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FINITE-VOLUME COMPLEX-HYPERBOLIC SURFACES,
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AND GEOMETRIC APPLICATIONS

LUCA FABRIZIO DI CERBO

We study the classification of smooth toroidal compactifications of nonuni-
form ball quotients in the sense of Kodaira and Enriques. Several results
concerning the Riemannian and complex algebraic geometry of these spaces
are given. In particular we show that there are compact complex surfaces
which admit Riemannian metrics of nonpositive curvature, but which do
not admit Kähler metrics of nonpositive curvature. An infinite class of such
examples arise as smooth toroidal compactifications of ball quotients.

1. Introduction

Let M̃ be a symmetric space of noncompact type, and let Iso0(M̃) denote the
connected component of the isometry group of M̃ containing the identity. Recall
that Iso0(M̃) is a semisimple Lie group. A discrete subgroup 0 ⊂ Iso0(M̃) is a
lattice in M̃ if M̃/0 is of finite volume. When 0 is torsion free, then M̃/0 is
a finite volume manifold or a locally symmetric space. A lattice 0 is uniform
(nonuniform) if M̃/0 is compact (noncompact).

The theory of compactifications of locally symmetric spaces or varieties has
been extensively studied, see for example [Borel and Ji 2006]. In fact, locally
symmetric varieties of noncompact type often occur as moduli spaces in algebraic
geometry and number theory, see [Ash et al. 2010]. For technical reasons this
beautiful theory is mainly developed for quotients of symmetric spaces or varieties
by arithmetic subgroups. For arithmetic subgroups of semisimple Lie groups a nice
reduction theory is available [Borel and Ji 2006]. Among many other things, the
aforementioned theory can be used to deduce their finite generation, the existence of
finitely many conjugacy classes of maximal parabolic subgroups, and the existence
of neat subgroups of finite index.

The celebrated work of Margulis [1984] implies that lattices in any semisimple
Lie group of real rank bigger or equal than two are arithmetic subgroups. This
important theorem does not cover many interesting cases such as lattices in the
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complex hyperbolic space CHn , where nonarithmetic lattices are known to exist by
the work of Mostow and Mostow–Deligne; see [Deligne and Mostow 1993] and
the bibliography therein.

It is thus desirable to develop a theory of compactifications of locally symmetric
varieties modeled on CHn regardless of the arithmeticity of the defining torsion
free lattices. A compactification of finite-volume complex-hyperbolic manifolds
as a complex spaces with isolated normal singularities was obtained by Siu and
Yau [1982]. This compactification may be regarded as a generalization of the
Baily–Borel compactification defined for arithmetic lattices in CHn . A toroidal
compactification for finite-volume complex-hyperbolic manifolds was described by
Hummel and Schroeder [1996] in connection with cusps closing techniques arising
from Riemannian geometry; see also [Mok 2009] and the classical reference [Ash
et al. 2010] for what concerns the arithmetic case.

The constructions of both Siu–Yau and Hummel–Schroeder rely on the theory of
nonpositively curved Riemannian manifolds. The key point here is that the structure
theorems for finite-volume manifolds of negatively pinched curvature, or more
generally for visibility manifolds [Eberlein 1996], can be used as a substitute of the
reduction theory for arithmetic subgroups.

In this paper we study torsion-free nonuniform lattices in the complex hyperbolic
plane CH2 and their toroidal compactifications. Let 0 be a lattice as above and
let CH2/0 denote its toroidal compactification. When CH2/0 is smooth, it is
a compact Kähler surface [Hummel 1998]. It is then of interest to place these
smooth Kähler surfaces in the framework of the Kodaira–Enriques classification of
complex surfaces [Barth et al. 2004]. The main purpose of this paper is to prove
the following:

Theorem A. Let 0 be a nonuniform torsion-free lattice in CH2. There exists a
finite subset F

′

⊂ 0 of parabolic isometries for which the following holds: for any
normal subgroup 0

′

C0 with the property that F
′

∩0
′

is empty, then CH2/0
′ is

a surface of general type with ample canonical line bundle. Moreover, CH2/0
′

admits Riemannian metrics of nonpositive sectional curvature but it cannot support
Kähler metrics of nonpositive sectional curvature.

An outline of the paper follows. Section 2 starts with a summary of the results
from [Hummel and Schroeder 1996]. Such results are then combined with the
Kodaira–Enriques classification to prove that when the lattice 0 is sufficiently small
then CH2/0 is a surface of general type with ample canonical bundle.

In Section 3 we present some examples of a surfaces of general type which do
not admit any nonpositively curved Kähler metric, but whose underlying smooth
manifolds admit Riemannian metrics of nonpositive curvature. Finally we prove
Theorem A.
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In Section 4 we show how Theorem A, combined with the theory of semistable
curves on algebraic surfaces [Sakai 1980], can be used to address the problem of
the projective-algebraicity of minimal compactifications (Siu–Yau) of finite-volume
complex-hyperbolic surfaces. Those results are summarized in Theorem B. The
result obtained is effective.

The projective-algebraicity of minimal compactifications was proved in [Mok
2009] through L2-estimates for the ∂-operator. This analytical approach works in
any dimension.

2. Toroidal compactifications and the Kodaira–Enriques classification

Let PU(1, 2) denote the connected component of Iso(CH2) containing the identity.
Let 0 be a nonuniform torsion-free lattice of holomorphic isometries of the complex
hyperbolic plane CH2, that is, 0 ≤ PU(1, 2). Recall that the locally symmetric
space CH2/0 has finitely many cusp ends A1, . . . , An which are in one to one
correspondence with conjugacy classes of the maximal parabolic subgroups of 0
[Eberlein 1980]. The set of all parabolic elements of 0 can be written as a disjoint
union of subsets 0x , where 0x is the set of all parabolic elements in 0 having x as
their unique fixed point. Here x is a point in the natural point set compactification of
CH2 obtained by adjoining points at infinity corresponding to asymptotic geodesic
rays. Thus, given a cusp Ai , let us consider the associated maximal parabolic
subgroup 0xi ≤ 0 and the horoball HBxi stabilized by 0xi . We then have that
HBxi /0xi is naturally identified with Ai .

Recall that after choosing an Iwasawa decomposition [Eberlein 1996] for PU(1, 2),
we get a identification of ∂HB with the three-dimensional Heisenberg Lie group N .
Moreover, N comes equipped with a left invariant metric and then we may view 0xi

as a lattice in Iso(N ). The cusps A1, . . . , An are then identified with N/0xi×[0,∞),
for i = 1, . . . , n.

The isometry group of N is isomorphic to the semi-direct product N o U (1).
We say that a lattice in Iso(N ) is rotation free if it is a lattice in N , that is, if it is a
lattice of left translations. A parabolic isometry φ ∈ 0 is called unipotent if it acts
as a translation on its invariant horospheres.

We now briefly summarize some of the results from [Hummel 1998; Hummel
and Schroeder 1996].

Theorem 2.1 (Hummel–Scroeder). Let 0 be a nonuniform torsion-free lattice in
CH2. There exists a finite subset F⊂ 0 of parabolic isometries such that, for any
normal subgroup 0

′

C0 with the property that F∩0
′

is empty, CH2/0
′ is smooth

and Kähler.

Furthermore, using a cusp closing technique arising from Riemannian geometry
they were able to prove:
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Theorem 2.2 (Hummel–Schroeder). Let 0 be a nonuniform torsion-free lattice in
CH2. Then there exists a finite subset F

′

⊂ 0 of parabolic isometries containing
F such that if 0

′

C0 is a normal subgroup with the property that F
′

∩0
′

is empty,
then CH2/0

′ admits a Riemannian metric of nonpositive sectional curvature.

A few remarks about these results. A nonuniform torsion-free lattice in CH2

admits a smooth toroidal compactification if its parabolic isometries are all unipotent.
In the arithmetic case this is achieved by choosing a neat subgroup of finite index
[Ash et al. 2010]. It is also interesting to observe that we have plenty of normal
subgroups satisfying the requirements of Theorems 2.1 and 2.2, in fact PU(1, 2) is
linear and then residually finite by a fundamental result of Mal’tsev [1940]. Finally,
it is interesting to notice that in general one expects the strict inclusion F

′

⊃ F to
hold. Explicit examples can be derived from the construction of Hirzebruch [1984].

For simplicity, a compactification as in Theorem 2.2 will be referred to as a
toroidal Hummel–Schroeder compactification.

Proposition 2.3. Let M be a finite-volume complex-hyperbolic surface which ad-
mits a toroidal Hummel–Schroeder compactification. Then the Euler number of M
is strictly positive.

Proof. The idea for the proof goes back to an unpublished result of J. Milnor
about the Euler number of closed four-dimensional Riemannian manifolds having
sectional curvatures along perpendicular planes of the same sign; see [Chern 1955].
Let (M, g) be the Riemannian manifold obtained by closing the cusps of M under
the condition of nonpositive curvature [Hummel and Schroeder 1996]. Let � be its
curvature matrix. We can always choose [Chern 1955] a orthonormal frame {ei }

4
i=1

such that R1231 = R1241 = R1232 = R1242 = R1332 = R1341 = 0. Hence

Pf(�)=�1
2 ∧�

3
4−�

1
3 ∧�

2
4+�

1
4 ∧�

2
3

=
(
R1221 R3443+ R2

1243+ R1331 R2442+ R2
1342+ R1441 R2332+ R2

1234
)
dµg,

where Pf(�) is the Pfaffian of the skew symmetric matrix �. The statement is now
a consequence of Chern–Weil theory. �

We can now use the Kodaira–Enriques classification of closed smooth surfaces
[Barth et al. 2004] to derive the following theorem. The proof is in the spirit of the
theory of nonpositively curved spaces.

Theorem 2.4. Let M be a finite-volume complex-hyperbolic surface which admits
a toroidal Hummel–Schroeder compactification. Then M is a surface of general
type without rational curves.

Proof. Since M admits a Riemannian metric of nonpositive sectional curvature,
the Cartan–Hadamard theorem [Petersen 2006] implies that the universal cover
of M is diffeomorphic to the four-dimensional euclidean space. Consequently,
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M is aspherical and then it cannot contain rational curves. Moreover, the second
Betti number of M is even since by construction it admits a Kähler metric. By the
Kodaira–Enriques classification [Barth et al. 2004] we conclude that the Kodaira
dimension of M cannot be negative.

From Proposition 2.3, we know that the Euler number of M is strictly positive.
The minimal complex surfaces with Kodaira dimension equal to zero and positive
Euler number are simply connected or with finite fundamental group. Since π1(M)
is infinite, the Kodaira dimension of M is bigger or equal than one.

The fundamental group of an elliptic surface with positive Euler number is
completely understood in terms of the orbifold fundamental group of the base of
the elliptic fibration. More precisely, denoting by π : S→ C the elliptic fibration,
if S has no multiple fibers then π induces an isomorphism π1(S)' π1(C). If we
allow multiple fibers we have the isomorphism π1(S)' πOrb

1 (C). For these results
we refer to [Friedman and Morgan 1994]. We now show that M cannot be an
elliptic surface. When S has multiple fibers, π1(S) always has torsion and then it
cannot be the fundamental group of a nonpositively curved manifold. If we assume
π1(M)' π1(C), the fact that π1(M) grows exponentially [Avez 1970] forces the
genus of the Riemann surface C to be bigger or equal than two. Since all closed
geodesics in a manifold of nonpositive curvature are essential in π1, we have that the
fundamental group of the flats introduced in the compactification injects into π1(M)
and then by assumption into π1(C). By elementary hyperbolic geometry this would
imply that Z⊕Z acts as a discrete subgroup of R, which is clearly impossible. �

Corollary 2.5. A toroidal Hummel–Schroeder compactification has ample canoni-
cal line bundle.

Proof. By Theorem 2.4 we know that M is a minimal surface of general type
without rational curves. The corollary follows from Nakai’s criterion for ampleness
of divisors on surfaces [Barth et al. 2004]. More precisely, since for a minimal
surface of general type the self-intersection of the canonical divisor is strictly
positive [ibid.], it suffices to show that KM · E > 0 for any effective divisor E .
Thus, let E be an irreducible divisor and assume KM · E = 0. By the Hodge index
theorem we must have E · E < 0. By the adjunction formula E must be isomorphic
to a smooth rational curve with self-intersection −2. �

In the arithmetic case, part of the results contained in Theorem 2.4 can be derived
from a theorem of Tai, see [Ash et al. 2010]. Furthermore, similar results for the
so-called Picard modular surfaces are obtained by Holzapfel [1980].

3. Examples

In this section we present examples of surfaces of general type which do not
admit nonpositively curved Kähler metrics, but such that their underlying smooth
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manifolds do admit Riemannian metrics with nonpositive Riemannian curvature. In
order to do this one needs to understand the restrictions imposed by the nonpositive
curvature assumption on the holomorphic curvature tensor.

Thus, define
p = 2 Re ξ and q = 2 Re η

where
ξ = ξα∂α and η = ηα∂α.

In real coordinates we have

R(p, q, q, p)= Rhi jk phq i q jpk

while in complex terms

R
(
ξ+ξ, η+η, η+η, ξ+ξ

)
= R

(
ξ, η, η, ξ

)
+R

(
ξ, η, η, ξ

)
+R

(
ξ, η, η, ξ

)
+R

(
ξ, η, η, ξ

)
.

We then have

Rhi jk phq i q jpk

= Rαβγ δ ξ
αηβηγ ξ δ + Rαβγ δ ξ

αηβηγ ξ δ + Rαβγ δ ξ
αηβηγ ξ δ + Rαβγ δξαηβηγ ξ δ

= Rαβγ δ ξ
αηβηγ ξ δ − Rαβγ δ ξ

αηβηδξγ − Rαβγ δ ξ
βηαηγ ξ δ + Rαβγ δ ξ

βηαηδξγ

= Rαβγ δ
(
ξαηβηγ ξ δ − ξαηβηδξγ − ξβηαηγ ξ δ + ξβηαηδξγ

)
= Rαβγ δ

(
ξαηβ − ηαξβ

)(
ξ δηγ − ηδξγ

)
.

If we assume the Riemannian sectional curvature to be nonpositive we have

Rhi jk phq i q j pk
= Rαβγ δ

(
ξαηβ − ηαξβ

)(
ξ δηγ − ηδξγ

)
≤ 0.

In complex dimension two, the right hand side of the above equality reduces (after
some manipulations) to

Rαβγ δ
(
ξαηβ − ηαξβ

)(
ξ δηγ − ηδξγ

)
= R1111

∣∣ξ 1η1
− η1ξ 1∣∣2+ 4 Re

{
R1112

(
ξ 1η1
− η1ξ 1)(ξ 2η1− η2ξ 1

)}
+ 2R1122

{∣∣ξ 1η2
− η1ξ 2∣∣2+Re

(
ξ 1η1
− η1ξ 1)(ξ 2η2− η2ξ 2

)}
+ 2 Re

{
R1212

(
ξ 1η2
− η1ξ 2)(ξ 2η1− η2ξ 1

)}
+ 4 Re

{
R2212

(
ξ 2η2
− η2ξ 2)(ξ 2η1− η2ξ 1

)}
+ R2222

∣∣ξ 2η2
− η2ξ 2∣∣2.

Following Mostow and Siu [1980], we choose the ansatz

ξ 1
= ia, ξ 2

=−i, η1
= a, η2

= 1
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where a is a real number. We get the inequality

R1111 4a4
− 2R1122 4a2

+ R2222 4≤ 0.

Since nonpositive Riemannian sectional curvature implies nonpositive holomorphic
sectional curvature, we conclude that

(1)
(
R1122

)2
≤ R1111 R2222.

Theorem 3.1. A toroidal Hummel–Schroeder compactification does not admit any
Kähler metric with nonpositive Riemannian sectional curvature.

Proof. Let us proceed by contradiction. Consider one of the elliptic divisors added
in the compactification. By the properties of submanifolds of a Kähler manifold
[Kobayashi and Nomizu 1969], we have that the holomorphic sectional curvature
tangent to the elliptic divisor has to be zero. Let us denote such a holomorphic
sectional curvature by R1111. By the inequality (1), we conclude that R1122 = 0.
As a result, the Ricci curvature tangent to the elliptic divisor has to be zero. We
conclude that

KM ·6 =

∫
6

c1
(
KM

)
= 0,

which contradicts the ampleness of KM , see Corollary 2.5. �

Combining Theorems 2.4 and 3.1 with Corollary 2.5, we have thus proved
Theorem A.

4. Projective-algebraicity of minimal compactifications

Let M be a smooth toroidal compactification of a finite-volume complex-hyperbolic
surface M and let 6 denote the compactifying divisor. The set 6 is exceptional
and it can be blow down. The resulting complex surface, with isolated normal
singularities, is usually referred as the minimal compactification of M [Siu and
Yau 1982]. In this section we address the problem of the projective-algebraicity
of minimal compactifications of finite-volume complex-hyperbolic surfaces. This
is motivated by a beautiful example of Hironaka, see [Hartshorne 1977, p. 417],
which shows that by contracting a smooth elliptic divisor on an algebraic surface
one can obtain a nonprojective complex space. In the arithmetic case, the projective-
algebraicity of minimal compactifications of finite-volume complex-hyperbolic
surfaces is known by the work of Baily and Borel, see [Borel and Ji 2006].

For completeness, we recall the theory of semistable curves on algebraic surfaces
and logarithmic pluricanonical maps as developed by Sakai [1980].

Let M be a smooth projective surface. Let 6 be a reduced divisor having simple
normal crossings on M .
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Definition 4.1. The pair (M, 6) is called minimal if M does not contain an excep-
tional curve E of the first kind such that E ·6 ≤ 1.

We consider the logarithmic canonical line bundle L= KM +6 associated to
6. Given any integer k, define Pm = dimH 0(M,O(mL)). If Pm > 0, we define
the m-th logarithmic canonical map 8mL of the pair (M, 6) by

8mL(x)= [s1(x), . . . , sN (x)],

for any x ∈ M and where s1, . . . , sN is a basis for the vector space H 0(M,O(mL)).
At this point one introduces the notion of logarithmic Kodaira dimension exactly
as in the closed smooth case. We denote this numerical invariant by k(M) where
M = M\6. We refer to [Iitaka 1982] for further details.

Definition 4.2. A curve 6 is semistable if it has only normal crossings and each
smooth rational component of 6 intersects the other components of 6 in more than
one point.

We next give a numerical criterion for a minimal semistable pair (M, 6) to be
of log-general type.

Proposition 4.3 [Sakai 1980]. Given a minimal semistable pair (M, 6) we have
that k(M)= 2 if and only if L is numerically effective and L2 > 0.

In what follows, we denote by E the set of irreducible curves E in M such that
L · E = 0.

Theorem 4.4 [Sakai 1980]. Let (M, 6) be a minimal semistable pair of log-general
type. The map 8mL is then an embedding modulo E for any m ≥ 5.

It is then necessary to characterize the irreducible divisors in E. In particular, we
need the following proposition.

Proposition 4.5. Let (M, 6) be a minimal semistable pair with k(M) = 2. Let
E be an irreducible curve such that L · E = 0. If E is not contained in 6 then
E ' CP1 and E · E =−2.

Proof. Under these assumptions we know that L2 > 0. By the Hodge index theorem

L2 > 0, L · E = 0 H⇒ E2 < 0.

But now L · E = 0 which implies

KM · E =−6 · E ≤ 0.

We then have KM · E = 0 if and only if E does not intersect 6. In this case
pa(E)= 0 and then E ' CP1 and E2

=−2. Assume now that KM · E < 0, then
KM · E = E2

=−1 and therefore E is an exceptional curve of the first kind such
that E ·6 = 1. This contradicts the minimality of the pair (M, 6). �
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We are now ready to prove the main results of this section. Let CH2/0 be a finite-
volume complex-hyperbolic surface that admits a smooth toroidal compactification
as in Theorem 2.4. We then have that CH2/0 is a surface of general type with
compactification divisor consisting of smooth disjoint elliptic curves.

Proposition 4.6. Let M be a minimal surface of general type. Let 6 be a reduced
divisor whose irreducible components consist of disjoint smooth elliptic curves.
Then (M, 6) is a minimal semistable pair with k(M)= 2.

Proof. Recall that the canonical divisor of any minimal complex surface of non-
negative Kodaira dimension is numerically effective [Barth et al. 2004]. It follows
that the adjoint divisor L is numerically effective. An elliptic curve on a minimal
surface of general type has negative self intersection. Moreover, for a minimal
surface of general type it is known that the self-intersection of the canonical divisor
is strictly positive [ibid.]. By the adjunction formula, we have L2

= K 2
M
−62 > 0.

By Proposition 4.3, we conclude that k(M)= 2. �

Let CH2
\01 be a finite-volume complex-hyperbolic surface which admits a

smooth toroidal compactification M1. Let (M1, 61) be the associated minimal
semistable pair. By Theorem A, we can find a normal subgroup 02C01 of finite
index such that the toroidal compactification M2 of CH2/02 is a minimal surface
of general type with compactification divisor 62. Since

π : CH2/02→ CH2/01

is an unramified covering we conclude that k(M1) = k(M2) [Iitaka 1982]. But
by Proposition 4.6 we know that k(M2) = 2, it follows that (M1, 61) is a mini-
mal semistable pair of log-general type. Let us summarize this argument into a
proposition.

Proposition 4.7. Let (M, 6) be a smooth pair arising as the toroidal compactifi-
cation of a finite-volume complex-hyperbolic surface. The pair (M, 6) is minimal
and log-general.

The following theorem is the main result of the present section.

Theorem B. Let (M, 6) be a smooth pair arising as the toroidal compactifica-
tion of a finite-volume complex-hyperbolic surface. Then the associated minimal
compactification is projective algebraic.

Proof. By Proposition 4.7, the minimal pair (M, 6) is log-general. By Theorem 4.4
we know that 8mL is an embedding modulo E for any m ≥ 5. We clearly have that
6 is contained in E. We claim that there are no other divisors in E. Assume the
contrary. By Proposition 4.5, any other curve in E must be a smooth rational divisor
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E with self-intersection minus two. The adjunction formula gives KM ·E = 0 which
implies 6 · E = 0. This is clearly impossible. By Theorem 4.4 for m ≥ 5, the map

8mL : M→ CP N−1

gives a realization of the minimal compactification as a projective-algebraic variety.
�

For an approach to the projective-algebraicity problem through L2-estimates for
the ∂-operator we refer to [Mok 2009].
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