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O-OPERATORS ON ASSOCIATIVE ALGEBRAS AND
ASSOCIATIVE YANG–BAXTER EQUATIONS

CHENGMING BAI, LI GUO AND XIANG NI

An O-operator on an associative algebra is a generalization of a Rota–Baxter
operator that plays an important role in the Hopf algebra approach of
Connes and Kreimer to the renormalization of quantum field theory. It
is also the associative analog of an O-operator on a Lie algebra in the study
of the classical Yang–Baxter equation. We introduce the concept of an ex-
tended O-operator on an associative algebra whose Lie algebra analog has
been applied to generalized Lax pairs and PostLie algebras. We study alge-
braic structures coming from extended O-operators. Continuing the work of
Aguiar deriving Rota–Baxter operators from the associative Yang–Baxter
equation, we show that its solutions correspond to extended O-operators
through a duality. We also establish a relationship of extended O-operators
with the generalized associative Yang–Baxter equation.

1. Introduction

1a. Motivation. The interaction between studies in pure mathematics and math-
ematical physics has long been a rich source of inspirations that benefited both
fields. One such instance can be found in the seminal work of Connes and Kreimer
[Connes and Kreimer 2000; Kreimer 1999] on their Hopf algebra approach to the
renormalization of quantum field theory. There a curious algebraic identity of linear
operators appeared that turned out to be investigated concurrently in the contexts
of operads, associative Yang–Baxter equation [Aguiar 2000a; 2000b; 2001], and
commutative algebra [Guo and Keigher 2000a; 2000b; Guo 2000], under the name
of the Baxter identity (later called the Rota–Baxter identity). It originated in the
probability study of G. Baxter [1960] and was influenced by the combinatorial
interests of G.-C. Rota [1969a; 1969b; 1995]. Connes and Kreimer’s discovery of
the connection between Rota–Baxter operators and quantum field theory inspired
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numerous studies to better understand the role played by the Rota–Baxter iden-
tity in quantum field theory renormalization, as well as in applying the idea of
renormalization to study divergency in mathematics [Ebrahimi-Fard et al. 2004;
Ebrahimi-Fard et al. 2006; Guo and Zhang 2008; Manchon and Paycha 2010].

In this paper we consider a generalization of the Rota–Baxter operator in the
relative context called the O-operator. It came from another connection between
Rota–Baxter operators (on Lie algebras) and mathematical physics. In special
cases, the Rota–Baxter identity for Lie algebras coincides with the operator form of
the classical Yang–Baxter equation, named after the well-known physicists Yang
[1967] and Baxter [1972]. The connection has its origin in the work of Semenov-
Tyan-Shanskiı̆ [1983] and its extension led to the concept of O-operators [Bai 2007;
Bordemann 1990; Kupershmidt 1999]. The relation defining an O-operator was
also called the Schouten curvature by Kosmann-Schwarzbach and Magri [1988],
and is the algebraic version of the contravariant analog of the Cartan curvature of
the Lie algebra-valued one-form on a Lie group.

Back to associative algebras, the first connection between Rota–Baxter opera-
tors and an associative analog of the classical Yang–Baxter equation was made by
Aguiar [2000a; 2000b], who showed that a solution of the associative Yang–Baxter
equation (AYBE) gives rise to a Rota–Baxter operator of weight zero.

Our study of this connection in this paper was motivated by the O-operator ap-
proach to the classical Yang–Baxter equation, but we go beyond what was known
in the Lie algebra case. On one hand, we generalize the concept of a Rota–
Baxter operator to that of an O-operator (of any weight)1 and further to extended
O-operators. On the other hand, we investigate the operator properties of the as-
sociative Yang–Baxter equation motivated by the study in the Lie algebra case.
Through this approach, we show that the operator property of solutions of the
associative Yang–Baxter equation is to a large extent characterized by O-operators.
This generalization in the associative context, motivated by Lie algebra studies,
has in turn motivated us to establish a similar generalization for Lie algebras and
to apply it to generalized Lax pairs, classical Yang–Baxter equations and PostLie
algebras [Bai et al. 2010b; 2011; Vallette 2007].

Our approach connects (extended) O-operators to solutions of the AYBE and
its generalizations, and therefore [Bai 2010] to the construction of antisymmetric
infinitesimal bialgebras and their related Frobenius algebras. The latter plays an
important role in topological field theory [Runkel et al. 2007]. In particular, we
are able to reverse the connection made by Aguiar and derive, from a Rota–Baxter

1In the weight zero case, this has been considered by Uchino [2008] under the name “generalized
Rota–Baxter operator”. In the general case, the term “relative Rota–Baxter operator” is also used
[Bai et al. 2010a].
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operator of any weight, a solution of the AYBE and hence give an antisymmetric
infinitesimal bialgebra. For further details, see [Bai et al. 2012, Section 4].

1b. Rota–Baxter algebras and Yang–Baxter equations.

Notation. In the rest of this paper, k denotes a field. By an algebra we mean an
associative (not necessarily unitary) k-algebra, unless otherwise stated.

Definition 1.1. Let R be a k-algebra and let λ ∈ k be given. If a k-linear map
P : R→ R satisfies the Rota–Baxter relation

(1-1) P(x)P(y)= P(P(x)y)+ P(x P(y))+ λP(xy) for all x, y ∈ R,

then P is called a Rota–Baxter operator of weight λ and (R, P) is called a Rota–
Baxter algebra of weight λ.

For simplicity, we will only discuss the case of Rota–Baxter operators of weight
zero in the introduction.

Relation (1-1) still makes sense when R is replaced by a k-module with any
binary operation. If the binary operation is the Lie bracket and if the Lie algebra
is equipped with a nondegenerate symmetric invariant bilinear form, then a skew-
symmetric solution of the classical Yang–Baxter equation

(1-2) [r12, r13] + [r12, r23] + [r13, r23] = 0.

is just a Rota–Baxter operator of weight zero. We refer the reader to [Bai 2007;
Ebrahimi-Fard 2002; Semenov-Tyan-Shanskiı̆ 1983] for further details.

We will consider the following associative analog of the classical Yang–Baxter
equation (1-2).

Definition 1.2. Let A be a k-algebra. An element r ∈ A⊗ A is called a solution
of the associative Yang–Baxter equation in A if it satisfies the relation

(1-3) r12r13+ r13r23− r23r12 = 0,

called the associative Yang–Baxter equation (AYBE). Here, for r =
∑

i ai ⊗ bi ∈

A⊗ A, we denote

(1-4) r12 =
∑

i

ai ⊗ bi ⊗ 1, r13 =
∑

i

ai ⊗ 1⊗ bi , r23 =
∑

i

1⊗ ai ⊗ bi .

Both (1-3) and the associative analog

(1-5) r13r12− r12r23+ r23r13 = 0

of (1-2) were introduced by Aguiar [2000a; 2000b; 2001]. In fact, (1-3) is just
(1-5) in the opposite algebra [Aguiar 2001]. When r is skew-symmetric it is easy
to see that (1-3) comes from (1-5) under the operation σ13(x⊗ y⊗ z)= z⊗ y⊗ x .
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While (1-5) was emphasized by Aguiar in the works above, we will work with (1-3)
for notational convenience and to be consistent with some of the earlier works on
connections with antisymmetric infinitesimal bialgebras [Bai 2010] and associative
D-bialgebras [Zhelyabin 1997].

Theorem 1.3 [Aguiar 2000b]. Let A be a k-algebra. If r =
∑

i ai ⊗ bi ∈ A⊗ A is
a solution of (1-5) in A, the map

P : A→ A, x 7→
∑

i
ai xbi

defines a Rota–Baxter operator of weight zero on A.

The theorem is obtained by replacing the tensor symbols in

r13r12− r12r23+ r23r13

=

∑
i, j

ai a j ⊗ b j ⊗ bi −
∑
i, j

ai ⊗ bi a j ⊗ b j +
∑
i, j

a j ⊗ ai ⊗ bi b j = 0

by x and y in A.

1c. O-operators. We will introduce an extended O-operator as a generalization of a
Rota–Baxter operator and the associative analog of an O-operator on a Lie algebra.
We then extend the connections of Rota–Baxter algebras with associative Yang–
Baxter equations to those of O-operators. This study is motivated by the relation-
ship between O-operator and the classical Yang–Baxter equation in Lie algebras
[Bai 2007; Bai et al. 2010b; Bordemann 1990; Kupershmidt 1999]

Let (A, · ) be a k-algebra. Let (V, `, r) be an A-bimodule, consisting of a com-
patible pair of a left A-module (V, `) given by ` : A→ Endk(V ) and a right A-
module (V, r) given by r : A→Endk(V ); see Section 2a for the precise definition.
Fix a κ ∈ k. A pair (α, β) of linear maps α, β : V → A is called an extended
O-operator with modification β of mass κ if

κ`(β(u))v = κur(β(v)) and

α(u) ·α(v)−α(l(α(u))v+ ur(α(v)))= κβ(u) ·β(v) for all u, v ∈ V .

When β = 0 or κ = 0, we obtain the concept of an O-operator α satisfying

(1-6) α(u) ·α(v)= α(`(α(u))v)+α(ur(α(v))) for all u, v ∈ V .

When V is taken to be the A-bimodule (A, L , R), where L , R : A → Endk(A)
are given by the left and right multiplications, an O-operator α : V → A of weight
zero is just a Rota–Baxter operator of weight zero. To illustrate the close relation-
ship between O-operators and solutions of the AYBE (1-3), we give the following
reformulation of a part of Corollary 3.6. See Section 3 for general cases.
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Let k be a field whose characteristic is not 2. Let A be a k-algebra that we for
now assume to have finite dimension over k. Let

σ : A⊗ A→ A⊗ A, a⊗ b 7→ b⊗ a,

be the switch operator and let

t : Homk(A∗, A)→ Homk(A∗, A)

be the transpose operator. Then the natural bijection

φ : A⊗ A→ Homk(A∗,k)⊗ A→ Homk(A∗, A)

is compatible with the operators σ and t . Let Sym2(A⊗A) and Alt2(A⊗A) (respec-
tively Homk(A∗, A)+ and Homk(A∗, A)−) be the eigenspaces for the eigenvalues
1 and −1 of σ on A ⊗ A (respectively of t on Homk(A∗, A)). Then we have a
commutative diagram of bijective linear maps given by

(1-7)

A⊗ A // φ // //
��

����

Homk(A∗, A)
��

����
Alt2(A⊗ A)⊕Sym2(A⊗ A) // φ // // Homk(A∗, A)−⊕Homk(A∗, A)+,

which preserves the factorizations. Define Hombim(A∗, A)+ to be the subset of
Homk(A∗, A)+ consisting of A-bimodule homomorphisms from A∗ to A, both of
which are equipped with the natural A-bimodule structures. Let

Sym2
bim(A⊗ A) := φ−1(Hombim(A∗, A)+)⊆ Sym2(A⊗ A).

Then we have this (see Corollary 3.6):

Theorem 1.4. An element r= (r−, r+)∈Alt2(A⊗A)⊕Sym2
bim(A⊗A) is a solution

of the AYBE (1-3) if and only if the pair φ(r) = (φ(r)−, φ(r)+) = (φ(r−), φ(r+))
is an extended O-operator with modification φ(r+) of mass κ =−1. In particular,
when r+ is zero, an element r = (r−, 0) = r− ∈ Alt2(A⊗ A) is a solution of the
AYBE if and only if the pair φ(r)= (φ(r)−, 0)= φ(r−) is an O-operator of weight
zero given by (1-6) when (V, `, r) is the dual bimodule (A∗, R∗, L∗) of (A, L , R).

Let MO(A∗, A) denote the set of extended O-operators (α, β) from A∗ to A
of mass κ = −1. Let O(A∗, A) denote the set of O-operators α : A∗ → A of
weight 0. Let AYB(A) denote the set of solutions of the AYBE (1-3) in A. Let
SAYB(A) denote the set of skew-symmetric solutions of the AYBE (1-3) in A.
Then Theorem 1.4 means that the bijection in (1-7) restricts to bijections in the
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following commutative diagram:

Alt2(A⊗ A)⊕Sym2
bim(A⊗ A)

**
φ

** **
Homk(A∗, A)−⊕Hombim(A∗, A)+

AYB(A)
⋂
(Alt2(A⊗ A)⊕Sym2

bim(A⊗ A))
**

φ

** **

?�

OO

MO(A∗, A)
⋂
(Homk(A∗, A)−⊕Hombim(A∗, A)+)

?�

OO

SAYB(A)
?�

OO

**
φ

** **
O(A∗, A)

⋂
Homk(A∗, A)−
?�

OO

1d. Layout of the paper. In Section 2, we introduce extended O-operators and
study their connection with the associativity of certain products. Section 3 es-
tablishes the relationship of extended O-operators with associative and extended
associative Yang–Baxter equations. Section 4 introduces the concept of the gener-
alized associative Yang–Baxter equation (GAYBE) and considers its relationship
with extended O-operators.

2. O-operators and extended O-operators

We give background notation in Section 2a before introducing the concept of an
extended O-operator in Section 2b. We then show in Section 2c and 2d that ex-
tended O-operators can be characterized by the associativity of a multiplication
derived from this operator.

2a. Bimodules, A-bimodule k-algebras and matched pairs of algebras.

Definition 2.1. Let (A, · ) be a k-algebra.

(i) An A-bimodule is a k-module V and linear maps `, r : A→ Endk(V ) such
that (V, `) defines a left A-module, (V, r) defines a right A-module and the
two module structures on V are compatible in the sense that

(`(x)v)r(y)= `(x)(vr(y)) for all x, y ∈ A, v ∈ V .

If we want more precision, we denote an A-bimodule V by the triple (V, `, r).
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(ii) A homomorphism between two A-bimodules (V1, `1, r1) and (V2, `2, r2) is a
k-linear map g : V1→ V2 such that

g(`1(x)v)= `2(x)g(v) and g(vr1(x))= g(v)r2(x) for all x ∈ A, v ∈ V1.

For a k-algebra A and x ∈ A, define the left and right actions

L(x) : A→ A, L(x)y= xy and R(x) : A→ A, y R(x)= yx for all y ∈ A.

Further define

L= L A : A→Endk(A), x 7→ L(x) and R= RA : A→Endk(A), x 7→ R(x).

Obviously, (A, L , R) is an A-bimodule.
For a k-module V , let V ∗ := Homk(V,k) denote the dual k-module. Denote

the usual pairing between V ∗ and V by

〈 · , · 〉 : V ∗× V → k, 〈u∗, v〉 = u∗(v) for all u∗ ∈ V ∗ and v ∈ V .

Proposition 2.2 [Bai 2010]. Let A be a k-algebra and let (V, `, r) be an A-
bimodule. Define the linear maps `∗, r∗ : A→ Endk(V ∗) by

〈u∗`∗(x), v〉 = 〈u∗, `(x)v〉 and 〈r∗(x)u∗, v〉 = 〈u∗, vr(x)〉

for all x ∈ A, u∗ ∈ V ∗ and v ∈ V . Then (V ∗, r∗, `∗) is an A-bimodule, called the
dual bimodule of (V, `, r).

Let (A∗, R∗, L∗) denote the dual A-bimodule of the A-bimodule (A, L , R).
We next extend the concept of a bimodule to that of an A-bimodule algebra by

replacing the k-module V by a k-algebra R.

Definition 2.3. Let (A, · ) be a k-algebra with multiplication · and let (R, ◦ ) be
a k-algebra with multiplication ◦ . Let `, r : A→ Endk(R) be two linear maps.
We call R (or the triple (R, `, r) or the quadruple (R, ◦ , `, r)) an A-bimodule k-
algebra if (R, `, r) is an A-bimodule that is compatible with the multiplication ◦
on R. More precisely, we have, for all x, y ∈ A and v,w ∈ R

`(x · y)v = `(x)(`(y)v), `(x)(v ◦w)= (`(x)v) ◦w,(2-1)

vr(x · y)= (vr(x))r(y), (v ◦w)r(x)= v ◦ (wr(x)),(2-2)

(`(x)v)r(y)= `(x)(vr(y)), (vr(x)) ◦w = v ◦ (`(x)w).(2-3)

Obviously, for any k-algebra (A, · ), the triple (A, · , L , R) is an A-bimodule
k-algebra. An A-bimodule k-algebra R need not be a left or right A-algebra since
we do not assume that A · 1 is in the center of R. For example, the A-bimodule
k-algebra (A, L , R) is an A-algebra if and only if A is a commutative ring.

An A-bimodule k-algebra is a special case of a matched pair as introduced in
[Bai 2010]. It is easy to get the following result, which is a generalization of the
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classical result between bimodule structures on V and semidirect product algebraic
structures on A⊕ V .

Proposition 2.4. If (R, ◦ , `, r) is an A-bimodule k-algebra, then the direct sum
A⊕ R of vector spaces is turned into a k-algebra (the semidirect sum) by defining
multiplication in A⊕ R by

(x1, v1) ∗ (x2, v2)= (x1 · x2, `(x1)v2+ v1r(x2)+ v1 ◦ v2)

for all x1, x2 ∈ A and v1, v2 ∈ R.

We denote this algebra by A n`,r R or simply A n R.

2b. Extended O-operators. We first define an O-operator before introducing an
extended O-operator through an auxiliary operator.

Definition 2.5. Let (A, · ) be a k-algebra and (R, ◦ , `, r) be an A-bimodule k-
algebra. A linear map α : R→ A is called an O-operator of weight λ∈k associated
to (R, ◦ , `, r) if α satisfies

(2-4) α(u) ·α(v)= α(`(α(u)v))+α(ur(α(v)))+ λα(u ◦ v) for all u, v ∈ V .

Remark 2.6. Under our assumption that k is a field, the nonzero weight can
be normalized to weight 1. In fact, for a nonzero weight λ ∈ k, if α is an O-
operator of weight λ associated to an A-bimodule k-algebra (R, ◦ , `, r), then α is
an O-operator of weight 1 associated to (R, λ◦ , `, r) and α/λ is an O-operator of
weight 1 associated to (R, ◦ , `, r).

When the multiplication on the A-bimodule k-algebra happens to be trivial, an
O-operator is just a generalized Rota–Baxter operator defined in [Uchino 2008].
Further, an O-operator associated to (A, L , R) is just a Rota–Baxter operator on A.
An O-operator can be viewed as the relative version of a Rota–Baxter operator in
that the domain and range of an O-operator might be different. Thus an O-operator
is also called a relative Rota–Baxter operator.

We now further generalize the concept of an O-operator.

Definition 2.7. Let (A, · ) be a k-algebra.

(i) Let κ ∈ k and let (V, `, r) be an A-bimodule. A linear map (respectively an
A-bimodule homomorphism) β : V → A is called a balanced linear map of
mass κ (respectively balanced A-bimodule homomorphism of mass κ) if

(2-5) κ`(β(u))v = κur(β(v)) for all u, v ∈ V .

(ii) Let κ, µ ∈ k and let (R, ◦ , `, r) be an A-bimodule k-algebra. A linear map
(respectively an A-bimodule homomorphism) β : R→ A is called a balanced
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linear map of mass (κ, µ) (respectively a balanced A-bimodule homomor-
phism of mass (κ, µ)) if (2-5) holds and

(2-6) µ`(β(u ◦ v))w = µur(β(v ◦w)) for all u, v, w ∈ R.

Clearly, if κ = 0 and µ = 0, then (2-5) and (2-6), respectively, impose no re-
striction. So any A-bimodule homomorphism is balanced of mass (κ, µ)= (0, 0).
For a nonzero mass, we have the following examples.

Example 2.8. Let A be a k-algebra.

(i) The identity map β = id : (A, L , R)→ A is a balanced A-bimodule homo-
morphism (of any mass (κ, µ)).

(ii) Any A-bimodule homomorphism β : (A, L , R)→ A is balanced (of any mass
(κ, µ)).

(iii) Let r ∈ A⊗ A be symmetric. If r regarded as a linear map from (A∗, R∗, L∗)
to A is an A-bimodule homomorphism, then r is a balanced A-bimodule ho-
momorphism (of any mass κ). See Lemma 3.2.

We can now introduce our first main concept in this paper.

Definition 2.9. Let (A, · ) be a k-algebra and let (R, ◦ , `, r) be an A-bimodule
k-algebra.

(i) Let λ, κ, µ∈k. Fix a balanced A-bimodule homomorphism β : (R, `, r)→ A
of mass (κ, µ). A linear map α : R→ A is called an extended O-operator of
weight λ with modification β of mass (κ, µ) if, for all u, v ∈ R,

(2-7) α(u) ·α(v)−α(`(α(u))v+ur(α(v))+λu ◦v)= κβ(u) ·β(v)+µβ(u ◦v).

(ii) We also let (α, β) denote an extended O-operator α with modification β.

(iii) When (V, `, r) is an A-bimodule, we regard V as an A-bimodule k-algebra
with the zero multiplication. Then λ and µ are irrelevant. We then call the
pair (α, β) an extended O-operator with modification β of mass κ .

We note that, when the modification β is the zero map (and hence κ and µ are
irrelevant), then α is the O-operator defined in Definition 2.5.

2c. Extended O-operators and associativity. The study of classical Yang–Baxter
equations often gives rise to the study of additional Lie structures derived from
a given Lie algebra [Bai et al. 2010b; Semenov-Tyan-Shanskiı̆ 1983]. Similar
derived structures in an associative algebra have also appeared in the study of den-
driform algebras and Rota–Baxter algebras [Aguiar 2000b; Bai 2010; Loday and
Ronco 2004]. Here we study derived structures arising from O-operators.
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Let (A, · ) be a k-algebra and (R, ◦ , `, r) be an A-bimodule k-algebra. Let
δ± : R→ A be two linear maps and λ ∈ k. We now consider the associativity of
the multiplication

(2-8) u � v := `(δ+(u))v+ ur(δ−(v))+ λu ◦ v for all u, v ∈ R,

and several other related multiplications. This will be applied in the Section 4.
Let the characteristic of the field k be different from 2. Set

(2-9) α := (δ++ δ−)/2 and β := (δ+− δ−)/2,

called the symmetrizer and antisymmetrizer of δ± respectively. Note that δ± can
be recovered from α and β by δ± = α±β.

Lemma 2.10. Let (A, · ) be a k-algebra and (R, ◦ , `, r) be an A-bimodule k-
algebra. Let α : R → A be a linear map and let λ be in k. Then the operation
given by

(2-10) u ∗α v := `(α(u))v+ ur(α(v))+ λu ◦ v for all u, v ∈ R

is associative if and only if

(2-11) `(α(u) ·α(v)−α(u ∗α v))w = ur(α(v) ·α(w)−α(v ∗α w))

for all u, v, w ∈ R.

Proof. It is straightforward to check that, for any u, v, w ∈ R, we have

(u ∗α v) ∗α w− u ∗α (v ∗α w)

= ur(α(v) ·α(w)−α(v ∗α w))− `(α(u) ·α(v)−α(u ∗α v))w. �

Corollary 2.11. Let k be a field of characteristic not equal to 2. Let (A, · ) be a
k-algebra and (R, ◦ , `, r) be an A-bimodule k-algebra. Let δ± : R→ A be two
linear maps and λ ∈ k. Let α and β be their symmetrizer and antisymmetrizer
defined by (2-9). If β is a balanced linear map of mass κ = 1, that is,

(2-12) `(β(u))v = ur(β(v)) for all u, v ∈ R,

then the operation � in (2-8) defines an associative product on R if and only if α
satisfies (2-11).

Proof. The conclusion follows from Lemma 2.10 since in this case, for any u, v∈ R,

u � v = `(δ+(u))v+ ur(δ−(v))+ λu ◦ v = `(α(u))v+ ur(α(v))+ λu ◦ v. �

Obviously, if α is an O-operator of weight λ associated to an A-bimodule k-
algebra (R, ◦ , `, r), then (2-11) holds. Thus the operation on R defined by (2-8)
is associative.
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Theorem 2.12. Let k have characteristic not equal to 2. Let (A, · ) be a k-algebra
and (R, ◦ , `, r) be an A-bimodule k-algebra. Let δ± : R→ A be two linear maps
and λ ∈ k. Let α and β be the symmetrizer and antisymmetrizer of δ±.

(i) Suppose that β is a balanced linear map of mass (κ, µ) and α satisfies (2-7).
Then the product ∗α is associative.

(ii) Suppose β is a balanced A-bimodule homomorphism of mass (−1,±λ), that
is, β satisfies (2-5) with κ =−1, (2-6) with µ=±λ and

(2-13) β(`(x)u)= x ·β(u) and β(ur(x))= β(u) · x for all x ∈ A, u ∈ R.

Then α is an extended O-operator of weight λ with modification β of mass
(κ, µ)= (−1,±λ) if and only if δ± is an O-operator of weight 1 associated to
a new A-bimodule k-algebra (R, ◦±, `, r):

(2-14) δ±(u) · δ±(v)= δ±(`(δ±(u))v+ ur(δ±(v))+ u ◦± v) for all u, v ∈ R,

where the associative products ◦± = ◦λ,β,± on R are defined by

(2-15) u ◦± v = λu ◦ v∓ 2`(β(u))v for all u, v ∈ R.

In item (i) we do not assume that β is an A-bimodule homomorphism. Thus α
need not be an extended O-operator.

Proof. (i) The conclusion follows from Lemma 2.10.

(ii) It is straightforward to show that (R, ◦±, `, r) equipped with the product ◦± is
an A-bimodule k-algebra. Moreover, for any u, v ∈ R,

(α±β)(u) · (α±β)(v)− (α±β)(`((α±β)(u))v+ ur((α±β)(v))+ u ◦± v)

= α(u) ·α(v)+β(u) ·β(v)−α(`(α(u))v+ ur(α(v))+ λu ◦ v)∓ λβ(u ◦ v)

± (β(u) ·α(v)−β(ur(α(v)))+α(u) ·β(v)−β(`(α(u))v)) by (2-12)

= α(u) ·α(v)+β(u) ·β(v)−α(`(α(u))v+ ur(α(v))+ λu ◦ v)∓ λβ(u ◦ v)

by (2-13).

Therefore the conclusion holds. �

We close this section with an obvious corollary of Theorem 2.12 by taking R=V
with the zero multiplication.

Corollary 2.13. Let A be a k-algebra and (V, `, r) be an A-bimodule. Let α, β :
V → A be two linear maps such that β is a balanced A-bimodule homomorphism.
Then α is an extended O-operator with modification β of mass κ = −1 if and
only if α± β is an O-operator of weight 1 associated to an A-bimodule k-algebra
(V, ?±, `, r), that is, for all u, v ∈ V ,

(α±β)(u) · (α±β)(v)= (α±β)(`((α±β)(u))v+ ur((α±β)(v))+ u ?± v),
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where the associative algebra products ?± on V are defined by

u ?± v =∓2`(β(u))v for all u, v ∈ V .

2d. The case of O-operators and Rota–Baxter operators. Suppose (A, · ) is a k-
algebra. Then (A, · , L , R) is an A-bimodule k-algebra. Theorem 2.12 can be
easily restated in this case. But we are mostly interested in the case of µ= 0 when
(2-7) takes the form

(2-16) α(x)·α(y)−α(α(x)·y+x ·α(y)+λx ·y)= κβ(x)·β(y) for all x, y ∈ A.

We list the following special cases for later reference. If λ= 0, then (2-16) gives

(2-17) α(x) ·α(y)−α(α(x) · y+ x ·α(y))= κβ(x) ·β(y) for all x, y ∈ A.

If in addition, β = id, then (2-17) gives

(2-18) α(x) ·α(y)−α(α(x) · y+ x ·α(y))= κx · y for all x, y ∈ A.

If furthermore κ =−1, then (2-18) becomes

(2-19) α(x) ·α(y)−α(α(x) · y+ x ·α(y))=−x · y for all x, y ∈ A.

By Lemma 2.10 and Theorem 2.12, we reach the following conclusion.

Corollary 2.14. Let (A, · ) be a k-algebra. Let α, β : A→ A be two linear maps
and λ ∈ k.

(i) For any κ ∈ k, let β be balanced of mass (κ, 0) and let α be an extended
O-operator of weight λ with modification β of mass (κ, µ)= (κ, 0), that is, α
satisfies (2-16). Then the product ∗α on A is associative.

(ii) If β is an A-bimodule homomorphism, then α and β satisfy (2-17) for κ =−1
if and only if r± = α ± β is an O-operator of weight 1 associated to a new
A-bimodule k-algebra (A, ?±, L , R):

r±(x) · r±(y)= r±(r±(x) · y+ x · r±(y)+ x ?± y) for all x, y ∈ A,

where the associative products ?± on A are defined by

x ?± y =∓2β(x) · y for all x, y ∈ A.

Let (A, · ) be a k-algebra and let (A, · , L , R) be the corresponding A-bimodule
k-algebra. In this case, β = id clearly satisfies the conditions of Theorem 2.12 and
(2-7) takes the form

(2-20) α(x) ·α(y)−α(α(x) · y+ x ·α(y)+ λx · y)= κ̂x · y for all x, y ∈ A,

where κ̂ = κ +µ. Thus we have the following consequence of Theorem 2.12.



O-OPERATORS AND YANG–BAXTER EQUATIONS 269

Corollary 2.15. Let κ̂ = −1± λ. Then α : A→ A satisfies (2-20) if and only if
α± 1 is a Rota–Baxter operator of weight λ∓ 2.

When λ = 0, this fact can be found in [Ebrahimi-Fard 2002]. As noted there, the
Lie algebraic version of (2-20) in this case, namely (2-19), is the operator form of
the modified classical Yang–Baxter equation [Semenov-Tyan-Shanskiı̆ 1983].

3. Extended O-operators and EAYBE

Here we study the relationship between extended O-operators and associative Yang–
Baxter equations. We start with introducing various concepts of the associative
Yang–Baxter equation (AYBE) in Section 3a. We then establish connections be-
tween O-operators in different generalities and solutions of these variations of
AYBE in different algebras. The relationship between O-operators on a k-algebra
A and solutions of AYBE in A is considered in Section 3b. We then consider in
Section 3c the relationship between an extended O-operator and solutions of AYBE
and extended AYBE in an extension algebra of A. We finally consider the special
case of Frobenius algebras in Section 3d.

3a. Extended associative Yang–Baxter equations. We define variations of the as-
sociative Yang–Baxter equation to be satisfied by two tensors from an algebra. We
then study the linear maps from these two tensors in preparation for the relationship
between O-operators and solutions of these associative Yang–Baxter equations.

Let A be a k-algebra. Let r =
∑

i ai ⊗ bi ∈ A ⊗ A. We continue to use the
notations r12, r13 and r23 defined in (1-4). We similarly define

r21 =
∑

i

bi ⊗ ai ⊗ 1, r31 =
∑

i

bi ⊗ 1⊗ ai , r32 =
∑

i

1⊗ bi ⊗ ai .

Equip A⊗ A⊗ A with the product of the tensor algebra. In particular,

(a1⊗a2⊗a3)(b1⊗b2⊗b3)= (a1b1)⊗(a2b2)⊗(a3b3) for all ai , bi ∈ A, i=1, 2, 3.

Definition 3.1. Fix ε ∈ k.

(i) The equation

(3-1) r12r13+ r13r23− r23r12 = ε(r13+ r31)(r23+ r32)

is called the extended associative Yang–Baxter equation of mass ε (or ε-
EAYBE in short).

(ii) Let A be a k-algebra. An element r ∈ A⊗A is called a solution of the ε-EAYBE
in A if it satisfies (3-1).
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When ε = 0 or r is skew-symmetric in the sense that σ(r)=−r for the switch
operator σ : A⊗ A→ A⊗ A (and hence r13 = −r31), then the ε-EAYBE is the
same as the AYBE in (1-3):

(3-2) r12r13+ r13r23− r23r12 = 0.

Let A be a k-algebra with finite k-dimension. For r ∈ A⊗ A, define a linear
map Fr : A∗→ A by

(3-3) 〈v, Fr (u)〉 = 〈u⊗ v, r〉 for all u, v ∈ A∗.

This defines a bijective linear map F : A⊗A→Homk(A∗, A) and thus allows us to
identify r with Fr , which we still denote by r for simplicity of notation. Similarly
define a linear map r t

: A∗→ A by

(3-4) 〈u, r t(v)〉 = 〈r, u⊗ v〉.

Obviously r is symmetric or skew-symmetric in A⊗ A if and only if, as a linear
map, r = r t or r =−r t , respectively. Suppose that the characteristic of k is not 2
and define

(3-5) α = αr = (r − r t)/2 and β = βr = (r + r t)/2,

called the skew-symmetric part and the symmetric part of r , respectively. Then
r = α+β and r t

=−α+β.

Lemma 3.2. Let (A, · ) be a k-algebra with finite k-dimension. Let s ∈ A⊗ A be
symmetric. Then the following conditions are equivalent.

(i) s is invariant, that is,

(3-6) (id⊗L(x)− R(x)⊗ id)s = 0 for all x ∈ A.

(ii) s regarded as a linear map from (A∗, R∗, L∗) to A is balanced, that is,

(3-7) R∗(s(a∗))b∗ = a∗L∗(s(b∗)) for all a∗, b∗ ∈ A∗.

(iii) s regarded as a linear map from (A∗, R∗, L∗) to A is an A-bimodule homo-
morphism, that is,

(3-8) s(R∗(x)a∗)= x · s(a∗), s(a∗L∗(x))= s(a∗) · x for all x ∈ A, a∗ ∈ A∗.

Proof. (i)⇐⇒ (ii). Since s ∈ A⊗ A is symmetric, for any x ∈ A, a∗, b∗ ∈ A∗,

〈(id⊗L(x)− R(x)⊗ id)s, a∗⊗ b∗〉 = 〈s, a∗⊗ L∗(x)b∗〉− 〈s, R∗(x)a∗⊗ b∗〉

= 〈x · s(a∗), b∗〉− 〈a∗, s(b∗) · x〉

= 〈R∗(s(a∗))b∗− a∗L∗(s(b∗)), x〉.
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So s is invariant if and only if s regarded as a linear map from (A∗, R∗, L∗) to A
is balanced.

(i)⇐⇒ (iii). For any x ∈ A, a∗, b∗ ∈ A∗,

〈(id⊗L(x)− R(x)⊗ id)s, a∗⊗ b∗〉 = 〈s, a∗⊗ L∗(x)b∗〉− 〈s, R∗(x)a∗⊗ b∗〉

= 〈x · s(a∗)− s(R∗(x)a∗), b∗〉,

〈(id⊗L(x)− R(x)⊗ id)s, a∗⊗ b∗〉 = 〈s, a∗⊗ L∗(x)b∗〉− 〈s, R∗(x)a∗⊗ b∗〉

= 〈s(L∗(x)b∗)− s(b∗) · x, a∗〉

by the symmetry of s ∈ A⊗ A. So s is invariant if and only if s regarded as a linear
map from (A∗, R∗, L∗) to A is an A-bimodule homomorphism. �

Remark 3.3. The invariant condition in item (i) also arises in the construction of
a coboundary antisymmetric infinitesimal bialgebra in the sense of [Bai 2010]; see
also [Bai et al. 2012].

3b. Extended O-operators from EAYBE. We first state the following special case
of Corollary 2.13.

Corollary 3.4. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra with finite k-dimension and r ∈ A⊗ A. Let α and β be defined by (3-5).
Suppose β is a balanced A-bimodule homomorphism. These two statements are
equivalent:

(i) The map α is an extended O-operator with modification β of mass −1:

(3-9) α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))=−β(a∗) ·β(b∗)

for all a∗, b∗ ∈ A∗.

(ii) The map r (respectively−r t ) is an O-operator of weight 1 associated to a new
A-bimodule k-algebra (A∗, ◦+, R∗, L∗) (respectively (A∗, ◦−, R∗, L∗)):

(3-10) r(a∗) · r(b∗)= r(R∗(r(a∗))b∗+ a∗L∗(r(b∗))+ a∗ ◦+ b∗)

for all a∗, b∗ ∈ A∗, (respectively

(3-11) (− r t)(a∗) · (−r t)(b∗)

= (−r t)(R∗((−r t)(a∗))b∗+ a∗L∗((−r t)(b∗))+ a∗ ◦− b∗),

for all a∗, b∗ ∈ A∗), where the associative algebra products ◦± on A∗ are
defined by

(3-12) a∗ ◦± b∗ =∓2R∗(β(a∗))b∗ for all a∗, b∗ ∈ A∗.



272 CHENGMING BAI, LI GUO AND XIANG NI

In the theory of integrable systems [Kosmann-Schwarzbach 1997; Semenov-
Tyan-Shanskiı̆ 1983], modified classical Yang–Baxter equation usually refers to
(the Lie algebraic version of) (2-19) and (3-9).

The following theorem establishes a close relationship between extended O-
operators on a k-algebra A and solutions of the AYBE in A.

Theorem 3.5. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra with finite k-dimension and let r ∈ A⊗ A, which is identified as a linear
map from A∗ to A.

(i) Then r is a solution of the AYBE in A if and only if r satisfies

(3-13) r(a∗) · r(b∗)= r(R∗(r(a∗))b∗− a∗L∗(r t(b∗))) for all a∗, b∗ ∈ A∗.

(ii) Define α and β by (3-5). Suppose that the symmetric part β of r is invariant.
Then r is a solution of EAYBE of mass (κ + 1)/4:

r12r13+ r13r23− r23r12 =
1
4(κ + 1)(r13+ r31)(r23+ r32)

if and only if α is an extended O-operator with modification β of mass κ:

α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))= κβ(a∗) ·β(b∗)

for all a∗, b∗ ∈ A∗.

Proof. (i) Write r =
∑

i, j ui ⊗ v j . For any a∗, b∗, c∗ ∈ A∗, we have

〈r12 ·r13, a∗⊗b∗⊗c∗〉 =
∑
i, j

〈ui ·u j , a∗〉〈vi , b∗〉〈v j , c∗〉

=

∑
j

〈r t(b∗)·u j , a∗〉〈v j , b∗〉 = 〈r(a∗L∗(r t(b∗))), c∗〉,

〈r13 ·r23, a∗⊗b∗⊗c∗〉 =
∑
i, j

〈ui , a∗〉〈u j , b∗〉〈vi ·v j , c∗〉

=

∑
j

〈u j , b∗〉〈r(a∗)·v j , c∗〉 = 〈r(a∗)·r(b∗), c∗〉,

〈−r23 ·r12, a∗⊗b∗⊗c∗〉 = −
∑
i, j

〈ui , a∗〉〈u j ·vi , b∗〉〈v j , c∗〉

= −

∑
j

〈u j ·r(a∗), b∗〉〈v j , c∗〉 = 〈−r(R∗(r(a∗))b∗), c∗〉.

Therefore r is a solution of the AYBE in A if and only if r satisfies (3-13).
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(ii) By the proof of item (i), we see that, for any a∗, b∗, c∗ ∈ A∗,

〈α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))− κβ(a∗) ·β(b∗), c∗〉

= 〈α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))

+β(a∗) ·β(b∗)− (κ + 1)β(a∗) ·β(b∗), c∗〉

= 〈r12 · r13+ r13 · r23− r23 · r12, a∗⊗ b∗⊗ c∗〉− (κ + 1)〈β13 ·β23, a∗⊗ b∗⊗ c∗〉

= 〈r12 ·r13+r13 ·r23−r23 ·r12− (κ+1) 1
2(r13+r31) ·

1
2(r23+r32), a∗⊗b∗⊗c∗〉.

So r is a solution of the EAYBE of mass (κ+ 1)/4 if and only if α is an extended
O-operator with modification β of mass κ . �

In the case when κ =−1, we have this:

Corollary 3.6. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra with finite k-dimension and let r ∈ A⊗ A. Define α and β by (3-5).

(i) If β is invariant, then the following conditions are equivalent.

(a) r is a solution of the AYBE in A.
(b) r satisfies (3-10), that is, r is an O-operator of weight 1 associated to the

A-bimodule k-algebra (A∗, ◦+, R∗, L∗), where A∗ is equipped with the
associative algebra structure ◦+ defined by (3-12). (With−r t instead of r ,
replace (3-10) by (3-11) and ◦+ with ◦−.)

(c) α is an extended O-operator with modification β of mass −1.
(d) For any a∗, b∗ ∈ A∗,

(3-14) (α±β)(a∗ ∗ b∗)= (α±β)(a∗) · (α±β)(b∗),

where

a∗ ∗ b∗ = R∗(r(a∗))b∗− a∗L∗(r t(b∗)) for all a∗, b∗ ∈ A∗.

(ii) If r is skew-symmetric, then r is a solution of the AYBE in A if and only if
r : A∗→ A is an O-operator of weight zero.

Proof. If the symmetric part β of r is invariant, then by Lemma 3.2, for any
a∗, b∗ ∈ A∗, we have

r(a∗) · r(b∗)− r(R∗(r(a∗))b∗− a∗L∗(r t(b∗)))

= r(a∗) · r(b∗)− r(R∗(r(a∗))b∗+ a∗L∗(r(b∗))− 2a∗L∗(β(b∗)))

= r(a∗) · r(b∗)− r(R∗(r(a∗))b∗+ a∗L∗(r(b∗))+ a∗ ◦+ b∗),

where the product ◦+ is defined by (3-12). Therefore by Corollary 3.4, r is a
solution of the AYBE if and only if item (b) or (c) holds. Moreover, since for any
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a∗, b∗ ∈ A∗, we have

R∗(r(a∗))b∗− a∗L∗(r t(b∗))= R∗(r(a∗))b∗+ a∗L∗(r(b∗))+ a∗ ◦+ b∗

= R∗((−r t)(a∗))b∗+ a∗L∗((−r t)(b∗))+ a∗ ◦− b∗,

(3-14) is just a reformulation of (3-10) and (3-11). So r is a solution of the AYBE
if and only if item (c) holds.

(ii) This is the special case of item (i) when β = 0. �

3c. EAYBEs from extended O-operators. We now establish the relationship be-
tween an extended O-operator α : V → A in general and the AYBE and EAYBE.
For this purpose we prove that an extended O-operator α : V → A naturally gives
rise to an extended O-operator on a larger associative algebra A associated to the
dual bimodule (A∗, R∗A, L∗A). We first introduce some notation.

Definition 3.7. Let A be a k-algebra and let (V, `, r) be an A-bimodule, both
with finite k-dimension. Let (V ∗, r∗, `∗) be the dual A-bimodule and let A =

A nr∗,`∗ V ∗. Identify a linear map γ : V → A as an element in A⊗A through the
injective map

(3-15) Homk(V, A)∼= A⊗ V ∗ ↪→A⊗A.

Denote

(3-16) γ̃± := γ ± γ
21,

where γ 21
= σ(γ )∈ V ∗⊗ A⊂A⊗A with σ : A⊗V ∗→ V ∗⊗ A, a⊗u∗ 7→ u∗⊗a

being the switch operator.

Lemma 3.8. Let A be a k-algebra and let (V, `, r) be an A-bimodule, both with
finite k-dimension. Suppose that β : V → A is a linear map that is identified as an
element in A⊗A by (3-15). Define β̃+ by (3-16). Then β̃+, identified as a linear
map from A∗ to A, is a balanced A-bimodule homomorphism from (A∗, R∗A, L∗A)
to (A, LA, RA) if and only if β : V → A is a balanced A-bimodule homomorphism
from (V, `, r) to (A, L A, RA).

Proof. For the linear map β̃+ :A∗→A, we have β̃+(a∗)= β∗(a∗) for a∗ ∈ A∗ and
β̃+(u)= β(u) for u ∈ V , where β∗ : A∗→ V ∗ is the dual linear map associated to
β given by

〈β∗(a∗), v〉 = 〈a∗, β(v)〉 for all a∗ ∈ A∗, v ∈ V .

First suppose that β : (V, `, r)→ A is a balanced A-bimodule homomorphism. Let
b∗ ∈ A∗ and v ∈ V . Then

R∗A(β̃+(a
∗
+ u))(b∗+ v)

= R∗A(β
∗(a∗))b∗+ R∗A(β

∗(a∗))v+ R∗A(β(u))b
∗
+ R∗A(β(u))v,
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and

(a∗+ u)L∗A(β̃+(b
∗
+ v))

= a∗L∗A(β
∗(b∗))+ a∗L∗A(β(v))+ uL∗A(β

∗(b∗))+ uL∗A(β(v)).

On the other hand, for any x ∈ A, w∗ ∈ V ∗,

〈R∗A(β
∗(a∗))b∗− a∗L∗A(β

∗(b∗)), x〉 = 〈b∗, x ·β∗(a∗)〉− 〈a∗, β∗(b∗) · x〉 = 0,

〈R∗A(β
∗(a∗))b∗− a∗L∗A(β

∗(b∗)), w∗〉 = 〈b∗, w∗ ·β∗(a∗)〉− 〈a∗, β∗(b∗) ·w∗〉

= 0,

〈R∗A(β
∗(a∗))v− a∗L∗A(β(v)), x〉 = 〈v, x ·β∗(a∗)〉− 〈a∗, β(v) · x〉

= 〈a∗, β(vr(x))−β(v) · x〉 = 0,

〈R∗A(β
∗(a∗))v− a∗L∗A(β(v)), w

∗
〉 = 〈v,w∗ ·β∗(a∗)〉− 〈a∗, β(v) ·w∗〉 = 0,

〈R∗A(β(u))b
∗
− uL∗A(β

∗(b∗)), x〉 = 〈b∗, x ·β(u)〉− 〈u, β∗(b∗) · x〉

= 〈b∗, x ·β(u)−β(l(x)u)〉 = 0,

〈R∗A(β(u))b
∗
− uL∗A(β

∗(b∗)), w∗〉 = 〈b∗, w∗ ·β(u)〉− 〈u, β∗(b∗) ·w∗〉 = 0,

〈R∗A(β(u))v− uL∗A(β(v)), w
∗
〉 = 〈v,w∗ ·β(u)〉− 〈u, β(v) ·w∗〉

= 〈`(β(u))v− ur(β(v)), w∗〉 = 0,

〈R∗A(β(u))v− uL∗A(β(v)), x〉 = 〈v, x ·β(u)〉− 〈u, β(v) · x〉 = 0.

Therefore, R∗A(β̃+(a
∗
+u))(b∗+v)= (a∗+u)L∗A(β̃+(b

∗
+v)). Since β̃+ ∈A⊗A

is symmetric, by Lemma 3.2, β̃+ when identified as a linear map from A∗ to A is
a balanced A-bimodule homomorphism from (A∗, R∗A, L∗A) to (A, LA, RA).

Conversely, if β̃+ identified as a linear map from A∗ to A is a balanced A-
bimodule homomorphism from (A∗, R∗A, L∗A) to (A, LA, RA), then

R∗A(β̃+(u))v = uL∗A(β̃+(v)) ⇐⇒ `(β(u))v = ur(β(v)),

β̃+(R∗A(x)v)= x · β̃+(v) ⇐⇒ β(`(x)v)= x ·β(v),

β̃+(uL∗A(x))= β̃+(u) · x ⇐⇒ β(ur(x))= β(u) · x

for any u, v ∈ V, x ∈ A. So β : (V, `, r)→ (A, L A, RA) is a balanced A-bimodule
homomorphism. �

Theorem 3.9. Let A be a k-algebra and let (V, `, r) be an A-bimodule, both with
finite k-dimension. Let α, β : V → A be two k-linear maps. Let α̃− and β̃+
be defined by (3-15) and identified as linear maps from A∗ to A. Then α is an
extended O-operator with modification β of mass κ if and only if α̃− is an extended
O-operator with modification β̃+ of mass κ .
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Proof. For any a∗ ∈ A∗ and v ∈ V , we have α̃−(a∗)= α∗(a∗) and α̃−(v)=−α(v),
where α∗ : A∗→ V ∗ is the dual linear map of α. Suppose that α is an extended
O-operator with modification β of mass κ . Then for any a∗, b∗ ∈ A∗ and u, v ∈ V ,
we have

α̃−(u+a∗) · α̃−(v+b∗)− α̃−(R∗A(α̃−(u+a∗))(v+b∗)+ (u+a∗)L∗A(α̃−(v+b∗)))

= α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v)))− r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)

−α∗(uL∗A(α
∗(b∗)))−α∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v))).

On the other hand, for any w ∈ V we have

〈−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗))), w〉

= 〈b∗, α(w) ·α(u)−α(`(α(w))u+wr(α(u))〉 = 〈b∗, κβ(w) ·β(u)〉

= 〈b∗, κβ(wr(β(u)))〉 = 〈κr∗(β(u))β∗(b∗), w〉.

Therefore

−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗)))= κr∗(β(u))β∗(b∗).

Similarly, we have

−α∗(a∗)`∗(α(v))−α∗(R∗A(α
∗(a∗))v)+α∗(a∗L∗A(α(v)))= κβ

∗(a∗)`∗(β(v)).

So

α̃−(u+ a∗) · α̃−(v+ b∗)− α̃−(R∗A(α̃−(u+ a∗))(v+ b∗)

+ (u+ a∗)L∗A(α̃−(v+ b∗)))

= κβ(u) ·β(v)+ κr∗(β(u))β∗(b∗)+ κβ∗(a∗)`∗(β(v))

= κβ(u) ·β(v)+ κβ(u) ·β∗(b∗)+ κβ∗(a∗) ·β(v)= κβ̃+(u+ a∗)β̃+(v+ b∗).

If κ = 0, then this equation implies that α̃− is an O-operator of weight zero. If
κ 6= 0, then β is a balanced A-bimodule homomorphism, which, according to
Lemma 3.8, implies that β̃+ from (A∗, R∗A, L∗A) to A is a balanced A-bimodule
homomorphism. So α̃− is an extended O-operator with modification β̃+ of mass κ .

Conversely, suppose α̃− is an extended O-operator with modification β̃+ of mass
κ . If κ 6= 0, then β̃+ from (A∗, R∗A, L∗A) to A is a balanced A-bimodule homo-
morphism, which by Lemma 3.8 implies that β from (V, `, r) to A is a balanced
A-bimodule homomorphism. Moreover, for any u, v ∈ V we have

(3-17) α̃−(u) · α̃−(v)− α̃−(R∗A(α̃−(u))v+ uL∗A(α̃−(v)))= κβ̃+(u)β̃+(v),

which implies that α is an extended O-operator with modification β of mass κ . If
κ = 0, then (3-17) for κ = 0 implies that α is an O-operator of weight zero. �
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By Theorem 3.9, the results from the previous sections on O-operators on A can
be applied to general O-operators.

Corollary 3.10. Let A be a k-algebra and let V be an A-bimodule, both with finite
k-dimension.

(i) Suppose the characteristic of the field k is not 2. Let α, β : V → A be linear
maps that are identified as elements in (Anr∗,`∗V ∗)⊗(Anr∗,`∗V ∗). Then α is
an extended O-operator with modification β of mass k if and only if (α−α21)±

(β +β21) is a solution of the EAYBE of mass (κ + 1)/4 in A nr∗,`∗ V ∗.

(ii) Let α : V → A be a linear map identified as an element in (A nr∗,`∗ V ∗)⊗
(A nr∗,`∗ V ∗). Then α is an O-operator of weight zero if and only if α−α21 is
a skew-symmetric solution of the AYBE in (3-2) in A nr∗,`∗ V ∗. In particular,
a linear map P : A→ A is a Rota–Baxter operator of weight zero if and only
if r = P − P21 is a skew-symmetric solution of the AYBE in A nR∗,L∗ A∗.

(iii) Let α, β : V → A be two linear maps identified as elements in (Anr∗,`∗ V ∗)⊗
(A nr∗,`∗ V ∗). Then α is an extended O-operator with modification β of mass
−1 if and only if (α−α21)±(β+β21) is a solution of the AYBE in Anr∗,`∗ V ∗.

(iv) Let α : A→ A be a linear map identified as an element in (A nR∗,L∗ A∗)⊗
(A nR∗,L∗ A∗). Then α satisfies (2-19) if and only if (α−α21)± (id+ id21) is
a solution of the AYBE in A nR∗,L∗ A∗.

(v) Let P : A→ A be a linear map identified as an element of A nR∗,L∗ A∗. Then
P is a Rota–Baxter operator of weight λ 6= 0 if and only if 2/λ(P−P21)+2 id
and (2/λ)(P − P21)− 2 id21 are both solutions of the AYBE in A nR∗,L∗ A∗.

Proof. (i) This follows from Theorem 3.9 and Theorem 3.5.

(ii) This follows from Theorem 3.9 for κ = 0 (or β = 0) and Corollary 3.6.

(iii) This follows from Theorem 3.9 for κ =−1 and Corollary 3.6.

(iv) This follows from item (iii) in the case that (V, r, `)= (A, L , R) and β = id.

(v) By [Ebrahimi-Fard 2002] (see also the discussion after Corollary 2.15), P is
a Rota–Baxter operator of weight λ 6= 0 if and only if 2P/λ+ id is an extended
O-operator with modification id of mass−1 from (A, L , R) to A, that is, 2P/λ+id
satisfies (2-19). Then the conclusion follows from item (iv). �

3d. O-operators and AYBE on Frobenius algebras. Here we consider the rela-
tionship between O-operators and solutions of the AYBE on Frobenius algebras.

Definition 3.11. (i) Let A be a k-algebra and let B( · , · ) : A ⊗ A → k be a
nondegenerate bilinear form. Let ϕ : A→ A∗ denote the induced injective
linear map defined by

(3-18) B(x, y)= 〈ϕ(x), y〉 for all x, y ∈ A.
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(ii) A Frobenius k-algebra is a k-algebra (A, · ) together with a nondegenerate
bilinear form B( · , · ) : A⊗ A→ k that is invariant in the sense that

B(x · y, z)= B(x, y · z) for all x, y, z ∈ A.

We use (A, · , B) to denote a Frobenius k-algebra.

(iii) A Frobenius k-algebra is called symmetric if

B(x, y)= B(y, x) for all x, y ∈ A.

(iv) A linear map β : A→ A is called self-adjoint with respect to a bilinear form
B if for any x, y ∈ A, we have B(β(x), y)= B(x, β(y)), and skew-adjoint if
B(β(x), y)=−B(x, β(y)).

A symmetric Frobenius k-algebra is also simply called a symmetric k-algebra
[Brauer and Nesbitt 1937]. We will not use this term to avoid confusion with the
symmetrization of the tensor algebra. Frobenius algebras have found applications
in broad areas of mathematics and physics. See [Bai 2010; Yamagata 1996] for
further details.

It is easy to get the following result.

Proposition 3.12 [Yamagata 1996]. Let A be a symmetric Frobenius k-algebra
with finite k-dimension. Then the A-bimodule (A, L , R) is isomorphic to the A-
bimodule (A∗, R∗, L∗).

The following statement gives a class of symmetric Frobenius algebras from
symmetric, invariant tensors.

Corollary 3.13. Let (A, · ) be a k-algebra with finite k-dimension. Let s ∈ A⊗ A
be symmetric and invariant. Suppose that s regarded as a linear map from A∗→ A
is invertible. Then s−1

: A→ A∗ regarded as a bilinear form B( · , · ) : A⊗ A→ k

on A through (3-18) for ϕ = s−1 is symmetric, nondegenerate and invariant. Thus
(A, · , B) is a symmetric Frobenius algebra.

Proof. Since s is symmetric and s regarded as a linear map from A∗ to A is
invertible, B( · , · ) is symmetric and nondegenerate. On the other hand, since s
is invariant, (3-7) holds by Lemma 3.2. Thus, for any x, y, z ∈ A and a∗= s−1(x),
b∗ = s−1(y) and c∗ = s−1(z), we have

B(x · y, z)= 〈c∗, s(a∗) · s(b∗)〉 = 〈c∗L∗(s(a∗)), b∗〉

= 〈R∗(s(c∗))a∗, b∗〉 = 〈a∗, s(b∗) · s(c∗)〉 = B(x, y · z),

that is, B( · , · ) is invariant. So the conclusion follows. �

Lemma 3.14. Let (A, · , B) be a symmetric Frobenius k-algebra with finite k-
dimension. Suppose that β : A→ A is an endomorphism of A that is self-adjoint
with respect to B. Then β̃ = βϕ−1

: A∗ → A regarded as an element of A ⊗ A
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is symmetric, where ϕ : A→ A∗ is defined by (3-18). Moreover, β is a balanced
A-bimodule homomorphism if and only if β̃ is.

Proof. Since β is self-adjoint with respect to B, it is easy to show that β̃ regarded
as an element of A⊗ A is symmetric. Moreover, for any a∗, b∗ ∈ A∗, z ∈ A and
x = ϕ−1(a∗), y = ϕ−1(b∗), we have

〈R∗(β̃(a∗))b∗, z〉 = 〈R∗(β(x))ϕ(y), z〉 = B(y, z ·β(x)),

〈a∗L∗(β̃(b∗)), z〉 = 〈ϕ(x)L∗(β(y)), z〉 = B(x, β(y) · z)

= B(β(y), z · x)= B(y, β(z · x)).

Thus β̃ satisfies (3-7) if and only if β(z · x) = z · β(x) for any x, z ∈ A. On the
other hand,

〈R∗(β̃(a∗))b∗, z〉 = 〈R∗(β(x))ϕ(y), z〉 = B(y, z ·β(x))

= B(β(x), y · z)= B(x, β(y · z)),

〈a∗L∗(β̃(b∗)), z〉 = 〈ϕ(x)L∗(β(y)), z〉 = B(x, β(y) · z).

Therefore, β̃ satisfies (3-7) if and only if β(y · z)= β(y) · z for any y, z ∈ A. Hence
β is an A-bimodule homomorphism if and only if β̃ is. �

If β = id, the lemma above states that ϕ−1
: A∗→ A is a balanced A-bimodule

homomorphism.

Corollary 3.15. Let (A, · , B) be a symmetric Frobenius k-algebra of finite k-
dimension and let ϕ : A → A∗ be the linear map defined by (3-18). Suppose
β ∈ A⊗ A is symmetric. Then β regarded as a linear map from (A∗, R∗, L∗) to
A is a balanced A-bimodule homomorphism if and only if β̂ = βϕ : A→ A is a
balanced A-bimodule homomorphism.

Proof. In fact, β̂=βϕ is self-adjoint with respect to B( · , · ) since for any x, y ∈ A,

〈β, ϕ(x)⊗ϕ(y)〉 = 〈β, ϕ(y)⊗ϕ(x)〉 ⇐⇒ 〈β(ϕ(x)), ϕ(y)〉 = 〈β(ϕ(y)), ϕ(x)〉

⇐⇒ B(β̂(x), y)= B(β̂(y), x).

So the conclusion follows from Lemma 3.14. �

Theorem 3.16. Let k be a field of characteristic not equal to 2. Let (A, · , B) be a
symmetric Frobenius algebra of finite k-dimension. Suppose that α and β are two
endomorphisms of A and that β is self-adjoint with respect to B.

(i) α is an extended O-operator with modification β of mass κ if and only if α̃ :=
α ◦ϕ−1

: A∗→ A is an extended O-operator with modification β̃ := β ◦ϕ−1
:

A∗→ A of mass κ , where the linear map ϕ : A→ A∗ is defined by (3-18).
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(ii) Suppose that in addition, α is skew-adjoint with respect to B. Then α̃ regarded
as an element of A⊗ A is skew-symmetric and

(a) r±= α̃± β̃ regarded as an element of A⊗ A is a solution of the EAYBE of
mass (κ+1)/4 if and only if α is an extended O-operator with modification
β of mass k;

(b) if κ =−1, then r± = α̃± β̃ regarded as an element of A⊗ A is a solution
of the AYBE if and only if α is an extended O-operator with modification
β of mass −1; and

(c) if κ = 0, then α̃ regarded as an element of A⊗ A is a solution of the AYBE
if and only if α is a Rota–Baxter operator of weight zero.

Proof. (i) Since B is symmetric and invariant, for any x, y, z ∈ A, we have

B(x · y, z)= B(x, y · z)⇐⇒ 〈ϕ(x · y), z〉 = 〈ϕ(x), y · z〉

⇐⇒ ϕ(x R(y))= ϕ(x)L∗(y),
(3-19)

B(z, x · y)= B(y · z, x)⇐⇒ 〈ϕ(z), x · y〉 = 〈ϕ(y · z), x〉

⇐⇒ R∗(y)ϕ(z)= ϕ(L(y)z).
(3-20)

On the other hand, since ϕ is invertible, for any a∗, b∗ ∈ A∗, there exist x, y ∈ A
such that ϕ(x)= a∗, ϕ(y)= b∗. So according to (3-19) and (3-20), the equation

α̃(a∗) · α̃(b∗)− α̃(ϕ(α̃(a∗) ·ϕ−1(b∗)+ϕ−1(a∗) · α̃(b∗)))= κβ̃(a∗) · β̃(b∗),

is equivalent to

α̃(a∗) · α̃(b∗)− α̃(R∗(α̃(a∗))b∗+ a∗L∗(α̃(b∗)))= κβ̃(a∗) · β̃(b∗).

By Lemma 3.14, β : A→ A is a balanced A-bimodule homomorphism if and
only if β̃ : A∗→ A is. So α is an extended O-operator with modification β of mass
κ if and only if α̃ is an extended O-operator with modification β̃ of mass κ .

(i) If α is skew-adjoint with respect to B, then

〈α(x), ϕ(y)〉+ 〈ϕ(x), α(y)〉 = 0 for all x, y ∈ A.

Hence 〈α̃(a∗), b∗〉 + 〈a∗, α̃(b∗)〉 = 0 for any a∗, b∗ ∈ A∗. So α̃ regarded as an
element of A⊗ A is skew-symmetric.

By Theorem 3.5, item (a) holds. By Corollary 3.6, items (b) and (c) hold. �

Corollary 3.17. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra of finite k-dimension and let r ∈ A⊗ A. Define α, β ∈ A⊗ A by (3-5).
Then r = α+ β. Let B : A⊗ A→ k be a nondegenerate symmetric and invariant
bilinear form. Define the linear map ϕ : A→ A∗ by (3-18).
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(i) Suppose that β ∈ A⊗ A is invariant. Then r is a solution of the EAYBE of
mass (κ+1)/4 if and only if α̂ = αϕ : A→ A is an extended O-operator with
modification β̂ = βϕ : A→ A of mass k.

(ii) Suppose that β ∈ A ⊗ A is invariant. Then r is a solution of the AYBE if
and only if α̂ = αϕ : A → A is an extended O-operator with modification
β̂ = βϕ : A → A of mass −1. If in addition, β = 0, that is, r is skew-
symmetric, then r is a solution of the AYBE if and only if α̂ = r̂ = rϕ : A→ A
is a Rota–Baxter operator of weight zero.

Proof. By the proof of Corollary 3.15, we show that β̂ = βϕ is self-adjoint with
respect to B( · , · ) since β ∈ A⊗ A is symmetric. Similarly, since α ∈ A⊗ A is
skew-symmetric, α̂=αϕ is skew-adjoint with respect to B( · , · ). So the conclusion
follows from Theorem 3.16. �

4. Extended O-operators
and the generalized associative Yang–Baxter equation

We define the generalized associative Yang–Baxter equation and study its relation-
ship with extended O-operators.

4a. Generalized associative Yang–Baxter equation. We adapt the same notation
as in Definition 3.1.

The following proposition (also see [Aguiar 2000a, Proposition 5.1]) is related
to the construction of variations of bialgebras under the names of associative D-
bialgebras [Zhelyabin 1997], balanced infinitesimal bialgebras (in the opposite al-
gebras) [Aguiar 2001] and antisymmetric infinitesimal bialgebras [Bai 2010].

Proposition 4.1 [Aguiar 2000a; 2001; Bai 2010]. Let A be a k-algebra with finite
k-dimension and let r ∈ A⊗ A. Define 1 : A→ A⊗ A by

(4-1) 1(x)= (id⊗L(x)− R(x)⊗ id)r for all x ∈ A.

Then

(4-2) 1∗ : A∗⊗ A∗ ↪→ (A⊗ A)∗→ A∗

defines an associative multiplication on A∗ if and only if r is a solution of the
equation

(4-3) (id⊗ id⊗L(x)−R(x)⊗id⊗ id)(r12r13+r13r23−r23r12)=0 for all x ∈ A.

Definition 4.2. Let A be a k-algebra. Equation (4-3) is called the generalized
associative Yang–Baxter equation (GAYBE). An element r ∈ A⊗A satisfying (4-3)
is called a solution of the GAYBE in A.
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Lemma 4.3. Let (A, · ) be a k-algebra with finite k-dimension. Let r ∈ A ⊗ A.
The multiplication ∗ on A∗ defined by (4-2) is also given by

(4-4) a∗ ∗ b∗ = R∗(r(a∗))b∗− L∗(r t(b∗))a∗ for all a∗, b∗ ∈ A∗.

Proof. Let {e1, . . . , en} be a basis of A and {e∗1, . . . , e∗n} be its dual basis. Suppose
that r =

∑
i, j ai, j ei ⊗ e j and ei · e j =

∑
k ck

i, j ek . Then for any k and l, we have

e∗k ∗ e∗l =
∑

s

〈e∗k ⊗ e∗l ,1(es)〉e∗s

=

∑
s

〈e∗k ⊗ e∗l , (id⊗L(es)− R(es)⊗ id)r〉e∗s

=

∑
s,t

(ak,t cl
s,t − ck

t,sat,l)e∗s = R∗(r(e∗k ))e
∗

l − L∗(r t(e∗l ))e
∗

k . �

This lemma suggests that we apply the approach considered in Section 2b. More
precisely, we take the A-bimodule k-algebra (R, ◦ , `, r) to be (A∗, R∗, L∗) with
the zero multiplication and set

(4-5) δ+ = r and δ− =−r t .

Assume that k has characteristic not equal to 2 and define

(4-6) α = (r − r t)/2 and β = (r + r t)/2,

that is, α and β are the skew-symmetric part and the symmetric part of r . So
r = α+β and r t

=−α+β.

Proposition 4.4. Let k have characteristic not equal to 2. Let (A, · ) be a k-
algebra with finite k-dimension and r ∈ A ⊗ A. Let α and β be given by (4-6).
Suppose that β is a balanced A-bimodule homomorphism, that is, β satisfies (3-6).
If α is an extended O-operator with modification β of any mass κ ∈ k, then the
product defined by (4-4) defines a k-algebra structure on A∗ and r is a solution of
the GAYBE.

Proof. By applying Theorem 2.12 to the A-bimodule k-algebra (R, ◦ , `, r) we
constructed before the proposition, we see that the product defined by (4-4) is
associative. Then r is a solution of the GAYBE by Lemma 4.3. �

Corollary 4.5. Under the assumptions of Proposition 4.4, a solution of the EAYBE
of any mass κ ∈ k is also a solution of the GAYBE.

Proof. Let r be a solution of the EAYBE of mass κ . Define α and β by (4-6). Then
by Theorem 3.5, α is an extended O-operator with modification β of mass 4κ − 1.
Hence by Proposition 4.4, r is a solution of the GAYBE. �
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4b. GAYBE and extended O-operators. We now consider the operator form of
GAYBE with emphasis on its relationship with extended O-operators.

Lemma 4.6. Let A be a k-algebra and (V, `, r) be a bimodule. Let α : V → A be
a linear map. Then the product

(4-7) u ∗α v := `(α(u))v+ ur(α(v)) for all u, v ∈ V,

defines a k-algebra structure on V if and only if

(4-8) `
(
α(u)·α(v)−α(u∗αv)

)
w=ur

(
α(v)·α(w)−α(v∗αw)

)
for all u, v∈V .

Proof. It follows from Lemma 2.10 by setting (R, `, r)= (V, `, r) and λ= 0. �

Theorem 4.7. Let A be a k-algebra and (V, `, r) be an A-bimodule, both of finite
dimension over k. Let α : V → A be a linear map. Using the same notation as in
Definition 3.7, α̃− identified as an element of A⊗A is a skew-symmetric solution
of the GAYBE (4-3) if and only if (4-8) and the equations

α(u) ·α(`(x)v)−α(u ∗α (`(x)v))= α(ur(x)) ·α(v)−α((ur(x)) ∗α v),(4-9)

α(u) ·α(vr(x))−α(u ∗α (vr(x)))= (α(u) ·α(v)) · x −α(u ∗α v) · x,(4-10)

α(`(x)u) ·α(v)−α((`(x)u) ∗α v)= x · (α(u) ·α(v))− x ·α(u ∗α v)(4-11)

hold for any u, v ∈ V, x ∈ A.

Proof. By Proposition 4.1, Lemma 4.3 and Lemma 4.6, we see that α̃− ∈A⊗A is
a skew-symmetric solution of the GAYBE (4-3) if and only if for any u, v, w ∈ V
and a∗, b∗, c∗ ∈ A∗,

R∗A
(
α̃−(u+ a∗) · α̃−(v+ b∗)− α̃−(R∗A(α̃−(u+ a∗))(v+ b∗)

+ (u+ a∗)L∗A(α̃−(v+ b∗)))
)
(w+ c∗)

= (u+ a∗)L∗A
(
α̃−(v+ b∗) · α̃−(w+ c∗)− α̃−(R∗A(α̃−(v+ b∗))(w+ c∗)

+ (v+ b∗)L∗A(α̃−(w+ c∗)))
)
,

By the proof of Theorem 3.9, the equation above is equivalent to

R∗A
(
α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v)))− r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b

∗)

−α∗(uL∗A(α
∗(b∗)))−α∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v)))
)
w

+ R∗A
(
α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v)))− r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b

∗)

−α∗(uL∗A(α
∗(b∗)))−α∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v)))
)
c∗

= uL∗A
(
α(v) ·α(w)−α(`(α(v))w)−α(vr(α(w)))− r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c

∗)

−α∗(vL∗A(α
∗(c∗)))−α∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w)))
)

+a∗L∗A(α(v) ·α(w)−α(`(α(v))w)−α(vr(α(w)))− r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c
∗)

−α∗(vL∗A(α
∗(c∗)))−α∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w)))).
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By suitable choices of u, v, w ∈ V and a∗, b∗, c∗ ∈ A∗, we find that this equation
holds if and only if the following equations hold:

R∗A(α(u) ·α(v)−α(`(α(u))v+ ur(α(v))))w

= uL∗A(α(v) ·α(w)−α(`(α(v))w+ vr(α(w))))

(take a∗ = b∗ = c∗ = 0),

(4-12)

R∗A(−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗))))w

= uL∗A(−α
∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w))))

(take v = a∗ = c∗ = 0),

(4-13)

R∗A(−α
∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v))))w

= a∗L∗A(α(v) ·α(w)−α(`(α(v))w)−α(vr(α(w))))

(take u = b∗ = c∗ = 0),

(4-14)

R∗A(α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v))))c∗

= uL∗A(−r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c
∗)−α∗(vL∗A(α

∗(c∗))))

(take w = a∗ = b∗ = 0),

(4-15)

R∗A(−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗))))c∗ = 0

(take v = w = a∗ = 0),

(4-16)

R∗A(−α
∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v))))c
∗

= a∗L∗A(−r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c
∗)−α∗(vL∗A(α

∗(c∗))))

(take u = w = b∗ = 0),

(4-17)

a∗L∗A(−α
∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w))))= 0

(take u = v = c∗ = 0).

(4-18)

Thus we just need to prove

(i) (4-12)⇐⇒ (4-8), (ii) (4-13)⇐⇒ (4-9),

(iii) (4-14)⇐⇒ (4-10), (iv) (4-15)⇐⇒ (4-11),

(v) both sides of (4-17) equal zero, (vi) (4-16) and (4-18) hold.

The proofs of these statements are similar. So we just prove that (4-13) holds if
and only if (4-9) holds. Let LHS and RHS denote the left-hand side and right-hand
side of (4-13). Then for any x ∈ A and s∗ ∈ V ∗, we have

〈LHS, s∗〉 = 〈RHS, s∗〉 = 0.
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Further

〈LHS, x〉 = 〈w,−r∗(x)(r∗(α(u))α∗(b∗))

+ r∗(x)α∗(R∗A(α(u))b
∗)− r∗(x)α∗(uL∗A(α

∗(b∗)))〉

= 〈−α((wr(x))r(α(u)))+α(wr(x)) ·α(u), b∗〉

− 〈α∗(b∗) ·α(wr(x)), u〉

= 〈−α((wr(x))r(α(u)))+α(wr(x)) ·α(u)−α(`(α(wr(x)))u), b∗〉,

〈RHS, x〉 = 〈u,−(α∗(b∗)`∗(α(w)))`∗(x)

−α∗(R∗A(α
∗(b∗))w)`∗(x)+α∗(b∗L∗A(α(w)))`

∗(x)〉

= 〈−α(`(α(w))(`(x)u)), b∗〉

− 〈α(`(x)u) ·α∗(b∗), w〉+ 〈α(w) ·α(`(x)w), b∗〉

= 〈−α(`(α(w))(`(x)u))−α(wr(α(`(x)u)))+α(w) ·α(`(x)u), b∗〉.

So (4-13) holds if and only if (4-9) holds. �

Equations (4-9)–(4-11) in Theorem 4.7 can be regarded as an operator form of
GAYBE. To get a more manageable form, we restrict below to the case of extended
O-operators.

Corollary 4.8. Let (A, · ) be a k-algebra with finite k-dimension.

(i) Let (R, ◦ , `, r) be an A-bimodule k-algebra with finite k-dimension. Let
α, β : R → A be two linear maps such that α is an extended O-operator
of weight λ with modification β of mass (κ, µ), that is, β is an A-bimodule
homomorphism and the conditions (2-5) and (2-6) in Definition 2.7 hold,
and α and β satisfy (2-7). Then α − α21, when identified as an element of
(Anr∗,`∗ R∗)⊗(Anr∗,`∗ R∗), is a skew-symmetric solution of the GAYBE (4-3)
if and only if

λ`(α(u ◦ v))w = λur(α(v ◦w)) for all u, v, w ∈ R,(4-19)

λα(u(vr(x)))= λα(u ◦ v) · x for all u, v ∈ R, x ∈ A,(4-20)

λα((`(x)u) ◦ v)= λx ·α(u ◦ v) for all u, v ∈ R, x ∈ A.(4-21)

In particular, when λ= 0, that is, α is an extended O-operator of weight zero
with modification β of mass (κ, µ), then α − α21 identified as an element of
(Anr∗,`∗ R∗)⊗(Anr∗,`∗ R∗) is a skew-symmetric solution of the GAYBE (4-3).

(ii) Let (R, ◦ , `, r) be an A-bimodule k-algebra with finite k-dimension. Let
α : R → A be an O-operator of weight λ. Then α − α21 identified as an
element of (A nr∗,`∗ R∗)⊗ (A nr∗,`∗ R∗) is a skew-symmetric solution of the
GAYBE if and only if (4-19)–(4-21) hold.
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(iii) Let (V, `, r) be a bimodule of A with finite k-dimension. Let α, β : V → A be
two linear maps such that α is an extended O-operator with modification β of
mass κ . Then α−α21 identified as an element of (Anr∗,`∗ V ∗)⊗(Anr∗,`∗ V ∗)
is a skew-symmetric solution of the GAYBE.

(iv) Let α : A→ A be a linear endomorphism of A. Suppose that α satisfies (2-18).
Then α− α21 identified as an element of (A nR∗,L∗ A∗)⊗ (A nR∗,L∗ A∗) is a
skew-symmetric solution of the GAYBE.

(v) Let (R, ◦ , `, r) be an A-bimodule k-algebra of finite k-dimension. Let α, β :
R→ A be two linear maps such that α is an extended O-operator with modifi-
cation β of mass (κ, µ)= (0, µ), that is, β is an A-bimodule homomorphism
and the condition (2-6) in Definition 2.7 holds, and α and β satisfy

α(u) ·α(v)−α(`(α(u))v+ ur(α(v)))= µβ(u ◦ v) for all u, v ∈ R.

Then α − α21 identified as an element of (A nr∗,`∗ R∗)⊗ (A nr∗,`∗ R∗) is a
skew-symmetric solution of the GAYBE.

Proof. (i) Since α is an extended O-operator of weight λ with modification β of
mass (κ, µ), by Theorem 4.7, α−α21 identified as an element of (A nr∗,`∗ R∗)⊗
(A nr∗,`∗ R∗) is a skew-symmetric solution of the GAYBE (4-3) if and only if

−λ`(α(u ◦ v))w+ κ`(β(u) ·β(v))w+µ`(β(u ◦ v))w(4-22)

=−λur(α(v ◦w))+ κur(β(v) ·β(w))+µur(β(v ◦w)),

−λα((ur(x)) ◦ v)+ κβ(ur(x)) ·β(v)+µβ((ur(x)) ◦ v)(4-23)

=−λα(u ◦ (l(x)v))+ κβ(u) ·β(`(x)v)+µβ(u ◦ (`(x)v)),

−λα(u ◦ (vr(x)))+ κβ(u) ·β(vr(x))+µβ(u ◦ (vr(x)))(4-24)

=−λα(u ◦ v) · x + κ(β(u) ·β(v)) · x +µβ(u ◦ v) · x,

−λα((`(x)u) ◦ v)+ κβ(`(x)u) ·β(v)+µβ((`(x)u) ◦ v)(4-25)

=−λx ·α(u ◦ v)+ κx · (β(u) ·β(v))+µx ·β(u ◦ v)

for any u, v ∈ R, x ∈ A. Since β is an A-bimodule homomorphism and the con-
ditions (2-5) and (2-6) in Definition 2.7 hold, we have (4-19) holds if and only if
(4-22) holds, (4-20) holds if and only if (4-24) holds, (4-21) holds if and only if
(4-25) holds and (4-23) holds automatically.

(ii) This follows from item (i) by setting κ = µ= 0.

(iii) This follows from item (i) by setting λ= µ= 0.

(iv) This follows from item (iii) for (V, `, r)= (A, L , R) and β = id.

(v) This follows from item (i) by setting λ= κ = 0. �
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