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REMARKS ON THE CURVATURE BEHAVIOR
AT THE FIRST SINGULAR TIME OF THE RICCI FLOW

NAM Q. LE AND NATASA SESUM

We study the curvature behavior at the first singular time of a solution to
the Ricci flow

J
agij=_2Rij’ tG[O, T)a

on a smooth, compact n-dimensional Riemannian manifold M. If the flow
has uniformly bounded scalar curvature and develops Type I singularities
at T, we show that suitable blow-ups of the evolving metrics converge in
the pointed Cheeger—-Gromov sense to a Gaussian shrinker by using Perel-
man’s W-functional. If the flow has uniformly bounded scalar curvature
and develops Type II singularities at 7', we show that suitable scalings of the
potential functions in Perelman’s entropy functional converge to a positive
constant on a complete, Ricci flat manifold. We also show that if the scalar
curvature is uniformly bounded along the flow in certain integral sense then
the flow either develops a Type II singularity at 7 or it can be smoothly
extended past time 7.

1. Introduction

The Ricci flow and previous results. Let M be a smooth, compact n-dimensional
Riemannian manifold without boundary equipped with a smooth Riemannian met-
ric go, where n > 3. Let g(¢), 0 <t < T, be a one-parameter family of metrics
on M. The Ricci flow equation on M with initial metric gg

(1-1) %g(t) = —2Ric(g()), (0) = go.

was introduced in the seminal paper [Hamilton 1982]. It is a weakly parabolic
system of equations whose short-time existence was proved by Hamilton using the
Nash—Moser implicit function theorem in the same paper and after that simplified
by DeTurck [1983]. The goal in the analysis of (1-1) is to understand the long-time
behavior of the flow and possible singularity formation or convergence of the flow
in the cases when we do have a long-time existence. In general, the behavior of
the flow can give insight into the topology of the underlying manifold. One of the
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great successes is the resolution of the Poincaré conjecture by Perelman. In order to
discuss the long-time behavior we have to understand what happens at the singular
time and also what the optimal conditions for having a smooth solution are.

Hamilton [1995b] showed that if the norm of Riemannian curvature |Rm|(g(¢))
stays uniformly bounded in time for all ¢ € [0, T') with T < oo, then we can extend
the flow (1-1) smoothly past time 7. In other words, either the flow exists forever
or the norm of Riemannian curvature blows up in finite time. Wang [2008] and Ye
[2008] extended this result, assuming certain integral bounds on the Riemannian
curvature. Namely, if

/ / [Rm|* dvolg) dt <C for some o > —— +2

then the flow can be extended smoothly past time 7. Throughout the paper, dvol,
denotes the Riemannian volume density on (M, g). On the other hand, Sesum
[2005] improved Hamilton’s extension result and showed if the norm of Ricci cur-
vature is uniformly bounded over a finite time interval [0, T'), then we can extend
the flow smoothly past time 7. Wang [2008] improved this even further, showing
that if Ricci curvature is uniformly bounded from below and if the space-time
integral of the scalar curvature is bounded, say

/ /|R| dvoly dt <C fora > ;2

where R is the scalar curvature, then we can extend the flow smoothly past time 7.
The requirement on Ricci curvature in [Wang 2008] is rather restrictive. Ricci flow
does not in general preserve nonnegative Ricci curvature in dimensions n > 4. See
[Knopf 2006] for noncompact examples starting in dimension n = 4 and [Béhm
and Wilking 2007] for compact examples starting in dimension n = 12. Recently,
Maximo [2011] brought the result of [Béhm and Wilking 2007] down to dimen-
sion 4 by showing that nonnegative Ricci curvature is not preserved under Ricci
flow for closed compact manifolds of dimensions 4 and above. Without assuming
the boundedness from below of Ricci curvature, Ma and Cheng [2010] proved that
the norm of Riemannian curvature can be controlled given integral bounds on the
scalar curvature R and the Weyl tensor W from the orthogonal decomposition of
the Riemannian curvature tensor. Their bounds are of the form

n+2

T
/ /(|R|“+|W|“)dvolg(,) dt <C fora>
0 M

This is not surprising since Knopf [2009] has shown that the trace-free Ricci tensor
is controlled pointwise by the scalar curvature and the Weyl tensor without any
additional hypotheses. Zhang [2010] proved that the scalar curvature controls the
Kihler Ricci flow % 87 = —R;j — gi; starting from any Kéhler metric go.
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Main results. The above results, in particular that of [Zhang 2010], support the
belief that the scalar curvature should control the Ricci flow in the Riemannian
setting as well. Enders, Miiller and Topping [2010] justified this belief for Type I
Ricci flow:

Theorem 1.1 [Enders et al. 2010]. Let M be a smooth, compact n-dimensional
Riemannian manifold equipped with a smooth Riemannian metric gy and g(-,t)
be a solution to the Type I Ricci flow (1-1) on M. Assume there is a constant C so
thatsupy, |[R(-,1)| < C forallt €[0,T) and T < oo. Then we can extend the flow
past time T.

Their proof was based on a blow-up argument using Perelman’s reduced distance
and pseudolocality theorem.
Assume the flow (1-1) develops a singularity at T < oo.

Definition 1.1. We say that (1-1) has a Type [ singularity at T if there exists a
constant C > 0 such that for all t € [0, T")

(1-2) mﬁfllx|Rm(~,t)|-(T—t)§C.

Otherwise we say the flow develops Type II singularity at T. Moreover, the flow
that satisfies (1-2) will be referred to as to the Type I Ricci flow.

In this paper, we also use a blow-up argument to study curvature behavior at the
first singular time of the Ricci flow. We deal with both Type I and II singularities.
Assume that the scalar curvature is uniformly bounded along the flow. If the flow
develops Type I singularities at some finite time 7" then by using Perelman’s entropy
functional W', we show that suitable blow-ups of the evolving metrics converge in
the pointed Cheeger—Gromov sense to a Gaussian shrinker.

Theorem 1.2. Let M be a smooth, compact n-dimensional Riemannian manifold
(n>3)and g(-,t) be a solution to the Ricci flow (1-1) on M. Assume there is a
constant C so that sup,, |R(-,t)| < C forallt € [0,T) and T < oco. Assume that
at T we have a Type I singularity and the norm of the curvature operator blows up.
Then by suitably rescaling the metrics, we get a Gaussian shrinker in the limit.

A simple consequence of the proof of Theorem 1.2 is following result, which is
also proved in [Naber 2010]. Instead of the reduced distance techniques used by
Naber, we use Perelman’s monotone functional W'.

Corollary 1.1. Let M be a smooth, compact n-dimensional Riemannian manifold
(n > 3)and g(-,t) be a solution to the Ricci flow (1-1) on M. If the flow has
a Type I singularity at T, then a suitable rescaling of the solution converges to a
gradient shrinking Ricci soliton.



158 NAM Q. LE AND NATASA SESUM

Naber [2010] proved that in the case of a Type I singularity, a suitable rescaling
of the flow converges to gradient shrinking Ricci soliton. Enders, Miiller and Top-
ping [2010] recently showed that the limiting soliton represents a singularity model,
that is, it is nonflat (see also [Cao and Zhang 2011]). The open question is whether
using Perelman’s W'-functional, one can produce in the limit a singularity model
(nonflat gradient shrinking Ricci solitons). We prove some interesting estimates on
the minimizers of Perelman’s W-functional which could be of independent interest.

On the other hand, if the flow develops Type I singularities at some finite time 7',
then we show that suitable scalings of the potential functions in Perelman’s entropy
functional converge to a positive constant on a complete, Ricci flat manifold which
is the pointed Cheeger—Gromov limit of a suitably chosen sequence of blow-ups
of the original evolving metrics.

Theorem 1.3. Let M be a smooth, compact n-dimensional Riemannian manifold
(n > 3)and g(-,t) be a solution to the Ricci flow (1-1) on M. Assume there is
a constant C so that supy, |R(-,t)| < C forallt € [0,T) and T < oco. Assume
that at T we have a Type Il singularity and the norm of the curvature operator
blows up. Let ¢; be as in the proof of Theorem 1.2 (see, for example, (3-9)). Then
by suitably rescaling the metrics and ¢;, we get as a limit of ¢; a positive constant
on a complete, Ricci flat manifold.

We believe that Theorem 1.3 may play a role in proving the nonexistence of
Type II singularities if the scalar curvature is uniformly bounded along the flow.
We are still investigating this issue.

For a precise definition of ¢;, see Section 3.

There has been a striking analogy between the Ricci flow and the mean curvature
flow for decades now. Around the same time Hamilton proved that the norm of
the Riemannian curvature under the Ricci flow must blow up at a finite singular
time, Huisken [1984] showed that the norm of the second fundamental form of
an evolving hypersurface under the mean curvature flow must blow up at a finite
singular time. The analogue of Wang’s result holds for the mean curvature flow as
well [Le and Sesum 2011], namely if the second fundamental form of an evolv-
ing hypersurface is uniformly bounded from below and if the mean curvature is
bounded in a certain integral sense, then we can smoothly extend the flow. In the
follow-up paper [Le and Sesum 2010] the authors show that given only the uniform
bound on the mean curvature of the evolving hypersurface, the flow either develops
a Type 1II singularity or can be smoothly extended. In the case the dimension of
the evolving hypersurfaces is 2 they show that under some density assumptions
one can smoothly extend the flow provided that the mean curvature is uniformly
bounded. Finally, in contrast to the lower bound on the scalar curvature (2-3), at
the first singular time of the mean curvature flow, the mean curvature can either
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tend to oo (as in the case of a round sphere) or —oo as in some examples of Type 11
singularities [Angenent and Veldzquez 1997].

If we replace the pointwise scalar curvature bound in Theorem 1.1 with an in-
tegral bound, we can prove the following theorems.

Theorem 1.4. If g(-,t) solves (1-1) and if
(1-3) / |R|*(r) dvolg) < Cq
M

forallt €10, T) where « > n/2 and T < 00, then either the flow develops a Type 11
singularity at T or the flow can be smoothly extended past time T.

Remark 1.1. The condition on « in Theorem 1.4 is optimal. Let (S”, go) be the
space form of constant sectional curvature 1. The Ricci flow on M = S" with initial
metric go has the solution g(¢) = (1 —2(n — 1)t)go. Therefore T =1/2(n — 1))
is the maximal existence time. Rewrite g(t) =2(n — 1)(T —t)go to compute

/M |RI (1) dvolg() = volgi (M )<2<T r>)

= volg ) (M) (2(n — 1)(T — t))n/l( n )a

2T 1)
2— 2 1
= volg()(M)2"**(n — 1)"/*n* FEEnT=TE

Hence fM |R|%(t) dvolg( tends to oo as t — T if and only if o > n/2.
Theorem 1.5. If g( -, t) solves (1-1) and if we have the space-time integral bound

T
(1-4) //|R|“(t)dvolg(,)dt§Ca
0 M

Jor o = (n+2)/2, then the flow either develops a Type Il singularity at T or can
be smoothly extended past time T .

Remark 1.2. The condition on « in Theorem 1.5 is optimal. As in Remark 1.1 con-
sider the Ricci flow on the round sphere. Following the computation in Remark 1.1
we get

T T
/ f |R|% dvolg(y dt = volg()(M)2"/ >~ (n — 1)"/n® / —1a_n 7 dt,
0o Jm o (T—n

and therefore the integral is oo if and only if « > (n +2)/2.

For the mean curvature flow, a similar result to Theorem 1.5 has been obtained
in [Le and Sesum 2010].

The rest of the paper is organized as follows. In Section 2 we give some nec-
essary preliminaries. Section 3 is devoted to the statements and proofs of Theo-
rems 1.2 and 1.3. In Section 4 we prove Theorems 1.4 and 1.5.
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2. Preliminaries

In this section, we recall basic evolution equations during the Ricci flow and
the definition of singularity formation. Then we recall Perelman’s entropy func-
tional W and in Lemma 2.1 prove one of its properties, nonpositivity of the -
energy. The nonpositivity of the p-energy turns out to be very crucial for the proof
of Theorem 1.1.

Evolution equations and singularity formation. Consider the Ricci flow (1-1) on
[0, T'). Then, the scalar curvature R and the volume form vol, () evolve by

(2-1) %R: AR +2|Ric?,
)
(2-2) — VOlg(,) =—R VOlg(,) .

ot
Because |Ric|? > R?/n, the maximum principle applied to (2-1) yields

miny R(g(0))
— (2miny R(g(0)1)/n’

If T < +o00 and the norm of the Riemannian curvature |Rm|(g(z)) becomes un-
bounded as ¢ tends to 7', we say the Ricci flow develops singularities as ¢ tends to T’
and T is a singular time. It is well-known that the Ricci flow generally develops
singularities.

If a solution (M, g(¢)) to the Ricci flow develops singularities at T < +o00, then
according to [Hamilton 1995b], we say that it develops a Type I singularity if

(2-3) R(g@) = 7

sup (T —t)max |[Rm(-, )| < +o0,
1€[0,T) M

and it develops a Type II singularity if

sup (T —t)max [Rm(-, t)| = +o0.
1€[0,T) M

Clearly, the Ricci flow of a round sphere develops a Type I singularity in finite
time. The existence of Type II singularities for the Ricci flow has been recently
established in [Gu and Zhu 2008], proving the degenerate neckpinch conjecture of
[Hamilton 1995b].

Finally, by the curvature gap estimate for Ricci flow solutions with a finite-time
singularity (see, for example, [Chow et al. 2006, Lemma 8.7]), we have

1
8(T—1)

(2-4) max |[Rm(x, 1)| >
xeM
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Perelman’s entropy functional ‘W and the ji-energy. Perelman [2002] introduced
a very important functional, the entropy functional W', for the study of the Ricci
flow:

(2-5) W(g, f,7)= (4m)—"/2/ (t(R+IVFIH + f —n) e/ dvoly,
M

under the constraint (47r7)~"/2 f I e~/ dvol, = 1. The functional W is invari-

ant under the parabolic scaling of the Ricci flow and invariant under diffeomor-

phism. Namely, for any positive number « and any diffeomorphism ¢, we have

W(ap*g, ¢* f, at) = W(g, f, v). Perelman showed that if 7 = —1 and f(-, 1) is

a solution to the backwards heat equation
af

(2-6) 5=—Af+|Vf|2—R+

and if g( -, t) solves the Ricci flow (1-1) then

n
27’

2
8ii

o e~ dvolyy) > 0.

%W(g(t),f(t),f)=(2f)-(47”)"/2/ ‘RijJFViij—
M

The functional W' is constant on metrics g with the property that
8ij
R,‘j —|—Viij — E =0

for a smooth function f. These metrics are called gradient shrinking Ricci solitons
and appear often as singularity models, that is, limits of blown up solutions around
finite-time singularities of the Ricci flow.

Let g(¢) be a solution to the Ricci flow (1-1) on (—o0, 7). We call a triple
(M, g(t), f(t)) on (—oo, T) with smooth functions f: M — R a gradient shrinking
soliton in canonical form if it satisfies

(2-7) Ric(g(t))+VEOVED £ (1) —

1 . 9 . 2

Perelman also defines the p-energy
(2-8)  w(g,T)=inf W(g, f,t) over {f|@mxt)™? [, e~/ dvol, =1}

and shows that

.. 2
(2-9) %M(g(.,z),r)z(2r).(4m)—"/2fM‘RUJrviv,-—% e~/ dvoly) >0,

where f(-,t) is the minimizer for W (g(-, ), f, T) with the constraint on f as
in (2-8). The w-energy (g, ) corresponds to the best constant of a logarithmic
Sobolev inequality. Adjusting some of Perelman’s arguments to our situation we
get the following lemma whose proof we include for the reader’s convenience.
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Lemma 2.1 (nonpositivity of the p-energy). If g(¢) is a solution to (1-1) for all
te€[0,T),then u(g(t), T —t) <O0forallt €[0,T).

Proof. We are assuming the Ricci flow exists for all + € [0, T). Fix t € [0, T).
Define g(s) = g(t+s) fors € [0, T —1). Pickany T < T —¢. Let 1o = T — & with
& > 0 small. Pick p € M. We use normal coordinates about p on (M, g(zp)) to
define

(2-10) fi(x) = {|x|2/4‘9 if d(zy) (x, X0) < po,

,03 /4e  elsewhere,

where pgp > 0 is smaller than the injectivity radius. Note that dvolg)(x) =
1+ O(]x|?) near p. We compute

[14(4N8)_"/26_-f‘ dvolg ()

— f (4re) ™2 P (14 O(|x?)) dx + O (672 0/%)
lx1<po

N / @) e A4 Ol ) dy + O (e 2e40/%),
lyI<po/~/E
The second term goes to zero as ¢ — 0 while the first term converges to

(4rr)"2e V1A gy = 1.
Rﬂ

Writing the integral as €€, then C — 0 as e — 0. And f = fi + C then satisfies

the constraint [, (47e)™"2e~/ dvolg(y) = 1.
Solve Equation (2-6) backwards with initial value f at tg. Then

W(g(to), f(70), T — 70)
|x|? |x|?

:/ (8<@+R>+¥+C—n>(4ne)—"/2e—'xlz/4€—c(1+0(|x|2)) dx
[x|<po

2
+ f (p—” +eR+C— n) (4re) /2o r0/4e=C
M=B(p,po) \4€

=I+1I,

where [ = ¢=€ f\x\s;oo(lx|2/28 - n)(4718)_”/ze_|x|2/48(1 + 0(]x|?)) dx and II con-
tains all the remaining terms. It is obvious that II — 0 as ¢ — 0 while

2
I=e€ / I(% - ”) (4m)"P2e P14 0 (ely ) dy
[ylI<po/+/€

2
— / (% — n) (471)_"/2e_|y|2/4 dy=0 ase—0.
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Therefore W(g(to), f(70), T —179) — 0 as 1o — 7. By the monotonicity of u along

the flow, u(g(7), 7) = n(g(0), 7) <W(g(0), £(0), T) < W(g(%0), f(%0), T — T0)-
Letting 79 — 7, we get u(g(¢), T) <0. Since T < T — ¢ is arbitrary,

u(g(), T —1t)<0. O

3. Uniform bound on scalar curvature
In this section, we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. By our assumptions, there exists a sequence of times t; — T
so that Q; :=maxy 0,51 IRm[(x, ) = 00 as i — 0o0. Assume that the maximum
is achieved at (p;, t;) € M x [0, t;]. Define a rescaled sequence of solutions

3-1) gi(t)=0; gt +1/0;).
We have that
(3-2) [Rm(g;)| <1on M x[-1;Q;,0] and [Rm(g;)|(p;,0)=1.

By Hamilton’s compactness theorem [1995a] and Perelman’s k-noncollapsing the-
orem [2002] we can extract a pointed subsequence of solutions (M, g; (), g;), con-
verging in the Cheeger—Gromov sense to a solution to (1-1), which we denote by
(Moo, 800(1), goo) for any sequence of points ¢; € M. In particular, if we take
that sequence of points to be exactly {p;}, we can guarantee the limiting metric is
nonflat. The limiting metric has a sequence of nice properties: Since

[R(g(i +1/Q) _ C
Qi -0

the limiting solution (M, g0o(?)) is scalar flat for each t € (—o0, 0]. Since it
solves the Ricci flow (1-1) and Ry := R(gx) evolves by

%Rw = ARoo + 2| Ric(go0) 2.

we have that Ric(go,) = 0, that is, the limiting metric is Ricci flat. We will get a
Gaussian shrinker by using Perelman’s functional  defined by (2-8). Recall that
(see the computation in [Kleiner and Lott 2008])

|R(gi (1)) = — 0,

2
%M(g(t), T) =21 (4nr)"/2/ e~ dvoly),

Ric+VVf— 2
M 2T

where f(-,t) is the minimizer realizing u(g(t), t),and 1 =T —¢.
In this proof of Theorem 1.2, we take s, v € [—10, 0] with s < v. Then, by (3-2),
gi(s) and g;(v) are defined for i sufficiently large. Then, by the invariant property
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of 1 under the parabolic scaling of the Ricci flow, for s < v € [-10, 0] one has

(3-3) wu(gi(), Qi(T —1;) —v) — u(gi(s), Qi(T —1;) —s)
i+ 7 )l )T )

1i+v/Qi
= —u(g@), T —t)dt
/I;'FS/Q;' dt

li+v/Qi
> f / 2t(drr) 2.
li+s/Qi vM

:2/U/ <m,~(r)(4nm,-(r))—"/2
s M

Ric(g;(r))+VV f —

2
e~/ dvoly) dt

Ric+VV f — 2i
T

8i
2m; (r)

2
e/ ) dvolg, dr,

where, for simplicity, m; (r) = Q;(T —t;) —r.
Since we are assuming the flow develops a Type I singularity at 7', we have
3-4) lim Q;(T —t;)) =a < oo.
1—> 00

Thus, by (2-4), one has for r € [—-10, 0],

(3-5) imm;(r)=a—r >0.
1—> 00

By Lemma 2.1 and by the monotonicity of u(g(¢), T —1t) (see (2-9)),

(3-6) n(g@),T) < u(g), T —1)=<0.

Estimate (3-6) implies that there exists a finite lim,_, 7 w(g(¢), T —t) which implies
that the left-hand side of (3-3) tends to zero as i — oo. Letting i — oo in (3-3)
and using (3-5), we get

(3-7) lim / ' / ((a—r)(4n(a—r))_"/2
1—> 00 s M

Ric(g;) + VV f — —&

2(a—r)

X

2
e_f) dvolg,y dr =0.

We would like to say that we can extract a subsequence so that (-, +r/Q;)
converges smoothly to a smooth function foo () on (Moo, 800 (7)), which will then
be a potential function for a limiting gradient shrinking Ricci soliton g.. In order
to do that, we need some uniform estimates for f(-,# + r/Q;). The equation
satisfied by f(#; +r/Q;) in (3-3) is

(3-8) (T—ti—é)(ZAf—|Vf|2+R)+f—n=M(g(l‘i+é)’ T—fi—é)-
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Let f;(-,r)=f(-,t; +r/Q;). Then
(Qi(T — 1)) = QA fi (1) = |V [i (1) F + R(g: (M) + fi (r) —n

=wn(gi(r), Qi(T —1;) —r).
Define ¢; (-, r)=e~/iC-")/2_ This function ¢; ( - , r) satisfies a nice elliptic equation

(3-9) (Qi(T —1;) —r)(=4Ag ) + R(gi(r) i
=2¢; log ¢ + (u(gi(r), Qi(T —t;) —r) +n)e;.

Recall that, in this proof of Theorem 1.2, we consider r € [—10, 0]. We take the
liberty of suppressing certain dependencies on » whenever no confusion may arise.
Our first estimates are uniform global W12 estimates for ¢; (r):

Lemma 3.1. There exists a uniform constant C so that for all r € [—10, 0] and
all i, one has

/ @7 (-, r)dvolg ) + / [Veii®i (- 1) > dvolg, iy < C(Qi(T —1;) —r)"'* < C.
M M
Proof. The function ¢; (r) satisfies the L2-constraint
f Arm;(r)) ™2 (i (r))* dvolg,y = 1
M

and is in fact smooth [Rothaus 1981]. Here, we have used m; (r) = Q;(T —t;) —r.
To simplify, let F;(r) = ¢; (r)/c; (r), where c;(r) = (4rm;(r))"/*. Then

/ (F;(r))*dvolg,y = 1,
M

and the equation for F;(r) becomes

m;(r)(—4Ag) + R(8i (r) Fi(r)
=2F;(r)log Fi(r) + (n(gi(r), mi(r)) +n+2logc;(r)) Fi(r).

Introduce
wi(r) = pu(gi(r), m;(r)) +n+2logc;(r).
Then . |
: Hilr) 1 .
B Fi = gt Frlog B+ (40 — 2 R(si)

Multiplying the above equation by F;(r) and integrating over M, we get

1 2
-1 Vv, F:|*dvol, = ——— | FZ?log F; dvol,,
(3-10) /M| o Fil” dvolg, ) 2mi(”)/M log F; dvolg,

wi(r) 1 _ 2
—I—/M(4mi(r) — ZR(g,)) F7dvolg, .
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Because || M(E(r))z dvolg, -y =1, by Jensen’s inequality for the logarithm,

(3-11) / F?log F; dvolgi(r)zn4;2 f F21og F" dvoly,
M M
< nzzlog /M FE0D guol o)

_n=2 log/ Fi(zn)/("_Z) dvolg, ) .
M

4

On the other hand, we recall the following Sobolev inequality (see also [Hebey
1999, Theorem 5.6]):

Theorem 3.1 [Hebey and Vaugon 1995]. For any smooth, compact Riemannian
n-manifold (M, g), where n > 3, such that

IRm(g)| < A1, [VoRm(g)| < Aa,  injoy ) = v,

there is a uniform constant B(n, A1, Az, y) so that for any u € W'-2(M),

(n—2)/n
(3-12) ( fM |u| 2/ (=2 dvolg)
SC(n)/ |Vu|* dvol, +B(n,A1,A2,y)/ u® dvoly .
M M

By Perelman’s noncollapsing result, Theorem 3.1 applies to (M, g;(r)) with
uniform constants Ay, Ay, y, independent of » € [—10,0] and i. In particular,
letting u = F;(r) in (3-12), we find that

(3-13) f (Fi(r)@" =2 dvoly, vy
M
n/(n—=2)
< C(n) (/ |vg,.(r)ﬂ<r>|2dvolg,.<r>) +B(n, A, As, y).
M
Combining (3-10), (3-11) and (3-13), we obtain

(3-14) / |V, Fi > dvolg,
M

n—2 log/ Fl.(zn)/("_z) dvoly, ()
' M

wir) 1, 0\,
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5 n/(n—2)
=z log(C(n> ( / |VE-|2dvolg,.<r)) +B(n, Ay, As, y))
M

m;(r)
wir) 1, )
+/M(4mi(r) 4R(g’))Fi dvolg, ) -

Recall that R(g;(r)) is uniformly bounded by the scaling and furthermore

lim Q;(T —t;) =a € [}, 00).
11— 00

Thus, if r € [—10, 0], then Equation (3-14) gives a global uniform bound for
fM Ve Fi r)|? dvolg, . Since ¢; (r) =c; (r) F; (r), we then have a global uniform
bound for [, [V, @i (r)|* dvolg, ). O

Now, elliptic L? theory gives uniform C'¢ estimates for ¢; (r) on compact sets
[Gilbarg and Trudinger 2001]. We need higher order derivative estimates on ¢; ()
to conclude that for a suitably chosen sequence of points ¢; around which we take
the limit, we have fo(r) = —21log ¢oo(r) for a smooth function fo(r) (where
Jfoo(r) is the limit of f;(r) and ¢oo(r) is the limit of ¢;(r)). For the higher order
estimates, it is crucial to prove that {¢; (r)} stay uniformly bounded from below on
compact sets around g;.

In (3-7), take s = —10 and v = 0. For each i, let r; € [—10, 0] be such that

2
(a—r)@n(a—r)™"?

. r 8i
Ric(g;(ri)) + va(ti + —)

0i) 2@a-r)
x e~ S itri/ Qi) dvolg )
—n/2|p; r 8i 2
<(a—r)@dn(a—r)) Ric(gi(r))+VVflti+ — ) —
Qi 2(a—r)

x e~ fUi+r/00) dVOlg,. -
for all r € [—10, 0]. Take g; € M at which the maximum of ¢; (r;) over M has been
achieved and denote also by (M, g (), g) the smooth pointed Cheeger—Gromov
limit of the rescaled sequence of metrics (M, g;(¢), q;), defined as above. Take any
compact set K C M containing g. Let ; : K; — K be the diffeomorphisms from
the definition of Cheeger—Gromov convergence of (M, g;, q;) t0 (M, 800, q) and
K; C M. Following the previous notation, consider the functions F; (7;), ¢; (r;) and
for simplicity denote them by F; and ¢;, respectively. Also denote the metric g; (r;)

by gi.
Lemma 3.2. For any o € (0, 1), there is a uniform constant C (o) so that

(3-15) I Fillcraqmy < Cla).
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Proof. The proof is via bootstrapping and rather standard for the equation satisfied
by F;:

wi(r) 1

1
3-16 —Ag Fi=——F/logF,+| ————
(3-16) . 2mi(r) 08 (4ﬂli(r) 4

R(gi )) F;.

The reason that bootstrapping works is simple. If F; is uniformly bounded in
L?(K;), where K; € M is a compact set, then F;log F; is uniformly bounded in
LP3(K;) for any 6 > 0. Standard local parabolic estimates give (3-15), which is
independent of a compact set since we have a uniform global W2 bound on F;. [J

We now discuss how to get higher order derivatives estimates for F;. Covariantly
differentiating (3-16), commuting derivatives, and noting that

. k
—Ag 01 F; = —0] Ay, Fi — Ric(g)ig;" 9, F;

we get

B-17) —Ag 0 F; =

1 2+pi(r) 1
z_mi(r)alEl"gF’+< R JaF

dm;(r)
1 .
- ZalR(gi)Fi - RIC(gi)ZkgfpapFi-

The major obstacle in applying L” theory to get uniform C* estimates for 9, F;
is the term 0; F; log F;. This emanates from the potential smallness of | F;|, though
we have already found a nice uniform upper bound on it. Thus, to proceed fur-
ther, we need to bound | F;| uniformly from below. Equivalently, we will prove in
Lemma 3.3 that ¢; stays uniformly bounded from below on K;.

As the first step, we bound ¢;(g;) from below. This is simple. Applying the
maximum principle to (3-8) gives miny, f; < C, where f; = f;(r;) for a uniform
constant C. This can be seen as follows. Define o; = Q; (T —¢;). At the minimum
of f;, we have

Ji—n _ w(gi(ri), aj—r;)

LR ()~ 2 g o fr < P AT ey,
o;—r; o;—r; o;—r;
Thus,
fi <n+u(gi(ri), o —ri) — R(gi (r;))(ct; —17)
(3-18)

<n+u(gi(ri), _ri)+g(Qi(T_ti) —-ri)<C,

where we have used the fact that R(-,¢) > —C on M for all t € [0, T) (see (2-3)).

This implies ¢; (¢;) > & > 0 for all i, with a uniform constant §.
Let K C M and K; C M be compact sets as before. Also recall that m; (r;) =

Qi(T —t;) —r;.
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Lemma 3.3. For every compact set K C M, there exists a uniform constant C (K)
so that
¢i > C(K)on K; foralli.

Proof. Assume the lemma is not true and that there exist points P; € K; so that
¢i(P;) <1/i — 0asi — oo. Assume 1;(P;) converge to a point P € K. Then
$o0(P) =0. Take a smooth function n € C§°(M4,), compactly supported in K'\{P}.
Then ¢ 'n € C5°(M), compactly supported in K;\{P;}. Multiplying (3-9) by v//n,
assuming lim;_, », r; = rg, and then integrating by parts, we get

[ (it 490V + R ) ~ 200 s
M

—ngi ¥ n — p(gi, mi(ri) iy n) dvolg,,) = 0.
We now let i — oo and observe that ¢; — ¢oo C1* locally, that v/ n — 1 smoothly,
that lim; . o R(g;) =0, and thata —rg:=1im; oo m; (r;) =1im; . oo (Q; (T —1;) —1;)
is finite. Thus one finds that

/ (4(61 —10) Voo V) —20000 I oo — NP — (g0, @ —70)77¢oo) dVOlgoo(ro) =0.

Proceeding in the same manner as in [Rothaus 1981], we obtain ¢, = 0 in some
small ball around P. Using the connectedness argument, ¢, = 0 everywhere
in M. That contradicts ¢oo(q) > 8§ > 0. O

Having Lemma 3.3 and C L@ uniform estimates on ¢;, we see that the right-
hand side of (3-17) is uniformly bounded in L?(K;). Because log F; is uniformly
bounded on K;, we can bootstrap (3-17) to obtain C'* estimates for |V, Fil.
Hence, one has uniform C>¢ estimates for F; on K;. In terms of ¢;,

(3-19) il 2 i,y < C(K, a)(Qi(T —1;) —ri)"/*.

Differentiating (3-17) again gives all higher order derivative estimates on ¢; and
therefore all higher order derivative estimates on f; = f;(r;) = —2log ¢;. However,
for our purpose, C>% estimates suffice.

Then, using (3-7), for s = —10 and v = 0,

lim (1o<a —r)(4m(a—r))"?

“J,

0
ghm</1(/(a—m@nm—r»ﬂﬂ
1—> 00 710 M

Ric(g)) +VV fi —

gi(r) |?

Ric(gi(ri)) + VV fi — a—r)

e/ dvolg, (Vi))

2
8i

2(a—r)

X

e i dvolg, dr) =0.
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By Lemma 3.3 and (3-7), applying the Arzela—Ascoli theorem on f; results in

. 8oo
Ricoo +VV foo — ——— =0

1Coo 1 Joo 2a—ro)
Since Ricy, = 0, we get

8oo =2(a —10)VV foo,

and therefore M, is isometric to a standard Euclidean space R"; see, for example,
[Ni 2005, Proposition 1.1]. It is now easy to see that

|x|?

(3-20) foo = m s

that is, the limiting manifold (R", g, go) is @ Gaussian shrinker. |

Proof of Theorem 1.3. We will use many estimates and arguments developed in the
proof of Theorem 1.2. Assume the flow does develop a Type II singularity at 7.
Then we can pick a sequence of times #; — T and points p; € M as in [Hamilton
1995b] so that the rescaled sequence of solutions (M, g;(¢) :== Q;g(t; +t/Q;), pi),
converges in a pointed Cheeger—Gromov sense to a Ricci flat, nonflat, complete,
eternal solution (Muo, 80o(t), Poo). Here Q; := maxpsxo,; IRm|(x, t) — oo as
i — 00. The reasons for getting Ricci flat metric are the same as in the proof of
Theorem 1.2. Define

a =T —1)0;.

Since we are assuming a Type II singularity occurs at 7', we may assume that for
a chosen sequence #; we have lim;_, o, o; = 00.

By Lemma 2.1 and the monotonicity of w, we have |u(g(¢), T —t)| < C for all
t€[0,T). Let f;(-,s) be a smooth minimizer realizing

u(g(rﬁé), T—ti—é) = u(gi(s), i —s) =inf°W<g<t,-+é), 7, T"l“é)

over the set of all smooth functions f satisfying

s —n/2 _f
<47T (T — 1 — a)) e dVOIg(ti+S/Qi) =1.
i M

Then f; = f;(-, s) satisfies

Ji—n _ pu(gi(s), a; —s)

(3-21) 20g) fi = Ve il + R 4+ T = 5 d .
o — S o — S8

In terms of ¢; (x, s) = e~ /i®9)/2 this is equivalent to

(3-22)  —4Ag5)9i(s) + R(gi(5))i(s)
_ 24i(s) log ¢i(s) n (n(gi(s), ai —s) +n)gi(s)

o — S o — S
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with
2 2
(3-23) f (61(5)) dvoly ) = (4 (i — )",
M

In what follows, we fix s = 0. Define q~§l~( -):=¢;(-,0)/B;, where

(3-24) pi = max (#1(x,0) + Ve, 091 (x, 0)]) -

This choice of B; gives us uniform C' estimates for 5,- on M. Thus, we can apply
L? theory to get uniform C'* estimates for 5,- on compact sets around the points
where the maxima in (3-24) are achieved. To be more precise, we proceed as
follows.

Take g; € M at which this maximum in (3-24) has been achieved and denote
also by (Mo, g0o(t), g) the smooth pointed Cheeger—Gromov limit of the rescaled
sequence of metrics (M, g;(¢), g;), defined as above. Lemma 3.1, Theorem 3.1 and
standard elliptic L? estimates applied to (3-22) yield the estimates on f; in terms
of the W2 norm of ¢; with respect to metric g;(0), that is, there exists a uniform

constant C so that for all i, §; < Ca;'/4

, which implies
(3-25) log B; < Crloga; + C3,

for some uniform constants C; and C,. This can be proved the same way we
obtained (3-19) in Theorem 1.2. After dividing (3-22) by 8; we get

log $; + log B; L (@), T—1) +n)pi
o; o

(3-26) —4A40)i+R(2i(0); =2h;-

Since (M, g; (t) qi) converges to (Mo, goo(t), q) in the pointed Cheeger—Gromov
sense, and ||¢, lc1(m,g;(0y) 18 uniformly bounded, we can get uniform C* e esti-
mates for ¢, on compact sets around points g;. By the Arzela—Ascoli theorem, d),
converges uniformly in the C' norm on compact sets around points ¢; to a smooth
function (;OO. We will show in the next paragraph that 500( -) is a positive constant.

Indeed, if we apply the maximum principle to (3-21), similarly as in the proof of
Theorem 1.2, we obtain miny; f;(-,0) < C for a uniform constant C. This implies
log 8; > —C) for a uniform constant C;. In particular, there is a uniform constant
& > 0 such that for all i, one has

(3-27) Bi>8>0.

This together with (3-25) and the lim;_, o, o; = 00 implies

log B;
(3-28) lim 28#

i—o0

=0.
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Multiplying (3-26) by any cut-off function n; = v *n (where 7 is any cut-off

function on My, and ¥; is a sequence of diffeomorphisms from the definition of
Cheeger—Gromov convergence) and integrating by parts, we get

4/ V%,-Vn,- dVOlgi(())

M

=— / R(gi(0))¢;n; dvolg,
M

~ log; +log Bi ugw), T—t)+n [~
+2 f m¢rudv01gi<0)— : : / ni¢i dvolg; (o) -
M ! M

o o;

Let i — oo in the previous identity. From (3- 28) and the limits lim;_, o a; = 00,
R(g;(0)) — 0 uniformly on compact sets, and ¢, — ¢OO in the C! sense, and using
uniform bounds on w(g(t), T —t), we obtain

/ Voo Vi dvoly ) = 0.
M

This means Aaoo = 0 in the distributional sense. By Weyl’s theorem, aoo is a
harmonic function on M. Since (M, g50(0)) is a complete, Ricci flat manifold
and ¢, > 0, by the theorem of [ Yau 1975], 500 = Co is a constant function on M.
At the same time, from the definition of (;i, we get for x in compact sets around
points g;,

(3-29) 1= lim ($i(x) + Vg0 (0)]) = Poo () + Vw00 ()] = Cov.

This implies, in particular Coo =1 > 0. (]

4. Integral bounds on scalar curvature

In this section we will prove Theorem 1.4 and Theorem 1.5. Theorem 1.1 is a
special case of Theorem 1.4 when o = oo in the case with Type I singularities
only. A crucial ingredient in our arguments is the following result.

Theorem 4.1 [Enders et al. 2010, Theorem 1.4]. Let g(t) be the solution to a
Type I Ricci flow (1-1) on [0, T) and suppose that the flow develops a Type I singu-
larity at T. Then for every sequence A; — o0, the rescaled Ricci flows (M, g;(t))
defined on [—M;T,0) by g;(t) := A;g(T +t/)X}j) subconverge in the Cheeger—
Gromov sense to a normalized nontrivial gradient shrinking soliton in canonical
form on (—o0, 0).

Proof of Theorem 1.4. The proof is by contradiction. Assume the flow develops a
Type I singularity at p € M at T < co. Consider any sequence A ; — oo and define
gj(t):=A;g(T +1t/Xrj) where t € [-A;T,0). By Theorem 4.1, the rescaled Ricci
flows (M, g;j(t), p) defined on [—A;T, 0) subconverge in the Cheeger—Gromov
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sense to a normalized nontrivial gradient shrinking soliton (M, goo(?), Poo) in
canonical form on (—oo, 0). Under the condition (1-3), one has

1 t o Ctx
/M|R(gj ()% dvolg, ) = =0 /M‘R(g(”,\_j)) dvolg(ry1/n;) < a2 —0.
J j
Thus the limiting solution (Mo, 800 (), Poo) is scalar flat. Arguing as in the proof
of Theorem 1.1, we see that M, is isometric to a standard Euclidean space R".
However, this contradicts the nontriviality of M. ]

Proof of Theorem 1.5. By Holder’s inequality, it suffices to consider the case when
o = (n+ 2)/2. Then the integral bound is invariant under the usual parabolic
scaling of the Ricci flow.

The proof is by contradiction. Assume the flow develops a Type I singular-
ity at p € M at T < oo. Consider any sequence A; — oo and define g;(t) :=
Ajg(T +1t/Xj) where t € [—A;T,0). Then, by Theorem 4.1, the rescaled Ricci
flows (M, g;(t), p) defined on [—A;T, 0) subconverge in the Cheeger—Gromov
sense to a normalized nontrivial gradient shrinking soliton (M, goo(?), Poo) in
canonical form on (—oo, 0). Observe that

0 T
/ / IR(g; ()| dvoly, ) dt = f / |R(g(5))|% dvoly(s) ds.
—-1Jm T—1/7; JM

Since fOT S IR(g(1))]¥ dvolgy di < oo, letting j — 00, we obtain

0 T
/ f IR (800 (t)|* dvol,_ 1y dt < lim / / IR(g(s)|* dvolg(y ds =0,
—1J My T—1/a;JM

14)00

which implies R(geo(?)) =0 on My for t € [—1, 0]. Thus the limiting solution
(Moo, 8goo(t)) is scalar flat. Arguing as in the proof of Theorem 1.1, we see that
M is isometric to a standard Euclidean space R". However, this contradicts the
nontriviality of M. U
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