ = q ′′. This shows the
Claim.

Notice now that by definition the left and the right parts of ∂�0,a are segments,
so the case of a circle starting and ending on the left is impossible, as is an arc
starting and ending on the right. In conclusion, we now know that there can be
either 2, 3, or 4 arcs of circle in ∂C. The simplest case is when there are four
arcs, each of which make a “rounded corner”. This happens, for instance, for a
rectangle (that is, if 0 is a segment), and more generally if a is sufficiently small
with respect to |0|. However, it is also possible that there are only three arcs, one
of which connects the left and the right part of the boundary. This happens, for
instance, whenever the upper or lower part of the boundary is very short due to a
big (but still admissible) curvature of 0. An example of this situation is a sector of
an annulus with very small inner radius, which then is very similar to a triangle:
in this case the boundary of C does not touch the inner circle (some examples of
this kind are shown in the next section). As to the last possibility (only two arcs
of circle both connecting left and right), we have no example in mind and it may
be impossible, but we do not need to exclude this case within this proof. Indeed,
in Steps III and IV we will show the theorem in the case of four rounded corners,
while in Step V we will show how it is always possible to reduce to this case.

Step III. The lower bound: the case when C has four rounded corners; statement
of the Claim (18). To show the lower bound, we start from the case when C has
four rounded corners. Let us recall that, as shown by (8) in Lemma 2.3, one has

(17) P(C)=
∫
0

√
(1− κ(q) f+(q))2+ f ′+(q)2 dq

+

∫
0

√
(1− κ(q) f−(q))2+ f ′−(q)2 dq + |Ds f+| (0)

+ |Ds f−| (0)+ ( f+(q0)− f−(q0))+ ( f+(q1)− f−(q1)),

where f ′
±

dq is the absolute continuous part of D f± and Ds f± its singular part
(notice that, in the language of Definition 2.2, we have 0C = 0 thanks to Step II).
In particular,

P(C)≥
∫
0

(
2− κ(q)( f+(q)+ f−(q))

)
dq.
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We claim that, at least in the case when C has four corners,

(18) P(C)≥
∫
0

(
2− κ(q)( f+(q)+ f−(q))

)
dq + 1

50a.

We will prove this estimate in the next step. Now we show how this implies the
thesis. We can easily estimate the area of C as in (14):

|C| =

∫
0

∫ f+(q)

f−(q)
(1− κ(q)t) dt dq

=

∫
0

(
f+(q)− f−(q)

)(
1− κ(q)

f+(q)+ f−(q)
2

)
dq

≤ a
∫
0

(
2− κ(q)( f+(q)+ f−(q))

)
dq.

Hence, using (18), we get (16) because, recalling that a‖κ‖L∞(0) ≤ 1 (as pointed
out in Section 1),

(19) h(�0,a)=
P(C)
|C|
≥

∫
0

(
2− κ(q)( f+(q)+ f−(q))

)
dq + 1

50a

a
∫
0

(
2− κ(q)( f+(q)+ f−(q))

)
dq

=
1
a
+

1
50
∫
0

(
2−κ(q)( f+(q)+ f−(q))

)
dq

≥
1
a
+

1
50|0|

(
2+2a‖κ‖L∞(0)

) ≥ 1
a
+

1
200|0|

.

Step IV. The lower bound: the case when C has four rounded corners; proof of
Claim (18). We show that, assuming that ∂C∩�0,a consists of four arcs of circle,
(18) holds. This will be done by considering a single arc. To choose it, we start by
noticing that (17) already trivially implies (18) if

f+(q1)− f−(q1)≥
1
50a.

As a consequence, we can assume that

(20) f+(q1)≤
1

100a,

and we concentrate on the arc of circle corresponding to the “upper right corner”.
Of course, if (20) were not true, one could assume f−(q1) ≥ −a/100 and then
make the completely symmetric considerations on the “lower right corner”. As
shown in Figure 4, we call the arc of circle that we are considering γ , and we can
also look at γ in the reference rectangle, where of course it is no longer part of a
circle. We define the length η as in Figure 4.
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Figure 4. The situation (both in � and in the reference configu-
ration) of Step IV.

We denote by 0γ the part of 0 related to the curve γ . 0γ is therefore the subset
of 0 such that

γ = {(q, f+(q)) : q ∈ 0γ },

we can subdivide 0γ into two parts, namely

01 :=
{
q ∈ 0γ : | f ′+(q)|<

1
5

}
, 02 :=

{
q ∈ 0γ : | f ′+(q)| ≥

1
5

}
.

Notice that the above subdivision makes sense because f+ has no singular part
inside 0γ (since the image of its graph under L is an arc of circle). By definition,

(21)
∫
01

| f ′
+
(q)|dq ≤ 1

5 |01| ≤
1
5η ≤

2
5a.

In the last inequality we used the fact that η ≤ 2a, which is true because γ is an
arc of circle or radius smaller than a (keep in mind that by Lemma 2.4 we already
know that h(�0,a)≥ 1/a) and the lengths in the reference rectangle are at most the
double of the true lengths (recall also that by Theorem 1.1 the arcs of circle touch
∂�0,a tangentially). But then, thanks to (20), one has∫

0γ

∣∣ f ′
+
(q)
∣∣ dq ≥ 99

100a,

so that by (21) we get

(22)
∫
02

∣∣ f ′
+
(q)
∣∣ dq ≥

( 99
100 −

2
5

)
a = 59

100a.

Recalling again that 0 < 1− κ(q) f+(q) < 2, a trivial calculation ensures that for
any q ∈ 02

(23)
√
(1− κ(q) f+(q))2+ f ′+(q)2 ≥ (1− κ(q) f+(q))+ 1

25 | f
′

+
(q)|.
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Hence, thanks to (22) and (23), we can estimate the length of γ as

∣∣γ ∣∣= ∫
0γ

√(
1− κ(q) f+(q)

)2
+ f ′+(q)2 dq

≥

∫
0γ

(
1− κ(q) f+(q)

)
dq + 1

25

∫
02

∣∣ f ′
+
(q)
∣∣ dq

≥

∫
0γ

(
1− κ(q) f+(q)

)
dq + 59

25·100
a.

Recalling formula (17) for the perimeter of C, we finally conclude that

P(C)≥
∫
0

(
2− κ(q)( f+(q)+ f−(q))

)
dq + 59

25·100
a,

thus finally getting (18).

Step V. The lower bound: general case. In this last step we conclude the proof
of the theorem. Thanks to the above steps, we already know that the result holds
in the case of four rounded corners, so we can now assume that ∂C has only two
or three arcs. In this case, there exist two maximal numbers a± ≤ a such that
C⊆ L(0× (−a−, a+)). Let us now introduce a new strip �0̃,ã:

t̄ := a+−a−

2
, 0̃ := L(0×{t̄}), ã := a++a−

2
.

Notice that there is a bijective map ϕ : 0→ 0̃ given by ϕ(q) = L(q, t̄), and that
since 0̃ is parallel to 0 by construction, the normal vector N (q) to 0 at q coincides
with the normal vector Ñ (ϕ(q)) to 0̃ at ϕ(q). Thus, �0̃,ã being a subset of �0,a ,
the injectivity condition (5) trivially holds for 0̃ and ã, and we can conclude that
the strip �0̃,ã is admissible for our purposes.

By construction, we have C⊆�0̃,ã , so C is also the Cheeger set of�0̃,ã . More-
over, by maximality of a± we know that C touches all four parts of the boundary
of �0̃,ã , so the preceding steps, and in particular (19), allow us to deduce that

h(�0,a)=
P(C)
|C|
= h(�0̃,ã)≥

1
ã
+

1
200|0̃|

.

Finally, by definition ã ≤ a, while

|0̃| =

∫
0

(
1− t̄κ(q)

)
dq ≤ 2|0|.

Thus, we get (16) with the constant c = 1
400 . �
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Figure 5. The annulus and the disc considered as its limit case.

4. Solvable models

In this section we discuss our results on the basis of several examples of curved
strips about circles and circular arcs. They are referred to as solvable models since
the determination of the Cheeger constant and the Cheeger set is reduced to solving
an explicit algebraic equation. Where the exact solution is not available, we have
solved the problem with the help of standard numerical tools.

Annuli. Probably the simplest example is given by annuli, that is, strips built about
(full) circles; see Figure 5. Then the Cheeger set is the strip itself and the Cheeger
constant equals half of the distance between the boundary curves. It follows from
Theorem 3.1 that exactly the same situation holds for general curved annuli. Let
us remark that discs can also be thought of as examples of curved strips. Indeed, a
disc with its central point removed has the same Cheeger set (up to the point) and
Cheeger constant as the disc, and the former set can be considered as the limit case
of the annulus built about the circle of radius a+ ε when ε→ 0+.

Rectangles. The rectangle Ra,b := (−b, b)× (−a, a), with a, b > 0, can be con-
sidered as a strip built about the segment 0 := (−b, b)×{0}. Using Theorem 1.2,
it is easy to find its Cheeger constant explicitly:

h(Ra,b)=
a+ b+

√
(a− b)2+πab
2ab

.

Notice the scaling h(Ra,b)=h(R1,b/a). The procedure also determines the Cheeger
set of Ra,b as the rectangle with its corners rounded off by circular arcs of radius
h(R)−1; see Figure 6.

Figure 6. The rectangle and its Cheeger set (light gray) for b/a = 3.
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Figure 7. The Cheeger constant h and the quantity k for rectan-
gles with a = 1.

The Cheeger constant can be written as

h(Ra,b)=
1
a
+

k(a, b)
|0|

, where k(a, b) :=
a− b+

√
(a− b)2+πab

a

and |0| = 2b. Notice the scaling k(a, b)= k(1, b/a). It is straightforward to check
that b/a 7→ k(a, b) is a decreasing function with the limits k(a, b)→ 2 as b/a→ 0
and k(a, b)→π/2 as b/a→∞. Hence the upper bound of Theorem 3.2 becomes
sharp in the limit of very narrow rectangles. The dependence of the Cheeger con-
stant h and of the quantity k on rectangle parameters is shown in Figure 7.

Sectors. Let 0a be the circle of curvature κ = a−1 and consider its part 0αa of
length |0αa | = αa, with any α ∈ (0, 2π); see Figure 8. The corresponding strip
�αa := �0αa ,a does not satisfy the assumption (5). However, since L is in fact
injective in 0a × (−a, a), it can be considered as a limit case of admissible strips
along corresponding parts of the circle of radius a+ ε when ε→ 0+.

The Cheeger constant and the Cheeger set of �αa can be found as follows. First,
we construct a family of domains Sr , with r ∈ (0, a), defined by rounding off
the corners in �αa of angle smaller than π by circular arcs of radius r . This can
be done by a straightforward usage of elementary geometric rules. Secondly, we

Α

2 a

Ga

Figure 8. The sector of a disc considered as a strip built about the
( α2π )-th part of a circle.
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Figure 9. The Cheeger constant h and the constant k for sectors
with a = 1.

minimize the quotient P(Sr )/|Sr |with respect to r , which is done with the help of a
numerical optimization. The minimum of the quotient corresponds to the Cheeger
constant, and the minimizer is the Cheeger set. The procedure is equivalent to
using Theorem 1.2, which seems to remain valid also for α > π , corresponding to
nonconvex sectors.

In view of the obvious scaling h(�αa )= h(�α1 )/a, one can set a=1, without loss
of generality. The dependence of the Cheeger constant on α is shown in Figure 9.
Table 1 contains numerical values for some specific angles.

Writing the Cheeger constant as

h(�αa )=
1
a
+

k(α)
|0αa |

,

we also study the dependence of the constant k(α) on α; see Figure 9 and Table 1.
The third value of α in Table 1 corresponds to the maximal point of the curve
α 7→k(α) from Figure 9. In any case, we see that the upper bound of Theorem 3.2 is
quite good for all the sectors. Finally, Figure 10 shows a numerical approximation
of the Cheeger sets for some annuli.

α π/10 π/2 0.656749π 3π/4 π 3π/2 2π

h(�α1 ) 5.92687 2.16358 1.89111 1.77915 1.57714 1.37582 1.27722
k(�α1 ) 1.54782 1.82774 1.83856 1.83583 1.81315 1.77101 1.74184

Table 1. The Cheeger constant h and the constant k for sectors
with a = 1.
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α = π/10 α = π/2 α = 3π/4

α = π α = 3π/2 α = 2π

Figure 10. The sectors and their Cheeger sets (light gray).
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