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We use surgery along 2-tori embedded in a union of two copies of T 2
o × T 2

o
to produce a new collection of homotopy 4-spheres.

1. Introduction

With the Poincaré conjecture now established, the attention of many experts is
shifting to the 4-dimensional smooth counterpart to the conjecture:

Conjecture (SPC4: the smooth Poincaré conjecture in four dimensions). Let M be
a smooth 4-manifold homeomorphic to the 4-sphere S4. Then M is diffeomorphic
to S4.

The persisting lack of any answer to SPC4 is probably in part due to the wild
nature of smooth 4-manifolds in general, which — even restricting our scope to
the simply connected setting — have proven exceptionally formidable in terms
of constructing any plenary classification scheme. Still, of all simply connected
4-manifolds, the 4-sphere continues to present perhaps the most elusive challenge
when it comes to obtaining/finding exotic smooth structures. On the one hand,
the literature abounds with potential counterexamples to the conjecture; but on the
other hand, not one example has yet been verified as exotic. This is, it seems,
largely due to the lack of smooth invariants for S4 (which other exotic 4-manifold
constructions have relied upon).

Historically, these exotic constructions of other simply connected 4-manifolds
have quite often made use of surgery along 2-tori (generalized logarithmic transfor-
mation). This paper highlights the utility of torus surgery in conjunction with SPC4
and (once again) as a potential facet of the classification of smooth 4-manifolds in
general. In Section 2 we lay out the background material needed to construct
our examples. Section 3 comprises the heart of this work, the production of new
homotopy 4-sphere examples (we do not however prove here that our examples
are counterexamples to SPC4). These constructions are inspired by an intriguing
handlebody presentation of S4 given by in [Fintushel and Stern 2008] and the role
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of surgery upon 2-tori embedded in T 2
o × T 2

o as seen in the “reverse engineering”
program of Fintushel, Park, and Stern [Fintushel et al. 2007].

In Section 4 we illustrate a further correspondence between SPC4 and surgery
along embedded 2-tori in conjunction with the classic homotopy sphere examples
of Cappell and Shaneson [1976a; 1976b] and the recent analysis of these examples
by Gompf [2010]. Specifically, their homotopy S4’s can be viewed as the result
of surgery along a circle in special mapping tori on T 3, later labeled Mφ and re-
ferred to as “Cappell–Shaneson mapping tori”. Gompf exhibited diffeomorphisms
between all members of a certain family of homotopy spheres arising from Mφ

manifolds by altering the monodromy via surgery along fishtail embedded 2-tori
in the T 3 fiber.

Our focus here is on the monodromy changing mechanics of torus surgeries. We
exhibit a (perhaps) surprising connection between a subcollection of our surgery
manifolds produced from T 2

o ×T 2
o and the mapping tori Mφ of Cappell–Shaneson,

but we also show that this approach does not directly imply the trivialization of our
general homotopy sphere examples.

2. Background material

Definition: surgery along a torus. Given a 4-manifold M and a torus T ⊂ M
which has a trivial normal bundle νT ⊂ M , a surgery (or generalized logarith-
mic transformation) along T is the process of extracting the interior of a tubular
neighborhood of T , and then regluing T 2

× D2 via some diffeomorphism δ of its
boundary. (The restriction on the normal bundle ensures νT ≈ T 2

× D2.) Notice
that the boundary of T 2

×D2 is T 2
×S1
≈ T 3, a three-torus; so diffeomorphisms of

the boundary are elements of GL(3,Z)∼= Diff (T 3). The resulting manifold Mδ,T

is given as:
Mδ,T = (M \ νT )∪δ T 2

× D2.

Due to the handlebody (see [Gompf and Stipsicz 1999; Kirby 1989], for instance)
structure of a trivial torus bundle T 2

×D2
= h0
∪h1

a∪h1
b∪h2, there is a unique way

to attach the dualized 3- and 4- handles coming from h1
a, h1

b, h0 to (M \ νT )∪ h2.
Hence, the regluing map δ can be described by the attaching map of the 2-handle. In
terms of homology, this gluing of the 2-handle into the boundary of (M\νT )— and
the surgery itself — depends on a choice of curves along the boundary. Specifically,
taking two loops

{
a′, b′

}
which generate π1(T ) we push these in νT out to loops

a and b on the boundary of M \ νT . If µ is the curve in νT which bounds, then
B = {[a] , [b] , [µ]} forms a basis for H1(∂(M \ νT );Z) ∼= H1(T 3

;Z) ∼= Z3. The
surgery then can be defined by a linear combination in B that gives the attaching
curve for ∂D2, the boundary of the attaching disk of h2

≈ D2
× D2. In sum, the

surgery map δ and the resulting manifold Mδ,T are given by the choices a and b
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and the map
δ∗ : H1(T 2

× ∂D2
;Z)→ H1(∂(M \ νT );Z)

such that
δ∗([∂D2

])= p [µ]+ q [a]+ r [b] .

Generally, one refers to the above as a (p, q, r)-surgery along T with respect
to a, b or a degree p-surgery in the direction qa + rb. (From now on we also
denote both loops a and their corresponding homology classes [a] by simply a.)
For certain simpler situations (like those considered in this paper), one of the last
two coefficients will be 0, and we will mimic the notation of Dehn surgery in
3-manifolds by calling this a ( p

q )-surgery with p the coefficient of the meridian.

Reverse engineering and torus surgeries of Fintushel and Stern. Of particular
import in this paper, is the approach of [Fintushel and Stern 2008] and [Fintushel
et al. 2007] in devising clever ways of discovering nullhomologous tori embedded
in standard 4-manifolds which are somehow linked to exotic smooth structures on
these 4-manifolds.

In the latter paper, Fintushel, Park, and Stern define and implement their reverse
engineering process, whereby exotic smooth structures on small Euler characteris-
tic manifolds (such as CP2#nCP2, for n≤ 8) can be obtained. In their description,
a simply connected manifold such as M = CP2#nCP2 serves as the target of
the procedure, while a different non-simply connected symplectic manifold — the
model for M — is actually used as the starting point. The above authors were able
to produce an infinite collection of Seiberg–Witten invariant altering surgeries.

For the purposes of this paper, Taubes’ result [1994] on Seiberg–Witten invari-
ants and its utilization as in [Fintushel et al. 2007] are not quite applicable. On the
other hand, this formulation of models is indeed useful for our target, S4. And of
the greatest use here is the Fintushel–Park–Stern model for a special target which is
not a blow-up of CP2, the target S2

× S2. The model employed in [Fintushel et al.
2007] is a fiber sum along a genus two surface in two copies of 62 × T 2, that is
62×62. Also, if each genus-2 surface complement (62×T 2

\62×D2) is further
decomposed as T 2

o ×T 2
o (a product of punctured 2-tori), then the (8-many) surgeries

leading to a fake S2
×S2 can be realized within the four individual T 2

o ×T 2
o copies.

T 2
o × T 2

o . Now this decomposition of 62 × 62 as a 4-fold union of T 2
o × T 2

o ’s
(equivalently, the complements of a the coordinate axes in copies of T 4

= T 2
×T 2)

suggests a key strategy for understanding exotic smooth structures and the related
model manifolds might be to focus on this core building block T 2

o × T 2
o itself.

Actually, Fintushel and Stern have arrived in this situation from an alternate starting
point. Pursuing useful nullhomologous tori embedded in standard 4-manifolds,
Fintushel and Stern have exhibited a particular manifold-with-boundary (which
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Figure 1. Fintushel and Stern’s A manifold.

they denote by A) that itself contains a Bing double of nullhomologous tori, and
upon which they build their models. Figure 1 gives a handlebody diagram for A
which is equivalent to the one appearing in [Fintushel and Stern 2008].

Two key aspects concerning A now become important for the emphasis of our
work. Let BT

def
= the pair of tori mentioned above. Then:

Proposition 2.1 [Fintushel and Stern 2008, Proposition 2]. The result of 0-framed
surgery on the pair of tori BT ⊂ A is T 2

o × T 2
o . �

Second, Fintushel and Stern have also made the following observation which is
simple to check: If ϕ is the involution of ∂A which flips the handlebody’s boundary
about a vertical line through the middle of the diagram above, then A∪ϕ A ≈ S4.
Forming this union amounts to gluing in the second copy’s 2-handles as 0-framed
meridians to the first copy’s 1-handles and then attaching the dualized 1-handles
as 3-handles. Essentially, one arrives at the handlebody of Figure 2 union three
3-handles and a 4-handle.

After sliding 2-handles over these 0-framed meridians and canceling pairs of
1-,2-handles, the boundary is explicitly seen as #3S1

× S2. Thus, one can add back
in the extra 3-handles, cancel the 2-,3-handle pairs, and add the 4-handle to obtain
S4. These two observations above now give the connection between surgery on
model manifolds and SPC4, and the way is paved for the main consideration of
this section. Overall, this implies:

S4 contains four nullhomologous tori, 0-framed surgery upon which yields

T 2
o × T 2

o ∪ϕ T 2
o × T 2

o .

Or dually, starting from the opposite direction:

T 2
o × T 2

o ∪ϕ T 2
o × T 2

o contains four essential tori, surgery upon which yields S4.
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Figure 2. A∪ϕ A \ (3-handles, 4-handle).

This leads one to consider whether other surgeries upon tori in

T 2
o × T 2

o ∪ϕ T 2
o × T 2

o

will also produce S4, or more importantly, whether there are surgeries that might
possibly produce an exotic S4. We exhibit below, surgeries which at least produce
a homotopy S4 not a priori diffeomorphic to A∪ϕ A.

3. Homotopy 4-spheres from T 2
o × T 2

o

Constructing a new homotopy 4-sphere. To begin our construction, note that the
boundary of T 2

o × T 2
o is

∂(T 2
o × T 2

o )= T 2
o × S1

∪ S1
× T 2

o ,

where the two boundary terms are not disjoint but overlap in a torus.
In the following, we make use of the same convenient involution

ϕ : T 2
o × S1

∪ S1
× T 2

o → T 2
o × S1

∪ S1
× T 2

o

which is a flip along the entire boundary. This can be formally defined by

ϕ(x)= x∗,

where for x ∈ T 2
o × S1, x∗ is the corresponding point of S1

× T 2
o and conversely.

Under this framework, we will prove this:

Theorem 3.1 (T 2
o ×T 2

o surgery theorem). For ϕ as above, there are two lagrangian
tori in T 2

o × T 2
o and a pair of lagrangian-framed surgeries such that the resulting

surgery manifold X ′ satisfies

X ′ ∪ϕ X ′ ∼= S4.
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Figure 3. T 2
o × T 2

o and lagrangian tori.

Proof. The surgeries in view here are actually performed identically in both copies.
For homotopy calculations we appeal to the results of [Baldridge and Kirk 2008],
essentially surgering the same pair of tori depicted in their calculation. In order to
guarantee the effects of surgeries on π1, we also utilize a slightly careful description
of the torus surgeries. Here label the π1-generating loops passing through the base-
point (x, y) in the i th punctured torus product by ai , bi from one punctured torus
factor and ci , di from the other. Similar to [Fintushel et al. 2007] label lagrangian
push-offs of these loops by “primes” as in Figure 3.

Set Tac = a′1 × c′1 and Tbc = b′1 × c′′1 . Then as in [Baldridge and Kirk 2008,
Theorem 2], the complement of the two tori in T 2

o × T 2
o has fundamental group

generated by a1, b1, c1, d1 with several relations. These include

[a1, c1] = 1,(1)

[b1, c1] = 1.(2)

In the notation of [Fintushel et al. 2007], the surgery tori, directions, and coeffi-
cients selected here are of the form (torus, direction, coefficient). After regluing the
two tori along these surgery curves, we have new π1 relations, again by [Baldridge
and Kirk 2008, Theorem 2]:

Surgery New π1 relation

(a′1× c′1, a′1,−1) [b−1
1 , d−1

1 ] = a1

(b′1× c′′1, b′1,−1) [a−1
1 , d1] = b1

Now to continue the proof of the theorem, we need:

Proposition 3.2. Each of the loops a1, b1, c1, d1 are based homotopic to a corre-
sponding loop on the boundary of T 2

o × T 2
o , in the complement of tori

T 2
o × T 2

o \ Tac ∪ Tbc.
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Figure 4. Paths from basepoint (x, y) to the puncture.

Proof. For a′1× y, b′1× y, etc. push the corresponding point x or y along a straight
linear path to x ′ or y′. This can be done in such a way that νTac and νTbc are
avoided, as in Figure 4. �

With this proposition, in π1 of the union of surgery manifolds X ′∪ϕ X ′ we have
the relations a1∼ c2, b1∼ d2, a2∼ c1, and b2∼ d1. Hence, applying the equivalent
of (2) to the second copy we also obtain

[b2, c2] = [d1, a1] = 1(3)

and from the first and second pair of surgeries

[b−1
1 , d−1

1 ] = a1,(4)

[a−1
1 , d1] = b1,(5)

[b−1
2 , d−1

2 ] = a2 = c1 = [d−1
1 , b−1

1 ],(6)

[a−1
2 , d2] = b2 = d1 = [c−1

1 , b1]..(7)

Using (3) together with (5) implies b1 = 1, and then (4) and (6) in turn give
a1, c1 = 1. Finally, (7) gives d1 = 1. After the four surgeries in the union T 2

o ×

T 2
o ∪ϕ T 2

o × T 2
o , we obtain the simply connected manifold S′

def
= X ′∪ϕ X ′. Since S′

also has χ = 2, it is therefore homeomorphic to S4. �

Families of homotopy 4-spheres. By the choice of surgeries (in fact either of the
−1 or +1 surgeries works so that X ′ as depicted above is only one such possible
choice of surgery manifolds; it is not yet known whether these are pairwise dif-
feomorphic). However, any such X ′ is distinct from A (see Section 4), hence it is
not obvious that S′ is standard S4. Now if one is willing to sacrifice the benefit
of having a symplectic surgery manifold like X ′, allowing a greater freedom in
surgeries can still yield a homotopy S4.
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Theorem 3.3 (main theorem). For m, n ∈Z, Let Xm,n denote the result of perform-
ing the ( m

1 )- and ( n
1 )-surgeries on Tac, Tbc and in the directions a, b respectively.

Then the 4-manifold

S(m,n,m′,n′)
def
= Xm,n ∪ϕ Xm′,n′

is homeomorphic to S4 for all m, n,m′, n′ ∈ Z.

Proof. Replace the relations such as (5) above with [a−1
1 , d1]

n
= b1, etc. Again this

gives b1 = 1 and in turn all three of the other generators are trivial as before. �

Remark 3.4. In the following section we will see that even the nonsymplectic
surgery manifolds Xm,n above, when also both m, n 6= 0, are distinct from A, for
slightly more subtle reasons (see Proposition 4.1).

Furthermore, we have described these surgeries and surgery coefficients from
the starting point and point of view of T 2

o ×T 2
o ∪ϕ T 2

o × T 2
o . However, our specific

pairs of tori, ai × ci and bi × ci , were precisely those producing A (see [Fintushel
and Stern 2008]) as well, and if WT is a tubular neighborhood of the union of the
four surgery tori, then

T 2
o × T 2

o ∪ϕ T 2
o × T 2

o \WT = A∪ϕ A \WT = S4
\WT .

Hence, some regluing of four tori embedded in S4 gives the manifold S(m,n,m′,n′),
and this proves:

Proposition 3.5. The manifolds S(m,n,m′,n′), obtained above by surgery along null-
homologous tori in S4, form a four-parameter family of homotopy four-spheres. �

4. Further analysis and final remarks

Now of course T 2
o ×T 2

o is nothing other than the 4-torus, viewed as T 2
×T 2, with

its coordinate axis 2-tori νT T
def
= ν(S1

a × S1
b ∪ S1

c × S1
d) deleted. Recombining the

surgery manifolds Xm,n with νT T then gives the result of performing the same pair
of surgeries in T 4. Two consequences emerge from this. First:

Proposition 4.1. The Fintushel-Stern manifold A and the surgery manifolds Xm,n

satisfy:

(1) A = Xm,0 = X0,n for all m, n ∈ Z.

(2) Xm,n � A if both m, n ∈ Z 6= 0.

Proof. We prove the above by recasting the pair of surgeries in T 4
= T 2

o ×T 2
o ∪νT T

as surgeries in T 4
= T 3

× S1. A similar trick was used already by Akhmedov,
Baykur, and Park [Akhmedov et al. 2008]. In particular, note that regluings of
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Figure 5. Two surgeries in T 3 (left) produce Ym,n . (right).

both torus surgeries (a′× c′, a′,m) and (b′× c′′, b′, n) are trivial on the c-factor,
that is, the surgery maps are equivalent to

(Dehn-surgery on a loop in T 3)× I d|S1

in T 4 viewed as T 3
× S1

= (a× b× d)× c. We can then fully depict the surgery
manifolds (union νT T ) by taking the cartesian product of S1 and the resulting 3-
manifold, Ym,n , obtained from T 3 after the pair of Dehn-surgeries. This is depicted
in Figure 5, left, where Dehn surgery is performed along push-offs of two of the
meridians to the 0-framed Borromean link.

Since all of the link coefficients are integral, we can consider Ym,n as the bound-
ary of some 4-manifold, say Um,n . After sliding one of Um,n’s 0-framed 2-handles
over and then off of the m- and n-framed components and then removing hopf
pairs, we obtain the diagram on the right in Figure 5. That diagram (viewed again
as a 3-manifold surgery diagram) with m = 0 or n= 0 is of course S2

× S1. Hence,
for any such (m, n) pair,

Ym,n × S1
\ νT T = S2

× S1
× S1
\ νT T = A;

see [Fintushel and Stern 2008, Lemma 1], for instance. On the other hand, Ym,n �
S2
× S1 for any choice of a nonzero pair (m, n) since in that case Ym,n is not the

unknot. �

Second, by gluing νT T onto any of the surgery manifolds of Theorem 3.1, we
can recast the union as a T 3-bundle over S1, that is, a mapping torus of the form

Mφ
def
=

I × T 3

(0, x)∼ (1, φ(x))
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for some diffeomorphism φ : T 3
→ T 3. For instance, νT T ∪ T 2

o × T 2
o = T 4

=

T 3
× S1
= MI , for I the identity map. Furthermore, A∪νT T ≈ S2

×T 2, so A does
not correspond to a T 3-bundle over S1.

Now mapping tori such as these are precisely the kind that arise in the classic ho-
motopy 4-sphere construction of Cappell and Shaneson [1976a; 1976b]. However,
such monodromies φ obtained here from T 2

o ×T 2
o are not restricted to SL(3;Z) and

do not satisfy the additional condition det(φ− I )=±1 of [Cappell and Shaneson
1976a], so surgery along the 0-section in any of our mapping tori will not produce
one of their homotopy spheres directly.

Theorem 4.2 [Nash 2010]. Any Cappell–Shaneson mapping torus Mφ can be ob-
tained by some sequence of surgeries along 2-tori in the fiber of the trivial bundle
T 4
= T 3

× S1. �

We contend however that Theorem 4.2 is still not enough to immediately trivi-
alize even one of the examples S(m,n,m′,n′) by relating these spheres to any of those
within the Cappell–Shaneson collection that are now known to be standard, most
recently due to Akbulut [2010] and then later Gompf [2010] (which depends on a
result from [Akbulut and Kirby 1979]).

The correspondences and differences can be seen as follows: Performing ( 1
q )-

surgeries along product 2-tori embedded in the T 3-fiber of any mapping torus MA

alters its monodromy by left multiplication with the surgery matrix (as in [Gompf
2010], and one dimension lower in [Gompf and Stipsicz 1999, Example 8.2.4]).
Unlike Proposition 4.1 above, this time we factor the trivial fibration T 4

= T 3
×S1

as (a× b× c)× S1
d . Recall that the surgeries on T 2

o × T 2
o producing the manifolds

whose union is a homotopy S4, say for instance X1,1, have surgery curves µ+ a
or µ+ b, respectively (in the basis {a, b, µ}, µ the meridian of the torus). Hence,
back within the mapping-torus framework a +1-surgery along each of these two
tori in these directions would give monodromy-multiplying matrices

R12
def
=

1 1 0
0 1 0
0 0 1

 , R21
def
=

1 0 0
1 1 0
0 0 1


respectively (now in the basis {a, b, c}).

The X1,1 surgery manifolds then translate to mapping tori MR12 R21 I =MA where

A =

1 1 0
0 1 0
0 0 1

1 0 0
1 1 0
0 0 1

=
2 1 0

1 1 0
0 0 1

 .
However, the full range of Cappell–Shaneson mapping tori Mφ also involve surg-
ering in the direction of the third T 3 basis factor, so for instance, b1 = 1 in the
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Cappell–Shaneson case vs. b1(Xm,n)= 2 here. Moreover, any Xm,n with either m
or n 6= ±1 no longer even gives a T 3-bundle over S1 when νT T is added back in:
In the case of a (± 1

1)-surgery, the diffeomorphism of the surgery torus “lines up”
with a diffeomorphism of a fiber torus, but in a general (m

1 )-surgery (m 6= ±1) this
correspondence fails. Thus in general, the complement of νT T in a true Cappell–
Shaneson Mφ is not an Xm,n surgery manifold.

One single surgery of the Xm,n type is enough to derail T 2
o × T 2

o from the
Cappell–Shaneson track. Note that the surgery is still reversible. The point is that
it is not reversible or achievable by torus surgeries obtained from product-framed
( 1

q )-surgeries on product tori in the T 3 fiber — the sort used in Theorem 4.2.

Conclusion. The combined results above should indicate that once again T 2
o ×T 2

o
itself remains an important component to a diverse range of 4-manifold construc-
tions, surgeries along tori playing a role in each case. In fact, a slight alteration
of the gluing ϕ in the T 2

o × T 2
o unions above into a fixed-point-free involution of

∂(T 2
o × T 2

o )= T 2
o × S1

∪ S1
× T 2

o allows for the construction of a fixed-point-free
involution on the resulting homotopy sphere. From this, homotopy RP4’s can then
be constructed (given that two identical pairs of surgeries were performed) — again
with T 2

o × T 2
o playing the role of the fundamental piece to the construction.

Finally, despite the correlations between the two realms, it does not appear that
any of the homotopy spheres S(m,n,m′,n′) (parameters in Z 6=0) actually relate directly
to any member of the Cappell–Shaneson collection (do they even contain fibered
2-spheres?), nor does it seem that Gompf’s trick of fishtail surgery [Gompf 2010]
would help in trivializing them.

An earlier draft of this paper asked whether the spheres S(m,n,m′n′) are standard.
Since then, Selman Akbulut [2011] has answered the question affirmatively. How-
ever, it is still unknown if gluing two surgery manifolds X p,q via some alternate
diffeomorphism of the boundary would also produce S4.
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