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QUANTUM AFFINE ALGEBRAS, CANONICAL BASES, AND
q-DEFORMATION OF ARITHMETICAL FUNCTIONS

HENRY H. KIM AND KYU-HWAN LEE

We obtain affine analogs of the Gindikin–Karpelevich and Casselman–Sha-
lika formulas as sums over Kashiwara and Lusztig’s canonical bases. As
suggested by these formulas, we define natural q-deformation of arithmeti-
cal functions such as (multi)partition functions and Ramanujan τ -functions,
and prove various identities among them. In some examples we recover clas-
sical identities by taking limits. Additionally, we consider q-deformation of
the Kostant function and study certain q-polynomials whose special values
are weight multiplicities.

Introduction

This paper is a continuation of [Kim and Lee 2011]. The classical Gindikin–
Karpelevich formula and the Casselman–Shalika formula express certain integrals
of spherical functions over maximal unipotent subgroups of p-adic groups as prod-
ucts over all positive roots. In the previous paper, we expressed the products over
positive roots as sums over Kashiwara and Lusztig’s canonical bases. This idea first
appeared in [Bump and Nakasuji 2010]. Let G be a split reductive p-adic group,
χ an unramified character of T , the maximal torus, and f 0 the standard spherical
vector corresponding to χ . Let z be the element of L T ⊂ L G, the L-group of G,
corresponding to χ by the Satake isomorphism. Then∫

N−(F)
f 0(n) dn =

∏
α∈1+

1− q−1zα

1− zα
=

∑
b∈B

(1− q−1)d(φi (b))zwt(b),(0-1) ∫
N−(F)

f 0(n)ψλ(n) dn = χ(V (λ))
∏
α∈1+

(1− q−1zα)(0-2)

= (−t)M z2ρ χ(V (λ))
∏
α∈1+

(1− t−1z−α)

= (−t)M zρ
∑

b′⊗b∈Bλ⊗Bρ

Gρ(b; q)zwt(b′⊗b),
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where 1+ is the set of positive roots, B is the canonical basis, Bλ is the crystal
basis with highest weight λ, and we set M = |1+| and t = q−1. Notice that in the
Casselman–Shalika formula, we used crystal bases because they behave well with
respect to the tensor product.

In the affine Kac–Moody groups, A. Braverman, D. Kazhdan, and M. Patnaik
[Braverman et al. ≥ 2012] calculated the integral (0-1) and obtained a formula of
the form

(0-3)
∫

N−(F)
f 0(n) dn = A

∏
α∈1+

(
1− q−1zα

1− zα

)multα

,

where A is a certain correction factor. When the underlying finite simple Lie alge-
bra gcl is simply laced of rank n, A is given by

n∏
i=1

∞∏
j=1

1− q−di z jδ

1− q−di−1z jδ ,

where di ’s are the exponents of gcl, and δ is the minimal positive imaginary root.
In this paper, we use the explicit description of the canonical basis introduced by

Beck, Chari, Pressley, and Nakajima [Beck et al. 1999; Beck and Nakajima 2004]
to write the right-hand side of (0-3) as a sum over the canonical basis. Moreover, we
obtain the generalization of (0-2). Namely, we prove the following (Theorem 1-16
and Corollary 2-12, respectively).∏

α∈1+

(
1− q−1zα

1− zα

)multα

=

∑
b∈B

(1− q−1)d(φ(b))zwt(b),(0-4)

χ(V (λ))zρ
∏
α∈1+

(1− q−1z−α)multα
=

∑
b′⊗b∈Bλ⊗Bρ

Gρ(b; q) zwt(b′⊗b),(0-5)

where B is the canonical basis of U+ (the positive part of the quantum affine
algebra), and Bλ is the crystal basis with highest weight λ. Here z is a formal
variable. We also write the correction factor A as a sum over a canonical basis in
the case when gcl is simply laced.

We first prove (0-4) by induction, and deduce (0-5) from (0-4) and the Weyl–
Kac character formula. In the course of the proof, we see that (0-5) can be con-
sidered as a q-deformation of the Weyl–Kac character formula. We also introduce
Hλ+ρ(µ; q) ∈Z[q−1

] (Definition 2-2). It has many remarkable properties; its con-
stant term is the multiplicity of the weight λ−µ in V (λ), and the value at q=−1 is
the multiplicity of the weight λ+ρ−µ in the tensor product V (λ)⊗V (ρ). It is also
related to Kazhdan–Lusztig polynomials when g is of finite type (Corollary 3-30).

When q = −1 and λ is a strictly dominant weight, the Casselman–Shalika for-
mula (0-5) gives a formula for multiplicity of the weight ν in the tensor product
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V (λ − ρ) ⊗ V (ρ) in terms of q-deformation of the Kostant partition function,
generalizing the result of [Guillemin and Rassart 2004, Theorem 1] to affine Kac–
Moody algebras; see (3-24). More precisely, we define K∞q (µ) in a similar way
as in [Guillemin and Rassart 2004], by∑

µ∈Q+

K∞q (µ)z
µ
=

∏
α∈1+

(
1− q−1zα

1− zα

)multα

.

Note that when q = ∞, K∞q (µ) is the classical Kostant partition function. Then
we have

dim(V (λ− ρ)⊗ V (ρ))ν =
∑
w∈W

(−1)l(w)K∞
−1(wλ− ν).

Since the set of positive roots is infinite, the left-hand sides of (0-4) and (0-5)
become infinite products. This leads to very interesting q-deformation of arithmeti-
cal functions such as multipartition functions and Fourier coefficients of modular
forms. We indicate one example here.

We define εq,n(k) as
∞∏

k=1

(1− q−1tk)n =

∞∑
k=0

εq,n(k)tk .

Note that ε1,n(k) is a classical arithmetic function related to modular forms. For
example, we have ε1,24(k) = τ(k + 1), where τ(k) is the Ramanujan τ -function.
Thus the function εq,n(k) should be considered as a q-deformation of the function
ε1,n(k).

For a multipartition p= (ρ(1), . . . , ρ(n)) ∈ P(n), we define

pq,n(k)=
∑

p∈P(n)
| p|=k

(1− q−1)d( p), k ≥ 1,

and set pq,n(0) = 1. Here | p| is the weight of the multipartition and the num-
ber d( p) is defined in Section 1. Notice that if q → ∞ and k > 0, the func-
tion p∞,n(k) is just the multipartition function with n-components. In particular,
p∞,1(k) = p(k), the usual partition function. Hence we can think of pq,n(k) as a
q-deformation of the multipartition function.

It turns out that there are remarkable relations among these q-deformations. We
prove (Theorem 3-8)

εq,n(k)=
k∑

r=0

ε1,n(r)pq,n(k− r),

which yields an infinite family of q-polynomial identities. We also obtain “classi-
cal” identities by taking limits.
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When n = 24 and q→∞, the identity becomes a well-known recurrence for-
mula for the Ramanujan τ -function:

0=
k∑

r=0

τ(r + 1)p∞,24(k− r).

In fact, we prove another family of identities (Proposition 3-13) and obtain an
intriguing characterization of the function εq,n(k). In Example 3-14, by taking
q = 1, we write τ(k+ 1) as a sum of certain integers arising from the structure of
the affine Lie algebra of type A(1)4 .

These q-deformations of arithmetic functions essentially come from the obser-
vation that the Casselman–Shalika formula may be interpreted as a q-deformation
of the Weyl–Kac character formula. In a forthcoming paper, we intend to study q-
deformation of other arithmetical functions such as the divisor function, and obtain
identities which become classical identities when q = 1 or q→∞.

1. Gindikin–Karpelevich formula

Let g be an untwisted affine Kac–Moody algebra over C. We denote by I =
{0, 1, . . . , n} the set of indices for simple roots. Let W be the Weyl group. We
keep almost all the notations from [Beck and Nakajima 2004, Sections 2 and 3].
However, we use v for the parameter of a quantum group and reserve q for another
parameter. Whenever there is a discrepancy in notations, we will make it clear.

We fix h = (. . . , i−1, i0, i1, . . . ) as in [Beck and Nakajima 2004, Section 3.1].
Then for any integers m<k, the product sim sim+1 · · · sik ∈W is a reduced expression,
as is the product sik sik−1 · · · sim ∈W . We set

βk =

{
si0si−1 · · · sik+1(αik ) if k ≤ 0,
si1si2 · · · sik−1(αik ) if k > 0,

and define

R(k)= {β0, β−1, . . . , βk} for k ≤ 0 and R(k)= {β1, β2, . . . , βk} for k > 0.

Let Ti = T
′′

i,1 be the automorphism of U as in [Lusztig 1993, Section 37.1.3],
and let

c+ = (c0, c−1, c−2, . . . ) ∈ NZ≤0 and c− = (c1, c2, . . . ) ∈ NZ>0

be functions (or sequences) that are zero almost everywhere. We denote by C>
(respectively C<) the set of such functions c+ (respectively c−). Then we define

Ec+ = E (c0)
i0

T−1
i0
(E (c−1)

i−1
)T−1

i0
T−1

i−1
(E (c−2)

i−2
) · · ·

and
Ec− = · · · Ti1 Ti2(E

(c3)
i3
)Ti1(E

(c2)
i2
)E (c1)

i1
.
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We set

B(k)=
{
{Ec+ : cm = 0 for m < k} for k ≤ 0,
{Ec− : cm = 0 for m > k} for k > 0.

We denote by B the Kashiwara-Lusztig canonical basis for U+, the positive part
of the quantum affine algebra.

Proposition 1-1 [Beck et al. 1999; Beck and Nakajima 2004]. For each Ec+ ∈

B(k), k ≤ 0 (respectively Ec− ∈ B(k), k > 0), there exists a unique b ∈ B such that

(1-2) b ≡ Ec+ (respectively Ec−) mod v−1Z[v−1
].

We denote by B(k) the subset of B corresponding to B(k) as in the above
theorem. Then we define the map φ : B(k)→ C> for k ≤ 0 (respectively C< for
k > 0) to be b 7→ c+ (respectively c−) such that the condition (1-2) holds. For an
element c+= (c0, c−1, . . . )∈C> (respectively c−= (c1, c2, . . . )∈C>), we define
d(c+) (respectively d(c−)) to be the number of nonzero ci ’s.

Proposition 1-3. For each k ∈ Z, we have

(1-4)
∏

α∈R(k)

1− q−1zα

1− zα
=

∑
b∈B(k)

(1− q−1)d(φ(b))zwt(b).

Proof. First we assume k > 0 and use induction on k. If k = 1, then the identity
(1-4) is easily verified. Now, using an induction argument, we obtain∏
α∈R(k)

1− q−1zα

1− zα

=

( ∏
α∈R(k−1)

1− q−1zα

1− zα

)
1− q−1zβk

1− zβk

=

( ∑
b∈B(k−1)

(1− q−1)d(φ(b))zwt(b)
)(

1+
∑
j≥1

(1− q−1)z jβk

)
=

∑
b∈B(k−1)

(1− q−1)d(φ(b))zwt(b)
+

∑
j≥1

∑
b∈B(k−1)

(1− q−1)d(φ(b))+1zwt(b)+ jβk .

On the other hand, since b′ ∈ B(k) satisfies

b′ ≡ bTi1 Ti2 · · · Tik (E
( j)
k ) mod v−1Z[v−1

]

for unique b ∈ B(k− 1) and j ≥ 0, we can write B(k) as a disjoint union

B(k)=
⋃
j≥0

{b′ ∈ B(k) : φ(b′)= (c1, . . . , ck−1, j, 0, 0, . . . ), ci ∈ N}.
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Now it is clear that∑
b∈B(k)

(1− q−1)d(φ(b))zwt(b)

=

∑
b∈B(k−1)

(1− q−1)d(φ(b))zwt(b)
+

∑
j≥1

∑
b∈B(k−1)

(1− q−1)d(φ(b))+1zwt(b)+ jβk .

This completes the proof of the case k > 0. The case k ≤ 0 can be proved in a
similar way through a downward induction. �

We set
R> =

⋃
k≤0

R(k) and R< =

⋃
k>0

R(k).

Similarly, we set

B> =
⋃
k≤0

B(k) and B< =
⋃
k>0

B(k).

Corollary 1-5. We have

(1-6)
∏
α∈R>

1− q−1zα

1− zα
=

∑
b∈B>

(1− q−1)d(φ(b))zwt(b).

The same identity is true if R> and B> are replaced with R< and B<, respectively.

Let c0 = (ρ
(1), ρ(2), . . . , ρ(n)) be a multipartition with n components, that is,

each component ρ(i) is a partition. We denote by P(n) the set of all multipartitions
with n components. Let Sc0 be defined as in [Beck and Nakajima 2004, p. 352]
and set

B0 = {Sc0 : c0 ∈ P(n)}.

Proposition 1-7 [Beck et al. 1999; Beck and Nakajima 2004]. For each Sc0 ∈ B0,
there exists a unique b ∈ B such that

(1-8) b ≡ Sc0 mod v−1Z[v−1
].

We denote by B0 the subset of B corresponding to B0. Using the same notation
φ as we used for B(k), we define a function φ : B0→P(n), b 7→ c0, such that the
condition (1-8) is satisfied.

For a partition p= (1m12m2 · · · rmr · · · ), we define

d( p)= #{r : mr 6= 0} and | p| = m1+ 2m2+ 3m3+ · · · .

Then for a multipartition c0 = (ρ
(1), ρ(2), . . . , ρ(n)) ∈ P(n), we set

d(c0)= d(ρ(1))+ d(ρ(2))+ · · ·+ d(ρ(n)).
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We obtain from the definition of Sc0 that if φ(b)= c0 then

wt(b)= |c0|δ,

where |c0| = |ρ
(1)
| + · · · + |ρ(n)| is the weight of the multipartition c0.

Proposition 1-9. We have

(1-10)
∏
α∈1+im

(
1− q−1zα

1− zα

)multα

=

∞∏
k=1

(
1− q−1zkδ

1− zkδ

)n

=

∑
b∈B0

(1−q−1)d(φ(b))zwt(b),

where 1+im is the set of positive imaginary roots of g.

Proof. The first equality follows from the fact that 1+im = {δ, 2δ, 3δ, . . . } and
mult(kδ) = n for all k = 1, 2, . . . . Now we consider the second equality and
assume n = 1. Then we have

(1-11)
∞∏

k=1

(
1− q−1zkδ

1− zkδ

)
=

∞∏
k=1

(
1+

∞∑
j=1

(1− q−1)z jkδ
)
.

We consider the generating function of the partition function p(m):

(1-12)
∞∑

m=0

p(m)zmδ
=

∞∏
k=1

(
1+

∞∑
j=1

z jkδ
)
=

∑
ρ(1)∈P(1)

z|ρ
(1)
|δ
=

∑
b∈B0

zwt(b).

Comparing (1-11) and (1-12), we see that if we expand the product in the right-
hand side of (1-11) into a sum, the coefficient of z|ρ(1)|δ will be a power of (1−q−1)

and the exponent of (1−q−1) is exactly the number d(ρ(1)). Therefore, we obtain
∞∏

k=1

(
1− q−1zkδ

1− zkδ

)
=

∑
ρ(1)∈P(1)

(1− q−1)d(ρ
(1))z|ρ

(1)
|δ
=

∑
b∈B0

(1− q−1)d(b)zwt(b).

Next we assume that n = 2. Then we have
∞∏

k=1

(
1− q−1zkδ

1− zkδ

)2

=

( ∑
ρ(1)∈P(1)

(1− q−1)d(ρ
(1))z|ρ

(1)
|δ

)( ∑
ρ(2)∈P(1)

(1− q−1)d(ρ
(2))z|ρ

(2)
|δ

)
=

∑
(ρ(1),ρ(2))∈P(2)

(1− q−1)d(ρ
(1))+d(ρ(2))z(|ρ

(1)
|+|ρ(2)|)δ

=

∑
b∈B0

(1− q−1)d(b)zwt(b).

It is now clear that this argument naturally generalizes to the case n > 2. �
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Let us consider the correction factor A in (0-3). We will make a modification
of the formula (1-10) to write A as a sum over B0 in the case when the underlying
classical Lie algebra gcl is simply laced. For a partition p = (1m12m2 · · · ) and
di ∈ N, we define

Qdi ( p, j)=
{
(1− q)q−(di+1)m j if m j 6= 0,
1 if m j = 0,

and Qdi ( p)=
∞∏
j=1

Qdi ( p, j).

For a multipartition p= (ρ(1), . . . , ρ(n)) and di ∈ N, i = 1, . . . , n, we define

Qd1,...,dn ( p)=
n∏

i=1

Qdi (ρ
(i)).

Then we obtain:

Corollary 1-13. Assume that gcl is simply laced. Then we have

A =
n∏

i=1

∞∏
j=1

1− q−di z jδ

1− q−di−1z jδ =
∑
b∈B0

Q(φ(b))zwt(b),

where the di ’s are the exponents of gcl and we write Q( p)= Qd1,...,dn ( p).

Proof. The first equality is a result in [Braverman et al. ≥ 2012] and the second
can be obtained using a similar argument as in the proof of Proposition 1-9. �

Let C= C>×P(n)×C< as in [Beck and Nakajima 2004].

Theorem 1-14 [Beck et al. 1999; Beck and Nakajima 2004]. There is a bijection
between the sets B and C such that for each c = (c+, c0, c−) ∈ C, there exists a
unique b ∈ B such that

(1-15) b ≡ Ec+Sc0 Ec− mod v−1Z[v−1
].

Then we naturally extend the function φ to a bijection of B onto C and the
number d(c) is also defined by d(c)= d(c+)+ d(c0)+ d(c−) for each c ∈ C.

Theorem 1-16. We have

(1-17)
∏
α∈1+

(
1− q−1zα

1− zα

)multα

=

∑
b∈B

(1− q−1)d(φ(b))zwt(b).

Proof. Recall that 1+ =1+re ∪1
+

im, 1+re =R> ∪R<, and multα = 1 for α ∈1+re.
Then the identity of the theorem follows from Corollary 1-5, Proposition 1-9, and
Theorem 1-14. �
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2. Casselman–Shalika formula

For the functions c+ = (c0, c−1, c−2, . . . ) ∈ C> and c− = (c1, c2, . . . ) ∈ C<, we
define

|c+| = c0+ c−1+ c−2+ · · · and |c−| = c1+ c2+ · · · .

For a multipartition c0= (ρ
(1), ρ(2), . . . , ρ(n))∈P(n), set |c0| = |ρ

(1)
|+· · ·+|ρ(n)|

as in Section 1.
Using similar arguments as in Section 1, we obtain the following identities.

Proposition 2-1. (1) For each k ∈ Z,∏
α∈R(k)

(1− q−1zα)−1
=

∑
b∈B(k)

q−|φ(b)|zwt(b).

(2) The following identity is still true if R> and B> are replaced with R< and
B<, respectively.∏

α∈R>

(1− q−1zα)−1
=

∑
b∈B>

q−|φ(b)|zwt(b).

(3)
∏
α∈1+im

(
1− q−1zα

)−multα
=

∞∏
k=1

(
1− q−1zkδ)−n

=

∑
b∈B0

q−|φ(b)|zwt(b).

(4)
∏
α∈1+

(1− q−1zα)−multα
=

∑
b∈B

q−|φ(b)|zwt(b).

Let P+= {λ∈ P : 〈hi , λ〉 ≥ 0 for all i ∈ I }. Recall that the irreducible g-module
V (λ) is integrable if and only if λ ∈ P+ [Kac 1990, Lemma 10.1].

Definition 2-2. Let λ ∈ P+. We define Hλ( · ; q) : Q+→ Z[q−1
] using the gener-

ating series∑
µ∈Q+

Hλ(µ; q)zλ−µ =
∑
w∈W

(−1)`(w)
∑
b∈B

(1− q−1)d(φ(b))zwλ−wt(b)

=

(∑
w∈W

(−1)`(w)zwλ
)(∑

b∈B

(1− q−1)d(φ(b))z−wt(b)
)
,

and we write

χq(V (λ))=
∑
µ∈Q+

Hλ(µ; q)zλ−µ.

We denote by χ(V (λ)) the usual character of V (λ). We have the element d ∈ h

such that α0(d)= 1 and α j (d)= 0, j ∈ I \ {0}. We define ρ ∈ h∗ as in [Kac 1990,
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Chapter 6] by ρ(h j )= 1, j ∈ I and ρ(d)= 0. By the Weyl–Kac character formula,∑
w∈W

(−1)`(w)zw(λ+ρ)−ρ∏
α∈1+

(1− z−α)multα
= χ(V (λ)).

In particular, if λ= 0, then∑
w∈W

(−1)`(w)zwρ = zρ
∏
α∈1+

(1− z−α)multα.

By Theorem 1-16,∑
b∈B

(1− q−1)d(φ(b))z−wt(b)
=

∏
α∈1+

(
1− q−1z−α

1− z−α

)multα

.

Thus we obtain

χq(V (ρ))=
(∑
w∈W

(−1)`(w)zwρ
)(∑

b∈B

(1− q−1)d(φ(b))z−wt(b)
)

= zρ
∏
α∈1+

(1− z−α)multα
∏
α∈1+

(
1− q−1z−α

1− z−α

)multα

= zρ
∏
α∈1+

(1− q−1z−α)multα.

Therefore we have proved that

(2-3) χq(V (ρ))= zρ
∏
α∈1+

(1− q−1z−α)multα.

When q = −1 in (2-3), we have the following identity from [Kac 1990, Exer-
cise 10.1].

Lemma 2-4. χ−1(V (ρ))= zρ
∏
α∈1+

(1+ z−α)multα
= χ(V (ρ)).

Remark 2-5. By Definition 2-2,

χ−1(V (ρ))=
∑
µ∈Q+

Hρ(µ;−1)zρ−µ = zρ
∏
α∈1+

(1+ z−α)multα.

Therefore, if Hρ(µ;−1) 6= 0, ρ −µ must be a weight of V (ρ) and Hρ(µ;−1) is
the multiplicity of ρ−µ in V (ρ).

Now we have the following affine analog of the Casselman–Shalika formula.

Corollary 2-6.

(2-7) χq(V (λ+ ρ))= χ(V (λ))χq(V (ρ)).
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Proof. By Definition 2-2 and Theorem 1-16,

χq(V (λ+ ρ))=
(∑
w∈W

(−1)`(w)zw(λ+ρ)
) ∏
α∈1+

(
1− q−1z−α

1− z−α

)multα

.

By the Weyl–Kac character formula and (2-3), the right-hand side is

χ(V (λ))χq(V (ρ)). �

Remark 2-8. When q = 1, we see that χ1(V (λ+ ρ))z−ρ is the numerator of the
Weyl–Kac character formula. Hence we can think of (2-7) as a q-deformation of
Weyl–Kac character formula. Since χ∞(V (ρ))= zρ , by setting q =∞, we have

χ∞(V (λ+ ρ))= zρχ(V (λ)).

Hence we may consider χq(V (λ+ρ))z−ρ as a q-deformation of χ(V (λ)). More-
over, by Definition 2-2,∑

µ∈Q+

Hλ+ρ(µ;∞)zλ−µ = χ(V (λ)).

Therefore, Hλ+ρ(µ;∞) is the multiplicity of the weight λ−µ in V (λ).

By setting q =−1 in (2-7), and by Lemma 2-4 we get the following.

Lemma 2-9. χ−1(V (λ+ ρ))=
∑
µ∈Q+

Hλ+ρ(µ;−1)zλ+ρ−µ

= χ(V (λ))χ(V (ρ))= χ(V (λ)⊗ V (ρ)).

Hence, Hλ+ρ(µ;−1) is the multiplicity of the weight λ+ρ−µ in the tensor product
V (λ)⊗ V (ρ).

Before we investigate further the implication of the Casselman–Shalika formula
(2-7), we need the following lemma.

Lemma 2-10. Assume that λ1, λ2 ∈ P+. Then the set of weights of V (λ1)⊗V (λ2)

is the same as that of V (λ1+ λ2).

Proof. Suppose that λ1, λ2 ∈ P+. Let V (λ1) and V (λ2) be the integrable high-
est weight modules with highest weights λ1 and λ2, respectively. By [Kac 1990,
p. 211], V (λ1 + λ2) occurs in V (λ1)⊗ V (λ2) with multiplicity one. Hence it is
enough to prove that any weight of V (λ1)⊗ V (λ2) is a weight of V (λ1+ λ2).

If V1 and V2 are modules in the category O, the weight space of (V1⊗ V2)µ for
µ ∈ h∗, is given by

(V1⊗ V2)µ =
∑
ν∈h∗

(V1)ν ⊗ (V2)µ−ν .
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Hence weights of V (λ1)⊗ V (λ2) are of the form µ1 +µ2, where µ1 and µ2 are
weights of V (λ1) and V (λ2), respectively. Furthermore, since V (λ1)⊗ V (λ2) is
completely reducible, a weight µ1+µ2 of V (λ1)⊗V (λ2) is a weight of the module
V (λ) for some λ ∈ P+ that appears in the decomposition of V (λ1)⊗ V (λ2).

It follows from [Kac 1990, Corollary 10.1] that we can choose w ∈W such that
w(µ1+µ2)∈ P+. Then, by [Kac 1990, Proposition 11.2], we need only show that
w(µ1+µ2) is nondegenerate with respect to λ1+λ2. By [Kac 1990, Lemma 11.2],
wµ1 and wµ2 are nondegenerate with respect to λ1 and λ2, respectively. Now,
from the definition of nondegeneracy [Kac 1990, p. 190], we see that wµ1+wµ2

is nondegenerate with respect to λ1+ λ2. �

Now we use crystal bases, namely, bases at v = 0, since they behave nicely
under tensor products. Let Bλ be the crystal basis associated to a dominant integral
weight λ ∈ P+. We choose Gρ( · ; q) :Bρ→ Z[q−1

] by assigning any element of
Z[q−1

] to each b ∈Bρ so that

(2-11) Hρ(µ; q)=
∑

b∈Bρ

wt(b)=ρ−µ

Gρ(b; q).

By Remark 2-5, it is enough to consider µ ∈ Q+ such that ρ −µ is a weight of
b ∈Bρ .

Using the function Gρ( · ; q), we can rewrite the Casselman–Shalika formula in
Corollary 2-6 in a familiar form:

Corollary 2-12.

(2-13)
∑
µ∈Q+

Hλ+ρ(µ; q)zλ+ρ−µ = χ(V (λ))zρ
∏
α∈1+

(1− q−1z−α)multα

=

∑
b′⊗b∈Bλ⊗Bρ

Gρ(b; q)zwt(b′⊗b).

Proof. The first equality is obvious from (2-3) and Corollary 2-6. For the second
equality, we obtain

χ(V (λ))zρ
∏
α∈1+

(1− q−1z−α)multα

= χ(V (λ))χq(V (ρ))=
( ∑

b′∈Bλ

zwt(b′)
)(∑

µ∈Q+

Hρ(µ; q) zρ−µ
)

=

( ∑
b′∈Bλ

zwt(b′)
)(∑

b∈Bρ

Gρ(b; q)zwt(b)
)
=

∑
b′⊗b∈Bλ⊗Bρ

Gρ(b; q)zwt(b′⊗b). �

The following proposition provides useful information on Hλ+ρ(µ; q)∈Z[q−1
].
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Proposition 2-14. Assume that λ∈ P+. We then have that Hλ+ρ(µ; q) is a nonzero
polynomial if and only if λ+ ρ−µ is a weight of V (λ+ ρ).

Proof. We obtain from (2-13) that if Hλ+ρ(µ; q) 6= 0, then λ+ρ−µ is a weight of
V (λ)⊗V (ρ). Then λ+ρ−µ is a weight of V (λ+ρ) by Lemma 2-10. Conversely,
assuming that λ+ρ−µ is a weight of V (λ+ρ), it is also a weight of V (λ)⊗V (ρ).
By Lemma 2-9, ∑

µ′∈Q+

Hλ+ρ(µ′;−1)zλ+ρ−µ
′

= χ(V (λ)⊗ V (ρ)).

Since λ+ ρ − µ is a weight of V (λ)⊗ V (ρ), the coefficient Hλ+ρ(µ;−1) 6= 0.
Then Hλ+ρ(µ; q) is a nonzero polynomial. �

3. Applications

We give several applications of our formulas to q-deformation of (multi)partition
functions and modular forms, and the Kostant function and the multiplicity for-
mula. We also obtain formulas for Hλ(µ; q).

3.1. Multipartition functions and modular forms. We will write P = P(1). For
a partition p= (1m12m2 · · · rmr · · · ) ∈ P, we define

κq( p)=
{
(−q−1)

∑
mr if mr = 0 or 1 for all r,

0 otherwise.

We define for k ≥ 1
εq(k)=

∑
p∈P
| p|=k

κq( p)

and set εq(0)=1. For example, εq(5)=2q−2
−q−1 and εq(6)=−q−3

+2q−2
−q−1.

From the definitions, we have
∞∏

k=1

(1− q−1tk)= 1+
∑
p∈P

κq( p)t | p| = 1+
∞∑

k=1

εq(k)tk .

Then it follows from Euler’s pentagonal number theorem that when q = 1, we have

(3-1) ε1(k)=
{
(−1)m if k = 1

2 m(3m± 1),
0 otherwise.

We also define for k ≥ 1

pq(k)=
∑
p∈P
| p|=k

(1− q−1)d( p),
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where d( p) is the same as in the previous sections, and we set pq(0) = 1. Note
that if k > 0, p∞(k) = p(k). Hence we can think of pq(k) as a q-deformation of
the partition function.

Proposition 3-2. If k > 0, then

(3-3) εq(k)− pq(k)=
∞∑

m=1

(−1)m{pq(k− 1
2 m(3m− 1))+ pq(k− 1

2 m(3m+ 1))},

where we define pq(M)= 0 for all negative integers M.

Proof. We put n = 1 in Proposition 1-9 and obtain

∞∏
k=1

(1− q−1zkδ)=

(∑
p∈P

(1− q−1)d( p)z| p|δ
) ∞∏

k=1

(1− zkδ).

After the change of variables zδ = t , we obtain

1+
∞∑

k=1

εq(k)tk
=

∞∏
k=1

(1− q−1tk)

=

(∑
p∈P

(1− q−1)d( p)t | p|
) ∞∏

k=1

(1− tk)

=

(
1+

∞∑
k=1

pq(k)tk
)(

1+
∞∑

m=1

(−1)m
{
t

1
2 m(3m−1)

+ t
1
2 m(3m+1)}),

where we use the definition of pq(k) and (3-1) in the last equality. We obtain
the identity (3-3) by expanding the product and equating the coefficient of tk with
εq(k). �

As a corollary of the proof of Proposition 3-2, we obtain:

Corollary 3-4. Let (a; q)n =
∏n−1

k=0(1− aqk). Then

∞∑
n=0

(q−1
; t)n

(t; t)n
tn
=

∞∑
k=0

pq(k)tk .

Proof. By the q-binomial theorem,

∞∏
k=1

(1− q−1tk)=

( ∞∑
n=0

(q−1
; t)n

(t; t)n
tn
) ∞∏

k=1

(1− tk).

Comparing this with the identity in the proof of Proposition 3-2, we obtain the
result. �
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Remark 3-5. When q→∞, we have
∞∑

n=0

tn

(t; t)n
=

∑
p∈P

t | p| =
∞∑

n=0

p(n)tn.

This is a special case of [Andrews 1976, Corollary 2.2].

We generalize Proposition 3-2 to the case of multipartitions. For a multipartition
p= (ρ(1), . . . , ρ(n)) ∈ P(n), we define

κq( p)=
n∏

i=1

κq(ρ
(i)),

and for k ≥ 1,

(3-6) εq,n(k)=
∑

p∈P(n)
| p|=k

κq( p),

and set εq,n(0)= 1. From the definitions, we have
∞∏

k=1

(1− q−1tk)n = 1+
∑

p∈P(n)

κq( p)t | p| =
∞∑

k=0

εq,n(k)tk .

One can see that if k > 0, we have ε∞,n(k)= 0.

Remark 3-7. Note that ε1,n(k) is a classical arithmetic function related to modular
forms. For example, we have ε1,24(k) = τ(k + 1), where τ(k) is the Ramanujan
τ -function. Thus the function εq,n(k) should be considered as a q-deformation of
the function ε1,n(k).

We also define for k ≥ 1

pq,n(k)=
∑

p∈P(n)
| p|=k

(1− q−1)d( p),

and set pq,n(0) = 1. Notice that if k > 0, the function p∞,n(k) is nothing but the
multipartition function with n-components. Hence we can think of pq,n(k) as a
q-deformation of the multipartition function.

Theorem 3-8. If k > 0, then

(3-9) εq,n(k)=
k∑

r=0

ε1,n(r)pq,n(k− r).

Proof. From Proposition 1-9 we obtain
∞∏

k=1

(1− q−1zkδ)n =

( ∑
p∈P(n)

(1− q−1)d( p)z| p|δ
) ∞∏

k=1

(1− zkδ)n.
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After the change of variables zδ = t , we obtain from the definitions

∞∑
k=0

εq,n(k)tk
=

( ∑
p∈P(n)

(1− q−1)d( p)t | p|
) ∞∏

k=1

(1− tk)n

=

( ∞∑
r=0

pq,n(r)tr
)( ∞∑

s=0

ε1,n(s)t s
)
. �

By taking q→∞, we obtain the identity

0=
k∑

r=0

ε1,n(r)p∞,n(k− r),

where p∞,n(k) is the multipartition function with n-components. This is an easy
consequence of the identities

∞∏
k=1

(1− tk)n =

∞∑
k=0

ε1,n(k)tk and
∞∏

k=1

(1− tk)−n
=

∞∑
k=0

p∞,n(k)tk .

Example 3-10. When the affine Kac–Moody algebra g is of type X (1)
24 , with X =

A, B,C , or D, we have

εq,24(k)=
k∑

r=0

τ(r + 1)pq,24(k− r) and 0=
k∑

r=0

τ(r + 1)p∞,24(k− r),

where τ(k) is the Ramanujan τ -function. If k = 2, the first identity becomes

εq,24(2)= τ(1)pq,24(2)+ τ(2)pq,24(1)+ τ(3)pq,24(0).

Through some computations, we obtain

εq,24(2)= 276q−2
− 24q−1.

On the other hand, we have

τ(1)pq,24(2)+ τ(2)pq,24(1)+ τ(3)pq,24(0)

= pq,24(2)− 24pq,24(1)+ 252

= {276(1− q−1)2+ 48(1− q−1)}− 24 · 24(1− q−1)+ 252

= 276(1− q−1)2− 528(1− q−1)+ 252

= 276q−2
− 24q−1

= εq,24(2).

We also see that

τ(1)p∞,24(2)+ τ(2)p∞,24(1)+ τ(3)p∞,24(0)= 324− 24 · 24+ 252= 0.
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Now we consider the whole set of positive roots, not just the set of imaginary
positive roots, and obtain interesting identities. We begin with the identity (2-3).
Recalling the description of the set of positive roots, we obtain

(3-11)
∑
µ∈Q+

Hρ(µ; q)z−µ

= z−ρχq(V (ρ))=
∏
α∈1+

(1− q−1z−α)multα

=

( ∞∏
k=1

(1− q−1z−kδ)n
∏
α∈1cl

(1− q−1zα−kδ)

) ∏
α∈1+cl

(1− q−1z−α),

where 1cl is the set of classical roots.
Let

Z=

{ ∑
α∈Q+

cα z−α : cα ∈ C

}
be the set of (infinite) formal sums. Recall that we have the element d ∈ h such that
α0(d)= 1 and α j (d)= 0, j ∈ I \ {0}. Let hZ be the Z-span of {h0, h1, . . . , hn, d}.
We then define the evaluation map EVt : Z× hZ→ C[[t]] by

EVt

(∑
α

cα z−α, s
)
=

∑
α

cαtα(s), s ∈ hZ.

Then we see that EVt( · , d) is the same as the basic specialization in [Kac 1990,
p. 219] with q replaced by t . We apply EVt( · , d) to (3-11) and obtain

(3-12) (1− q−1)|1
+

cl |

∞∏
k=1

(1− q−1tk)dim gcl =

∞∑
k=0

( ∑
µ∈Q+,cl

Hρ(kα0+µ; q)
)

tk,

where gcl is the finite-dimensional simple Lie algebra corresponding to g, and
Q+,cl is the Z≥0-span of {α1, . . . , αn}. We write |1+cl | = r and dim gcl = N so that
N = 2r + n. By comparing (3-12) with the identity

∞∏
k=1

(1− q−1tk)n =

∞∑
k=0

εq,n(k)tk,

we obtain:

Proposition 3-13. εq,N (k)=
∑

µ∈Q+,cl

Hρ(kα0+µ; q)
(1− q−1)r

.

By Definition 2-2, εq,N (k) is a power series in q−1 in the above formula. How-
ever, one can see from (3-6) that εq,N (k) is actually a polynomial in q−1.
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Example 3-14. We take g to be of type A(1)4 . Then the classical Lie algebra gcl is
of type A4, and r = |1+cl | = 10 and N = dim gcl = 24. Taking the limit q→ 1, we
obtain

τ(k+ 1)= lim
q→1

∑
µ∈Q+,cl

Hρ(kα0+µ; q)
(1− q−1)10 .

Therefore the sum
∑

µ∈Q+,cl
Hρ(kα0 + µ; q) is always divisible by (1− q−1)10.

But Lehmer’s conjecture predicts that the sum is never divisible by (1− q−1)11.

3.2. The Kostant function and Hλ(µ; q). In this section, let g be an untwisted
affine Kac–Moody algebra (affine type) or a finite-dimensional simple Lie algebra
(finite type).

Definition 3-15. We define the functions K∞q (µ) and K 1
q (µ) by∑

µ∈Q+

K∞q (µ)z
µ
=

∏
α∈1+

(
1− q−1zα

1− zα

)multα

=

∑
b∈G

(1− q−1)d(φ(b)zwt(b)

and ∑
µ∈Q+

K 1
q (µ)z

µ
=

∏
α∈1+

(1− q−1zα)−multα
=

∑
b∈G

q−|φ(b)|zwt(b).

We set K∞q (µ)= K 1
q (µ)= 0 if µ 6∈ Q+.

Remark 3-16. (1) Note that both K∞
∞
(µ) with q =∞ and K 1

1 (µ) with q = 1 are
equal to the classical Kostant partition function K (µ). Hence both of them
can be considered as q-deformations of the Kostant function.

(2) The function K 1
q (µ) was introduced by Lusztig [1983] for finite types; see

also [Kato 1982]. On the other hand, the function K∞q (µ) for finite types can
be found in the work of Guillemin and Rassart [2004].

We obtain from the Casselman–Shalika formula (Corollary 2-6)

z−λχ(V (λ))=
∑
β∈Q+

(dim V (λ)λ−β)z−β

= z−λ−ρχq(V (λ+ ρ))
∏
α∈1+

(1− q−1z−α)−multα

=

(∑
µ∈Q+

Hλ+ρ(µ; q)z−µ
)(∑

ν∈Q+

K 1
q (ν)z

−ν

)
.

Therefore, we have a q-deformation of the Kostant multiplicity formula:

Proposition 3-17. dim V (λ)λ−β =
∑
µ∈Q+

Hλ+ρ(µ; q)K 1
q (β−µ).
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In order to see that this is indeed a q-deformation of the Kostant multiplicity
formula, we need to determine the value of Hλ+ρ(µ; 1).

Lemma 3-18. We have

Hλ+ρ(µ; 1)=
{
(− 1)`(w) if w ◦ λ=−µ for some w ∈W,

0 otherwise,

where we define w ◦ λ= w(λ+ ρ)− λ− ρ for w ∈W and λ ∈ P+.

Note that such a w ∈ W is unique if it exists, so there is no ambiguity in the
assertion.

Proof. From Definition 2-2, we obtain∑
µ∈Q+

Hλ+ρ(µ; 1)zλ+ρ−µ =
∑
w∈W

(−1)`(w)zw(λ+ρ).

The condition λ+ ρ−µ= w(λ+ ρ) is equivalent to w ◦ λ=−µ. �

Now we take q = 1 in Proposition 3-17 and use Lemma 3-18 to obtain the
classical Kostant multiplicity formula

dim V (λ)λ−β =
∑
w∈W

(−1)`(w)K (w ◦ λ+β).

Note that the sum is actually a finite sum. Indeed, we have w ◦ λ < 0 for each
w ∈ W and w ◦ λ+ β ≥ 0 only for finitely many w ∈ W for fixed λ ∈ P+ and
β ∈ Q+. For the same reason, the sum in (3-23) below is also a finite sum.

Remark 3-19. In Section 2 we obtained (Remark 2-8 and Lemma 2-9)

Hλ+ρ(µ;∞)= dim V (λ)λ−µ,(3-20)

Hλ+ρ(µ;−1)= dim(V (λ)⊗ V (ρ))λ+ρ−µ.(3-21)

When g is of finite type, we define Hλ(µ; q) as in Definition 2-2, and we can prove
the analogous results. See [Kim and Lee 2011] for details.

We next derive a formula for Hλ+ρ(µ; q):

Proposition 3-22.

(3-23) Hλ+ρ(µ; q)=
∑
w∈W

(−1)`(w)K∞q (w ◦ λ+µ).

Proof. From the definitions we have

χq(V (λ+ ρ))=
∑
µ∈Q+

Hλ+ρ(µ; q)zλ+ρ−µ

=

(∑
w∈W

(−1)`(w)zw(λ+ρ)
)(∑

ν∈Q+

K∞q (ν)z
−ν

)
.
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The identity comes from expanding the product and comparing the coefficients. �

If we take the limit q→∞ in (3-23), we have, from (3-20),

dim V (λ)λ−µ =
∑
w∈W

(−1)`(w)K (w ◦ λ+µ),

which is again the classical Kostant multiplicity formula.
If we take q =−1 in (3-23), we obtain, from (3-21),

(3-24) dim(V (λ)⊗ V (ρ))λ+ρ−µ =
∑
w∈W

(−1)`(w)K∞
−1(w ◦ λ+µ).

This is a generalization of the formula in [Guillemin and Rassart 2004, Theorem 1]
to the affine case.

Example 3-25. Assume that g is of type A(1)1 . We write

µ= mα0+ nα1 = (m, n) ∈ Q+

and set λ= 0 in (3-23). Through standard computation, we obtain

{wρ+µ− ρ : w ∈W } =
{(

m− k(k+1)
2

, n− k(k−1)
2

) ∣∣∣ k ∈ Z
}
.

Thus we have

Hρ(m, n; q)=
∑
k∈Z

(−1)k K∞q
(

m− k(k+1)
2

, n− k(k−1)
2

)
.

By taking the limit as q→∞, we obtain, for (m, n) 6= (0, 0),

0=
∑
k∈Z

(−1)k K
(

m− k(k+1)
2

, n− k(k−1)
2

)
.

In this case, K (m, n) counts the number of vector partitions of (m, n) into parts of
the forms (a, a), (a − 1, a), or (a, a − 1). Then we have obtained (3-9) [Carlitz
1965, p. 148].

We further investigate properties of the function Hλ(µ; q). From the definitions
of K∞q (µ) and K 1

q (µ), we have(∑
µ∈Q+

K∞q (µ)z
µ

)(∑
ν∈Q+

K 1
q (ν)z

ν

)
=

∏
α∈1+

(
1− q−1zα

1− zα

)multα ∏
α∈1+

(1− q−1zα)−multα

=

∏
α∈1+

(1− zα)−multα
=

∑
β∈Q+

K (β)zβ,
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where K (β) is the classical Kostant function. Thus we have

(3-26)
∑
µ∈Q+

K∞q (µ)K
1
q (β −µ)= K (β),

and we obtain, for β > 0,

(3-27) K∞q (β)= K (β)− K 1
q (β)−

∑
0<ν<β

K∞q (ν)K
1
q (β − ν),

and K∞q (0)= K 1
q (0)= K (0)= 1.

Then we obtain from Proposition 3-22

Hλ+ρ(µ; q)=Hλ+ρ(µ; 1)+
∑
w∈W

(−1)`(w)K (w◦λ+µ)−
∑
w∈W

(−1)`(w)K 1
q (w◦λ+µ)

−

∑
w∈W

w◦λ+µ>0

(−1)`(w)
∑

0<ν<w◦λ+µ

K∞q (ν)K
1
q (w ◦ λ+µ− ν),

where Hλ+ρ(µ; 1) plays the role of a correction term for the case w ◦ λ+µ = 0.
See Lemma 3-18 for the value of Hλ+ρ(µ; 1). We also used the fact that

K (β)= K 1
q (β)= K∞q (β)= 0

unless β ≥ 0.
Now we apply the classical Kostant formula and get:

Proposition 3-28. Assume that λ ∈ P+ and µ ∈ Q+. Then we have

Hλ+ρ(µ; q)= Hλ+ρ(µ; 1)+ dim V (λ)λ−µ−
∑
w∈W

(−1)`(w)K 1
q (w ◦ λ+µ)

−

∑
w∈W

w◦λ+µ>0

(−1)`(w)
∑

0<ν<w◦λ+µ

K∞q (ν)K
1
q (w ◦ λ+µ− ν).

For the rest of this section, we assume that g is of finite type. We denote by ρ∨

the element of h defined by 〈αi , ρ
∨
〉 = 1 for all the simple roots αi . The following

identity was conjectured by Lusztig [1983] and proved by S. Kato [1982].

Proposition 3-29. For λ ∈ P+ and µ ∈ Q+, we have∑
w∈W

(−1)`(w)K 1
q (w ◦ λ+µ)= q−〈µ,ρ

∨
〉Pwλ−µ,wλ(q),

where wν is the element in the affine Weyl group Ŵ corresponding to ν ∈ P+, and
Pwλ−µ,wλ(q) is the Kazhdan–Lusztig polynomial.

Hence, from Proposition 3-28, we obtain:



414 HENRY H. KIM AND KYU-HWAN LEE

Corollary 3-30. Hλ+ρ(µ; q)= Hλ+ρ(µ; 1)+dim V (λ)λ−µ−q−〈µ,ρ
∨
〉Pwλ−µ,wλ(q)

−

∑
w∈W

w◦λ+µ>0

(−1)`(w)
∑

0<ν<w◦λ+µ

K∞q (ν)K
1
q (w ◦ λ+µ− ν).

Setting q = 1, and noting that K∞1 (β) = 0 if β > 0, we obtain the famous
property of the Kazhdan–Lusztig polynomial:

Corollary 3-31. dim V (λ)λ−µ = Pwλ−µ,wλ(1).
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