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In the spirit of the Goodman–Plante average condition for the existence of
a transverse invariant measure for foliations, we give an averaging condi-
tion to find tangentially smooth measures with prescribed Radon–Nikodým
cocycle. Harmonic measures are examples of tangentially smooth measures
for foliations and laminations. We also present a sufficient hypothesis under
which the tangentially smooth measure is harmonic.

1. Introduction

Averaging sequences for foliations were introduced in the pioneering work of
Plante [1975] on the influence that the existence of transverse invariant measures
exerts on the structure of a foliation. Although that work dealt only with the case
of subexponential growth, his approach is clearly reminiscent of the classic work
of E. Følner [1955] on groups. Using the same kind of ideas, S. E. Goodman and
Plante [1979] exhibited an averaging condition which guarantees the existence of
transverse invariant measures for foliations of compact manifolds.

In this paper we formulate a more general averaging condition which gives rise
to a tangentially smooth measure for a compact laminated space (M,F). This
condition may be related to the η-Følner condition in [Alcalde Cuesta and Recht-
man 2011], in the same spirit as Følner, but using a modified Riemannian metric
along the leaves. The modification is done by replacing any complete Riemannian
metric along the leaves with the product of the metric with some density function.
Namely, given a compact laminated space and a positive cocycle defined on the
equivalence relation induced by the lamination on a total transversal, we prove
that an η-Følner sequence gives rise to the existence of a tangentially smooth mea-
sure whose Radon–Nikodým cocycle is the given one. Moreover, we describe a
sufficient hypothesis for obtaining a harmonic measure. This is the content of
Theorem 4.10.
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Before proving Theorem 4.10, we analyze the discrete case. We define an av-
eraging condition for any equivalence relation R defined by a finitely generated
pseudogroup acting on a compact space and any continuous cocycle δ :R→R∗

+
that

we call a δ-averaging condition. In Theorem 3.6 we prove that the existence of a δ-
averaging sequence gives a quasi-invariant measure with Radon–Nikodým cocycle
δ. Under some additional conditions, in particular if δ is harmonic, the measure
obtained is harmonic. In this case, our result is reminiscent of Kaimanovich’s
[1997] characterization of amenable equivalence relations.

The paper is organized as follows. In Section 2 we review some preliminaries.
In particular Section 2C contains the proof of Goodman and Plante’s theorem.
The discussion of the discrete and continuous settings is split into two separate
sections, Section 3 and Section 4, respectively, which can be read independently.
In Section 5 we analyze some explicit examples. The relation between the two
types of averaging sequences will be briefly discussed in Section 6.

2. Preliminaries

2A. Laminations and equivalence relations. A compact space M admits a d-
dimensional lamination F of class Cr with 1 ≤ r ≤ ∞ if there exists a cover
of M by open sets Ui homeomorphic to the product of an open disc Pi in Rd

centered at the origin and a locally compact separable metrizable space Ti . Thus,
if we denote the corresponding foliated chart by ϕi :Ui → Pi × Ti , each Ui splits
into plaques ϕ−1

i (Pi ×{y}). Each point y ∈ Ti can also be identified with the point
ϕ−1

i (0, y) in the local transversal ϕ−1
i ({0}× Ti ). In addition, the change of charts

ϕ j ◦ϕ
−1
i : ϕi (Ui ∩U j )→ ϕ j (Ui ∩U j ) is given by

(2-1) ϕ j ◦ϕ
−1
i (x, y)= (ϕy

i j (x), γi j (y)),

where γi j is a homeomorphism between open subsets of Ti and T j , and ϕy
i j is a

Cr -diffeomorphism depending continuously on y in the Cr -topology. We say that
A= {(Ui , ϕi )}i∈I is a good foliated atlas if it satisfies the following conditions.

(i) The cover U= {Ui }i∈I is locally finite, hence finite.

(ii) Each open set Ui is a relatively compact subset of a foliated chart.

(iii) If Ui ∩U j 6= ∅, there is a foliated chart containing Ui ∩U j , implying that
each plaque of Ui intersects at most one plaque of U j .

Each foliated chart Ui admits a tangentially Cr -smooth Riemannian metric gi =

ϕ∗i g0 induced from a Cr -smooth Riemannian metric g0 on Rp. We can glue to-
gether these local Riemannian metrics gi to obtain a global one g using a tangen-
tially Cr -smooth partition of unity. From [Alcalde Cuesta et al. 2009, Lemma 2.6],
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we know that any Cr lamination of a compact space equipped with a Cr foliated
atlas A admits a C∞ foliated atlas Cr -equivalent to A.

A discrete equivalence relation R is defined by F on the total transversal T =⊔
Ti ; the equivalence classes are the traces of the leaves on T . We can see R as the

orbit equivalence relation defined by the holonomy pseudogroup 0 of F, generated
by the local diffeomorphisms γi j . These homeomorphisms form a finite generating
set, which we will denote by 0(1), that defines a graphing of R. This means that
each equivalence class R[y] is the set of vertices of a graph, and there is an edge
joining two vertices z and w if there is γ ∈0(1) such that γ (z)=w. We can define
a graph metric d0(z, w) = min{n : g(z) = w for some γ ∈ 0(n)}, where 0(n) are
the elements that can be expressed as words of length at most n in terms of 0(1).
A transverse invariant measure for F is a measure on T that is invariant under the
action of 0. It is quite rare for a measure of this kind to exist.

Remark 2.1. If F has no holonomy (that is, 0y = {γ ∈ 0 : γ (y) = y} is trivial
for all y ∈ T ), we can endow R with the topology generated by the graphs of
the elements of 0. Then R becomes an étale equivalence relation, that is, the
partial multiplication

(
(y, γ (y)), (γ (y), γ ′(γ (y)))

)
∈ R ∗R 7→ (y, γ ′◦γ (y)) ∈ R

and the inversion (y, γ (y)) ∈R 7→(γ (y), y) ∈R are continuous, and the left and
right projections β : (y, z) ∈ R 7→ y ∈ T and α : (y, z) ∈ R 7→ z ∈ T are local
homeomorphisms. In general, by considering the germs of the elements of 0 at the
points of their domains, we can replace R with the transverse holonomy groupoid
[Haefliger 1984] that similarly becomes an étale groupoid [Renault 1980].

2B. Compactly generated pseudogroups. In the last section, we obtained a pseu-
dogroup from a foliated atlas. Here we will recall the Haefliger equivalence for
pseudogroups obtained from different atlases and its metric counterpart in the com-
pact case, which we will need later in Section 2C. For any compact laminated
space (M,F) the holonomy pseudogroup 0 is compactly generated in the sense of
[Haefliger 2002], meaning that

(i) T contains a relatively compact open set T1 meeting all the orbits, and

(ii) the reduced pseudogroup 0|T1 (whose elements have domain and range in T1)
admits a finite generating set 0(1) (called a compact generation system of 0
on T1) so that each element γ : A→ B of 0(1) is the restriction of an element
γ̄ of 0 whose domain contains the closure of A.

Any probability measure νK on the compact set K = T 1 that is preserved by the
action of 0|K extends to a unique Borel measure ν on T which is 0-invariant and
finite on compact sets. We refer to [Plante 1975, Lemma 3.2].

Also, notice that T is covered by the domains of a family of elements of 0 with
range in T1. The union of these elements and their inverses defines the fundamental
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equivalence between the holonomy pseudogroup 0 and the reduced pseudogroup
0|T1 . This is the base concept to define the Haefliger equivalence of pseudogroups
[Haefliger 1984; 2002].

Definition 2.2. Two pseudogroups 01 and 02 acting on the spaces T1 and T2 are
Haefliger equivalent if they are reductions of a same pseudogroup 0 acting on the
disjoint union T = T1 t T2, and both T1 and T2 meet all the orbits of 0.

The choice of generators for 01 and 02 defines a metric graph structure on the
orbits, but the Haefliger equivalence between 01 and 02 may not preserve their
quasi-isometry type. Let us recall this concept introduced by M. Gromov [1993]:

Definition 2.3. Two metric spaces (M, d) and (M ′, d ′) are quasi-isometric if there
exists a map f : M→ M ′ and constants λ≥ 1 and C ≥ 0 such that

1
λ

d(y, z)−C ≤ d ′( f (y), f (z))≤ λd(y, z)+C

for all y, z ∈ M and d ′(y′, f (M))≤ C for all y′ ∈ M ′.

Definition 2.4 [Hurder and Katok 1987; Ghys 1995]. A Haefliger equivalence be-
tween two pseudogroups 01 and 02 acting on T1 and T2, respectively, is a Kakutani
equivalence if 01 and 02 admit finite generating systems such that their orbits,
endowed with the graph metric, are quasi-isometric.

According to [Lozano Rojo 2006, Theorem 2.7] and [Álvarez López and Can-
del 2009, Theorem 4.6], if two compactly generated pseudogroups 01 and 02

are Haefliger equivalent, then there are compact generating systems on T1 and
T2, respectively, such that the pseudogroups become Kakutani equivalent. These
compact generating systems are called good by Lozano Rojo and recurrent by
Álvarez López and Candel. The relevance of this is that the existence of averaging
sequences depends on the quasi-isometric type of the orbits; see [Álvarez López
and Candel 2009] and [Kanai 1985] for the details.

2C. Existence of transverse invariant measures. In this section we will discuss
a sufficient condition for the existence of a transverse invariant measure, which
serves as motivation for Theorems 3.6 and 4.10. Goodman and Plante [1979]
formulate the following proposition. Let us start with some definitions.

Definition 2.5. Let A be a finite subset of T and γ an element of 0. We define the
difference set

1γ A = {x ∈ T : x ∈ A, γ (x) 6∈ A} ∪ {x ∈ T : x 6∈ A, γ (x) ∈ A},

with the convention that γ (x) 6∈ A holds if γ (x) is not defined. We denote the
cardinality of A by |A|.
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Definition 2.6. A sequence of finite subsets An of T is an averaging sequence for
0 if for all γ ∈ 0(1) (and then for all γ ∈ 0),

lim
n→∞

|1γ An|

|An|
= 0.

Proposition 2.7 [Goodman and Plante 1979]. An averaging sequence {An} gives
rise to a transverse invariant measure ν whose support is contained in the limit set
limn→∞ An = {y ∈ T : ∃ynk ∈ Ank , y = limk→∞ ynk }.

The idea of the proof is the following. Assuming that T is compact, we may
construct a 0-invariant probability measure on T from the sequence of probability
measures νn defined by νn(B) = |B ∩ An|/|An| for every Borel set B ⊂ T . By
Riesz’s representation theorem, each measure νn can be identified with a functional
In on the space C(T ) of continuous real-valued functions on T . The functionals
In are

In( f )= 1
|An|

∑
y∈An

f (y).

By passing to a subsequence, if necessary, In converges in the weak topology to a
positive functional I which determines a unique Borel regular measure ν such that
I ( f ) =

∫
T f dν for every f ∈ C(T ). The averaging condition implies that I and

ν are 0-invariant, since for every γ ∈ 0 and every f ∈ C(T ) with support on the
range of γ , we have

|I ( f ◦γ )− I ( f )| ≤ ‖ f ‖
∞

lim
n→∞

|1γ An|

|An|
= 0.

Finally, it is clear that ν(T )= 1 and supp(ν)= limn→∞ An .
In the noncompact case, by replacing 0 and 01 with suitable reductions, we can

assume, without loss of generality, that the fundamental equivalence between the
holonomy pseudogroup 0 and its reduction 01 to a relatively compact open subset
T1 of T becomes a Kakutani equivalence for some compact generation systems on
T and T1. Then any averaging sequence An for 0 defines an averaging sequence
An ∩ K for 0|K , where K = T 1 is a compact subset of T . Hence we obtain a
probability measure νK on K that is invariant under 0|K . Now we can extend νK

to a unique Borel measure ν on T which is 0-invariant and finite on compact sets.

Example 2.8. Consider a graph with bounded geometry, like any orbit 0(x) of
the holonomy pseudogroup of a compact laminated space. This graph is said to be
Følner if it contains a sequence of finite subsets of vertices An such that |∂An|/|An|

tends to 0, where ∂An denotes the boundary set with respect to the graph structure.
Since 1γ A ⊂ ∂A ∪ γ−1(∂A) for any γ ∈ 0(1), we get |1γ An| ≤ 2|∂An|, and we
have an averaging sequence. In particular, any orbit 0(x) having subexponential
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growth is an example of a Følner graph, since

lim inf
n→∞

|An+1− An−1|

|An|
= 0,

where An = 0
(n)(x).

Using the one-to-one correspondence between foliated cycles and transverse
invariant measures established by D. Sullivan [1976], it is not difficult to show the
following continuous version of Goodman and Plante’s result:

Proposition 2.9 [Goodman and Plante 1979]. Let {Vn} be an averaging sequence
for F, that is, a sequence of compact domains Vn (of dimension d) in the leaves
such that

lim
n→∞

area(∂Vn)

vol(Vn)
= 0,

where area denotes the (d − 1)-volume and vol the d-volume with respect to the
complete Riemannian metric along the leaves. Then {Vn} gives rise to a trans-
verse invariant measure ν whose support is contained in the saturated limit set
limn→∞ Vn = {p ∈ M : ∃pnk ∈ Vnk : p = limk→∞ pnk }.

Recall that a foliated d-form α ∈ �d(F) is a family of differentiable d-forms
over the plaques of A depending continuously on the transverse parameter and
agreeing on the intersection of each pair of foliated charts. A foliated r-cycle is
a continuous linear functional ξ : �d(F)→ R strictly positive on strictly positive
forms, and null on exact forms with respect to the leafwise exterior derivative dF.
Any averaging sequence Vn defines the sequence of foliated currents

ξn(α)=
1

vol(Vn)

∫
Vn

α,

where α is a foliated d-form. By passing to a subsequence, if necessary, we have
a limit current ξ = limn→∞ ξn . Since the boundaries of the domains Vn vanish
asymptotically, Stokes’ theorem implies that ξ is a foliated d-cycle [Sullivan 1976].

3. Averaging sequences in the discrete setting

The main objective of this section is to prove the existence of a harmonic mea-
sure for an étale equivalence relation R that contains a modified averaging se-
quence. Initially, we will assume that R is given by a free action of a pseudogroup
0 on a compact space T , but some generalizations will be discussed later. In
Section 3A, we will define a weighted measure on the equivalence classes that
will allow us to recall the notion of a modified averaging sequence introduced by
V. A. Kaimanovich [1997; 2001]. Given a continuous cocycle δ : R→ R∗

+
, the

Radon–Nikodým problem is to determine the set of probability measures ν on T
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which are quasi-invariant and admit δ as their Radon–Nikodým derivative [Renault
2005]. Theorem 3.6 gives a positive answer to this problem in the presence of a
modified averaging sequence.

3A. Quasi-invariant measures. Let ν be a quasi-invariant measure on T . As
usual, we will assume that ν is a regular Borel measure that is finite on compact sets.
Integrating the counting measures on the fibers of the left projection β(y, z) = y
with respect to ν gives the left counting measure d ν̃(y, z) = dν(y). Indeed, for
each Borel set A ⊂R, we define

ν̃(A)=
∫
|Ay
| dµ(y),

where |Ay
| is the cardinal of the set Ay

= {z ∈ T : (y, z) ∈ A} ⊂ R[y]. The same
is valid for the right projection α(y, z)= z, and we get the right counting measure
d ν̃−1(y, z) = d ν̃(z, y) = dν(z). Then ν̃ and ν̃−1 are equivalent measures if and
only if ν is quasi-invariant, in which case the Radon–Nikodým derivative is given
by δ(y, z)= d ν̃/d ν̃−1(y, z). We refer to [Moore and Schochet 2006; Kaimanovich
1997; Renault 1980; 2005].

Definition 3.1. A cocycle with values in R∗
+

is a map δ : R → R∗
+

satisfying
δ(x, y)δ(y, z)= δ(x, z) for all (x, y), (y, z) ∈R.

The map δ is known as the Radon–Nikodým cocycle of (R, T, ν).

Definition 3.2. Given a cocycle δ : R→ R∗
+

, the measure | · |y on R[y] is given
by |z|y = δ(z, y) for all z ∈R[y]. Then, for a finite subset A ⊂R[y],

|A|y =
∑
z∈A

δ(z, y).

3B. Discrete averaging sequences. We want to give a sufficient condition to solve
the Radon–Nikodým problem in the discrete setting. We state this condition using
the notion of a modified averaging sequence; see [Kaimanovich 1997; 2001]:

Definition 3.3. Let δ : R→ R∗
+

be a cocycle of R. Let {An} be a sequence of
finite subsets of T such that An ⊂R[yn] for each n ∈ N. We will say that {An} is
a δ-averaging sequence for 0 if

lim
n→∞

|1γ An|yn

|An|yn

= 0

for all γ ∈ 0(1). An equivalence class R[y] is δ-Følner if R[y] contains a δ-
averaging sequence {An} such that |∂An|y/|An|y→ 0 as n→+∞.

By choosing a finite generating set for 0, we can realize each equivalence class
R[y] as the set of vertices of a graph. We will write z ∼ w for each pair of
neighboring vertices z and w joined by an edge in R[y], and deg z for the number
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of neighbors of z ∈ R[y]. We will use D to denote the set of discontinuities of
the degree function deg. Let ν be a quasi-invariant measure on T , and denote by
D : L∞(T, ν)→ L∞(T, ν) the Markov operator defined by

D f (y)= 1
deg y

∑
z∼y

f (z).

We use D∗ to denote the dual operator acting on the space of positive Borel mea-
sures on T , and

1 : L∞(T, ν)→ L∞(T, ν)

to denote the Laplace operator defined by 1 f (y)= D f (y)− f (y).

Definition 3.4. A quasi-invariant measure ν on T is harmonic or stationary (for
the simple random walk on R) if for every bounded measurable function f :T→R,
we have

∫
1 f dν = 0.

Proposition 3.5 [Paulin 1999]. For a quasi-invariant measure ν on T , the follow-
ing are equivalent:

(i) ν is harmonic.

(ii) D∗ν = ν.

(iii) The Radon–Nikodým cocycle δ : R→ R∗
+

is harmonic, that is, for ν-almost
every y ∈ T and every z ∈R[y], we have

δ(z, y)= 1
deg z

∑
w∼z

δ(w, y).

Theorem 3.6. Let R be the orbit equivalence relation defined by a finitely gener-
ated pseudogroup 0 acting freely on a compact space T . Let δ : R→ R∗

+
be a

continuous cocycle.

(i) Any δ-averaging sequence {An} gives rise to a positive Borel measure ν on T
whose support is contained in the limit set of {An}, which is quasi-invariant
and has δ as its Radon–Nikodým cocycle.

(ii) If δ is harmonic and ν(D)= 0, then ν is a harmonic measure.

Proof. We start by constructing a sequence of probability measures νn given by

νn(B)=
|B ∩ An|yn

|An|yn

for every Borel subset B of T . By passing to a subsequence, the sequence νn

converges in the weak topology to a positive Borel measure ν on T . First we will
prove that ν is a quasi-invariant measure having a Radon–Nikodým cocycle equal
to δ. For every local transformation γ ∈ 0 and every function f ∈ C(T ) with
support on the range of γ , we have
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f (z) d(γ∗ν)(z)=

∫
f (γ (y)) dν(y)= lim

n→∞

1
|An|yn

∑
y∈An

f (γ (y))δ(y, yn)

and ∫
f (y)δ(z, y) dν(y)= lim

n→∞

1
|An|yn

∑
y∈An

f (y)δ(γ (y), y)δ(y, yn)

= lim
n→∞

1
|An|yn

∑
y∈An

f (y)δ(γ (y), yn),

where z = γ (y). Therefore

0≤
∣∣∣∣∫ f (z) d(γ∗ν)(z)−

∫
f (y)δ(z, y) dν(y)

∣∣∣∣
≤ lim

n→∞

1
|An|yn

∣∣∣∣∑
y∈An

f (γ (y))δ(y, yn)− f (y)δ(γ (y), yn)

∣∣∣∣
≤ lim

n→∞
‖ f ‖

∞

|1γ An|yn

|An|yn

= 0,

and thus ∫
f (z) d(γ∗ν)(z)=

∫
f (y)δ(z, y) dν(y),

proving (i).
We now prove that if δ is harmonic and ν(D) = 0, then ν is a harmonic mea-

sure. Observe that if ν(D) = 0, then 1 f is continuous ν-almost everywhere, and
therefore ∫

1 f dν = lim
n→∞

∫
1 f dνn

for all f ∈ C(T ). If δ is harmonic, we have∫
1 f (y) dνn(y)

=
1
|An|yn

∑
y∈An

( 1
deg y

∑
z∼y

f (z)− f (y)
)
δ(y, yn)

=
1
|An|yn

∑
y∈An

1
deg y

∑
z∼y

f (z)δ(y, yn)− f (y)
( 1

deg y

∑
z∼y

δ(z, yn)
)

=
1
|An|yn

∑
y∈An

1
deg y

∑
z∼y

f (z)δ(y, yn)− f (y)δ(z, yn)
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and then

0≤
∣∣∣∣∫ 1 f (y) dν(y)

∣∣∣∣
≤ lim

n→∞

1
|An|yn

∣∣∣∣∑
y∈An

∑
z∼y

f (z)δ(y, yn)− f (y)δ(z, yn)

∣∣∣∣
≤ lim

n→∞
‖ f ‖

∞

∑
γ∈0(1)

|1γ An|yn

|An|yn

≤ lim
n→∞

2 ‖ f ‖
∞
|0(1)|

|∂An|yn

|An|yn

= 0;

that is, ν is a harmonic measure. �

A similar result can be found in [Schapira 2003]. In general, the second part
of Theorem 3.6 remains valid when the Laplace operator 1 preserves continuous
functions. This is always true when D=∅, as in the following case:

Corollary 3.7. Let R be the orbit equivalence relation defined by a group of finite
type 0 acting freely on a compact space T . Let δ : R→ R∗

+
be a continuous har-

monic cocycle. Any δ-averaging sequence {An} gives rise to a harmonic measure
ν on T supported by the limit set of {An}. �

Arguing as for usual averaging sequences, we can extend Theorem 3.6 to any
compactly generated pseudogroup 0 acting freely on a locally compact Polish
space T . Moreover, in the 0-dimensional case, the degree function is again contin-
uous. This applies in particular to solenoids [Benedetti and Gambaudo 2003] and
laminations defined by repetitive graphs, which were introduced in [Ghys 1999]
and studied in [Alcalde Cuesta et al. 2009; Blanc 2001; Lozano Rojo 2011]:

Corollary 3.8. Let R be the orbit equivalence relation defined by a compactly gen-
erated pseudogroup 0 acting freely on a locally compact separable 0-dimensional
space T . Let δ : R→ R∗

+
be a continuous harmonic cocycle. Any δ-averaging

sequence {An} gives rise to a harmonic measure ν on T supported by the limit set
of {An}. �

In order to extend Theorem 3.6 to non-free actions, we can adopt two different
strategies. Let us first recall that the notion of an equivalence relation is enough to
describe the transverse structure of a lamination in the Borel context. More pre-
cisely, any Borel or topological lamination F induces a Borel equivalence relation
R on a total transversal T (compare to Remark 2.1) defined by the action of the
holonomy pseudogroup. We refer to the Ph.D. thesis of M. Bermúdez [2004] for
the definition of a Borel lamination. If R is a discrete Borel equivalence relation
defined by the action of a Borel pseudogroup 0 acting on a compact space T and
δ : R → R∗

+
is a Borel cocycle, then the proof of Theorem 3.6 remains valid.

In the topological context, Theorem 3.6 is not exactly equivalent to the situation
above because the transverse holonomy groupoid and the equivalence relation are
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only Borel isomorphic on the residual set of leaves without holonomy. Another
strategy consists of replacing étale equivalence relations with étale groupoids and
proving that averaging sequences for stationary cocycles define stationary measures
on groupoids. Details will be reported elsewhere.

4. Averaging sequences in the continuous setting

We are interested in stating Theorem 3.6 in the continuous setting, namely for a
compact laminated space (M,F). Instead of working with quasi-invariant mea-
sures, we are going to use tangentially smooth measures. These form a larger
class than harmonic measures. As previously mentioned, transverse invariant mea-
sures for foliations are rather rare, but harmonic measures always exist. Harmonic
measures were introduced by L. Garnett [1983]. In Sections 4A and 4B we will
study these measures and recall some notation. In Section 4C we will construct a
differential foliated 1-form from a given cocycle. Finally, in Section 4D we will
use this foliated form to prove the continuous analogue of Theorem 3.6.

4A. Tangentially smooth measures. Consider a regular Borel measure µ on M .
Using a Cr foliated atlas A, we can give a local decomposition µ =

∫
λ

y
i dνi (y)

on each foliated chart Ui , where λy
i is a measure on the plaque ϕ−1

i (Pi ×{y}) and
νi a measure on Ti . In order to define the foliated Laplace operator 1F, we can
always assume that r ≥ 3 up to C1-equivalence of foliated atlases, and we fix a
tangentially Cr -smooth Riemannian metric g along the leaves of F.

Definition 4.1 [Alcalde Cuesta and Rechtman 2011]. A measure µ on M is tan-
gentially smooth if for every i ∈ I and νi -almost every y ∈ Ti , the measures λy

i are
absolutely continuous with respect to the Riemannian volume dvol restricted to the
plaque passing through y, and the density functions hi (x, y)= dλy

i /dvol(x, y) are
smooth functions of class Cr−1 on the plaques.

Observe that the local decomposition of µ is not necessarily unique. Let

µ|Ui =

∫
λ

y
i dνi (y)=

∫
λ̄

y
i d ν̄i (y)

be two decompositions. Then we obtain∫
Ti

∫
Pi×{y}

hi (x, y) dvol(x, y) dνi (y)=
∫

Ti

∫
Pi×{y}

h̄i (x, y) dvol(x, y) d ν̄i (y),

and we can consider the Radon–Nikodým derivative δi (y)= dνi/d ν̄i (y) such that
h̄i (x, y) = δi (y)hi (x, y). This situation arises naturally in the intersection of two
foliated charts Ui and U j . Indeed, if Ui ∩U j 6=∅, we have

µ|Ui∩U j =

∫
λ

y
i dνi (y)=

∫
λ

y
j dν j (y).
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Thus, as before, we deduce that

(4-1) δi j (y)=
dνi

d((γ j i )∗ν j )
(y)=

h j (ϕ
y
i j (x), γi j (y))

hi (x, y)
.

Then the functions hi satisfy log h j − log hi = log δi j on Ui ∩U j . Since δi j is a
function on Ti , we have that dF log hi = dF log h j . Then η = dF log hi is a well-
defined foliated 1-form of class Cr−2 along the leaves, which makes it possible to
estimate the transverse measure distortion under the holonomy.

Definition 4.2. The foliated 1-form η is the modular form of µ.

4B. Harmonic measures.

Definition 4.3 [Garnett 1983]. We will say that µ is harmonic if
∫
1F f dµ = 0

for every continuous tangentially Cr−1-smooth function f : M→ R.

According to [Garnett 1983, Theorem 1], any harmonic measure is an example
of a tangentially smooth measure since the densities hi are positive harmonic func-
tions of class Cr−1 on the plaques. In particular, any transverse invariant measure
combined with the Riemannian volume on the leaves gives a harmonic measure
which is called completely invariant. A harmonic measure µ is completely invari-
ant if and only if η = 0; we refer to [Candel 2003, Corollary 5.5]. In the general
harmonic case, the following proposition states some properties of the modular
form. This proposition is a refined version of [Deroin 2003, Lemma 4.19].

Proposition 4.4 [Deroin 2003]. If µ is a harmonic measure, then η is a bounded
foliated 1-form which admits a uniformly tangentially Lipschitz primitive log h on
the residual set of leaves without holonomy.

Proof. Let A={(Ui , φi )}i∈I be a good Cr foliated atlas of (M,F), and hi the local
density functions of µ. Let us first observe that since the functions hi coincide on
the intersections of the plaques modulo multiplication by a constant, they define
a primitive of the induced 1-form on the holonomy covering of each leaf L . If F

has no essential holonomy, the functions log hi can be glued together to obtain a
measurable global primitive log h of η. In general, the modular form η admits a
continuous primitive log h on the residual set of leaves without holonomy. Now
let us assume that A is a refinement of a good atlas A′ = {(U ′i , φ

′

i )}i∈I , and h′i are
the corresponding local densities. Thus, every plaque of Ui is relatively compact
in a plaque of U ′i . In fact, using a vertical reparametrization, we can suppose that
φ−1

i (Pi×{y})⊂ (φ′i )
−1(P ′i×{y}) for every y ∈Ti . There exists a relatively compact

open set V ⊂ P ′i such that φ−1
i (Pi×{y})⊂ (φ′i )

−1(V ×{y}) for every y ∈ Ti . Since
hi is harmonic, the Harnack inequality implies the existence of a constant Ci > 0
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such that

(4-2) 1
Ci
≤

hi (x, y)
hi (x0, y)

≤ Ci

for all x, x0 ∈ Pi and for all y ∈ Ti . Since the atlases A and A′ are finite, the
primitive log h is uniformly Lipschitz in the tangential coordinate x . �

4C. Modular form associated to a cocycle. We now describe how to construct
a modular 1-form η ∈ �1(F) from a Borel or continuous cocycle δ : R→ R∗

+
.

For simplicity, R is endowed here with the natural Borel or topological structure
induced by the Borel or topological groupoid structure on the transverse holonomy
groupoid G formed by the germs 〈γ 〉y of the elements γ of 0 at the points y of
their domains; see [Moore and Schochet 2006]. The natural projection

(β, α) : 〈γ 〉y ∈ G 7→ (y, γ (y)) ∈R

becomes an isomorphism of Borel or topological groupoids in restriction to the
residual set of leaves without holonomy. Equivalently, we can consider a Borel or
continuous cocycle δ : G→ R∗

+
projectable on R.

We start by considering tangentially Cr -smooth Borel or continuous functions
cki :Ui ∩Uk→ R given by

cki (ϕ
−1
k (x, y))= log δki (y),

where δki (y)= δ(y, γki (y)) for all (x, y)∈ Pk×Tk . By choosing a tangentially Cr -
smooth partition of unity {ρi }

m
i=1 subordinated to the foliated atlas A, we can glue

the functions cki obtaining tangentially Cr -smooth Borel or continuous functions
ci :Ui → R given by

ci =

m∑
k=1

ρkcki .

The cocycle condition implies that ci j = ck j − cki , so that

c j − ci =

m∑
k=1

ρkck j −

m∑
k=1

ρkcki =

( m∑
k=1

ρk

)
ci j = ci j .

Hence, for each i = 1, . . . ,m, we can define a tangentially Cr−1-smooth Borel or
continuous foliated 1-form

ηi =

m∑
k=1

(dFρk)cki

on Ui . Each local 1-form ηi is exact:

ηi =

m∑
k=1

(dFρk)cki = dFci = dF log hi ,
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where hi = eci :Ui → R∗
+

is a Borel or continuous function of class Cr along the
leaves.

Proposition 4.5. There is a well defined Borel or continuous closed foliated 1-form
η ∈�1(F) such that η|Ui = ηi .

Proof. For each pair i, j ∈ {1, . . . ,m}, we have that

η j − ηi =

m∑
k=1

(dFρk)ck j −

m∑
k=1

(dFρk)cki =

( m∑
k=1

dFρk

)
ci j = 0

on Ui ∩U j . So the 1-form η is well defined, Borel, or continuous, and closed. �

Definition 4.6. The foliated 1-form η is the modular form of δ.

Remark 4.7. (i) The modular form η depends on the choice of the partition of
unity, but its cohomology class does not.

(ii) As for harmonic measures, the modular form η of a Borel or continuous cocy-
cle δ admits a Borel or continuous primitive log h on the residual set of leaves
without holonomy. Thus, assuming that F has no holonomy (or passing to
the holonomy covers of the leaves), we may find a global Borel or continuous
primitive on M (respectively, a Borel or continuous primitive on the holonomy
groupoid Hol(F)); see [Alcalde Cuesta and Rechtman 2011].

4D. Continuous averaging sequences. In the present setting, we can reformulate
the Radon–Nikodým problem as the problem of determining tangentially smooth
measures µ on M which admit η as their modular form. The aim of this section
is to establish Theorem 3.6 for laminations. First we need a continuous analog of
Definition 3.3. Consider a d-dimensional lamination F of class Cr on a compact
space M , endowed with a tangentially Cr -smooth Riemannian metric g, and a con-
tinuous cocycle δ :R→R∗

+
. The modular form η admits a continuous tangentially

Cr -smooth primitive log h on the residual set of leaves without holonomy. On each
leaf L y without holonomy and passing through y ∈ T , we can multiply g by the
normalized density function h/h(y) to obtain a modified metric (h/h(y))g.

Definition 4.8. Let {Vn} be a sequence of compact domains with boundary con-
tained in a sequence of leaves without holonomy L yn . We will say that {Vn} is a
η-averaging sequence for F if

lim
n→∞

areaη(∂Vn)

volη(Vn)
= 0

where areaη denotes the (d − 1)-volume and volη the d-volume with respect to
the modified metric along L yn . A leaf L y is η-Følner if it contains an η-averaging
sequence {Vn} such that areaη(∂Vn)/volη(Vn)→ 0 as n→+∞.
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Remark 4.9. (i) The isoperimetric ratio areaη(∂Vn)/volη(Vn) does not depend on
the choice of y or h in the second definition. This justifies our notation here, which
differs slightly from that used in [Alcalde Cuesta and Rechtman 2011].

(ii) When µ is a completely invariant harmonic measure, the normalized density
function is equal to one, and thus the modified volume and the Riemannian volume
coincide. Hence we recover the common definition of an averaging sequence.

(iii) For harmonic measures, Harnack’s inequalities (4-2) imply that the modified
volume of the plaques and the modified area of their boundaries remain uniformly
bounded.

Theorem 4.10. Let (M,F) be a Cr lamination of a compact space M , 1 ≤ r ≤
∞, and let R be the equivalence relation induced by F on a total transversal T .
Consider a continuous cocycle δ : R→ R∗

+
, and let η be the modular form of δ.

Assume that F admits a foliated atlas such that the modified volume of the plaques
is bounded.

(i) Any η-averaging sequence {Vn} for F gives rise to a tangentially smooth mea-
sure µ whose support is contained in the limit set of {Vn} and whose modular
form is equal to η.

(ii) If η has a primitive log h such that h is a harmonic function, then µ is a
harmonic measure.

Proof. As in the discrete case, we will start by constructing a sequence of foliated
d-currents

ξn(α)=
1

volη(Vn)

∫
Vn

h
h(yn)

α,

where α is a foliated d-form. By passing to a subsequence, the sequence ξn con-
verges to a foliated d-current ξ . Let µ be the measure on M associated with the
current ξ . For every function f ∈C(T ), we have

∫
f dµ= ξ( f ω), where ω= dvol

is the volume form along the leaves.
Now, we will prove that µ is a tangentially smooth measure with modular form

η. Consider a good Cr foliated atlas A = {(Ui , φi )}i∈I obtained by refinement
from a given good atlas, and whose plaques have bounded modified volume. As
we mentioned before, up to C1-equivalence, we can now assume that r ≥ 3. Since
the modified volume of the plaques of A and the modified area of their boundaries
remain bounded, the traces An = Vn ∩T of the domains Vn on the total transversal
T form a δ-averaging sequence, as in Definition 3.3. In fact, since Vn is covered
by the plaques Py of A centered at the points y of An , we have

volη(Vn)=

∫
Vn

ωη ≤
∑
y∈An

∫
Py

ωη =
∑
y∈An

(∫
Py

h(x, y)
h(0, y)

dvol(x, y)
)
δ(y, yn),
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where ωη is the modified volume form along the leaves and h(x, y) denotes the
density function restricted to a foliated chart Uy containing the plaque Py . Then
there is a constant C > 0 such that volη(Vn) ≤ C |An|yn . Actually, we can choose
C > 0 such that 1/C ≤ volη(Vn)/|An|yn ≤ C . Thus, by passing to a subsequence,
we may assume that the ratio volη(Vn)/|An|yn converges to a constant c> 0. Now,
as stated in the proof of Theorem 3.6, we may also assume that the sequence of
measures νn(B)= |B∩ An|yn/|An|yn converge to a quasi-invariant measure ν on T
whose Radon–Nikodým derivative is equal to δ. Combined with the modified Rie-
mannian volume along the leaves, this transverse measure gives us a tangentially
smooth measure µ′ on M . Thus, for every function f ∈ C(M) with support in Ui ,
we have ∫

f dµ′ =
∫

Ti

∫
Pi×{y}

f (x, y)
hi (x, y)
hi (0, y)

dvol(x, y) dν(y).

Then

(4-3)
∫

f dµ′= lim
n→+∞

1
|An|yn

∑
y∈Vn∩Ti

(∫
Pi×{y}

f (x,y)
hi (x,y)
hi (0,y)

dvol(x,y)
)
δ(y,yn)

= lim
n→+∞

1
|An|yn

∑
y∈Vn∩Ti

∫
Pi×{y}

f ωη.

On the other hand, by definition, we have

(4-4)
∫

f dµ= ξ( f ω)= lim
n→+∞

1
volη(Vn)

∫
Vn

f ωη

= lim
n→+∞

1
volη(Vn)

∑
y∈Vn∩Ti

∫
Pi×{y}

f ωη.

Comparing identities (4-3) and (4-4), we deduce that µ= (1/c)µ′ is a tangentially
smooth measure with modular form η.

To conclude, we will prove that µ is harmonic when h is harmonic. We will start
by denoting the normalized density functions on the leaves L yn by hn = h/h(yn).
Since the Laplace operator 1F preserves continuous functions, we have∫

1F f dµ= lim
n→∞

1
volh(Vn)

∫
Vn

(1F f )hnω

for all f ∈ C(T ). Green’s formula implies that∫
Vn

(1F f )hnω =

∫
Vn

((1F f )hn − f (1Fhn)ω =

∫
∂Vn

hnιgrad( f )ω− f ιgrad(hn)ω.

Since hn is harmonic, we have∫
∂Vn

ιgrad(hn)ω =

∫
Vn

div(grad(hn))ω =

∫
Vn

(1Fhn)ω = 0
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and then

0≤
∣∣∣∣∫
∂Vn

f ιgrad(hn)ω

∣∣∣∣≤ ‖ f ‖
∞

∫
∂Vn

ιgrad(hn)ω = 0

for all n ∈N. On the other hand, since f is bounded, there exists a constant k > 0
depending only on f , such that

0≤
∣∣∣∣ 1
volh(Vn)

∫
∂Vn

hnιgrad( f )ω

∣∣∣∣≤ lim
n→∞

k
areaη(∂Vn)

volη(Vn)
= 0.

Therefore ∫
1F f dµ= lim

n→∞

1
volh(Vn)

∫
Vn

(1F f )hnω = 0,

that is, µ is a harmonic measure. �

Remark 4.11. (i) If δ : R → R∗
+

is a Borel cocycle with modular form η,
Theorem 4.10 also remains valid. So any η-averaging sequence for F gives
rise to a tangentially smooth measure µ that is harmonic when η admits a
primitive log h such that h is a harmonic function.

(ii) According to Remark 4.7(ii), the notion of η-Følner may be applied to the
holonomy covers of the leaves of F. Thus it suffices to replace F with the
lifted lamination in the holonomy groupoid Hol(F) in order to globalize the
previous result. As in the discrete setting, details will be discussed elsewhere.

5. Examples

5A. Discrete averaging sequences for amenable non-Følner actions. There are
amenable actions of nonamenable discrete groups whose orbits contain averag-
ing sequences [Kaimanovich 2001]. For example, let ∂0 be the space of ends of
the free group 0 with two generators α and β whose elements are infinite words
x = γ1γ2 . . . with letters γn in 8 = {α±1, β±1

}. If ν denotes the equidistributed
probability measure on ∂0 (such that all cylinders consisting of infinite words with
fixed first n letters have the same measure), then 0 acts essentially freely on ∂0 by
sending each generator γ and each infinite word x = γ1γ2 . . . to γ.x = γ γ1γ2 . . . .
Since this action is amenable, according to [Kaimanovich 1997, Theorem 2], we
know that ν-almost every orbit is δ-Følner (where δ is the Radon–Nikodým deriv-
ative of ν); see also [Alcalde Cuesta and Rechtman 2011, Proposition 4.1]. We
recall here an explicit construction by Kaimanovich [2001].

For each x ∈ ∂0, let bx : 0→ R be the Busemann function defined by

bx(γ )= lim
n→+∞

(d0(γ, x[n])− d0(1, x[n])),

where d0 is the Cayley graph metric, x[n] is the word consisting of the first n letters
of x , and 1 is the identity element. The level sets Hk(x)= {γ ∈0 : bx(γ )= k}, are
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the horospheres centered at x . The Radon–Nikodým derivative of ν is given by

δ(γ−1.x, x)=
dγ.ν
dν

(x)= 3−bx (γ ),

where γ.ν is the translation of ν by γ . Since | · |x = δ(·, x) is a harmonic measure
on 0.x , ν is also a harmonic measure. In fact, as stated in [Kaimanovich 2000,
Theorem 17.4], ν is the unique harmonic probability measure on ∂0.

Let Ax
n be the set of all points γ−1.x in 0.x such that 0≤ bx(γ )= d0(1, γ )≤ n.

Since

|Ax
n ∩ Hk(x)|x =

∑
bx (γ )=d0(1,γ )=k

δ(γ−1.x, x)= 3k 1
3k = 1

for all 0≤ k ≤ n, we have that |An|x = n+ 1. But ∂Ax
n = {1} ∪ (A

x
n ∩ Hn(x)), and

so |∂Ax
n |x = 2. The δ-averaging sequence {Ax

n} defines a harmonic measure (which
is equal to ν up to multiplication by a constant).

5B. Averaging sequences for hyperbolic surfaces. The geodesic and horocycle
flows are classical examples of flows on the unitary tangent bundle of a compact
hyperbolic surface. They are given by the right actions of the diagonal subgroup

D =
{(

et/2 0
0 e−t/2

)
: t ∈ R

}
and the unipotent subgroup

H+ =
{(

1 s
0 1

)
: s ∈ R

}
of G = PSL(2,R) on the quotient 0\G by the left action of a uniform lattice 0.
If H denotes the hyperbolic plane, we can identify 0\G with the unitary tangent
bundle of the compact hyperbolic surface 0\H. The right action of the normalizer
A of H+ in PSL(2,R) defines a foliation F by Riemann surfaces on 0\G. Since
A is an amenable group, F is an amenable non-Følner foliation. Moreover, there
is an A-invariant measure µ on 0\G. Garnett [1983] proved that µ is a harmonic
measure by describing its density function on a foliated chart.

We can identify G/A with the boundary ∂H by sending each coset of A in G
to the center of the horocycle defined by the corresponding coset of H+ in G.
For each point z ∈ H, there is a unique probability measure νz on ∂H which is
invariant by the action of all isometries of H fixing z. This measure is the image of
the normalized Lebesgue measure on the circle of the tangent plane at z under the
exponential map, and is called the visual measure at z. According to [Garnett 1983,
Proposition 2], the normalized density function is given by dνz/dνz0(x) where
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z, z0 ∈ H and x ∈ ∂H. In particular, for x =∞, we have

dνz

dνz0

(∞)=
y
y0
,

where z= x+iy and z0= x0+iy0. In the leaf passing through x =∞, the sequence
V∞n ={z ∈H :−1≤ x ≤ 1, e−n

≤ y≤ 1 } becomes an η-averaging sequence (where
η is the modular form of µ). Indeed, on the one hand, we have

areaη(V∞n )=

∫
V∞n

dνz

dνi
(∞) dvol(z)=

∫
V∞n

y
dx ∧ dy

y2 =

∫ 1

1
dx
∫ 1

e−n

dy
y
= 2n.

On the other hand, the modified length of a smooth curve σ(t)= x(t)+ iy(t) (with
0≤ t ≤ l) is given by lengthη(σ )=

∫ l
0

√
x ′(t)2+ y′(t)2 dt , and so we have

lengthη(∂V∞n )= 2(2+ (1− en))≤ 6.

As before, this η-averaging sequence defines a harmonic measure (which is equal
to µ up to multiplication by a constant). In fact, all leaves are η-Følner since for
each point x ∈ ∂H obtained as the image of∞ under g ∈ G, the sets V x

n = g(V∞n )

form an η-averaging sequence in the leaf passing through x .

5C. Averaging sequences for torus bundles over the circle. In conclusion, we
will now present other examples of foliations on homogeneous spaces studied by
É. Ghys and V. Sergiescu [1980]. Each matrix A ∈ SL(2,Z) with |tr(A)| > 2
defines a natural representation ϕ :Z→Aut(Z2) which extends to a representation
8 :R→Aut(R2) given by 8(t)= At . If λ> 1 and λ−1 < 1 are the eigenvalues of
A, then 8 is conjugated to the representation 80 given by

80(t)=
(
λt 0
0 λ−t

)
.

Let T 3
A be the homogeneous space obtained as the quotient of the Lie group G =

R2 o8 R with group law (x, y, t).(x ′, y′, t ′) = ((x, y)+ At(x ′, y′), t + t ′) by the
uniform lattice 0 = Z2 oϕ Z with a similar law. Observe that G is isomorphic to
the solvable group Sol3 = R2 o80 R with group law

(x, y, t).(x ′, y′, t ′)= (x + λt x ′, y+ λ−t y′, t + t ′)

(where x and y are the first and second coordinate with respect to the eigenbasis)
and T 3

A is diffeomorphic to the quotient of Sol3 by a uniform lattice 00. The right
action of the image A of the monomorphism

(a, b) ∈ R o R∗
+
7→

(
a, 0, log b

log λ

)
∈ Sol3

defines a foliation F on T 3
A . The Lebesgue measure on T 3

A defined by the volume
form � = dx ∧ dy ∧ dt is a tangentially smooth measure. Since the Riemannian
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volume along the right orbits is given by

da∧db
b2 = (log λ) λ−t dx ∧ dt,

the density function is equal to λt/log λ. In the orbit of the identity element, the
sequence Vn = {(a, b)∈ A : −1≤ a≤ 1, e−n log λ

≤ b≤ 1} becomes an η-averaging
sequence (where η is the modular form of µ). Indeed, on the one hand, we have

areaη(Vn)=

∫
Vn

1
log λ

λt(log λ)λ−t dx ∧ dt =
∫ 1

1
dx
∫ 0

−n
dt = 2n.

On the other hand, the modified length of a smooth curve σ(t)= (a(t), b(t)) (with
0≤ t ≤ L) is given by lengthη(σ )=

∫ L
0

√
a′(t)2+ b′(t)2 dt , and so we have that

lengthη(∂Vn)= 2(2+ (1− en log λ))≤ 6.

By replacing the orbit corresponding to y = 0 with another orbit, it is easy to
see that all leaves are η-Følner. As in the previous example, all η-averaging se-
quences define (up to multiplication by a constant) the same harmonic measure,
the Lebesgue measure.

6. Final comments

6A. Discrete and continuous averaging sequences. Comparing the discrete and
continuous settings, a natural question arises: what is the relation between δ-
averaging and η-averaging sequences? Let us first notice that repeating the same
argument as in the classical case (see [Kanai 1985, Theorem 4.1]), the boundedness
condition derived from Harnack’s inequalities in Remark 4.9(iii) implies that the
leaf L y is η-Følner if and only if the equivalence class R[y] is δ-Følner. But
then what is the relation between the harmonic measures defined by δ-averaging
and η-averaging sequences? In this case, the answer is more subtle, and we have
to use an important result of R. Lyons and Sullivan [1984], completed later by
Kaimanovich [1992] and, independently, by W. Ballman and F. Ledrappier [1996],
about the discretization of harmonic functions on Riemannian manifolds. First,
according to [Lyons and Sullivan 1984, Theorem 6], if µ is a harmonic measure,
then the transverse measure ν (well defined up to equivalence) is π -harmonic,
where π is a transition kernel defining a random walk on R, different from the
simple random walk considered in Definition 3.4. Reciprocally, assuming that
T admits a relatively compact neighborhood which meets almost every leaf in a
recurrent set, [Ballmann and Ledrappier 1996, Main Theorem] implies that µ is
harmonic if ν is π -harmonic.

6B. Amenability. It is not a coincidence that all the examples in Section 5 are
amenable: according to a result of Kaimanovich [1997], amenable foliations admit
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always averaging sequences. In fact, if F is an amenable foliation with respect to
a tangentially smooth measure µ, then F is η- Følner, that is, µ-almost every
leaf is η-Følner; see [Alcalde Cuesta and Rechtman 2011, Proposition 4.3]. This
paper can be viewed as a sequel to [Alcalde Cuesta and Rechtman 2011] where
we proved that minimal η-Følner foliations are µ-amenable (assuming that the
modified volume of the plaques is bounded). To complete the series, we have to
prove that any foliation is amenable with respect to a tangentially smooth measure
µ constructed from an averaging sequence using Theorem 4.10.
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