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The present paper contains two results that generalize and improve con-
structions of Hardouin and Singer. In the case of a derivation, we prove
that the parametrized Galois theory for difference equations constructed
by Hardouin and Singer can be descended from a differentially closed to an
algebraically closed field. In the second part of the paper, we show that the
theory can be applied to deformations of q-series to study the differential
dependence with respect to x d

dx and q d
dq . We show that the parametrized

difference Galois group (with respect to a convenient derivation defined in
the text) of the Jacobi Theta function can be considered as the Galoisian
counterpart of the heat equation.

Introduction

The present paper contains two results that generalize and improve constructions
of the second author and M. Singer [HS 2008]. In the case of a derivation, we
perform a descent of the constructions in that paper from a differentially closed to
an algebraically closed field. The latter being much smaller, this is of good use
in applications. In the second part of the paper, we show that the theory can be
applied to deformations of q-series, which appear in many settings like those of
quantum invariants and modular forms, to study the differential dependence with
respect to x d

dx and q d
dq .

A specific Galois theory was constructed in [HS 2008] to study the differential
relations among solutions of a difference linear system. This was done by attaching
to a linear difference system a differential Picard–Vessiot ring, that is, a differential
splitting ring, and, therefore, a differential algebraic group, in the sense of Kolchin,
which we will call the Galois 1-group. Roughly, this is a matrix group defined
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as the zero set of algebraic differential equations. Both the differential Picard–
Vessiot ring and the Galois 1-group were proved in that paper to be well defined
under the assumption that the difference operator and the derivations commute
with each other and that the field of constants for the difference operator is differ-
entially closed. The differential closure of a differential field K is an enormous
field that contains a solution of any system of algebraic differential equations with
coefficients in K that has a solution in some differential extension of K . When
one works with q-difference equations, the subfield of the field of meromorphic
functions over C∗ of constants for the homothety x 7→ qx is the field of elliptic
functions: its differential closure is a very big field. The same happens for the shift
x 7→ x + 1, whose field of constants are periodic functions. In their applications,
Hardouin and Singer prove that one can always descend the Galois1-group with an
ad hoc argument. Here we prove that, in the case of one derivation, we can actually
suppose that the field of constants is algebraically closed and that the Galois 1-
group descends from a differentially closed field to an algebraically closed one (see
Proposition 1.20). In Section 1 we also obtain that the properties and the results
used in the applications descend to an algebraically closed field, namely:

• The differential transcendence degree of an extension generated by a fundamental
solution matrix of the difference equation is equal to the differential dimension of
the Galois 1-group (Proposition 1.8).

• The sufficient and necessary condition for solutions of rank 1 difference equations
to be differentially transcendental (Proposition 1.9).

• The sufficient and necessary condition for a difference system to admit a linear
differential system totally integrable with the difference system (Corollary 1.26).

The proof of the descent (see Proposition 1.16) is based on an idea of M. Wibmer
[2010], which he used in a parallel difference setting (see also [Cohn 1965]). The
differential counterpart of his method is the differential prolongation of ideals,
which goes back at least to E. Cartan, E. Vessiot, E. R. Kolchin and more recently to
B. Malgrange in the nonlinear theory, but has never been exploited in this context.
For a more general version of Proposition 1.16, see [Wibmer 2011].

Differential prolongations have been used in [Granier 2011] to adapt the ideas
of B. Malgrange to build a Galois theory for nonlinear q-difference equations,
and in [Di Vizio and Hardouin 2011a; 2011b; 2011c] to prove the comparison
theorem between Granier’s groupoid, the intrinsic parameterized Galois group and
the parametrized Galois group in [HS 2008] (see also [Di Vizio and Hardouin
2010]). So it appears that the differential prolongations are a common denominator
of several differential and difference Galois theories.

In the second part of the paper, we show that the theory applies to investigate the
differential relations with respect to the derivations d

dx and d
dq among solutions of
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q-difference equations over the field k(q, x) of rational functions with coefficients
in a field k of zero characteristic. For instance, one can consider the Jacobi theta
function

θq(x)=
∑
n∈Z

qn(n−1)/2xn,

which is a solution of the q-difference equation y(qx)= qxy(x). Let

`q = x
θ ′q(x)

θq(x)
and δ = `q(x)x

d
dx
+ q

d
dq
.

In this specific case, we show below that the Galois δ-group can be considered as
the Galoisian counterpart of the heat equation. In Theorem 2.6 we show that, for
solutions of rank 1 equations y(qx)= a(x)y(x) with a(x)∈ k(q, x), the following
facts are equivalent:

• Having a(x)= µxr g(qx)
g(x) , for some r ∈ Z, g ∈ k(q, x) and µ ∈ k(q).

• Satisfying an algebraic d
dx -relation (over some field we are going to specify

in the text below).

• Satisfying an algebraic δ-relation.

In the higher rank case, we deduce from a general statement a necessary and suf-
ficient condition on the Galois group so that a system Y (qx) = A(x)Y (x) can
be completed in a compatible (that is integrable) way, by two linear differential
systems in d

dx and x`q
d

dx + q d
dq (see Proposition 1.24 and Corollary 2.9). The

condition consists in the property of the group of being, up to a conjugation, con-
tained in the subgroup of constants of GL, that is the differential subgroup of GL
whose points have coordinates that are annihilated by the derivations. A result
of Cassidy [1972] says that, for a proper Zariski dense differential subgroup of a
simple linear algebraic group, this is always the case.

A breviary of difference-differential algebra. For the reader’s convenience, we
briefly recall some basic definitions of differential and difference algebra, that we
will use in the text. See [Cohn 1965] and [Levin 2008] for the general theory.

By a (σ,1)-field we will mean a field F of zero characteristic, equipped with
an automorphism σ and a set of commuting derivations 1 = {∂1, . . . , ∂n}, such
that σ∂i = ∂iσ for any i = 1, . . . , n. We will use the terms (σ,1)-ring, 1-ring,
1-field, ∂-ring, ∂-field for ∂ ∈ 1, σ -ring, σ -field, . . . , with the evident meaning,
analogous to the definition of (σ,1)-field. Notice that, if F is a (σ,1)-field, the
subfield K = Fσ of F of the invariant elements with respect to σ is a 1-field. We
will say that a 1-field, and in particular K , is 1-closed if any system of algebraic
differential equations in ∂1, . . . , ∂n with coefficients in K having a solution in an
extension of K has a solution in K (see [McGrail 2000]).
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A (σ,1)-ideal of a (σ,1)-ring is an ideal invariant under σ and the derivations
in 1. A maximal (σ,1)-ideal is an ideal which is maximal with respect to the
property of being a (σ,1)-ideal. Similar definitions can be given for 1-ideals.

A (σ,1)-extension of F is a ring extension R of F equipped with an extension of
σ and of the derivations of1, such that the commutativity conditions are preserved.

A ring of 1-polynomials with coefficients in F is a ring of polynomials in in-
finitely many variables

F{X1, . . . , Xν}1 := F
[
X (α)

i ; i = 1, . . . , ν
]
,

equipped with the differential structure such that

∂k(X
(α)

i )= X (α+ek)

i ,

for any indices i = 1, . . . , ν, k = 1, . . . , n, and α = (α1, . . . , αn) in Zn
≥0, with

α+ ek = (α1, . . . , αk + 1, . . . , αn).
We will need the ring of rational 1-functions over GLν(F). This is a localiza-

tion of a ring of 1-polynomials in the variables X i, j , for i, j = 1, . . . , ν:

F
{

X i, j ,
1

det(X i, j )

}
1

:= F
{

X i, j
}
1

[
1

det(X i, j )

]
,

equipped with the induced differential structure. We write X for (X i, j ), ∂α(X) for
∂
α1
1 · · · ∂

αn
n (X) and det X for det(X i, j ). If 1 is empty, the ring F

{
X, det X−1

}
1

is
nothing else than the ring of rational functions F

[
X, det X−1

]
. By a 1-relation

(over F) satisfied by a given matrix U with coefficients in a (σ,1)-extension R of
F , we mean an element of F

{
X, det X−1

}
1

that vanishes at U . The 1-relations
satisfied by a chosen U form a 1-ideal.

1. Differential Galois theory for difference equations

Introduction to differential Galois theory for difference equations. In this sec-
tion, we briefly recall some results from [HS 2008]. Let F be a field of zero
characteristic equipped with an automorphism σ . We denote the subfield of F of
all σ -invariant elements by K = Fσ .

Definition 1.1. A (σ -)difference module M= (M, 6) over F (also called σ -module
over F or a F-σ -module, for short) is a finite-dimensional F-vector space M to-
gether with a σ -semilinear bijection 6 : M → M , that is, a bijection 6 such that
6(λm)= σ(λ)6(m) for all (λ,m) ∈ F ×M .

One can attach a σ -difference module MA := (Fν, 6A), with 6A : Fν → Fν ,
Y 7→ A−1σ(Y ), to a σ -difference system

(1-1) σ(Y )= AY, with A ∈ GLν(F) for some ν ∈ Z>0,
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so that the horizontal (that is invariant) vectors with respect to 6A correspond to
the solutions of σ(Y )= AY . Conversely, the choice of an F-basis e of a difference
module M leads to a σ -difference system σ(Y ) = AY , with A ∈ GLν(F), which
corresponds to the equation for the horizontal vectors of M with respect to 6A in
the chosen basis.

We define a morphism of (σ -)difference modules over F to be an F-linear map
between the underlying F-vector spaces, commuting with the σ -semilinear opera-
tors. As defined above, the (σ -)difference modules over F form a Tannakian cate-
gory (see [Deligne 1990]), that is, a category equivalent over the algebraic closure
K of K to the category of finite-dimensional representations of an affine group
scheme. The affine group scheme corresponding to the sub-Tannakian category
generated by the (σ -)difference module MA, whose non-Tannakian construction
we are going to sketch below, is called Picard–Vessiot group of (1-1). Its structure
measures the algebraic relations satisfied by the solutions of (1-1).

Let 1 := {∂1, . . . , ∂n} be a set of commuting derivations of F such that, for
all i = 1, . . . , n, we have σ ◦ ∂i = ∂i ◦ σ . In [HS 2008] it was proved, among
other things, that the category of σ -modules carries also a 1-structure, that is, it is
a differential Tannakian category as defined by Ovchinnikov [2009]. The latter is
equivalent to a category of finite-dimensional representations of a differential group
scheme (see [Kolchin 1973]), whose structure measures the differential relations
satisfied by the solutions of the σ -difference modules. In the next section, we
describe the Picard–Vessiot approach to the theory in [HS 2008] (in opposition to
the differential Tannakian approach), that is, the construction of minimal rings con-
taining the solutions of σ(Y )= AY and their derivatives with respect to 1, whose
automorphism group is a concrete incarnation of the differential group scheme
defined by the differential Tannakian equivalence. We will implicitly consider the
usual Galois theory of (σ -)difference equations by allowing 1 to be the empty set
(see for instance [van der Put and Singer 1997]): we will informally refer to this
theory and the objects considered in it as classical.

1-Picard–Vessiot rings. Let F be a (σ,1)-field as above, with K = Fσ . Let us
consider a σ -difference system

(1-2) σ(Y )= AY,

with A ∈ GLν(F), as in (1-1).

Definition 1.2 [HS 2008, Definition 6.10]. A (σ,1)-extension R of F is a 1-
Picard–Vessiot extension for (1-2) if

(1) R is a simple (σ,1)-ring, that is, it has no nontrivial ideal stable under both
σ and 1,
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(2) R is generated as a 1-ring by Z ∈ GLν(R) and 1/det(Z), where Z is a fun-
damental solution matrix of (1-2).

One can formally construct such an object as follows. We consider the ring of
rational 1-functions F

{
X, det X−1

}
1

. We want to equip it with a (σ,1)-algebra
structure, respecting the commutativity conditions for σ and the ∂i . Therefore, we
set σ(X)= AX and

σ(Xα)= σ(∂αX)= ∂α(σ (X))= ∂α(AX)(1-3)

=

∑
i+ j=α

(
α1

i1

)
· · ·

(
αn

in

)
∂ i (A)X j ,

for each multi-index α = (α1, . . . , αn) ∈ Nn . The quotient R of F
{

X, det X−1
}
1

by a maximal (σ,1)-ideal obviously satisfies the conditions of the definition above
and hence is a 1-Picard–Vessiot ring.

Proposition 1.3 [HS 2008, Propositions 6.14 and 6.16]. Suppose the field K is
1-closed.

(1) The ring of constants Rσ of a 1-Picard–Vessiot ring R for (1-2) is equal to
K , that is, there are no new constants with respect to σ , compared to F.

(2) Two 1-Picard–Vessiot rings for (1-2) are isomorphic as (σ,1)-rings.

1-Picard–Vessiot groups. From here through Corollary 1.12 (page 86), we will
assume that K is a 1-closed field.

Let R be a 1-Picard–Vessiot ring for (1-2). Notice that, as in classical Galois
theory for (σ -)difference equations, the ring R does not need to be a domain. One
can show that it is in fact the direct sum of a finite number of copies of an integral
domain, therefore one can consider the ring L of total fractions of R which is
isomorphic to the product of a finite number of copies of one field (see [HS 2008]).

Definition 1.4. The group Gal1(MA) (also denoted Autσ,1(L/F)) of the automor-
phisms of L that fix F and commute with σ and 1 is called the 1-Picard–Vessiot
group of (1-2). We will also call it the Galois 1-group of (1-2).

Remark 1.5. The group Gal1(MA) consists in the K -points of a linear algebraic
1-subgroup of GLν(K ) in the sense of Kolchin. That is a subgroup of GLν(K )
defined by a 1-ideal of K

{
X, det X−1

}
1

.

Below, we recall some fundamental properties of the Galois1-group, which are
the starting point for proving the Galois correspondence:

Proposition 1.6 [HS 2008, Lemma 6.19]. (1) The ring LGal1(MA) of elements of
L fixed by Gal1(MA) is F.
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(2) Let H be an algebraic1-subgroup of Gal1(MA). If L H
= F , then H is equal

to Gal1(MA).

As we have already pointed out, the Galois ∅-group is an algebraic group de-
fined over K and corresponds to the classical Picard–Vessiot group attached to the
σ -difference system (1-2) (see [van der Put and Singer 1997; Sauloy 2004]):

Proposition 1.7 [HS 2008, Proposition 6.21]. The algebraic 1-group Gal1(MA)

is a Zariski dense subset of Gal∅(MA).

Differential dependence and total integrability. The 1-Picard–Vessiot ring R of
(1-2) is a Gal1(MA)-torsor in the sense of Kolchin. This implies in particular that
the1-relations satisfied by a fundamental solution of the σ -difference system (1-2)
are entirely determined by Gal1(MA):

Proposition 1.8 [HS 2008, Proposition 6.29]. The 1-transcendence degree of R

over F is equal to the 1-dimension of Gal(MA).

Since the1-subgroups of Gn
a coincide with the zero set of a homogeneous linear

1-polynomial L(Y1, . . . , Yn) (see [Cassidy 1972]), we have:

Proposition 1.9. Let a1, . . . , an ∈ F and let S be a (σ,1)-extension of F such that
Sσ =K . If z1, . . . , zn ∈ S satisfy σ(zi )−zi =ai for i=1, . . . , n, then z1, . . . , zn ∈ S
satisfy a nontrivial 1-relation over F if and only if there exists a nonzero homo-
geneous linear differential polynomial L(Y1, . . . , Yn) with coefficients in K and an
element f ∈ F such that L(a1, . . . , an)= σ( f )− f .

Proof. If 1 = {∂1}, the proposition coincides with Proposition 3.1 in [HS 2008].
The proof in the case of many derivations is a straightforward generalization of
their argument. �

The following proposition relates the structural properties of the Galois1-group
(see the remark immediately below for the definition of constant1-group) with the
holonomy of a σ -difference system:

Proposition 1.10. The following statements are equivalent:

(1) The 1-Galois group Gal1(MA) is conjugate over K to a constant 1-group.

(2) For all i = 1, . . . , n, there exists a Bi ∈ Mn F such that the set of linear systems

σ(Y )= AY

∂1Y = B1Y

· · ·

∂nY = BnY
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is integrable, that is, the matrices Bi and A satisfy the functional equations de-
duced from the commutativity of the operators:

∂i (B j )+ B j Bi = ∂ j (Bi )+ Bi B j and σ(B j )A = ∂ j (A)+ AB j ,

for any i, j = 1, . . . , n.

Proof. The proof is a straightforward generalization of Proposition 2.9 in [HS
2008] to the case of several derivations. �

Remark 1.11. Let K be a 1-field and C its subfield of 1-constants. A linear 1-
group G ⊂ GLν defined over K is said to be a constant 1-group (or 1-constant,
for short) if one of the following equivalent statements hold:

• The set of differential polynomials ∂h(X i, j ), for h= 1, . . . , n and i, j = 1, . . . , ν,
belong to the defining ideal of G in the differential Hopf algebra K

{
X i, j ,

1
det(X i, j)

}
1

of GLν over K .

• The differential Hopf algebra of G over K is an extension of scalars of a finitely
generated Hopf algebra over C .

• The points of G in K (which is 1-closed!) coincide with the C-points of an
algebraic group defined over C .

For instance, let Gm be the multiplicative group defined over K . Its differential
Hopf algebra is K

{
x, 1

x

}
1

, that is, the 1-ring generated by x and 1
x . The constant

1-group Gm(C) corresponds to the differential Hopf algebra

K
{

x, 1
x

}
1

(∂h(x) ; h = 1, . . . , n)
∼= C

[
x, 1

x

]
⊗C K ,

where C
[
x, 1

x

]
is a 1-ring with the trivial action of the derivations in 1.

According to [Cassidy 1972], if H is a Zariski dense 1-subgroup of a simple
linear algebraic group G ⊂ GLν(K ), defined over a differentially closed field K ,
then either H = G or there exists P ∈ GLν(K ) such that PHP−1 is a constant
1-subgroup of PGP−1. Therefore:

Corollary 1.12. If Gal∅(MA) is simple, we are either in the situation of the propo-
sition above or there are no 1-relations among the solutions of σ(Y )= AY .

Descent over an algebraically closed field. For the remainder of this section, we
consider a (σ,1)-field F , where σ is an automorphism of F and 1 = {∂} is a set
containing only one derivation. Moreover we suppose that σ commutes with ∂ .

We have recalled above the theory developed in [HS 2008], where it was as-
sumed that the field of constants K is differentially closed. Although in most
applications in that paper an ad hoc descent argument proves that one can consider
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smaller, nondifferentially closed, fields of constants, the assumption that K is 1-
closed is quite restrictive. We show here that if the σ -constants K of F form an
algebraically closed field, we can construct a ∂-Picard–Vessiot ring, whose ring of
σ -constants coincides with K , which allows us to descend the group introduced
in the previous section from a ∂-closed field to an algebraically closed field. This
kind of results were first tackled in [Peón Nieto 2011] using model theoretic argu-
ments. Here we use an idea of M. Wibmer of developing a differential analogue
of [Wibmer 2010, Lemma 2.16]. Wibmer [2011] has given a more general version
of Proposition 1.16. A Tannakian approach to the descent of parametrized Galois
groups can be found in [Gillet et al. 2011].

For now, we do not make any assumption on K = Fσ . Let 2 be the semi-
group generated by ∂ and, for all k ∈ Z≥0, let 2≤k be the set of elements of
2 of order less or equal to k. We endow the differential rational function ring
S := K

{
X, 1/det(X)

}
∂
, where X = (X i, j ), with the grading associated to the

usual ranking, that is, we consider for all k ∈ Z≥0 the rational function ring

Sk := K
[
β(X), 1/det(X) ; for all β ∈2≤k

]
.

Of course, we have ∂(Sk)⊂ Sk+1. It is convenient to set S−1 = K .

Definition 1.13 [Lando 1970]. The prolongation of an ideal Ik of Sk is the ideal
π1(Ik) of Sk+1 generated by 2≤1(Ik). We say that a prime ideal Ik of Sk , for
k ≥ 0, is a differential kernel of length k if the prime ideal Ik−1 := Ik ∩Sk−1 of
Sk−1 is such that π1(Ik−1)⊂ Ik .

Notice that by this definition, any prime ideal I0 of S0 is a differential kernel.

Remark 1.14. Lando [1970] defines a differential kernel as a finitely generated
field extension F(A0, A1, . . . , Ak)/F , together with an extension of ∂ to a deriva-
tion of F(A0, A1, . . . , Ak−1) into F(A0, A1, . . . , Ak) such that ∂(Ai ) = Ai+1 for
i = 0, . . . , k− 1. We can recover Ik−1 as the kernel of the F-morphism

Sk = F[X, . . . , ∂k(X)] → F(A0, A1, . . . , Ak), ∂ i(X) 7→ Ai .

We will not use Lando’s point of view here.
Notice that we have used a prolongation π1 due to Malgrange [2005] to rewrite

Lando’s definition. One should pay attention to the fact that Malgrange also con-
siders a weak prolongation π̃1 [Chapter V], which we won’t consider here.

Proposition 1.15 [Lando 1970, Proposition 1]. Let k ≥ 0 be an integer and let Ik

be a differential kernel of Sk . There exists a differential kernel Ik+1 of Sk+1 such
that Ik = Ik+1 ∩Sk .

Let σ(Y ) = AY be a σ -difference system with coefficient in F as (1-2), R a
∂-Picard–Vessiot ring for σ(Y ) = AY , constructed as on pages 83–84 under the
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assumption that K is ∂-closed, and I be the defining ideal of R, that is, the ideal
such that

R∼= F{X, 1/det(X)}∂/I.

Then Proposition 6.21 in [HS 2008] says that Ik := I∩Sk is a maximal σ -ideal
of Sk endowed with the σ -structure induced by σ(X) = AX , which implies that
I itself is a σ -maximal ideal of S. In order to prove the descent of the ∂-Picard–
Vessiot ring R, we are going to proceed somehow in the opposite way. Without
any assumption on K , we will construct a sequence (Ik)k∈N of σ -maximal ideals
of Sk such that

⋃
k∈N Ik is a σ -maximal ideal of S stable by ∂ . Such an ideal

will provide us with a ∂-Picard–Vessiot ring R#, which will be a simple σ -ring.
If, moreover, K is algebraically closed, we will be able to compare its group of
automorphisms and the Galois ∂-group of the previous section.

Proposition 1.16. Let A ∈ GLν(F). Then there exists a (σ, ∂)-extension R# of F
such that:

(1) R# is generated over F as a ∂-ring by Z ∈ GLν(R#) and 1/det(Z) for some
matrix Z satisfying σ(Z)= AZ.

(2) R# is a simple σ -ring, that is, it has no nontrivial ideals stable under σ .

Remark 1.17. Of course, a simple σ -ring carrying a ∂-ring structure is a simple
(σ, ∂)-ring and thus R# is a ∂-Picard–Vessiot ring in the sense of Definition 1.2.

Proof. Let S= F
{

X, 1
det(X)

}
∂

be the differential rational function ring in the vari-
ables X = (X i, j ) and let the ideals Sk , k ∈ N be as above. We define a σ -ring
structure on S as in (1-3), so that, in particular, σ(X) = AX . We will prove by
induction on k ≥ 0 that there exists a maximal σ -ideal Ik of Sk such that Ik is a
differential kernel of length k and Ik−1 = Ik ∩Sk−1. For k = 0, we can take I0

to be any σ -maximal ideal of S0. Then the σ -ring S0/I0 is a classical Picard–
Vessiot ring for σ(Y ) = AY in the sense of [van der Put and Singer 1997]. It
follows from Proposition 1.15 that there exists a differential kernel I1 of S1 such
that I1 ∩S0 = I0 and π1(I0)⊂ I1.

Now, let us construct Ik+1 starting from Ik−1 and Ik . By Corollary 1.16 in
[van der Put and Singer 1997], both Ik−1 and Ik can be written as intersections

Ik−1 =

tk−1⋂
i=0

J
(k−1)
i and Ik =

tk⋂
i=0

J
(k)
i ,

where the J
(k−1)
i and J

(k)
i are prime ideals of Sk−1 and Sk , respectively.1 We shall

assume that these representations are minimal and, so, unique. Then the prime

1We point out, although the remark plays no role in the proof, that the Ritt–Raudenbush theorem
on the ∂-Noetherianity of S implies that the sequence of integers (tk)k∈N becomes stationary.
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ideals J
(k−1)
i (respectively J

(k)
i ) are permuted by σ , and for any i = 1, . . . , tk , there

exists j ∈ {1, . . . , tk−1} such that J
(k)
i ∩Sk−1 = J

(k−1)
j .

The last assertion means that, for all i =0, . . . , tk , the prime ideal J
(k)
i is a differ-

ential kernel of Sk . Proposition 1.15 implies that π1
(
J
(k)
i

)
, and hence∩tk

i=0π1
(
J
(k)
i

)
,

is a proper σ -ideal of Sk+1. Therefore there exists a σ -maximal ideal Ik+1 of
Sk+1 containing∩tk

i=0π1
(
J
(k)
i

)
. Moreover, the σ -maximality of Ik and the inclusion

Ik ⊂ Ik+1 ∩ Sk imply that Ik = Ik+1 ∩ Sk , which ends the recursive argument.
The ideal I =

⋃
k∈N Ik is clearly σ -maximal in S and ∂-stable. Then R#

:= S/I

satisfies the requirements. �

Remark 1.18. By Lemma 6.8 in [HS 2008], where the assumption that the field K
is ∂-closed plays no role, we have that there exists a set of idempotents e0, . . . , er ∈

R# such that R#
= R0⊕ · · · ⊕Rr , where Ri = ei R

# is an integral domain and σ
permutes the set {R0, . . . ,Rr }. Let L i be the fraction field of Ri . The total field
of fraction L# of R# is equal to L0⊕ · · ·⊕ Lr .

If K̃ denotes a ∂-closure of K and F̃ is the fraction field of K̃ ⊗K F equipped
with an extension of σ that acts as the identity on K̃ , then the construction of R#

over F̃ gives a ring which is isomorphic to a ∂-Picard–Vessiot extension of the
σ -difference system σ(Y )= AY viewed as a σ -difference system with coefficients
in F̃ , in the sense of Definition 1.2.

Notice that two Picard–Vessiot rings as in the proposition above may require a
finitely generated extension of K to become isomorphic (see [Wibmer 2011]).

Corollary 1.19. If K = Fσ is an algebraically closed field, the set of σ -constants
of R# is equal to K .

Proof. Let c ∈ R# be a σ -constant. In the notation of the previous proof, there
exists k ∈N such that c ∈Rk :=Sk/Ik . By construction, Rk is a simple σ -ring and
a finitely generated F-algebra. By Lemma 1.8 in [van der Put and Singer 1997],
the σ -constants of Rk coincide with K . �

Proposition 1.20. Let σ(Y )= AY be a linear σ -difference system with coefficients
in F and let R# be the ∂-Picard–Vessiot ring constructed in Proposition 1.16. If
K = Fσ is algebraically closed, the functor

(1-4)
Autσ,∂ : K -∂-algebras −→ Groups

S 7−→ Autσ,∂(R#
⊗K S/F ⊗K S)

is representable by a linear algebraic ∂-group scheme G A defined over K . More-
over, G A becomes isomorphic to Gal∂(MA) over a differential closure of K (see
Definition 1.4 above).
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Remark 1.21. Without getting into too many details, the representability of the
functor (1-4) is precisely the definition of a linear algebraic ∂-group scheme G A

defined over K .

Proof. The first assertion is proved exactly as in [HS 2008, p. 368], where the
authors only use the fact that the constants of the ∂-Picard–Vessiot ring do not
increase with respect to the base field F , the assumption that K is ∂-closed being
used to prove this property of ∂-Picard–Vessiot rings. The second assertion is just
a consequence of the theory of differential Tannakian categories (see [Gillet et al.
2011]), which asserts that two differential fiber functors become isomorphic on a
common ∂-closure of their fields of definition. �

Definition 1.22. We say that G A is the ∂-group scheme attached to σ(Y )= AY .

Since we are working with schemes and not with the points of linear algebraic ∂-
groups in a ∂-closure of K , we need to consider functorial definitions of ∂-subgroup
schemes and invariants (see [Maurischat 2010] in the case of iterative differential
equations). A ∂-subgroup functor H of the functor G A is a ∂-group functor

H : K -∂-algebras→ Groups

such that for all K -∂-algebra S, the group H(S) is a subgroup of G A(S). So, let
L# be the total ring of fractions of R# and let H be a ∂-subgroup functor of G A.
We say that r = a

b ∈ L#, with a, b ∈R#, b not a zero divisor, is an invariant of H
if for all K -∂-algebra S and all h ∈ H(S), we have

h(a⊗ 1).(b⊗ 1)= (a⊗ 1).h(b⊗ 1).

We denote the ring of invariant of L# under the action of H by
(
L#
)H .

The Galois correspondence is proved by classical arguments starting from the
following theorem.

Theorem 1.23. Let H be a ∂-subgroup functor H of G A. Then
(
L#
)H
= K if and

only if H = G A.

Proof. The proof relies on the same arguments as Theorem 11.4 in [Maurischat
2010] and Lemma 6.19 in [HS 2008]. �

Descent of the criteria for hypertranscendence. The main consequence of Propo-
sition 1.20 and Theorem 1.23 is that Propositions 1.8 and 1.9 remain valid if one
only assumes that the σ -constants K of the base field F form an algebraically
closed field and replaces the differential Picard–Vessiot group Gal1(MA) defined
over the differential closure of K by the 1-group scheme G A defined over K .

Gorchinskiy and Ovchinnikov [2012] exhibit a linear differential algebraic group
defined over K which can be conjugated to a constant ∂-group only over a tran-
scendental extension of K . Thus, one has to be careful when trying to prove a
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descended version of Proposition 1.10. We go back to the multiple derivation case
to state the following proposition, which is a generalization of Corollary 3.12 in
[HS 2008]:

Proposition 1.24. We suppose that F is a (σ,1)-field,2 with 1 = {∂1, . . . , ∂n},
such that K = Fσ is an algebraically closed field and F = K (x1, . . . , xn) a purely
transcendental extension of transcendence basis x1, . . . , xn . We suppose also that
σ induces an automorphisms of K (xi ) for any i = 1, . . . , n.

Let K̃ be a1-closure of K and F̃ be the fraction field of K̃ ⊗K F equipped with
en extension of σ acting as the identity on K̃ , so that one can consider Gal1(MA)

as in Definition 1.4.
We consider a σ -difference system σ(Y ) = AY with coefficients in F. The fol-

lowing statements are equivalent:

(1) Gal1(MA) is conjugate over K̃ to a constant 1-group.

(2) There exist B1, . . . , Bn ∈ MνF such that the system{
σ(Y )= AY

∂i Y = Bi Y, i = 1, . . . , n

is integrable.

Remark 1.25. Since σ induces an automorphism of K (xi ) for any i = 1, . . . , n, it
acts on xi through a Möbius transformation. By choosing another transcendence
basis of F/K , we can suppose that either σ(xi ) = qi x for some qi ∈ K or that
σ(xi )= xi + hi for some hi ∈ K . We are therefore in the most classical situation.

Proof. First of all we prove that the field F̃ is a purely transcendental extension of
K̃ . Suppose that σ acts periodically on x1, so that r is the minimal positive integer
such that σ r (x1)= x1. Then the polynomial

(T − x1)(T − σ(x1)) · · · (T − σ r−1(x1))

has coefficients in K and vanishes at x1. This is impossible since x1 is transcen-
dental over K . Therefore we deduce that σ does not acts periodically on x1, or on
any element of the transcendence basis.

Suppose now that x1, . . . , xn , considered as elements of F̃ , satisfy an alge-
braic relation over K̃ . This means that there exists a nonzero polynomial P in
K̃ [T1, . . . , Tn] such that P(x1, . . . , xn) = 0. We can suppose that there exists
i0 = 1, . . . , n such that σ(xi ) = qi x for i ≤ i0 and σ(xi ) = xi + hi for i > i0 (see
remark above) and choose P so that the number of monomials appearing in its
expression is minimal. Let T α1

1 · · · T
αn

n be a monomial of maximal degree appear-
ing in P . We can of course suppose that its coefficient is 1. Then the polynomial

2We recall that we assume that the derivations of 1 and σ commute with each other.
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P(q1T1, . . . , qi0 Ti0, Ti0+1+hi0, . . . , Tn+hn) also annihilates at x1, . . . , xn . It con-
tains a monomial of higher degree of the form qα1

1 · · · q
αi0
i0

T α1
1 · · · T

αn
n . Therefore

P(T1, . . . , Tn)− q−α1
1 · · · q

−αi0
i0

P(q1T1, . . . , qi0 Ti0, Ti0+1+ hi0, . . . , Tn + hn)

also vanishes at x1, . . . , xn and contains less terms than P , against our assumptions
on P . This proves that x1, . . . , xn are algebraically independent over K̃ and hence
that F̃ = K̃ (x1, . . . , xn).

Now let us prove the proposition. The group Gal1(MA) is the 1-Galois group
of σ(Y ) = AY considered as a σ -difference system with coefficients in F̃ . Then
by Proposition 1.10, there exists B̃i ∈ Mν F̃ such that

(1-5)
σ(B̃i )= AB̃i A−1

+ ∂i (A)A−1

∂i (B̃ j )+ B̃ j B̃i = ∂ j (B̃i )+ B̃i B̃ j .

Now, we can replace the coefficients in B̃i before the monomials in x by indeter-
minates. From (1-5), we obtain the system

σ(Bi )= ABi A−1
+ ∂i (A)A−1

∂i (B j )+ B j Bi = ∂ j (Bi )+ Bi B j

with indeterminate coefficients, which possess a specialization in K̃ . By clearing
the denominators and identifying the coefficients of the monomials in the transcen-
dence basis x , we see that this system is equivalent to a finite set of polynomial
equations with coefficient in K . Since K is algebraically closed and this set of
equations has a solution in K̃ , it must have a solution in K . Thus, there exists
Bi ∈ Mν(F) with the required properties.

On the other hand, if there exists Bi ∈ MνF with the required commutativity
properties, then it follows from Proposition 1.10 that Gal1(MA) is conjugate over
K̃ to a constant 1-group. �

Going back to the one-derivative situation, we have:

Corollary 1.26. We suppose that F/K is a purely transcendental extension as in
the previous proposition. Let σ(Y )= AY be a σ -difference system with coefficients
in F and let G A be its ∂-group scheme over K . The following statements are
equivalent:

(1) G A is conjugate over K̃ to a constant ∂-group.

(2) There exists B ∈ Mν(F) such that σ(B) = AB A−1
+ ∂(A)A−1, that is, such

that the following system is integrable:{
σ(Y )= AY

∂Y = BY.
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Proof. Let us assume that G A is conjugate over K̃ to a constant ∂-group. Since
G A becomes isomorphic to Gal∂(MA) over K̃ , the latter is conjugate over K̃ to a
constant ∂-group and we can conclude by the proposition above. On the other hand,
if there exists B ∈ Mν(F) such that σ(B) = AB A−1

+ ∂(A)A−1, then it follows
from Proposition 1.10 that Gal∂(MA) is conjugate over K̃ to a constant ∂-group.
Therefore the same holds for G A. So we can apply the previous proposition. �

2. Confluence and q-dependence

Differential Galois theory for q-dependence. Let k be a characteristic zero field,
k(q) the field of rational functions in q with coefficients in k and K a finite exten-
sion of k(q). We fix an extension | | to K of the q−1-adic valuation on k(q). This
means that | | is defined on k[q] in the following way: there exists d ∈ R, d > 1,
such that | f (q)| = ddegq ( f ) for any f ∈ k[q]. It extends by multiplicativity to k(q).
By definition, we have |q| > 1 and therefore it makes sense to consider elliptic
functions with respect to | |. So let (C, | |) be the smallest valuated extension of
(K , | |) which is both complete and algebraically closed, Mer (C∗) the field of
meromorphic functions over C∗ := C r {0} with respect to | |, that is, the field of
fractions of the analytic functions over C∗, and CE the field of elliptic functions
on the torus C∗/qZ, that is, the subfield of Mer (C∗) invariant with respect to the
q-difference operators σq : f (x) 7→ f (qx).

Since the derivation δq = q d
dq is continuous on k(q) with respect to | |, it natu-

rally acts of the completion of K with respect to | |, and therefore on the completion
of its algebraic closure, which coincides with C (see Chapter 3 in [Robert 2000]).
It extends to Mer (C∗) by setting δq x = 0. The fact that δx = x d

dx acts on Mer (C∗)
is straightforward. We notice that

δx ◦ σq = σq ◦ δx ,

δq ◦ σq = σq ◦ (δx + δq).

This choice of the derivations is not optimal, in the sense that we would like to
have two derivations commuting with each other and, more important, commuting
with σq . We are going to reduce to this assumption in two steps. First of all, we
consider the logarithmic derivative `q(x)= δx(θq)/θq of the Jacobi Theta function

θq(x)=
∑
n∈Z

q−n(n−1)/2xn.

We recall that, if |q| > 1, the formal series θq naturally defines a meromorphic
function on C∗ and satisfies the q-difference equation

θq(qx)= qxθq(x),
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so that `q(qx) = `q(x)+ 1. This implies that σqδx
(
`q
)
= δx

(
`q
)

and hence that
δx(`q) is an elliptic function.

Lemma 2.1. The derivations

δx and δ = `q(x)δx + δq

of Mer (C∗) commute with σq .

Proof. For δx , it is clear. For δ, we have

δ ◦ σq( f (q, x))=
[
`q(x)δx + δq

]
◦ σq( f (q, x))

= σq ◦
[(
`q(q−1x)+ 1

)
δx + δq

]
f (q, x)

= σq ◦
[
`q(x)δx + δq

]
f (q, x)

= σq ◦ δ( f (q, x)). �

Corollary 2.2. (1) The derivations δx , δ of Mer (C∗) stabilize CE in Mer (C∗).

(2) The field of constants Mer (C∗)δx ,δ of Mer (C∗) with respect to δx , δ is equal
to the algebraic closure k of k in C.

Proof. The first part of the proof immediately follows from the lemma above. The
constants of Mer (C∗) with respect to δx coincide with C . As far as the constants
of C with respect to δ is concerned, we are reduced to determining the constants
Cδq of C with respect to δq . Since the topology induced by | | on k is trivial, one
concludes that Cδq is the algebraic closure of k in C . �

Since
[δx , δ] = δx ◦ δ− δ ◦ δx = δx(`q(x))δx ,

we can consider a (δx , δ)-closure C̃E of CE (see [Yaffe 2001; Pierce 2003; Singer
2007]). We extend σq to the identity of C̃E . The (δx , δ)-field of σq -constants C̃E

almost satisfies the hypothesis of [HS 2008], apart from the fact that δx , δ do not
commute with each other:

Lemma 2.3. There exists h ∈ C̃E satisfying the differential equation

δ(h)= δx(`q(x))h,

such that the derivations

∂1 = hδx and ∂2 = δ = `q(x)δx + δq

commute with each other and with σq .

Proof. Since `q(qx) = `q(x) + 1, we have δx(`q(x)) ∈ CE . Therefore, we are
looking for a solution h of a linear differential equation of order 1, with coefficients
in CE . Let us suppose that h ∈ C̃E exists. Then since σqh = h, the identity
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σq ◦ ∂i = ∂i ◦ σq follows from Lemma 2.1 for i = 1, 2. The verification of the fact
that ∂1 ◦ ∂2 = ∂2 ◦ ∂1 is straightforward and, therefore, left to the reader.

We now prove the existence of h. Consider the differential rational function ring
S := CE

{
y, 1

y

}
δx

. We endow S with an extension of δ by

δ(δn
x (y))= δ

n+1
x (`q)y

for all n ≥ 0. Since δx ◦ δ = δx(`q(x))δx + δ ◦ δx , the definition of δ over S is
consistent and the commutativity relation between δx and δ extends from CE to
S. Now let M be a maximal (δx , δ)-maximal ideal of S. Then, the ring S/M is
a simple (δx , δ)-CE -algebra. By van der Put and Singer [2003, Lemma 1.17], it is
also an integral domain. Let L be the quotient field of S/M. The field L is a (δx , δ)-
field extension of CE which contains a solution of the equation δ(y)= ∂x(`q(x))y.
Since C̃E is the (δx , δ)-closure of CE , there exists h ∈ C̃E satisfying the differential
equation δ(h)= δx(`q(x))h. �

Let 1= {∂1, ∂2}. Notice that, since `q(qx)= `q(x)+ 1 and σq commutes with
1, we have

σq∂1(`q(x))= ∂1(`q(x)) and σq(∂2(`q(x)))= ∂2(`q(x)),

and thus ∂i (`q(x))∈CE for i =1, 2. We conclude that the subfield CE(x, `q(x)) of
Mer (C∗) is actually a (σq ,1)-field. Moreover, extending the action of σq trivially
to C̃E , we can consider the (σq ,1)-field C̃E(x, `q(x)). Since the fields CE(x, `q)

and C̃E are linearly disjoint over CE (see Lemma 6.11 in [HS 2008]), C̃E(x, `q(x))
has a 1-closed field of constants, which coincide with C̃E .

Galois 1-group and q-dependence. The previous subsection showed that one can
attach two linear differential algebraic groups to a q-difference system σq(Y ) =
A(x)Y with A ∈ GLn(C(x)):

(1) The group Gal1(MA) obtained by applying Definition 1.4 to the (σq ,1)-field
C̃E(x, `q). This group is defined over of C̃E and measures all differential relations
satisfied by the solutions of the q-difference equation with respect to δx and δq .
However its computation may be a little difficult. Indeed, since the derivations of
1 are themselves defined above C̃E , there is no hope of a general descent argument.
Nonetheless, in some special cases, one can use the linear disjunction of the field
C̃1

E of 1-constants and CE(x, `q) above CE to simplify the computations.

(2) The Galois ∂2-group Gal∂2(MA) which corresponds to Definition 1.4 applied to
the (σq , ∂2)-field C̃E(x, `q).

Let us consider the q-difference system

(2-1) Y (qx)= A(x)Y (x), with A ∈ GLν(CE(x, `q)).
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In view of Proposition 1.20, the Galois ∂2-group Gal∂2(MA) attached to (2-1) is
defined above the algebraic closure C E of CE . We will prove below that, in fact,
it descends to CE and thus reduce all the computations to calculus over the field
of elliptic functions.

The field CE(x, `q) is a subfield of the field of meromorphic functions over C∗,
therefore (2-1) has a fundamental solution matrix U ∈GLν(Mer (C∗)). In fact, the
existence of such a fundamental solution U is actually equivalent to the triviality of
the pullback on C∗ of vector bundles over the torus C∗/qZ (see [Praagman 1986]
for an analytic argument). The (σq , ∂2)-ring

RMer := CE(x, `q)
{
U, det U−1}

∂2
⊂Mer (C∗)

is generated as a (σq , ∂2)-ring by a fundamental solution U of (2-1) and by det U−1

and has the property that R
σq
Mer = CE , in fact

CE ⊂Rσq ⊂Mer (C∗)σq = CE .

Notice that RMer does not need to be a simple (σq , ∂2)-ring. For this reason we
call it a weak ∂2-Picard–Vessiot ring. We have:

Proposition 2.4. Autσq ,∂2(RMer/CE(x, `q)) consists of the CE -points of a linear
algebraic ∂2-group GCE defined over CE such that GCE ⊗CE C E ∼= Gal∂2(MA).

Proof. See the proof of Theorem 3.5 in [Di Vizio and Hardouin 2011c], which
gives an analogous statement for the derivation x d

dx . �

Therefore, as in Proposition 1.9, one can prove:

Corollary 2.5. Let a1, . . . , an ∈ CE(x, `q) and let S ⊂ Mer (C∗) be a (σq , ∂2)-
extension of CE(x, `q) such that Sσq =CE . If z1, . . . , zn ∈ S satisfy σ(zi )− zi = ai

for i = 1, . . . , n, then z1, . . . , zn ∈ S satisfy a nontrivial ∂2-relation over CE(x, `q)

if and only if there exists a nonzero homogeneous linear differential polynomial
L(Y1, . . . , Yn) with coefficients in CE and an element f ∈ CE(x, `q) such that
L(a1, . . . , an)= σ( f )− f .

Proof. The proof strictly follows Proposition 3.1 in [HS 2008], so we only sketch
it. First of all, if such an L exists, L(z1, . . . , zn)− f is σq -invariant and therefore
belongs to CE , which gives a nontrivial ∂2-relation among the z1, . . . , zn . On the
other hand, we can suppose that S coincides with the ring RMer introduced above
for the system σqY = AY , where A is the diagonal block matrix

A = diag
((

1 a1

0 1

)
, . . . ,

(
1 an

0 1

))
.
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In fact, a solution matrix of σqY = AY is given by

U = diag
((

1 z1

0 1

)
, . . . ,

(
1 zn

0 1

))
∈ GL2n(Mer (C∗)).

This implies that Autσq ,∂2(RMer/CE(x, `q)) is a ∂2-subgroup of (CE ,+)
n , so there

exists a nonzero homogeneous linear differential polynomial L(Y1, . . . , Yn) with
coefficients in CE such that Autσq ,∂2(RMer/CE(x, `q)) is contained in the set of
zeros of L in (CE ,+)

n . We set f = L(z1, . . . , zn). A Galoisian argument shows
that f ∈ CE(x, `q) and that L(a1, . . . , an)= σq( f )− f . �

Galoisian approach to heat equation. We want to show how the computation of
the Galois ∂2-group of the q-difference equation y(qx) = qxy(x) leads to the
heat equation. We recall that the Jacobi theta function satisfies θq(qx)= qxθq(x).
Corollary 2.5 applied to this equation becomes: The function θq satisfies a ∂2-
relation with coefficients in CE(x, `q) if and only if there exist a1, . . . , am ∈ CE

and f ∈ CE(x, `q) such that

m∑
i=0

ai∂
i
2

(
∂2(qx)

qx

)
= σq( f )− f.

A simple computation leads to

∂2(qx)
qx

= `q + 1= σq
( 1

2

(
`2

q + `q
))
−
( 1

2

(
`2

q + `q
))

and therefore to

σq

(
2
∂2(θq)

θq
−
(
`2

q + `q
))
= 2

∂2(θq)

θq
−
(
`2

q + `q
)
.

The last identity is equivalent to the fact that

(2-2) 2
∂2(θq)

θq
−
(
`2

q + `q
)
= 2

δq(θq)

θq
+ `2

q − `q

is an elliptic function and implies that

(2-3) Gal∂2(Mqx)⊂

{
∂2(c)

c
= 0

}
.

The heat equation3

(2-4) 2δqθq =−δ
2
xθq + δxθq

3One deduces from (2-4) that θ̃ (q, x) := θq (q1/2x) satisfies the equation 2δq θ̃ = δ2
x θ̃ . To recover

the classical form of the heat equation, it is enough make the change of variables q = exp(−2iπτ)
and x = exp(2iπ z).
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can be rewritten as

2
δqθq

θq
+ `2

q − `q =−δx(`q).

Since δx(`q) is an elliptic function, taking into account (2-2), we see that the Ga-
lois ∂2-group of θq , as described in (2-3), can somehow be viewed as a Galoisian
counterpart of the heat equation.

On the q-hypertranscendence of q-difference equations of rank 1. We want to
study the q-dependence of the solutions of a q-difference equation of the form
y(qx)= a(x)y(x), where a(x) ∈ k(q, x), a(x) 6= 0.

Theorem 2.6. Let u be a nonzero meromorphic solution of y(qx) = a(x)y(x),
a(x) ∈ k(q, x), in the sense of the previous subsections. The following statements
are equivalent:

(1) a(x)= µxr g(qx)/g(x) for some r ∈ Z, g ∈ k(q, x) and µ ∈ k(q).

(2) u is a solution of a nontrivial algebraic δx -relation over CE(x, `q) (and there-
fore over C(x)).

(3) u is a solution of a nontrivial algebraic ∂2-relation over CE(x, `q).

First of all, we remark that the equivalence between (1) and (2) follows from
Theorem 1.1 in [Hardouin 2008] (replacing C by k(q) is not an obstacle in the
proof). Moreover it is equivalent to be δx -algebraic over CE(x, `q) or over C(x),
since CE(`q) is δx -algebraic over C(x). The equivalence between (1) and (3) is
proved in the proposition below:

Proposition 2.7. Let u be a nonzero meromorphic solution of y(qx) = a(x)y(x),
with a(x)∈ k(q, x). Then u satisfies an algebraic differential equation with respect
to ∂2 with coefficients in CE(x, `q) if and only if a(x) = µxr g(qx)/g(x) for some
r ∈ Z, g ∈ k(q, x) and µ ∈ k(q).

Proof. By Lemma 3.3 in [Hardouin 2008], there exists f (x) ∈ k(q, x) such that
a(x)= ã(x) f (qx)/ f (x) and ã(x) has the property that if α is a zero (respectively
a pole) of ã(x), then qnα is neither a zero nor a pole of ã(x) for any n ∈ Z r {0}.
Replacing u by u/ f (x), we can suppose that a(x) = ã(x) and we can write a(x)
in the form

a(x)= µxr
s∏

i=1

(x −αi )
li ,

where µ ∈ k(q), r ∈ Z, l1, . . . , ls ∈ Z and, for all i = 1, . . . , s, the αi are nonzero
elements of a fixed algebraic closure of k(q), such that qZαi∩qZα j =∅ if i 6= j . By
Corollary 2.5, the solutions of y(qx)= a(x)y(x) will satisfy a nontrivial algebraic
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differential equation in ∂2 if and only if there exists f ∈CE(x, `q), a1, . . . , am ∈CE

such that
m∑

i=0

ai∂
i
2

(
∂2(a(x))

a(x)

)
= f (qx)− f (x).

We can suppose that am = 1. Notice that

∂2(a(x))
a(x)

=
∂2(xr )

xr +
δq(µ)

µ
+

s∑
i=1

∂2(x −αi )
li

(x −αi )li
,

where
∂2(xr )

xr = r`q(x)=
( 1

2r(`2
q − `q)

)
(qx)−

( 1
2r(`2

q − `q)
)
(x),

with `2
q − `q ∈ CE(x, `q), and

δq(µ)

µ
=

(
δq(µ)

2µ
`q

)
(qx)−

(
δq(µ)

2µ
`q

)
(x), with

δq(µ)

2µ
`q ∈ CE(x, `q).

It remains to show that a solution of y(qx)= a(x)y(x) satisfies a nontrivial differ-
ential equation in ∂2 if and only if there exists h ∈ CE(x, `q) such that

(2-5)
m∑

j=0

a j∂
j

2

( s∑
i=1

li (x`q(x)− δq(αi ))

(x −αi )

)
= h(qx)− h(x).

If we prove that (2-5) never holds, we can conclude that a solution of the equation
y(qx) = a(x)y(x) satisfies a nontrivial algebraic differential equation in ∂2 with
coefficients in CE(x, `q) if and only if a(x)= µxr (modulo the reduction done at
the beginning of the proof). For all i = 1, . . . , s and j = 0, . . . ,m, the fact that
∂2`q(x) ∈ CE allows to prove inductively that

(2-6) ∂ j
2

(
li (x`q(x)− δq(αi ))

(x −αi )

)
=

li (−1) j j !(x`q(x)− δq(αi ))
j+1

(x −αi ) j+1 +
hi, j

(x −αi ) j ,

for some hi, j ∈ CE [`q ].
Since x is transcendental over CE(`q), we can consider

f (x)=
m∑

j=0

a j∂
j

2

( s∑
i=1

li (x`q(x)− δq(αi ))

(x −αi )

)
as a rational function in x with coefficients in CE(`q). In the partial fraction de-
composition of f (x), the polar term in 1

(x−αi )
of highest order is

li (−1)m(m!)(x`q(x)− δq(αi ))

(x −αi )m+1

m+1

.
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By the partial fraction decomposition theorem, identities (2-5) and (2-6) imply that
this last term appears either in the decomposition of h(x) or in the decomposition of
h(qx). In both cases, there exists s∈Z∗ such that the term 1/(qs x −αi )

m+1 appears
in the partial fraction decomposition of h(qx)−h(x). This is in contradiction with
the assumption that the poles αi of a(x) satisfy qZαi ∩ qZα j =∅ if i 6= j . �

Remark 2.8. The Jacobi theta function is an illustration of the theorem above.
Notice that a meromorphic solution of the q-difference equations of the form
y(qx)= a(x)y(x) with a(x)= µxr g(qx)/g(x) ∈ k(q, x) is given by

y(x)= θq(µx/qr )/θq(x)r−1g(x) ∈Mer (C∗).

Integrability in x and q. Let Y (qx) = AY (x) be a q-difference system with A ∈
GLν(C(x, `q)) and 1= {∂1, ∂2} as in Lemma 2.3. We deduce the following from
Proposition 1.24.

Corollary 2.9. The Galois 1-group Gal1(MA) of Y (qx) = AY (x) is 1-constant
(see Remark 1.11) if and only if there exist square matrices B1, B2∈Mν(C E(x, `q))

such that the system
σq(Y )= AY (x)

δx Y = B1Y

∂2Y = B2Y

is integrable, in the sense that these matrices satisfy

σq(B1)= AB1 A−1
+ δx(A).A−1,(2-7)

σq(B2)= AB2 A−1
+ ∂2(A).A−1,(2-8)

∂2(B1)+ B1 B2+ δx(`q)B1 = δx(B2)+ B2 B1.(2-9)

Proof. It follows from Proposition 1.10 that there exist B1, B2 ∈ Mν(C̃E(x, `q))

such that the system
σq(Y )= AY (x)

∂1Y = h B1Y

∂2Y = B2Y

is integrable. This is easily seen to be equivalent to (2-7), (2-8) and (2-9). Notice
that, as in Proposition 1.24, we have:

• x and `q are transcendental and algebraically independent over C E (see for
instance Theorem 3.6 in [Hardouin 2008]).

• σq(x)= qx and σq(`q)= `q + 1.

It follows that C E(x, `q)⊗C E
C̃E = C̃E(x, `q) and that, therefore, the same argu-

ment as in the proof of Proposition 1.24 allows us to conclude. �
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Example 2.10. We want to study the q-dependence of the q-difference system

(2-10) Y (qx)=
(
λ η

0 λ

)
Y (x),

where λ, η ∈ k(q, x). First of all, the solutions of the equation y(qx)= λy(x) will
admit a 1-relation if and only if λ= µxr g(qx)/g(x) for some r ∈ Z, g ∈ k(q, x)
and µ ∈ k(q) (see Theorem 2.6). To simplify the exposition we can suppose that
λ= µxr . Then clearly the Galois 1-group of y(qx)= λy(x) is 1-constant if and
only if µ∈ k(q) is a power of q , that is, if and only if µ∈ qZ. Let µ= qs for s ∈Z.
A solution of y(qx)= λy(x) is given by

y(x)= x s−rθq(x)r .

To obtain an integrable system

y(qx)= µxr y(x), δx y = b1 y and ∂2 y = b2 y,

satisfying (2-7), (2-8) and (2-9), it is enough to take

b1 =
δx(y)

y
and b2 =

∂2(y)
y

.

If µ= qs
∈ qZ then b1 = r`q(x)+ s− r ∈ CE(x, `q(x)). The same hypothesis on

µ implies that b2 ∈ CE(x, `q(x)), in fact we have

σq

(
∂2(θq(x))
θq(x)

)
= (`q(x)+ 1)+

∂2(θq(x))
θq(x)

,

which implies that

∂2(θq(x))
θq(x)

=
`q(x)(`q(x)+ 1)

2
+ e(x), for some e(x) ∈ CE .

To go back to the initial system, we have to find

B1 =

(
b1 α(x)
0 b1

)
and B2 =

(
b2 β(x)
0 b2

)
in M2(C E(x, `q)),

satisfying (2-7), (2-8) and (2-9). We find that the q-difference system (2-10) has
constant Galois1-group if and only if there exist α(x), β(x)∈C E(x, `q) such that

• δx(η)= rη+ (α(qx)−α(x))µxr ,

• δq(η)=
δqµ

µ
η+

(
β(qx)−β(x)+ `q(α(qx)−α(x))

)
µxr ,

• ∂2(α(x))+ δx(`q)α(x)= δx(β(x)).
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Remark 2.11. Pulita [2008] shows that given a p-adic differential equation of the
form dY/dx = GY with coefficients in some classical algebras of functions, or a
q-difference equation σq(Y ) = AY , one can always complete it into an integrable
system:

σq(Y )= AY
dY
dx
= GY

dY
dq
= 0.

This is not the case in the complex framework, even after extending the coefficients
from CE(`q , x) to Mer (C∗).
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