Vol. 256, No. 2, 2012

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Invariants of totally real Lefschetz fibrations

Nermin Salepci

Vol. 256 (2012), No. 2, 407–433
Abstract

We introduce certain invariants of real Lefschetz fibrations and call these invariants real Lefschetz chains. We prove that if the fiber genus is greater than 1, then the real Lefschetz chains are complete invariants of totally real Lefschetz fibrations. If however the fiber genus is 1, real Lefschetz chains are not sufficient to distinguish real Lefschetz fibrations. We show that by adding a certain binary decoration to real Lefschetz chains, we get a complete invariant.

Keywords
Lefschetz fibrations, real structure, monodromy
Mathematical Subject Classification 2010
Primary: 55R15, 55R55
Secondary: 57M05
Milestones
Received: 21 April 2011
Accepted: 14 December 2011
Published: 30 May 2012
Authors
Nermin Salepci
Institut Camille Jordan
Université Lyon I
43, Boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex
France
http://math.univ-lyon1.fr/~salepci/