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Let (W, S) be an irreducible Weyl or affine Weyl group. In 1994, we con-
structed an algorithm for finding a representative set of left cells (or an l.c.r.
set for short) of W in a two-sided cell �. Here, we introduce a new simpler
algorithm for finding an l.c.r. set of W in � when the subset F(�) of � is
known. We introduce some technical tricks by some examples for applying
the algorithm and for finding the set F(�). The resulting set E(�) is useful
in verifying a conjecture of Lusztig that any left cell in an affine Weyl group
is left-connected.

Let W be an irreducible Weyl or affine Weyl group with S its Coxeter generator
set. For a two-sided cell � of W (in the sense of [Kazhdan and Lusztig 1979]),
we introduced an algorithm for finding an l.c.r. set of W in � in [Shi 1994a]. The
algorithm has been efficiently applied in many cases; see for example [Chen 2000,
Chen and Shi 1998; Rui 1995; Shi 1994a; 1994b; 1998a; 1998b; Shi and Zhang
2008; 2006; Tong 1995; Zhang 1994]. The algorithm consists of three processes
(A), (B), (C) on a distinguished set F (see 3.1), where process (C) is the most
difficult part among the three in which one need to find, for any given x ∈ F , all
elements y satisfying y—x , y< x , R(y)*R(x) and a(y)=a(x) (see Sections 1.1
and 1.3 for the notation). This becomes increasingly difficult as the length of x gets
larger.

For any two-sided cell � of W , let F(�) be the set of all w ∈ � such that
a(sw), a(wt) < a(w) for any s ∈ L(w) and t ∈ R(w). We shall introduce a new
algorithm for finding an l.c.r. set of W in a two-sided cell �, provided that the
subset F(�) of � is known; see 3.2. The processes in our new algorithm amounts
to a mixture of processes (A) and (B) in the original algorithm, hence avoiding
process (C).

Theorem 3.5 guarantees that our new algorithm will terminate after finite steps,
while Theorem 3.12 shows that the resulting set E0(�) of Algorithm 3.11 forms
an l.c.r. set of W in � such that each element of E0(�) is shortest in the left cell
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of W containing it.
Our new algorithm has been applied successfully for the description of the left

cells of a-values 4, 5, 6 in the affine Weyl groups Ẽi for i = 6, 7, 8; see [Huang
2008; Liu 2007; Shi and Zhang 2006].

To apply our new algorithm, it is desirable to find the subset F(�) explicitly for
more two-sided cells � in an irreducible Weyl and affine Weyl group.

It is relatively easier to describe the set F(�) when F(�) consists of elements
of the form wJ for some J ⊆ S, where the subgroup WJ of W generated by J is
finite and wJ is the longest element in WJ ; see 4.6.

We can also find the sets F(�) for some two-sided cells � when � contains
some elements not of the form wJ with J ⊆ S; see 4.1 and 4.7–4.10.

Some technical tricks are needed in applying Algorithm 3.11. We explain by
some examples the way to find the set E0(�) from F0(�), the set F0(�) from
F(�), the set F(�) from F(W(i)) (see 1.3 and 4.7) with a(�) = i , and the set
F(W(i)) from some known conditions (see Section 4).

Lusztig conjectured in [Asai et al. 1983] that any left cell of an affine Weyl
group W is left-connected. For a two-sided cell � of W , the resulting set E(�)
of Algorithm 3.4 is useful in the verification of left-connectedness for a left cell of
W ; see 3.6–3.7.

This paper is organized as follows. We collect some results on cells of affine
Weyl groups W in Section 1 and on the alcove form of elements of W in Section 2.
These results are mostly known already except for Proposition 2.3. In Section 3,
we introduce a new algorithm for finding an l.c.r. set of W in a two-sided cell
� of W . Finally, in Section 4, we explain some technical tricks in applying the
algorithm.

1. Some results on cells of affine Weyl groups

1.1. Let W = (W, S) be a Coxeter group with S its Coxeter generator set. Let 6
be the Bruhat–Chevalley order on W . For w ∈ W , we denote by `(w) the length
of w. Let A = Z[u, u−1

] be the ring of Laurent polynomials in an indeterminate
u with integer coefficients. Let H(W ) be the associated Hecke algebra of W , that
is, an associative A-algebra that is free as an A-module with a basis {Tw |w ∈W },
subject to the multiplication rule

Tx Ty = Txy if `(x)+ `(y)= `(xy),

(Ts − u−1)(Ts + u)= 0 for any s ∈ S.

H(W ) has another A-basis {Cw | w ∈W } given by

(1) Cw =
∑
y6w

u`(w)−`(y)Py,w(u−2)Ty,
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where the Py,w ∈Z[u] for y, w ∈W are the celebrated Kazhdan–Lusztig polynomi-
als satisfying Pw,w = 1, Py,w = 0 if y
w, and deg Py,w 6 (1/2)(`(w)−`(y)−1)
if y<w; see [Kazhdan and Lusztig 1979]. For y<w in W , let µ(w, y)=µ(y, w)
be the coefficient of u(1/2)(`(w)−`(y)−1) in Py,w. We write y—w if µ(y, w) 6= 0.

Checking the relation y—w for y, w ∈W usually involves a complicated com-
putation of Kazhdan–Lusztig polynomials. But it is easier in some special cases:

(2) If x, y ∈W satisfy y < x and `(y)= `(x)− 1, then y—x .

1.2. The preorders6L, 6R, 6LR and the associated equivalence relations∼L, ∼R,
∼LR on W are defined as in [Kazhdan and Lusztig 1979]. The equivalence classes
of W with respect to ∼L (respectively, ∼R, ∼LR ) are called left cells (respectively,
right cells, two-sided cells). The preorder 6L (respectively, 6R, 6LR) induces a
partial order on the set of left cells (respectively, right cells, two-sided cells) of W .

From now on, we always assume W to be an irreducible Weyl or affine Weyl
group unless otherwise specified.

1.3. Lusztig [1985] defined a function a: W → N with the following properties:

(1) If x 6LR y, then a(x) > a(y). In particular, if x ∼LR y then a(x) = a(y). So
we may define the a-value a(0) to be a(x) for any x ∈ 0, where 0 is a left,
right or two-sided cell of W ; see [Lusztig 1985].

(2) Suppose a(x) = a(y). If x 6L y, then x ∼L y; if x 6R y, then x ∼R y. See
[Lusztig 1987a].

(3) For any I ⊆ S with |WI |<∞, we have a(wI )= `(wI ).
For any w ∈W , set

L(w)= {s ∈ S | sw <w} and R(w)= {s ∈ S | ws <w}.

(4) If x 6L y, then R(x) ⊇ R(y); if x 6R y, then L(x) ⊇ L(y). In particular, if
x ∼L y, then R(x)=R(y); if x ∼R y, then L(x)= L(y). See [Kazhdan and
Lusztig 1979, Proposition 2.4].

By the notation x = y · z for x, y, z ∈ W , we mean x = yz and `(x) =
`(y)+ `(z). In this case, we call x a left extension of z and a right extension
of y; we call z a left retraction of x , and y a right retraction of x . When
w = x · y · z, we call w an extension of y and call y a retraction of w.

(5) If x = y · z then x 6L z and x 6R y. Hence a(x) > a(y), a(z) by (2). In
particular, if I ∈ {R(x),L(x)}, then a(x)> `(wI ); see [Lusztig 1985].

Let W(i) = {w ∈W | a(w)= i} for any i ∈N. Then by (2), W(i) is a union
of some two-sided cells of W .

(6) For any x ∈ W , let 6(x) be the set of all left cells 0 of W such that there
exists some y ∈ 0 with y—x , R(y) * R(x) and a(y) = a(x). Then x ∼L y
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in W if and only if R(x)=R(y) and 6(x)=6(y); see [Shi 1994a, Theorem
2.1], [Shi 1994d] and [Shi 1998a, Section 5].

(7) If x—y in W and s ∈ S satisfy s ∈L(y)\L(x) (respectively, s ∈R(y)\R(x)),
then either y= s ·x (respectively, y= x ·s) or y< x ; see [Kazhdan and Lusztig
1979, Sections 2.3e and 2.3f]. In particular, we have `(y)6 `(x)+ 1.

(8) The number of left cells in W is finite; see [Lusztig 1987a, Theorem 2.2].

(9) If a left cell L and a right cell R are in the same two-sided cell of W , then
L ∩ R 6=∅; see [Lusztig 1987b, Section 3.1(k), (l)].

1.4. To each x ∈ W , we denote by M(x) the set of all y ∈ W such that there is a
sequence x0 = x , x1, . . . , xr = y in W with some r > 0, where for every 16 i 6 r ,
the conditions x−1

i−1xi ∈ S, R(xi−1)+R(xi ) and R(xi−1)*R(xi ) are satisfied.
A graph M(x) associated to an element x ∈W is defined as follows. Its vertex set

is M(x), each y ∈ M(x) is labeled by the set R(y); its edge set consists of all two-
elements subsets {y, z} ⊂ M(x) with y−1z ∈ S, R(y)+R(z) and R(y)*R(z).

By a path in the graph M(x), we mean a sequence z0, z1, . . . , zr in M(x) such
that {zi−1, zi } is an edge of M(x) for any 16 i 6 r . Two elements x, x ′ ∈W have
the same right generalized τ -invariants, if for any path z0= x, z1, . . . , zr in M(x),
there is a path z′0 = x ′, z′1, . . . , z′r in M(x ′) with R(z′i )=R(zi ) for any 06 i 6 r ,
and if the same condition holds when the roles of x and x ′ are interchanged.

Then the following result is known.

Proposition 1.5 (see [Shi 1990, Section 3]). Any x, y ∈ W with x ∼L y have the
same right generalized τ -invariants.

1.6. For s, t ∈ S with m = o(st) > 2, each of the sequences

zt, zts, ztst, . . . and zs, zst, zsts, . . . (each containing m− 1 terms)

is called a right {s, t}-string, where z ∈W satisfies R(z)∩ {s, t} =∅.
Two elements x, y ∈W form a right primitive pair if there exist two sequences

x0 = x, x1, . . . , xr and y0 = y, y1, . . . , yr in W such that

(a) for each 16 i 6 r , there exist some si , ti ∈ S with o(si ti ) > 2 such that any of
the pairs xi−1, xi and yi−1, yi are neighboring terms in a right {si , ti }-string;

(b) xi —yi for all 06 i 6 r ; and

(c) either R(x)*R(y) and R(yr )*R(xr ), or R(y)*R(x) and R(xr )*R(yr ).

In particular, if {w, y} is an edge in a graph M(x) for some x ∈ W , then w, y
form a right primitive pair by taking r = 0 in the definition above.

Similarly, we can define a left {s, t}-string and a left primitive pair.
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Proposition 1.7 (see [Shi 1990, Section 3]). Any right primitive pair x, y ∈ W
satisfies x ∼R y; any left primitive pair x, y ∈ W satisfies x ∼L y. In particular,
the set M(x) is contained in a right cell of W .

1.8. An affine Weyl group W is a Coxeter group that can be realized geometrically
as follows. Let G be a connected, adjoint reductive algebraic group over C. Fix a
maximal torus T of G. Let X be the group of characters T →C and let 8⊂ X be
the root system with5={α1, . . . , α`} a choice of simple system. Then E= X⊗ZR

is a euclidean space with an inner product 〈 · , · 〉 such that the Weyl group (W0, S0)

of G with respect to T acts naturally on E and preserves its inner product, where
S0 is the set of simple reflections si = sαi for 1≤ i ≤ `. We denote by N the group
of all translations Tλ for λ ∈ X on E : Tλ sends x to x + λ. Then the semidirect
product W =W0n N is called an affine Weyl group. Let K be the dual of the type
of G. Then we define the type of W by K̃ . Sometimes we denote W just by K̃ .
There is a canonical homomorphism from W to W0, sending w to w.

Let −α0 be the highest short root in 8. Set s0 = sα0 T−α0 with sα0 the reflection
corresponding to α0. Then S = S0 ∪ {s0} forms a Coxeter generator set of W .

Theorem 1.9 [Lusztig 1989, Theorem 4.8]. In the setup of 1.8, there exists a bijec-
tion c : u 7→ c(u) from the set of unipotent conjugacy classes in G to the set Cell W
of two-sided cells in W such that a(c(u)) = dim Bu , where u is any element in u,
and dim Bu is the dimension of the variety of Borel subgroups of G containing u.

2. Alcove forms for elements in affine Weyl groups

Keep the setup of 1.8 for an affine Weyl group W .

2.1. The alcove form of an elementw∈W is, by definition, a8-tuple (k(w;α))α∈8
over Z, subject to the following conditions:

(a) k(e;α)= 0 for any α ∈8, where e is the identity of W .

(b) For 06 i 6 l, we have k(si ;α)= 0 if α 6= ±αi , and k(si ;α)=∓1 if α=±αi .

(c) Let w′ = wsi for some 0 6 i 6 l. Then k(w′;α) = k(w; (α)si )+ k(si ;α),
where si = si if 16 i 6 l, and s0 = sα0 ; see [Shi 1987, Proposition 4.2].

It is easily checked that k(w;−α) = −k(w;α) for any α ∈ 8. Let 8+ be the
positive system of 8 containing 5. Then the 8-tuple (k(w;α))α∈8 is entirely
determined by the 8+-tuple (k(w;α))α∈8+ . We can identify (k(w;α))α∈8 with
(k(w;α))α∈8+ and call the latter also the alcove form of w.

Recall the definition for a left extension of an element x ∈ W in 1.3. The
following results on the alcove form (k(w;α))α∈8 of w ∈W are known.

Proposition 2.2 [Shi 1987, Proposition 4.7]. Let w = (k(w;α))α∈8 ∈ W . Write
w = wTλ with w ∈W0 and λ ∈ X = Z8.
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(a) For α ∈ 8+, we have k(w;α) = 0 if (α)w −1
∈ 8+ and k(w;α) = −1 if

(α)w −1
∈8−.

(b) R(w)= {s j ∈ S | k(w;α j ) < 0}.

(c) Let w′ = ws j with w ∈W and 06 j 6 l. Then for any α ∈8, we have

k(w′;α)= k(w; (α)s j )+ k(s j ;α).

(d) Let w′ = (k(w′;α))α∈8 ∈ W . Then w′ is a left extension of w if and only if
the inequalities k(w′;α)k(w;α) > 0 and |k(w′;α)| > |k(w;α)| hold for any
α ∈8.

The following result is crucial in the proof of Theorem 3.5.

Proposition 2.3. Let x0, x1, . . . , xr , . . . be an infinite sequence of elements in W
such that xi is a right extension of xi−1 for every i > 1. Then there are some
q > p > 0 such that xq is a left extension of x p.

Proof. By Proposition 2.2(a)–(c), we see that there are permutations τi j with i, j>0
on the set 8, satisfying

(i) (−α)τi j =−(α)τi j for any α ∈8;

(ii) |k(x j ;α)|> |k(xi ; (α)τi j )| for any α ∈8 and j > i ; and

(iii) τhiτi j = τhj for any h, i, j > 0.

Since |8|<∞, the permutation group on 8 is finite. So there exists an infinite
subsequence h1, h2, . . . , ht , . . . of 1, 2, 3, . . . with τ0,ha = τ0,hb for any a, b > 0.
Hence |k(xha ;α)|> |k(xhb;α)| for any a> b> 0 and α ∈8. Then by the finiteness
of the set 8, there exist some q > p > 0 in {h1, h2, . . . } such that |k(xq;α)| >
|k(x p;α)| and k(xq;α) · k(x p;α)> 0 for any α ∈8. This implies that xq is a left
extension of x p by Proposition 2.2(d). �

3. A new algorithm for finding an l.c.r. set in a two-sided cell

3.1. Call a nonempty set F ⊆ W distinguished if |0 ∩ F | 6 1 for any left cell 0
of W . Call F a representative set of left cells (or an l.c.r. set for short) of W in a
two-sided cell � if F ⊆� and |0 ∩ F | = 1 for any left cell 0 of W in �.

3.2. For any two-sided cell � of W , set

F(�)= {z ∈� | a(sz), a(zt) < a(z) for any s ∈ L(z) and t ∈R(z)},

E(�)= {z ∈� | a(sz) < a(z) for any s ∈ L(z)}.

Clearly, F(�) ⊆ E(�). Also, w ∈ F(�) if and only if w−1
∈ F(�). We have

the following result.
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Lemma 3.3. (1) Any w ∈ � has an expression w = x · z · y for some x, y ∈ W
and z ∈ F(�).

(2) An element w ∈� is in E(�) if and only if x = 1 in any expression of the form
w = x · z · y with z ∈ F(�).

Proof. If w ∈ F(�), then take x = y = 1 and z =w. If w /∈ F(�), then by 1.3(2),
either w= s ·w′ for some s ∈L(w), or w=w′ ·t for some t ∈R(w), where w′ ∈�.
By applying induction on `(w), we may write w′ = x · z · y for some x, y ∈W and
some z ∈ F(�). Hence w is equal to either sx · z · y or x · z · yt . This implies (1).
Then (2) follows by (1) and 1.3(2), (5). �

The following algorithm is for finding the set E(�) from F(�).

Algorithm 3.4. (1) Set Y0 = F(�).
Let k > 0. Suppose that the set Yk has been found.

(2) If Yk =∅, then the algorithm terminates;

(3) If Yk 6=∅, then find the set Yk+1 = {xs | x ∈ Yk; s ∈ S \R(x); xs ∈ E(�)}.

By Lemma 3.3(2), we have E(�)=
⋃

i>0 Yi .
Then the following result shows that Algorithm 3.4 must terminate after a finite

number of steps, that is, E(�)=
⋃t

k=0 Yk for some t ∈ N.

Theorem 3.5. Let Y j for j > 0 be obtained from the set F(�) by Algorithm 3.4.

(1) There exists some t ∈ N such that Y j 6=∅ and Yh =∅ for 06 j 6 t < h;

(2) E(�)=
⋃t

k=0 Yk .

Proof. It is easily seen that if Yi = ∅ for some i > 1, then Y j = ∅ for any j > i ,
or equivalently, if Yi 6= ∅ for some i > 0 then Y j 6= ∅ for any 0 6 j 6 i . Since
Y0 6= ∅, to prove (1) it suffices to prove that there is an integer i > 0 such that
Yi =∅.

Suppose to the contrary that Yi 6= ∅ for any i > 0. By the finiteness for the
number of left cells of W in� (see 1.3(8)), there are infinite sequences w1, w2, . . .

in E(�) and 06 i1 < i2 < · · ·< in < · · · in N such that

(i) w j+1 is a right extension of w j for any j > 1 (see 1.3);

(ii) w1 ∼L w2 ∼L w3 ∼L · · · ;

(iii) w j ∈ Yi j for j > 1.

By (i) and Proposition 2.2 (b)–(c), we see that there are permutations τi j on 8,
with i, j > 1, such that |k(w j ;α)|> |k(wi ; (α)τi j )| for any α ∈8 and j > i > 1,
and such that τhiτi j = τhj for any h, i, j > 1 (see the proof of Proposition 2.3).

Then by Proposition 2.3, there are some q > p > 1 such that wq is a proper left
extension of wp. Since wp ∼L wq are in �, this implies that wq is not in E(�),
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a contradiction. This proves (1). Then (2) follows by (1) and the definition of the
set E(�). �

Remark 3.6. We say that a subset K of W is left-connected, if for any x, y ∈ K ,
there exists a sequence of elements x0 = x, x1, . . . , xr = y in K with some r > 0
such that xi−1x−1

i ∈ S for every 16 i 6 r . Lusztig conjectured in [Asai et al. 1983]
that any left cell of an affine Weyl group is left-connected. Although it has been
verified in many special cases [Shi 1986; 1988; 2008, Shi and Zhang 2008], the
conjecture is still open in general. Now the resulting set E(�) of Algorithm 3.4 is
useful in dealing with the conjecture. In fact, to verify the left-connectedness for a
left cell 0 of W in a two-sided cell�, we need only to construct a graph M(0) with
0 ∩ E(�) as its vertex set. We join two vertices x 6= y in 0 ∩ E(�) with an edge
once we find a sequence of elements x0 = x, x1, . . . , xr = y in 0 with some r > 0
such that xi−1x−1

i ∈ S for any 16 i 6 r . Then we complete the proof for 0 being
left-connected once the graph M(0) we are constructing becomes connected.

Example 3.7. The following example is provided by Q. Huang, one of my Ph.D.
students. Let W = Ẽ8 be with S = {si | 0 6 i 6 8} its distinguished genera-
tor set such that o(s1s3) = o(s3s4) = o(s2s4) = o(s4s5) = o(s5s6) = o(s6s7) =

o(s7s8) = o(s8s0) = 3. Let � be the two-sided cell of W containing the element
s2s3s4s2s3s4. Then we can get the set E(�) by Algorithm 3.4. We observe that the
elements w1 = s2s3s4s2s3s4 · s1s5s4s6 and w2 = s1s4s3s1s4s3 · s2s4s5s4s6 and w3 =

s3s5s4s3s5s4 · s1s2s3s4s5s6 in E(�) have the same right generalized τ -invariants
among themselves and have different right generalized τ -invariants from any other
element in E(�). On the other hand, the element y := s2·w2= s3s1·w1 is a common
left extension of both w1 and w2. Since L(y)={s1, s2, s3} and L(w2)={s1, s3, s4}

and L(s1w1)={s1, s2, s4} and L(w1)={s2, s3, s4}, the sequencew1, s1w1, y, w2 is
contained in some left cell (say 0) of W by Proposition 1.7. Also, the element x :=
s4s2s1·w3= s2s4s5·y is a common left extension of bothw2 andw3. Since L(w3)=

{s3, s4, s5} and L(s1w3) = {s1, s4, s5} and L(s2s1w3) = {s1, s2, s5} and L(x) =
{s1, s2, s4} and L(s5 y)= {s1, s2, s3, s5} and L(s4s5 y)= {s1, s4}, we see that y, s5 y
form a left primitive pair and so the sequencew2, y, s5 y, s4s5 y, x, s2s1w3, s1w3, w3

is contained in 0 by Proposition 1.7. Therefore 0 ∩ E(�) = {w1, w2, w3} by
Proposition 1.5. The graph M(0) with the vertex set {w1, w2, w3} has the edges
{w1, w2} and {w2, w3}; hence it is connected. This implies by Remark 3.6 that 0
is left-connected.

3.8. In the remaining part of the section, we always assume that the set F(�) is
known explicitly for a given two-sided cell � of W . For any x ∈ W , denote by
0x the left cell of W containing x . Take a distinguished subset F0(�) of F(�)
such that any w ∈ F0(�) is a shortest element in the left cell 0w and that for any
w ∈ F(�), there is some w′ ∈ F0(�) and some x ∈ W with w′ · x a shortest
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element in the left cell 0w. In particular, when all the elements of F(�) have the
same length (and hence each w ∈ F(�) is a shortest element in the left cell 0w
according to 4.6–4.7), we can take F0(�) to be any maximal distinguished subset
of F(�).

Lemma 3.9. Assume that the set F0(�) has been chosen for a two-sided cell � of
W . Then any left cell 0 in � contains a shortest element w that has an expression
of the form w = z · y for some z ∈ F0(�) and y ∈W .

Proof. Let 0 and 0′ be two left cells of W in� and let x ∈0. We see by 1.3(9) that
there exists a sequence x0 = x, x1, . . . , xr in � with some r > 0 such that xr ∈ 0

′

and that xi−1—xi and R(xi−1)#R(xi ) for every 16 i 6 r . We claim that for any
x ′ ∈ 0, there exists a sequence x ′0 = x ′, x ′1, . . . , x ′r such that x ′i−1—x ′i and x ′i ∼L xi

for every 16 i 6 r . To show the claim, it is enough to consider the case where r =1
and x ′—x with L(x ′)# L(x). Take s ∈R(x1) \R(x) and t ∈ L(x) \L(x ′). Then
we have ax1 6= 0 6= bx in the expressions CxCs =

∑
z azCz and CtCx ′ =

∑
y byCy ,

where az, by ∈ A. By the positivity of the coefficients of az , by in u [Lusztig 1985,
Section 3.1], we see that cx1 6= 0 in the expression CtCx ′Cs =

∑
v cvCv (cv ∈ A).

By the multiplicative associativity of H, this implies that there exists some x ′1 ∈W
with dx ′1 6= 0 6= fx1 in the expressions Cx ′Cs =

∑
y′ dy′Cy′ and CtCx ′1 =

∑
v′ fv′Cv′ ,

where dy′, fv′ ∈ A. By 1.3(1), we get a(x ′) = a(x) = a(x1) > a(x ′1) > a(x ′) and
hence a(x ′1) = a(x1). So x ′1 ∼L x1 by 1.3(2) and the fact x1 6L x ′1. The claim is
proved.

Now we are ready to show our result. Take a shortest element w′ in 0. Then
w′ ∈ E(�). There exist some z ∈ F(�) and y ∈W withw′= z ·y by Lemma 3.3(2).
By the construction of the set F0(�), there exist some z′ ∈ F0(�) and y′ ∈W such
that z′ · y′ ∼L z and `(z′ · y′) 6 `(z). Let y = s1s2 · · · sr be a reduced expression
of y with si ∈ S and let zi = zs1s2 · · · si for any 0 6 i 6 r . Then the sequence
z0 = z, z1, . . . , zr = w

′ is in � with zi−1—zi and si ∈ R(zi ) \R(zi−1). By the
claim above, there exists some sequence x0 = z′ · y′, x1, . . . , xr in � such that
xi−1—xi and xi ∼L zi for any 1 6 i 6 r . By 1.3(7), we have `(xr ) 6 `(x0)+ r 6
`(z)+ r = `(z · y) = `(w′). Since w′ is shortest in 0 and w′ ∼L xr , this forces
`(xr ) = `(w

′). Hence `(z′ · y′) = `(z) and xi = xi−1 · si for any 1 6 i 6 r ; in
particular, xr = z′ · y′ · y, which is a required element w in the lemma. �

3.10. For any left cell 0 in a two-sided cell � of W , let n(0) be the length of
a shortest element in 0. Then n(0) is also the smallest number of `(z · y) as
z · y ranges over all such expressions that z ∈ F0(�) and y ∈ W and z · y ∈ 0 by
Lemma 3.9. Let n(�) be the length of a shortest element in �.

By modifying Algorithm 3.4, we get the another algorithm such that the resulting
set forms an l.c.r. set of W in � (see Theorem 3.12):
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Algorithm 3.11. (1) Let X0 = {w ∈ F0(�) | `(w)= n(�)}.
For k > 0, suppose that the set Xk has been found.

(2) If Xk =∅, then our algorithm terminates;

(3) If Xk 6=∅, then find the set

X ′k+1={xs | x ∈ Xk, s ∈ S\R(x), xs ∈ E(�)}∪{w∈ F0(�) | `(w)= n(�)+k+1}.

Then take a maximal subset Xk+1 in X ′k+1 such that
⋃k+1

i=0 X i is distinguished
whenever X ′k+1 6=∅.

Theorem 3.12. Let E0(�) :=
⋃

k>0 Xk .

(1) E0(�)⊆ E(�).

(2) The set E0(�) forms an l.c.r. set of W in �.

(3) Any w ∈ E0(�) satisfies `(w)= n(0w).

Proof. Assertion (1) and the distinguishedness of E0(�) follows by the construc-
tion of the set E0(�). So for the assertions (2)–(3), it is enough to prove that
0∩ E0(�) contains an element w with `(w)= n(0) for any left cell 0 of W in �.

By Lemma 3.9, there exists some w′ ∈ 0 with `(w′)= n(0) (hence w′ ∈ E(�))
andw′= x ·y for some x ∈ F0(�) and y ∈W . We want to find somew∈ E0(�)∩0

with `(w) = n(0). Apply induction on n(0) > n(�) (see 3.10). If n(0) = n(�)
then there exists some w ∈ X0 ∩ 0 ⊆ E0(�) ∩ 0 by the construction of the set
F0(�) and Algorithm 3.11. Now assume n(0) > n(�). Let k = n(0)− n(�). If
w′ ∈ F0(�) then we can find some w ∈ Xk ∩0 ⊆ E0(�)∩0 by Algorithm 3.11.
If w′ = x · y /∈ F0(�), that is, `(y) > 0, take any s ∈R(y); then z := w′s ∈ E(�).

We claim that z is a shortest element in the left cell 0z , for, otherwise, there
would exist some z′ ∈ 0z with `(z′) < `(z). By 1.3(6), there is some w′′ ∈ 0 with
w′′—z′ by the facts that w′—z (by 1.1(2)) and z ∼L z′ and R(w′) * R(z). Since
s ∈R(w′)\R(z), we have s ∈R(w′′)\R(z′) by 1.3(4). Hence `(w′′)6 `(z′)+16
`(z) < `(w′) by 1.3(7), contradicting the assumption of `(w′) = n(0). The claim
is proved.

Since `(z) < `(w′), we have n(0z) < n(0). By the induction hypothesis, there
exists some z0 ∈ E0(�) ∩ 0z with `(z0) = n(0z) = `(z). By the same argument
as above with z0 in the place of z′, there exists some w0 ∈ 0 with w0—z0 and
s ∈R(w0) \R(z0) and `(w0)6 `(z0)+ 1= `(z)+ 1= `(w′). By the assumption
of `(w′) = n(0), we have `(w0) = `(z0)+ 1 and n(0) = n(0z)+ 1. Hence w0 =

z0 · s ∈ X ′k by 1.3(7). By the construction of the set Xk in Algorithm 3.11 and the
fact n(0)= `(w0), there must exist some element in the set Xk ∩0 (and hence in
E0(�)∩0). So our result follows by induction. �

Remark 3.13. (1) By Theorem 3.5, there is some t0 6 t with E0(�)=
⋃t0

k=0 Xk ,
where t is given as in Theorem 3.5(1).
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(2) In the case where all the elements in F0(�) have the same length, we can
take X0 = F0(�). This is so for most of the cases we have encountered while
applying Algorithm 3.11.

4. Some applications of Algorithm 3.11

Example 4.1. Let W = C̃4 be with S = {s0, s1, s2, s3, s4} its Coxeter generator
set, where o(s0s1) = o(s3s4) = 4 and o(s1s2) = o(s2s3) = 3. In the subsequent
discussion, we abbreviate the notation by writing si as i for 06 i 6 4.

The set W(5) is a single two-sided cell of W by Theorem 1.9. Let x1 = 01013,
x2 = 01014, x3 = 1210124, y1 = 34341, y2 = 34340, y3 = 3234320. Then F(W(5)) =

{xi , y j | 1 6 i, j 6 3}. Since x3 ∼L x221 and y3 ∼L y223 with `(x3) = `(x221) and
`(y3)= `(y223), we can take F0(W(5))= {x1, x2, y1, y2} by 3.8.

By applying Algorithm 3.11, we get the following:

X0=F0(W(5)).

X1= X ′1={x12, x22, y12, y22}.

X2= X ′2={x121, x123, x221, x223, y123, y121, y223, y221}.

X ′3={x1210, x1213, x1234, x2210, x2213, x2234, y1234, y1231, y1210, y2234, y2231, y2210},

X3={x1210, x1213, x1234, x2213, x2234, y1234, y1231, y1210, y2231, y2210}

since x2210∼L x22 and y2234∼L y22.

X ′4={x12101, x12310, x12134, x12343, x22103, x22132, x22134, y12343,

y12134, y12310, y12101, y22341, y22312, y22310},

X4={x12101, x12310, x12134, x12343, x22132, x22134,

y12343, y12134, y12310, y12101, y22312, y22310}

since x22103∼L x223 and y22341∼L y221.

X ′5={x123104, x121343, x221032, x221034, x221324, y121340, y123101,

y223412, y223410, y223120},

X5={x123104, x121343, x221034, x221324, y121340, y123101, y223410, y223120}

since x221032∼L x123 and y223412∼L y121.

X ′6={x1231043, x1213432, x2210324, x2213243, y1213401, y1231012, y2234120, y2231201},

X6={x1231043, x1213432, x2213243, y1213401, y1231012, y2231201}

since x2210324∼L x1234 and y2234120∼L y1210.

X ′7={x12310432, x22132434, y12134012, y22312010}.

X7={x12310432, y12134012} since x22132434∼L y12343 and y22312010∼L x12101.

X8= X ′8={x123104321, y121340123}.

X9= X ′9={x1231043210, y1213401234}.
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Since X10 = X ′10 = ∅, we see by Theorem 3.12 that E0 =
⋃9

i=0 X i forms an
l.c.r. set of W in W(5) with |X | = 56.

4.2. The most technical part in applying Algorithm 3.11 is to determine whether
or not the element xs is in E(�) for any given x ∈ Xk and s ∈ S \ R(x), that
is, to check the equation a(xs) = a(x) and the inequality a(r xs) < a(xs) for any
r ∈ L(xs).

4.3. Checking the equation a(xs)= a(x) amounts to determining the value a(xs).
The relation a(xs)> a(x) holds in general by 1.3(5).

It would be helpful to find all the graphs M(x) and M(xs) for any x ∈ Xk and
any s ∈ S \R(x).

These graphs could be worked out efficiently by computer program. In the case
when the graph M(x) is larger or even infinite, one need only to work out a local
part M of M(x) around the vertex x . It depends on the actual size of M. Usually,
we take M to be a connected subgraph with vertex set M ⊆ M(x) satisfying that

(∗) the condition 0 ∩M(x) 6=∅ implies 0 ∩M 6=∅ for any left cell 0 of W .

Call a subgraph M of M(x) representative if the vertex set M of M satisfies
condition (∗).

Checking that a subgraph M is representative in M(x) is an easy matter: One
need only check if there always exists some z0 ∈ M satisfying z0 ∼L z for any
y ∈ M and any z ∈ M(x) with {y, z} an edge of M(x).

For any x ∈ W , the following method is efficient for finding the value a(x) in
the case where a direct computation for a(x) is difficult (for example, when `(x) is
larger). One may try to find a sequence x0= x, x1, . . . , xr in W such that for every
1 6 i 6 r , the element xi si is in M(xi−1) with {xi , xi si } a right primitive pair for
some si ∈ S and such that the computation for the value a(xr ) is much easier than
that for a(x) (for example, this is the case when wJ ∈ M(xr ) for some J ⊂ S). In
this case, we have a(x)= a(xr ) by repeatedly applying Proposition 1.7.

In practice, we often choose such a sequence x0= x, x1, . . . , xr with `(xr )much
smaller than `(x0) since the value a(z) can generally be computed relatively more
easily when `(z) is getting smaller.

When W is a finite Weyl group, one can easily get the value a(x) from the value
a(w0x) by Theorem 1.9 and by the knowledge of the special unipotent classes
of the corresponding reductive algebraic group, where w0 is the longest element
of W ; see [Kazhdan and Lusztig 1979, Section 3.3].

4.4. For any x ∈ Xk and any s∈ S\R(x)with a(xs)=a(x), checking the inequality
a(r xs) < a(xs) for any r ∈L(xs) amounts to checking if we always have y = 1 in
any expression of the form xs = y ·w · z with w ∈ F(�) and y, z ∈ W . The latter
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can proceed efficiently in terms of alcoves forms of elements once the set F(�) is
given explicitly.

4.5. To find Xk+1 from the set
(⋃k

i=0 X i
)
∪ X ′k+1, we need to determine whether

or not two concerning elements x, y, with at least one of them in X ′k+1, are in the
same left cell of W .

By Propositions 1.5 and 1.7, this can proceed either by comparing their right
generalized τ -invariants or with the aid of right primitive pairs.

Suppose that we have all the graphs M(x) (or their representative subgraphs)
with x ranging over

(⋃k
i=0 X i

)
∪ X ′k+1. These data will help us in determining if

two elements (say x, y) so obtained are in the same left cell: We have x ∼L y only
if x and y have the same right generalized τ -invariants, while 1.3(6) provides a
complete invariant for the relation ∼L.

4.6. The most interesting for our algorithm is when F(�)={wJ ∈� | J ⊆ S} 6=∅.
In this case, F(�) is distinguished and all the elements in F(�) have the same
length; hence F0(�) = F(�) by 3.8. The following are some known cases (not
exhaustive) for F(�) of such a form:

(1) � is the lowest two-sided cell of W under the partial order6LR; see [Shi 1988,
Section 1.1].

(2) � consists of fully commutative elements (for example, the case when the
Coxeter graph of W contains no subgraph of type D4, B̃3 or F̃4, and� contains
a fully commutative element); see [Shi 2003, Theorem 3.4 and Section 3.5].

(3) W is of simply laced type and a(�)6 6; see [Shi 2008, Theorem B].

(4) W is of type Ãn−1 with n > 1 and � corresponds to a partition

λ= (λ1, . . . , λr , 1, . . . , 1)

of n with λr + 1> λ1 > · · ·> λr > 1; see [Shi 1994c, Theorem 3.1].

(5) W is of type C̃l with l > 1 and a(�)= (l − 1)2+ 1.

(6) W is of type B̃l with l > 2 and a(�)= l(l − 1).

4.7. We can describe the set F(�) for some two-sided cell � of W even when
F(�) does not consist of elements of the form wJ , J ⊆ S. For example, when
W = D̃4, the set W(7) = {z ∈ W | a(z) = 7} forms a single two-sided cell but
contains no element of the form wJ for J ⊂ S. Let s0, s1, s2, s3, s4 be the Coxeter
generator set of W with s2 corresponding to the branching node of its Coxeter
graph. Then

F(W(7))= {si s2sksi s2si s j s2si | i, j, k ∈ {0, 1, 3, 4} distinct};

see [Du 1990, Theorem 4.6].
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It is desirable to find the sets F(�) for more two-sided cells � of W in order to
apply Algorithm 3.11.

Some more technical tricks are needed to apply the algorithm. For example,
when the set W(i)=

⋃r
j=1� j for some i ∈N is a union of two-sided cells � j with

some r > 1, sometimes we know the set

F(W(i)) := {x ∈W(i) | a(t x) < i and a(xs) < i for all t ∈ L(x), s ∈R(x)}

but not the sets F(� j ) individually. Let us explain it by some examples.

Examples 4.8. Let W = C̃4 with S = {0, 1, 2, 3, 4} be as in Example 4.1.

(a) The set W(3) is a union of two two-sided cells (say �3,1 and �3,2) of W by
Theorem 1.9. We have F(W(3)) = {121, 232, 024} and F0(�3,i ) = F(�3,i ). At
moment, we don’t know what the set F0(�3,i ) is for any i = 1, 2. So we have
to assume X0 = {121, 232, 024} in applying Algorithm 3.11 to find an l.c.r. set for
each of the �3,i , i = 1, 2. We get

X ′1 = {1213, 1210, 2324, 2321, 0241, 0243},

X1 = {1213, 1210, 2324, 0241, 0243} since 2321∼L 1213.

X ′2 = {12134, 12130, 12101, 23241, 23243, 02413, 02410, 02434},

X2 = {12134, 12130, 12101, 23243, 02413, 02410, 02434} since 23241∼L 12134.

X3 = X ′3 = {121343, 121340, 121301, 024132, 024103, 024341}.

X4 = X ′4 = {1213432, 1213430, 1213014, 1213012, 0241324, 0241320, 0241034}.

X5 = X ′5 = {12134320, 12130142, 12130143, 02413243, 02413201}.

X6 = X ′6 = {121343201, 121301423, 121301432, 024132434, 024132010}.

X7 = X ′7 = {1213432010, 1213014234}.

X8 = X ′8 =∅.

We call a subset K of W right-connected if, for any pair x, y ∈ K , there is a
sequence x0 = x, x1, . . . , xr = y in K with some r > 0 such that x−1

i xi−1 ∈ S for
every 16 i 6 r .

By 1.3(2), we see that for any i>0 with W(i) 6=∅, any nonempty right-connected
subset of W(i) is contained in a right cell of W and hence also in a two-sided cell
of W .

Assume 121 ∈�3,1. Let

E1 = {121, 232, 1213, 1210, 2324, 12134, 12130, 12101, 23243, 121343, 121340, 121301,

1213432, 1213430, 1213014, 1213012, 12134320, 12130142, 12130143,

121343201, 121301423, 121301432, 1213432010, 1213014234},

E2 = {024, 0241, 0243, 02413, 02410, 02434, 024132, 024103, 024341, 0241324, 0241320,

0241034, 02413243, 02413201, 024132434, 024132010}.
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Then 121 ∈ E1 and E :=
⋃2

i=1 E0(�3,i ) =
⋃7

k=0 Xk = E1 ∪ E2. We see that
E2 is a maximal right-connected subset of the set E . Also, E ′ := E1 ∪ {2321} is
a union of two right-connected subsets with 1213 ∼L 2321 such that 1213 and 2321

belong to different right-connected subsets of E ′. This implies that E0(�3,1)= E1

and E0(�3,2)= E2 by 1.3(2) and by the fact that W(3) =
⋃2

i=1�3,i .

(b) The set W(4) is a union of two two-sided cells (say �4,1 and �4,2) of W by
Theorem 1.9. Let x1 = 0101, x2 = 1214, x3 = 121012, y1 = 3434, y2 = 2320, y3 = 232432.
Then F(W(4)) = {xi , y j | 1 6 i, j 6 3}. Since x3 ∼L x121 and y3 ∼L y123 with
`(x121)= `(x3) and `(y123)= `(y3), we can take

⋃2
i=1 F0(�4,i )= {x1, x2, y1, y2}

by 3.8. Again, we don’t know yet what the set F0(�4,i ) is for any i = 1, 2. We
assume X0 = {x1, x2, y1, y2} in applying Algorithm 3.11. Then

X1= X ′1={x12, x23, x20, y12, y21, y24}.

X2= X ′2={x121, x123, x230, x232, x234, x201, y123, y121, y210, y212, y214, y243}.

X ′3={x1210, x1213, x1234, x2301, x2324, x2304, y1234, y1213, y1210, y2143, y2102, y2104},

X3={x1213, x1234, x2301, x2324, x2304, y1213, y1210, y2143, y2102, y2104}

since x1210∼L x12 and y1234∼L y12.

X ′4={x12103, x12132, x12134, x12343, x23012, x23014, x23243, y12101, y12103, y12132,

y12134, y21043, y21432, y21021},

X4={x12132, x12134, x12343, x23012, x23014, x23243, y12101, y12103,

y12132, y21043, y21432, y21021}

since x12103∼L x123 and y12134∼L y121.

X ′5={x121034, x121324, x121343, x123432, x230124, y121012, y121013,

y121032, y121034, y210432},

X5={x121324, x121343, x123432, x230124, y121012, y121013, y121032, y210432}

since x121034∼L x1234 and y121034∼L y1210.

X ′6={x1210343, x1213243, x1213432, x1234321, x2301243, y1210123, y1210132,

y1210134, y1210321, y2104321},

X6={x1213243, x1213432, x1234321, x2301243, y1210123, y1210132, y1210321, y2104321}

since x1210343∼L x12343 and y1210134∼L y12101.

X ′7={x12103432, x12134321, x12343210, x23012434, y12341012, y12310123,

y12101234, y21432010},

X7={x12343210, x23012434, y12101234, y21432010} since x12103432∼L x123432

and x12134321∼L y12132 and y12341012∼L y121012 and y12310123∼L x12312.

X8= X ′8=∅.

Assume x1 ∈ �4,1. Then 1.3(2) gives E0(�4,1) = E11 ∪ E12 and E0(�4,2) =

E21 ∪ E22, where
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E11 = {x1, x12, x121, x123, x1213, x1234, x12132, x12134, x12343, x121324,

x121343, x123432, x1213243, x1213432, x1234321, x12343210},

E12 = {y1, y12, y121, y123, y1210, y1213, y12101, y12103, y12132, y121012,

y121013, y121032, y1210123, y1210132, y1210321, y12101234},

E21 = {x2, x23, x20, x230, x232, x234, x201, x2301, x2324, x2304, x23012, x23014,

x23243, x230124, x2301243, x23012434},

E22 = {y2, y21, y24, y210, y214, y212, y243, y2102, y2104, y2143, y21043, y21432,

y21021, y210432, y2104321, y21043210}

by the following facts:

(i) Each of Ei j for i, j = 1, 2 is a maximal right-connected set in
⋃2

i, j=1 Ei j .

(ii) y212∼R y2124∼L x2 and y212 ∈ E22 and x2 ∈ E21.

(iii) {x1213423, x12134232} forms a right primitive pair.

(iv) x1213423∈ E11 and y1 ∈ E12 and x12134232∼L 234232∼R 2342324∼R 234234∼L y1.

(v) W(4) is a union of two two-sided cells of W .

4.9. Assume that W is an irreducible finite or affine Coxeter group of simply laced
type. We see by [Shi 2008, Lemma 6.1] that if w ∈ W satisfies a(w) > 6 and
a(tw), a(ws) < a(w) for any t ∈ J := L(w) and s ∈ I := R(w), then we have
`(wJ ), `(wI ) > 6. This fact will help us to find the set F(W(7)). Actually, all
the elements of the form wJ with J ⊆ S and `(wJ ) = 7 should be in F(W(7)),
while all the other elements w of F(W(7)) should satisfy `(wJ ) = `(wI ) = 6 and
a(tw), a(ws) < a(w) = 7 for any t ∈ J := L(w) and s ∈ I := R(w). The set
F(W(k)) for k > 7 can be described similarly but with more cases.

Example 4.10. Let W = Ẽ6 be with S = {si | 06 i 6 6} its Coxeter generator set,
where o(s1s3) = o(s3s4) = o(s4s2) = o(s2s0) = o(s4s5) = o(s5s6) = 3. Then the
set W(7) is a single two-sided cell of Ẽ6 by Theorem 1.9. Denote si simply by i,
06 i 6 6. By the facts mentioned in 4.9, we get

F(W(7))= {w1346, w1340, w0246, w0241, w4561, w4560, w2346, w2451, w3450,

w13562, w13560, w13025, w13026, w02561, w02563,

w243 · 543, w243 · 542, w345 · 243, 2031 ·w342, 5631 ·w345, 5620 ·w245,

w245 · 345, w345 · 245, w245 · 342, w342 · 1302, w345 · 1365, w245 · 0265}.

The set F0(W(7)) is obtained from F(W(7)) by removing the last nine elements
since w243 · 543∼L w245 · 345∼L 5631 ·w345 and w243 · 542∼L w345 · 245∼L 5620 ·w245
andw345 ·243∼Lw245 ·342∼L 2031·w342 andw342 ·1302∼Lw1340 ·20 andw345 ·1365∼L

w4561 · 31 and w245 · 0265∼L w0246 · 56.
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Remark 4.11. In each of Examples 4.1, 4.8 and 4.10, the related set F(W(k)) is
given at the beginning. Since it is the set of all two-sided minimal elements w of
W(k) (that is, w ∈W(k) but sw,wt /∈W(k) for any s ∈L(w) and t ∈R(w)), F(W(k))

can be found easily because it was described explicitly for all the sets W(k) for
k ∈ N of the group C̃4 and for the set W(7) of Ẽ6; see [Shi 1998b; Shi and Zhang
2006]. In general, without knowing the set W(k) in advance, the set F(W(k)) for
k ∈ N of any Weyl or affine Weyl group W can be found recurrently as follows.
By Theorem 1.9 and the knowledge of unipotent conjugacy classes of reductive
algebraic groups [Carter 1985], we can get the set E(W ) := {i ∈N |W(i) 6=∅}. For
any k ∈ E(W ), suppose that the sets F(W(h))) for h < k have been found already.
Then the set W<k := {w ∈W | a(w) < k} =

⋃
h<k W(h) can be described explicitly

by Algorithm 3.11 together with some other techniques. Find the set E>k of all
two-sided minimal elements of W \W<k , which is finite by Theorem 1.9 and by
the fact E>k ⊆

⋃
�∈Cell(W ) F(�). One can determine the set F(W(k)) = {w ∈

E>k | a(w)= k} by computing the a-values of elements in E>k .
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