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INSPIRED BY RIGIDITY OF MINIMAL SUBMANIFOLDS

HONG-WEI XU AND LING TIAN

We prove a vanishing theorem for the fundamental group of a compact
submanifold in a space form, and then present a refined version of Ejiri’s
rigidity theorem for minimal submanifolds in a sphere. Inspired by the
refined Ejiri theorem, we verify a new differentiable sphere theorem for
compact submanifolds in space forms. We also show that our differentiable
sphere theorem is sharp. We emphasize that our method of Ricci flow in
the proof of the sphere theorem seems useful in the study of curvature and
topology. Also, we obtain a differentiable pinching theorem for compact
submanifolds in a Riemannian manifold.

1. Introduction

The investigation of geometrical and topological structures of manifolds plays an
important role in global differential geometry. Since the first sphere theorem for
Riemannian manifolds was proved by Rauch in 1951, there has been much progress
in this field; see [Berger 2000; Brendle 2010; Shiohama 2000; Xu 2012]. Bren-
dle and Schoen [2008] proved a remarkable classification theorem for compact
manifolds with weakly 1

4 -pinched curvatures in the pointwise sense, implying this:

Theorem A. Suppose that M is an n-dimensional complete and simply connected
Riemannian manifold such that 1

4 ≤ KM ≤ 1. Then M is either diffeomorphic to Sn

or isometric to a compact rank-one symmetric space (CROSS).

Petersen and Tao [2009] improved Brendle and Schoen’s pinching constant in
Theorem A to 1

4 − εn , with εn being a positive constant depending only on n.
Motivated by Shen’s topological sphere theorem [1989] for compact manifolds
with positive Ricci curvature and Yau’s open problem on the pinching theorem [Yau
1993, Problem 12], Gu and Xu [2011] obtained a differentiable sphere theorem for
compact manifolds with positive scalar curvature. In particular, they proved that
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if M is an n-dimensional compact Riemannian manifold (n ≥ 3) whose sectional
curvature and scalar curvature satisfy KM ≤ 1 and R > n(n − 1)δn , then M is
diffeomorphic to a spherical space form. Here

δn = 1−
20− 8 sgn(n− 3)

5n(n− 1)

and sgn( · ) is the standard sign function.
In addition, results on sphere theorems for Riemannian submanifolds have been

obtained by various authors [Huisken 1987; Lawson and Simons 1973; Shiohama
2000; Shiohama and Xu 1997; Xu and Zhao 2009]. Let Mn be an n-dimensional
submanifold in an (n+ p)-dimensional Riemannian manifold N n+p. Denote by H
and S the mean curvature and the squared length of the second fundamental form
of M , respectively. Motivated by Lawson, Simons, Shiohama, and Xu’s topo-
logical sphere theorem [Lawson and Simons 1973; Shiohama and Xu 1997] for
submanifolds, Xu and Zhao [2009] proved that for n≥ 4, if M is an n-dimensional
complete submanifold in Sn+p and S < 2

√
2, then M is diffeomorphic to Sn . Let

Fn+p(c) be an (n + p)-dimensional simply connected space form with constant
curvature c. Xu and Gu [2010] extended Huisken’s sphere theorem [1987] for
hypersurfaces in spheres to the case of submanifolds in space forms, and proved
the following optimal differentiable sphere theorem:

Theorem B. Suppose that M is an n-dimensional oriented complete submanifold
in Fn+p(c) with c ≥ 0. If

λ(M) := sup
M

(
S− n2 H 2

n−1
− 2c

)
< 0,

then M is diffeomorphic to Sn .

After the pioneering rigidity theorem for closed minimal submanifolds in a
sphere due to Simons [1968], several fundamental rigidity results for minimal
submanifolds were proved by various authors [Chern et al. 1970; Ejiri 1979; Law-
son 1969; An-Min and Jimin 1992; Yau 1974; 1975]. Ejiri [1979] obtained the
following rigidity theorem for minimal submanifolds in spheres:

Theorem C. Suppose that M is an n-dimensional simply connected compact ori-
entable minimal submanifold in an (n + p)-dimensional unit sphere Sn+p, with
n ≥ 4. If the Ricci curvature of M satisfies

RicM ≥ n− 2,

then M is either the totally geodesic submanifold Sn , the Clifford torus Sm(
√

1/2)×
Sm(
√

1/2) in Sn+1 with n = 2m, or CP2( 4
3) in S7. Here CP2(4

3) denotes the 2-
dimensional complex projective space minimally immersed into S7 with constant
holomorphic sectional curvature 4

3 .
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Shen [1992] proved that if M is a 3-dimensional compact minimal submanifold
in a unit sphere S3+p, and if the Ricci curvature of M is larger than 1, then M is
the totally geodesic submanifold S3.

Here we investigate differentiable sphere theorems for compact submanifolds
of positive Ricci curvature. Using convergence results of Hamilton [1982] and
Brendle [2008] for Ricci flow and the Lawson–Simons–Xin formula for the nonex-
istence of stable currents [Lawson and Simons 1973; Xin 1984], we prove such a
theorem inspired by rigidity of minimal submanifolds. We first prove the following
differentiable sphere theorem for submanifolds in a Riemannian manifold.

Theorem 1.1. Suppose that M is an n-dimensional compact submanifold in an
(n+ p)-dimensional Riemannian manifold N n+p, with n ≥ 4. Denote by K (x, π)
the sectional curvature of N for tangent 2-plane π(⊂ Tx N ) at point x ∈ N. Set
K max(x) :=maxπ⊂Tx N K (x, π) and K min(x) :=minπ⊂Tx N K (x, π). If

RicM > (n− 2
3)K max−

4
3 K min+

1
8 n2 H 2,

then the normalized Ricci flow with initial metric g0

∂

∂t
g(t)=−2 Ricg(t) +

2
n

rg(t)g(t)

exists for all time and converges to a constant curvature metric as t→∞. Also, M
is diffeomorphic to a spherical space form. In particular, if M is simply connected,
then M is diffeomorphic to Sn .

We give a vanishing theorem for the fundamental group of a submanifold.

Theorem 1.2. Suppose that M is an n-dimensional compact submanifold in an
(n + p)-dimensional space form Fn+p(c) with c ≥ 0. If the Ricci curvature of M
satisfies

RicM > 1
2(n− 1)c+ 1

8 n2 H 2,

then π1(M)= 0; that is, M is simply connected.

Applying Theorem 1.2 to Theorem C, we obtain a refined version of the Ejiri
rigidity theorem for minimal submanifolds in spheres, without the assumption that
M is simply connected. Finally, inspired by the refined Ejiri rigidity theorem for
minimal submanifolds, we prove the following differentiable sphere theorem for
submanifolds in space forms.

Theorem 1.3 (Main Theorem). Suppose that M is an n-dimensional compact sub-
manifold in an (n+ p)-dimensional space form Fn+p(c), with c ≥ 0 and n ≥ 3. If
the Ricci curvature of M satisfies

RicM > (n− 2)c+ 1
8 n2 H 2,

then M is diffeomorphic to Sn .
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We show in Example 3.4 that the pinching condition in Theorem 1.3 is sharp.
Our method in the proof of the main theorem seems very useful in the study of
curvature and topology.

2. Notation and fundamental tools

Throughout, let Mn (where n ≥ 2) be an n-dimensional compact submanifold in
an (n + p)-dimensional Riemannian manifold N n+p. We use the following con-
ventions on the range of indices:

1≤ A, B,C, . . .≤ n+ p, 1≤ i, j, k, . . .≤ n, n+ 1≤ α, β, γ, . . .≤ n+ p.

For an arbitrary fixed point x ∈ M ⊂ N , we choose an orthonormal local frame
field {eA} in N n+p such that ei ’s are tangent to M . Let {ωA} be the dual frame
field of {eA}. Let Rm, h and ξ denote the Riemannian curvature tensor, second
fundamental form and mean curvature vector of M , respectively, and let Rm be
the Riemannian curvature tensor of N . Then

Rm =
∑

i, j,k,l

Ri jklωi ⊗ω j ⊗ωk ⊗ωl,

Rm =
∑

A,B,C,D

R ABC DωA⊗ωB ⊗ωC ⊗ωD,

h =
∑
α,i, j

hαi jωi ⊗ω j ⊗ eα, ξ =
1
n

∑
α,i

hαi i eα,

Ri jkl = Ri jkl +
∑
α

(
hαikhαjl − hαilh

α
jk
)
,(2-1)

and the mean curvature H of M is given by H :=
∣∣(1/n)

∑
α,i hαi i eα

∣∣. Denote by
Ric(u) the Ricci curvature of M in the direction of u ∈ U M . From the Gauss
equation (2-1), we have

Ric(ei )=
∑

j

Ri j i j +
∑
α, j

(
hαi i h

α
j j − hαi j h

α
i j
)
.

Denote by Aα the shape operator of M with respect to eα. Choose {eα} such that
en+1 is parallel to ξ and

(2-2) tr An+1 = nH, tr Aα = 0, α 6= n+ 1.

Thus the mean curvature vector ξ is equal to Hen+1, and∑
j

hαj j =

{
nH, α = n+ 1,
0, α 6= n+ 1.
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Hence

(2-3) Ric(ei )=
∑

j

Ri j i j + nHhn+1
i i −

∑
α, j

hαi j h
α
i j .

Denote by K (x, π) the sectional curvature of M for tangent 2-plane π(⊂ Tx M)
at point x ∈ M , and by K (x, π) the sectional curvature of N for tangent 2-plane
π(⊂ Tx N ) at point x ∈ N . Set

K max(x) := max
π⊂Tx N

K (x, π) and K min(x) := min
π⊂Tx N

K (x, π).

By Berger’s inequality [Brendle 2010, Proposition 1.9],

(2-4) |R ABC D| ≤
2
3(K max− K min)

for all distinct indices A, B, C , D.

Theorem 2.1 [Hamilton 1982]. Let (M, g0) be a compact Riemannian manifold
of dimension 3. If RicM > 0, then the normalized Ricci flow with initial metric g0

∂

∂t
g(t)=−2 Ricg(t) +

2
3rg(t)g(t)

exists for all time and converges to a constant curvature metric as t →∞. Here
rg(t) denotes the mean value of the scalar curvature of g(t).

Next we quote an important convergence result for the Ricci flow in higher
dimensions.

Theorem 2.2 [Brendle 2008; Brendle and Schoen 2009]. Suppose (M, g0) is a
compact Riemannian manifold of dimension n ≥ 4. Assume that

(2-5) R1313+ λ
2 R1414+ R2323+ λ

2 R2424− 2λR1234 > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1]. Then the nor-
malized Ricci flow with initial metric g0

∂

∂t
g(t)=−2 Ricg(t) +

2
n

rg(t)g(t)

exists for all time and converges to a constant curvature metric as t →∞. Here
rg(t) denotes the mean value of the scalar curvature of g(t).

The following nonexistence theorem for stable currents in a compact Riemann-
ian manifold M isometrically immersed into Fn+p(c) was proved for c > 0 in
[Lawson and Simons 1973] and was extended to c= 0 in [Xin 1984]. It is used to
eliminate the homology groups Hq(M;Z) for 1 ≤ q ≤ n− 1 and the fundamental
group π1(M).
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Theorem 2.3. Let M be an n-dimensional compact submanifold in Fn+p(c) with
c ≥ 0. Assume that

(2-6)
n∑

k=q+1

q∑
i=1

[
2|h(ei , ek)|

2
−〈h(ei , ei ), h(ek, ek)〉

]
< q(n− q)c

for any orthonormal basis {ei } of Tx M at any point x ∈ M , where q is an integer
satisfying 1≤ q ≤ n− 1. Then there do not exist any stable q-currents. Also,

Hq(M;Z)= Hn−q(M;Z)= 0,

where Hi (M;Z) is the i-th homology group of M with integer coefficients.

3. Proofs of the theorems

To complete the proof of the main theorem (Theorem 1.3), we need to prove the
differentiable pinching theorem for submanifolds (Theorem 1.1) and the vanishing
theorem for the fundamental group of a submanifold (Theorem 1.2).

Proof of Theorem 1.1. It is sufficient to show that inequality (2-5) in Theorem 2.2
holds for all λ ∈ R. Suppose that {e1, e2, e3, e4} is an orthonormal four-frame and
that λ ∈ R. From the Gauss equation, we have

(3-1) R1313+ λ
2 R1414+ R2323+ λ

2 R2424− 2λR1234

= R1313+ λ
2 R1414+ R2323+ λ

2 R2424− 2λR1234

+
∑

α

(
hα11hα33− (h

α
13)

2
+ hα22hα33− (h

α
23)

2
)

+ λ2∑
α

(
hα11hα44− (h

α
14)

2
+ hα22hα44− (h

α
24)

2
)

− 2λ
∑

α

(
hα13hα24− hα14hα23

)
= R1313+ λ

2 R1414+ R2323+ λ
2 R2424− 2λR1234

+
∑

α

(
− (hα13)

2
− (hα23)

2
− λ2(hα14)

2
− λ2(hα24)

2

− 2λhα13hα24+ 2λhα14hα23+ hα11hα33+ hα22hα33+ λ
2hα11hα44+ λ

2hα22hα44

)
.

It follows from Berger’s inequality that R1234 ≤
2
3(K max − K min). This together

with (3-1) implies
(3-2)

R1313+ λ
2 R1414+ R2323+ λ

2 R2424− 2λR1234

≥ 2(1+ λ2)K min−
4
3 |λ|(K max− K min)

+
∑

α

(
−(hα13)

2
− (hα23)

2
− λ2(hα14)

2
− λ2(hα24)

2

− |λ|(hα13)
2
− |λ|(hα24)

2
− |λ|(hα23)

2
− |λ|(hα14)

2

−
1
2(1+λ

2)(hα11)
2
−

1
2(1+λ

2)(hα22)
2
− (hα33)

2
− λ2(hα44)

2

+
1
2(h

α
11+ hα33)

2
+

1
2(h

α
22+ hα33)

2
+

1
2λ

2(hα11+ hα44)
2
+

1
2λ

2(hα22+ hα44)
2)
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≥ 2(1+ λ2)K min−
2
3(1+ λ

2)(K max− K min)

+
∑

α

(
−(hα31)

2
− (hα32)

2
− (hα33)

2
− λ2(hα41)

2
− λ2(hα42)

2
− λ2(hα44)

2

−
1
2(1+λ

2)(hα11)
2
− |λ|(hα13)

2
− |λ|(hα14)

2

−
1
2(1+λ

2)(hα22)
2
− |λ|(hα23)

2
− |λ|(hα24)

2

+
1
2(h

α
11+ hα33)

2
+

1
2(h

α
22+ hα33)

2
+

1
2λ

2(hα11+ hα44)
2
+

1
2λ

2(hα22+ hα44)
2)

≥ 2(1+ λ2)K min−
2
3(1+ λ

2)(K max− K min)

+
∑

α

(
−
∑

j

(
(hα3 j )

2
+ λ2(hα4 j )

2
+

1
2(1+λ

2)(hα1 j )
2
+

1
2(1+λ

2)(hα2 j )
2
)

+
1
2(h

α
11+ hα33)

2
+

1
2(h

α
22+ hα33)

2
+

1
2λ

2(hα11+ hα44)
2
+

1
2λ

2(hα22+ hα44)
2
)
.

Substituting (2-3) into (3-2), we get

(3-3)

R1313+ λ
2 R1414+ R2323+ λ

2 R2424− 2λR1234

≥ 2(1+ λ2)K min−
2
3(1+ λ

2)(K max− K min)

+Ric(e3)− nHhn+1
33 −

∑
j R3 j3 j

+ λ2
(
Ric(e4)− nHhn+1

44 −
∑

j R4 j4 j
)

+
1
2(1+λ

2)
(
Ric(e1)− nHhn+1

11 −
∑

j R1 j1 j
)

+
1
2(1+λ

2)
(
Ric(e2)− nHhn+1

22 −
∑

j R2 j2 j
)

+
1
2(h

n+1
11 + hn+1

33 )2+ 1
2(h

n+1
22 + hn+1

33 )2

+
1
2λ

2(hn+1
11 + hn+1

44 )2+ 1
2λ

2(hn+1
22 + hn+1

44 )2

≥ 2(1+ λ2)K min−
2
3(1+ λ

2)(K max− K min)− 2(1+ λ2)(n− 1)K max

+Ric(e3)+ λ
2 Ric(e4)+

1
2(1+λ

2)Ric(e1)+
1
2(1+λ

2)Ric(e2)

+
1
2(h

n+1
11 + hn+1

33 )2− 1
2 nH(hn+1

11 + hn+1
33 )

+
1
2(h

n+1
22 + hn+1

33 )2− 1
2 nH(hn+1

22 + hn+1
33 )

+
1
2λ

2(hn+1
11 + hn+1

44 )2− 1
2 nHλ2(hn+1

11 + hn+1
44 )

+
1
2λ

2(hn+1
22 + hn+1

44 )2− 1
2 nHλ2(hn+1

22 + hn+1
44 )

= 2(1+ λ2)K min−
2
3(1+ λ

2)(K max− K min)− 2(1+ λ2)(n− 1)K max

+Ric(e3)+ λ
2 Ric(e4)+

1
2(1+λ

2)Ric(e1)+
1
2(1+λ

2)Ric(e2)

+
1
2

(
hn+1

11 + hn+1
33 −

1
2 nH

)2
+

1
2

(
hn+1

22 + hn+1
33 −

1
2 nH

)2

+
1
2λ

2(hn+1
11 + hn+1

44 −
1
2 nH

)2
+

1
2λ

2(hn+1
22 + hn+1

44 −
1
2 nH

)2

−
1
4(1+ λ

2)n2 H 2.
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By assumption, we have

(3-4) Ric(ei ) >
(
(n− 2

3)K max−
4
3 K min

)
+

1
8 n2 H 2.

Substituting (3-4) into (3-3), we have

(3-5) R1313+ λ
2 R1414+ R2323+ λ

2 R2424− 2λR1234

> 2(1+ λ2)K min−
2
3(1+ λ

2)(K max− K min)− 2(1+ λ2)(n− 1)K max

+ 2(1+ λ2)
(
(n− 2

3)K max−
4
3 K min+

1
8 n2 H 2)

− (1+ λ2) 1
4 n2 H 2

= 2(1+ λ2)
(
− (n− 2

3)+ (n−
2
3)
)
K max

+ 2(1+ λ2)(1+ 1
3 −

4
3)K min = 0.

It follows from Theorem 2.2 that the normalized Ricci flow with initial metric g0,

∂

∂t
g(t)=−2 Ricg(t)+

2
n

rg(t)g(t),

exists for all time and converges to a constant curvature metric as t→∞. Also, M
is diffeomorphic to a spherical space form. In particular, if M is simply connected,
then M is diffeomorphic to Sn . This completes the proof of Theorem 1.1. �

Corollary 3.1. Suppose M is an n-dimensional compact submanifold (n ≥ 4) in
an (n+ p)-dimensional pinched Riemannian manifold N n+p whose sectional cur-
vature satisfies b ≤ K N ≤ c. If the Ricci curvature of M satisfies

RicM >
(
n− 2

3

)
c− 4

3 b+ 1
8 n2 H 2,

then M is diffeomorphic to a spherical space form. In particular, if M is simply
connected, then M is diffeomorphic to Sn .

Corollary 3.2. Suppose M is an n-dimensional compact submanifold (n ≥ 4) in
an (n + p)-dimensional pointwise δ-pinched Riemannian manifold N n+p, where
δ > 0. If the Ricci curvature of M satisfies

RicM >
(
n− 2

3 −
4
3δ
)
K max+

1
8 n2 H 2,

then M is diffeomorphic to a spherical space form. In particular, if M is simply
connected, then M is diffeomorphic to Sn .

Proof of Theorem 1.2. It follows from the Gauss equation (2-1) that

(3-6) Ric(ei )= (n− 1)c+
∑
α,k

(
hαi i h

α
kk − (h

α
ik)

2).
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This, together with the assumption, implies that

(3-7)
n∑

k=2

(
2|h(e1, ek)|

2
−〈h(e1, e1), h(ek, ek)〉

)
= 2

∑
α

n∑
k=2
(hα1k)

2
−
∑
α

n∑
k=2

hα11hαkk

=−2 Ric(e1)+ 2(n− 1)c−
∑
α

(hα11)
2
+ nHhn+1

11

=−2 Ric(e1)+ 2(n− 1)c−
∑

α 6=n+1
(hα11)

2
−
(
hn+1

11 −
1
2 nH

)2
+

1
4 n2 H 2

≤−2 Ric(e1)+ 2(n− 1)c+ 1
4 n2 H 2 < (n− 1)c,

for any orthonormal basis {ei } of Tx M at any point x ∈ M .
Suppose that π1(M) 6= 0. Because M is compact, it follows from a classical

theorem due to Cartan and Hadamard that there exists a minimal closed geodesic
in any nontrivial homotopy class in π1(M). However, by Theorem 2.3, we know
that there do not exist any stable integral 1-currents on M . This contradicts the
hypothesis. Therefore, π1(M)= 0. This proves Theorem 1.2. �

Applying Theorem 1.2 to Theorem C, we get a refined version of Ejiri’s rigidity
theorem.

Theorem 3.3. Suppose M is an n-dimensional compact orientable minimal sub-
manifold in an (n + p)-dimensional unit sphere Sn+p, where n ≥ 4. If the Ricci
curvature of M satisfies

RicM ≥ n− 2,

then M is either

• the totally geodesic submanifold Sn , or

• the Clifford torus Sm(
√

1/2)× Sm(
√

1/2) in Sn+1 with n = 2m, or

• CP2(4
3), the 2-dimensional complex projective space minimally immersed in

S7 with constant holomorphic sectional curvature 4
3 .

Proof of Theorem 1.3. When n = 3, we have

(3-8) RicM > c+ 9
8 H 2
≥ 0.

From Hamilton’s convergence theorem [1982] for Ricci flow in dimension 3, it
follows that M is diffeomorphic to a 3-dimensional spherical space form. When
n ≥ 4, it follows from Theorem 1.1 that M is diffeomorphic to a spherical space
form.

On the other hand, it follows from the assumption that

(3-9) RicM > (n− 2)c+ 1
8 n2 H 2

≥
1
2(n−1)c+ 1

8 n2 H 2 for n ≥ 3.
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This together with Theorem 1.2 implies that M is simply connected. Therefore, M
is diffeomorphic to Sn . This completes the proof of Theorem 1.3. �

The following example shows that the pinching condition in Theorem 1.3 is
sharp.

Example 3.4. (i) Let M = CP2
( 4

3(c+ H 2)
)

be a 2-dimensional complex projec-
tive space minimally immersed into S7

(
1/
√

c+ H 2
)

with constant holomorphic
sectional curvature 4

3(c + H 2), and let S7
(
1/
√

c+ H 2
)

be the totally umbilical
sphere in F4+p(c). Here H is a nonnegative constant and c+ H 2 > 0. Then M is
a compact submanifold in F4+p(c) with constant mean curvature H and constant
Ricci curvature RicM ≡ 2c+ 2H 2. M is not a topological sphere.

(ii) Let M = S2
(
1/
√

2(c+ H 2)
)
× S2

(
1/
√

2(c+ H 2)
)

be a minimal Clifford
hypersurface in S5

(
1/
√

c+ H 2
)
, and let S5

(
1/
√

c+ H 2
)

be the totally umbilical
sphere in F4+p(c). Here H is a nonnegative constant and c+ H 2 > 0. Then M is
a compact submanifold in F4+p(c) with constant mean curvature H and constant
Ricci curvature RicM ≡ 2c+ 2H 2 that is not a topological sphere.

(iii) Let M = Sm
(
1/
√

2c
)
× Sm

(
1/
√

2c
)

be a minimal Clifford hypersurface in
Fn+1(c) with c > 0 and n = 2m ≥ 6, and let Fn+1(c) be the totally geodesic
submanifold in Fn+p(c). Then M is a compact minimal submanifold in Fn+p(c)
with RicM ≡ (n− 2)c, and is not homeomorphic to Sn .

Remark 3.5. Using the nonexistence theorem for stable currents on submanifolds
in hyperbolic spaces [Fu and Xu 2008] and Theorem 1.1, one can also extend
Theorem 1.3 to the case of compact submanifolds in hyperbolic spaces.

Motivated by Theorem 1.3 and the convergence results for mean curvature flow
in higher codimensions [Andrews and Baker 2010; Liu et al. 2011], we would like
to propose the following conjecture on mean curvature flow in higher codimen-
sions.

Conjecture 3.6. Let M0= F0(M) be an n-dimensional compact submanifold in an
(n+ p)-dimensional space form Fn+p(c), with c+ H 2 > 0. If the Ricci curvature
of M0 satisfies

RicM0 > (n− 2)c+ 1
8 n2 H 2,

then there exists for the mean curvature flow

(3-10)


∂

∂t
F(x, t)= nξ(x, t), x ∈ M, t ≥ 0,

F( · , 0)= F0( · )

a unique smooth solution Ft( · ), and either Ft( · ) converges to a round point in
finite time, or c > 0 and Ft( · ) converges to a totally geodesic sphere as t→∞.
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