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BOTANY OF IRREDUCIBLE AUTOMORPHISMS
OF FREE GROUPS

THIERRY COULBOIS AND ARNAUD HILION

We give a classification of iwip (i.e., fully irreducible) outer automorphisms
of the free group, by discussing the properties of their attracting and re-
pelling trees.

1. Introduction

An outer automorphism 8 of the free group FN is fully irreducible (abbreviated as
iwip) if no positive power8n fixes a proper free factor of FN . Being an iwip is one
(in fact the most important) of the analogs for free groups of being pseudo-Anosov
for mapping classes of hyperbolic surfaces. Another analog of pseudo-Anosov is
the notion of an atoroidal automorphism: an element 8 ∈ Out(FN ) is atoroidal
or hyperbolic if no positive power 8n fixes a nontrivial conjugacy class. Bestvina
and Feighn [1992] and Brinkmann [2000] proved that 8 is atoroidal if and only if
the mapping torus FN o8 Z is Gromov-hyperbolic.

Pseudo-Anosov mapping classes are known to be “generic” elements of the map-
ping class group (in various senses). Rivin [2008] and Sisto [2011] recently proved
that, in the sense of random walks, generic elements of Out(FN ) are atoroidal iwip
automorphisms.

Bestvina and Handel [1992] proved that iwip automorphisms have the key prop-
erty of being represented by (absolute) train-track maps.

A pseudo-Anosov element f fixes two projective classes of measured foliations
[(F+, µ+)] and [(F−, µ−)]:

(F+, µ+) · f = (F+, λµ+) and (F−, µ−) · f = (F−, λ−1µ−),

where λ > 1 is the expansion factor of f . Alternatively, considering the dual R-
trees T+ and T−, we get:

T+ · f = λT+ and T− · f = λ−1T−.

We now discuss the analogous situation for iwip automorphisms. The group
of outer automorphisms Out(FN ) acts on the outer space CVN and its boundary
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∂CVN . Recall that the compactified outer space CVN = CVN ∪ ∂CVN is made
up of (projective classes of) R-trees with an action of FN by isometries which is
minimal and very small. See [Vogtmann 2002] for a survey on outer space. An
iwip outer automorphism 8 has north-south dynamics on CVN : it has a unique
attracting fixed tree [T8] and a unique repelling fixed tree [T8−1] in the boundary
of outer space (see [Levitt and Lustig 2003]):

T8 ·8= λ8T8 and T8−1 ·8=
1

λ8−1
T8−1,

where λ8 > 1 is the expansion factor of 8 (i.e., the exponential growth rate of
nonperiodic conjugacy classes).

Contrary to the pseudo-Anosov setting, the expansion factor λ8 of 8 is typi-
cally different from the expansion factor λ8−1 of 8−1. More generally, qualitative
properties of the fixed trees T8 and T8−1 can be fairly different. This is the purpose
of this paper to discuss and compare the properties of 8, T8 and T8−1 .

First, the free group, FN , may be realized as the fundamental group of a surface
S with boundary. It is part of folklore that, if 8 comes from a pseudo-Anosov
mapping class on S, then its limit trees T8 and T8−1 live in the Thurston boundary
of Teichmüller space: they are dual to a measured foliation on the surface. Such
trees T8 and T8−1 are called surface trees and such an iwip outer automorphism 8

is called geometric (in this case S has exactly one boundary component).
The notion of surface trees has been generalized (see for instance [Bestvina

2002]). An R-tree which is transverse to measured foliations on a finite CW-
complex is called geometric. It may fail to be a surface tree if the complex fails to
be a surface.

If8 does not come from a pseudo-Anosov mapping class and if T8 is geometric
then8 is called parageometric. For a parageometric iwip8, Guirardel [2005] and
Handel and Mosher [2007] proved that the repelling tree T8−1 is not geometric.
So we have that, 8 comes from a pseudo-Anosov mapping class on a surface with
boundary if and only if both trees T8 and T8−1 are geometric. Moreover in this
case both trees are indeed surface trees.

In [Coulbois and Hilion 2010] we introduced a second dichotomy for trees in
the boundary of outer space with dense orbits. For a tree T , we consider its limit set
�⊆ T (where T is the metric completion of T ). The limit set � consists of points
of T with at least two pre-images by the map Q : ∂FN → T̂ = T ∪ ∂T introduced
in [Levitt and Lustig 2003]; see Section 4A. We are interested in the two extremal
cases: A tree T in the boundary of outer space with dense orbits is of surface type
if T ⊆ � and T is of Levitt type if � is totally disconnected. As the terminology
suggests, a surface tree is of surface type. Trees of Levitt type where discovered
by Levitt [1993].
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Combining together the two sets of properties, we introduced in [Coulbois and
Hilion 2010] the following definitions. A tree T in ∂CVN with dense orbits is

• a surface tree if it is both geometric and of surface type;

• Levitt if it is geometric and of Levitt type;

• pseudo-surface if it is not geometric and of surface type;

• pseudo-Levitt if it is not geometric and of Levitt type

The following theorem is the main result of this paper.

Theorem 5.2. Let 8 be an iwip outer automorphism of FN . Let T8 and T8−1 be
its attracting and repelling trees. Then exactly one of the following occurs

(1) The trees T8 and T8−1 are surface trees. Equivalently, 8 is geometric.

(2) The tree T8 is Levitt (i.e., geometric and of Levitt type), and the tree T8−1 is
pseudo-surface (i.e., nongeometric and of surface type). Equivalently, 8 is
parageometric.

(3) The tree T8−1 is Levitt (i.e., geometric and of Levitt type), and the tree T8 is
pseudo-surface (i.e., nongeometric and of surface type). Equivalently, 8−1 is
parageometric.

(4) The trees T8 and T8−1 are pseudo-Levitt (nongeometric and of Levitt type).

Case (1) corresponds to toroidal iwips whereas cases (2), (3) and (4) corresponds
to atoroidal iwips. In case (4) the automorphism 8 is called pseudo-Levitt.

Gaboriau, Jaeger, Levitt and Lustig [Gaboriau et al. 1998] introduced the notion
of an index ind(8), computed from the rank of the fixed subgroup and from the
number of attracting fixed points of the automorphisms ϕ in the outer class 8.
Another index for a tree T in CVN has been defined and studied by Gaboriau and
Levitt [1995]; we call it the geometric index indgeo(T ). Finally in [Coulbois and
Hilion 2010] we introduced and studied the Q-index indQ(T ) of an R-tree T in the
boundary of outer space with dense orbits. The two indices indgeo(T ) and indQ(T )
describe qualitative properties of the tree T [Coulbois and Hilion 2010]. We define
these indices and recall our botanical classification of trees in Section 4A.

The key to prove Theorem 5.2 is this:

Propositions 4.2 and 4.4. Let 8 be an iwip outer automorphism of FN . Let T8
and T8−1 be its attracting and repelling trees. Replacing 8 by a suitable power,
we have

2 ind(8)= indgeo(T8)= indQ(T8−1).

We prove this proposition in Sections 4B and 4C.
To study limit trees of iwip automorphisms, we need to state that they have the

strongest mixing dynamical property, which is called indecomposability.
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Theorem 2.1. Let 8 ∈ Out(FN ) be an iwip outer automorphism. The attracting
tree T8 of 8 is indecomposable.

The proof of this theorem is quite independent of the rest of the paper and is the
purpose of Section 2. The proof relies on a key property of iwip automorphisms:
they can be represented by (absolute) train-track maps.

2. Indecomposability of the attracting tree of an iwip automorphism

Following [Guirardel 2008], a (projective class of) R-tree T ∈CVN is indecompos-
able if for all nondegenerate arcs I and J in T , there exists finitely many elements
u1, . . . , un in FN such that

(2-1) J ⊆
n⋃

i=1
ui I

and

(2-2) ∀i = 1, . . . , n− 1, ui I ∩ ui+1 I is a nondegenerate arc.

The main purpose of this section is to prove this result:

Theorem 2.1. Let 8 ∈ Out(FN ) be an iwip outer automorphism. The attracting
tree T8 of 8 is indecomposable.

Before proving this theorem in Section 2C, we collect the results we need from
[Bestvina and Handel 1992] and [Gaboriau et al. 1998].

2A. Train-track representative of 8. The rose RN is the graph with one vertex
∗ and N edges. Its fundamental group π1(RN , ∗) is naturally identified with the
free group FN . A marked graph is a finite graph G with a homotopy equivalence
τ : RN → G. The marking τ induces an isomorphism

τ∗ : FN = π1(RN , ∗)
∼=
→ π1(G, v0),

where v0 = τ(∗).
A homotopy equivalence f : G → G defines an outer automorphism of FN .

Indeed, if a path m from v0 to f (v0) is given, a 7→ m f (a)m−1 induces an auto-
morphism ϕ of π1(G, v0), and thus of FN through the marking. Another path m′

from v0 to f (v0) gives rise to another automorphism ϕ′ of FN in the same outer
class 8.

A topological representative of 8 ∈ Out(FN ) is an homotopy equivalence f :
G→ G of a marked graph G, such that

(i) f maps vertices to vertices,

(ii) f is locally injective on any edge, and

(iii) f induces 8 on FN ∼= π1(G, v0).
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Let e1, . . . , ep be the edges of G (an orientation is arbitrarily given on each edge,
and e−1 denotes the edge e with the reverse orientation). The transition matrix of
the map f is the p× p nonnegative matrix M with (i, j)-entry equal to the number
of times the edge ei occurs in f (e j ) (we say that a path (or an edge) w of a graph
G occurs in a path u of G if it is w or its inverse w−1 is a subpath of u).

A topological representative f : G→ G of 8 is a train-track map if, moreover,

(iv) for all k ∈ N, the restriction of f k on any edge of G is locally injective, and

(v) any vertex of G has valence at least 3.

According to [Bestvina and Handel 1992, Theorem 1.7], an iwip outer automor-
phism8 can be represented by a train-track map, with a primitive transition matrix
M (i.e., there exists k ∈N such all the entries of Mk are strictly positive). Thus the
Perron–Frobenius theorem applies. In particular, M has a real dominant eigenvalue
λ > 1 associated to a strictly positive eigenvector u = (u1, . . . , u p). Indeed, λ is
the expansion factor of 8: λ = λ8. We turn the graph G to a metric space by
assigning the length ui to the edge ei (for i = 1, . . . , p). Since, with respect to this
metric, the length of f (ei ) is λ times the length of ei , we can assume that, on each
edge, f is linear of ratio λ.

We define the set L2( f ) of paths w of combinatorial length 2 (i.e., w = ee′,
where e, e′ are edges of G, e−1

6= e′) which occurs in some f k(ei ) for some k ∈N

and some edge ei of G:

L2( f )= {ee′ : ∃ei edge of G, ∃k ∈ N such that ee′ is a subpath of f k(ei
±1)}.

Since the transition matrix M is primitive, there exists k ∈N such that for any edge
e of G, for any w ∈ L2( f ), w occurs in f k(e).

Let v be a vertex of G. The Whitehead graph Wv of v is the unoriented graph
defined as follows:

• The vertices of Wv are the edges of G with v as terminal vertex.

• There is an edge in Wv between e and e′ if e′e−1
∈ L2( f ).

As remarked in [Bestvina et al. 1997, Section 2], if f : G → G is a train-track
representative of an iwip outer automorphism 8, any vertex of G has a connected
Whitehead graph. We summarize the previous discussion:

Proposition 2.2. Let 8 ∈ Out(FN ) be an iwip outer automorphism. There exists
a train-track representative f : G → G of 8, with primitive transition matrix M
and connected Whitehead graphs of vertices. The edge ei of G is isometric to the
segment [0, ui ], where u = (u1, . . . , u p) is a Perron–Frobenius eigenvector of M.
The map f is linear of ratio λ on each edge ei of G.

Remark 2.3. Let f :G→G be a train-track map, with primitive transition matrix
M and connected Whitehead graphs of vertices. Then for any path w= ab in G of
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combinatorial length 2, there exist w1= a1b1, . . . , wq = aqbq ∈L2( f ) (a, b, ai , bi

edges of G) such that

• ai+1 = b−1
i , i ∈ {1, . . . , q − 1}, and

• a = a1 and b = bq .

2B. Construction of T8. Let 8 ∈ Out(FN ) be an iwip automorphism, and let
T8 be its attracting tree. Following [Gaboriau et al. 1998], we recall a concrete
construction of the tree T8.

We start with a train-track representative f :G→G of 8 as in Proposition 2.2.
The universal cover G̃ of G is a simplicial tree, equipped with a distance d0

obtained by lifting the distance on G. The fundamental group FN acts by deck
transformations, and thus by isometries, on G̃. Let f̃ be a lift of f to G̃. This lift
f̃ is associated to a unique automorphism ϕ in the outer class 8, characterized by

(2-3) ∀u ∈ FN ,∀x ∈ G̃, ϕ(u) f̃ (x)= f̃ (ux).

For x, y ∈ G̃ and k ∈ N, we define:

dk(x, y)=
d0( f̃ k(x), f̃ k(y))

λk .

The sequence of distances dk is decreasing and converges to a pseudo-distance d∞
on G̃. Identifying points x, y in G̃ which have distance d∞(x, y) equal to 0, we
obtain the tree T8. The free group FN still acts by isometries on T8. The quotient
map p : G̃→ T8 is FN -equivariant and 1-Lipschitz. Moreover, for any edge e of
G̃, for any k ∈ N, the restriction of p to f k(e) is an isometry. Through p the map
f̃ factors to a homothety H of T8, of ratio λ8:

∀x ∈ G̃, H(p(x))= p( f̃ (x)).

Property (2-3) leads to

(2-4) ∀u ∈ FN ,∀x ∈ T8, ϕ(u)H(x)= H(ux).

2C. Indecomposability of T8. We say that a path (or an edge) w of the graph G
occurs in a path u of the universal cover G̃ of G if w has a lift w̃ that occurs in u.

Lemma 2.4. Let I be a nondegenerate arc in T8. There exists an arc I ′ in G̃ and
an integer k such that

• p(I ′)⊆ I , and

• any element of L2( f ) occurs in H k(I ′).
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Proof. Let I ⊂ T8 be a nondegenerate arc. There exists an edge e of G̃ such that
I0 = p(e) ∩ I is a nondegenerate arc: I0 = [x, y]. We choose k1 ∈ N such that
d∞(H k1(x), H k1(y)) > L where

L = 2 max{ui = |ei | | ei edge of G}.

Let x ′, y′ be the points in e such that p(x ′) = x , p(y′) = y, and let I ′ be the arc
[x ′, y′]. Since p maps f k1(e) isometrically into T8, we obtain that

d0( f k1(x ′), f k1(y′))≥ L .

Hence there exists an edge e′ of G̃ contained in [ f k1(x ′), f k1(y′)]. Moreover, for
any k2 ∈ N, the path f k2(e′) isometrically injects in [H k1+k2(x), H k1+k2(y)]. We
take k2 big enough so that any path in L2( f ) occurs in f k2(e′). Then k = k1+ k2

is suitable. �

Proof of Theorem 2.1. Let I, J be two nontrivial arcs in T8. We have to prove
that I and J satisfy properties (2-1) and (2-2). Since H is a homeomorphism, and
because of (2-4), we can replace I and J by H k(I ) and H k(J ), accordingly, for
some k ∈ N.

We consider an arc I ′ in G̃ and an integer k ∈N as given by Lemma 2.4. Let x, y
be the endpoints of the arc H k(J ): H k(J )= [x, y]. Let x ′, y′ be points in G̃ such
that p(x ′)= x , p(y′)= y, and let J ′ be the arc [x ′, y′]. According to Remark 2.3,
there exist w1, . . . , wn such that

• wi is a lift of some path in L2( f ),

• J ′ ⊆
⋃n

i=1wi , and

• wi ∩wi+1 is an edge.

Since Lemma 2.4 ensures that any element of L2( f ) occurs in H k(I ′), we deduce
that H k(I ) and H k(J ) satisfy properties (2-1) and (2-2). �

3. Index of an outer automorphism

An automorphism ϕ of the free group FN extends to a homeomorphism ∂ϕ of the
boundary at infinity ∂FN . We denote by Fix(ϕ) the fixed subgroup of ϕ. It is a
finitely generated subgroup of FN and thus its boundary ∂Fix(ϕ) naturally embeds
in ∂FN . Elements of ∂Fix(ϕ) are fixed by ∂ϕ and they are called singular. Non-
singular fixed points of ∂ϕ are called regular. A fixed point X of ∂ϕ is attracting
(resp. repelling) if it is regular and if there exists an element u in FN such that
ϕn(u) (resp. ϕ−n(u)) converges to X . The set of fixed points of ∂ϕ is denoted by
Fix(∂ϕ).

Following Nielsen, fixed points of ∂ϕ have been classified by Gaboriau, Jaeger,
Levitt and, Lustig:
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Proposition 3.1 [Gaboriau et al. 1998, Proposition 1.1]. Let ϕ be an automorphism
of the free group FN , and X a fixed point of ∂ϕ. Exactly one of the following occurs:

(1) X is in the boundary of the fixed subgroup of ϕ.

(2) X is attracting.

(3) X is repelling. �

We denote by Att(ϕ) the set of attracting fixed points of ∂ϕ. The fixed subgroup
Fix(ϕ) acts on the set Att(ϕ) of attracting fixed points.

In [Gaboriau et al. 1998] the following index of the automorphism ϕ is defined:

ind(ϕ)= 1
2 #(Att(ϕ)/Fix(ϕ))+ rank(Fix(ϕ))− 1

If ϕ has a trivial fixed subgroup, the above definition is simpler:

ind(ϕ)= 1
2 #Att(ϕ)− 1.

Let u be an element of FN and let iu be the corresponding inner automorphism
of FN :

∀w ∈ FN , iu(w)= uwu−1.

The inner automorphism iu extends to the boundary of FN as left multiplication
by u:

∀X ∈ ∂FN , ∂iu(X)= u X.

The group Inn(FN ) of inner automorphisms of FN acts by conjugacy on the auto-
morphisms in an outer class 8. Following Nielsen, two automorphisms, ϕ, ϕ′ ∈8
are isogredient if they are conjugated by some inner automorphism iu :

ϕ′ = iu ◦ϕ ◦ iu−1 = iuϕ(u)−1 ◦ϕ.

In this case, the actions of ∂ϕ and ∂ϕ′ on ∂FN are conjugate by the left multi-
plication by u. In particular, a fixed point X ′ of ∂ϕ′ is a translate X ′ = u X of a
fixed point X of ∂ϕ. Two isogredient automorphisms have the same index: this
is the index of the isogrediency class. An isogrediency class [ϕ] is essential if it
has positive index: ind([ϕ]) > 0. We note that essential isogrediency classes are
principal in the sense of [Feighn and Handel 2011], but the converse is not true.

The index of the outer automorphism8 is the sum, over all essential isogrediency
classes of automorphisms ϕ in the outer class 8, of their indices, or alternatively:

ind(8)=
∑

[ϕ]∈8/Inn(FN )

max(0; ind(ϕ)).

We adapt the notion of forward rotationless outer automorphism of [Feighn and
Handel 2011] to our purpose. We denote by Per(ϕ) the set of elements of FN fixed
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by some positive power of ϕ:

Per(ϕ)=
⋃

n∈N∗

Fix(ϕn);

and by Per(∂ϕ) the set of elements of ∂FN fixed by some positive power of ∂ϕ:

Per(∂ϕ)=
⋃

n∈N∗

Fix(∂ϕn).

Definition 3.2. An outer automorphism 8 ∈ Out(FN ) is FR if:

(FR1) for any automorphism ϕ ∈8, Per(ϕ)= Fix(ϕ) and Per(∂ϕ)= Fix(∂ϕ), and

(FR2) if ψ is an automorphism in the outer class 8n for some n > 0, with ind(ψ)
positive, then there exists an automorphism ϕ in 8 such that ψ = ϕn .

Proposition 3.3. Let 8 ∈ Out(FN ). There exists k ∈ N∗ such that 8k is FR.

Proof. By [Levitt and Lustig 2000, Theorem 1] there exists a power8k with (FR1).
An automorphism ϕ ∈ Aut(FN ) with positive index ind(ϕ) > 0 is principal in the
sense of [Feighn and Handel 2011, Definition 3.1]. Thus our property (FR2) is a
consequence of the forward rotationless property of [loc. cit., Definition 3.13]. By
[loc. cit., Lemma 4.43] there exists a power 8k` which is forward rotationless and
thus which satisfies (FR2). �

4. Indices

4A. Botany of trees. We recall in this section the classification of trees in the
boundary of outer space, given in [Coulbois and Hilion 2010].

Gaboriau and Levitt [1995] introduced an index for a tree T in CVN , we call it
the geometric index and denote it by indgeo(T ). It is defined using the valence of
the branch points, of the R-tree T , with an action of the free group by isometries:

indgeo(T )=
∑

[P]∈T/FN

indgeo(P).

where the local index of a point P in T is

indgeo(P)= #(π0(T r {P})/Stab(P))+ 2 rank(Stab(P))− 2.

Gaboriau and Levitt proved that the geometric index of a geometric tree is equal
to 2N − 2 and that for any tree in the compactification of outer space CVN the
geometric index is bounded above by 2N−2. Moreover, they proved that the trees
in CVN with geometric index equal to 2N − 2 are precisely the geometric trees.

If, moreover, T has dense orbits, Levitt and Lustig [2003; 2008] defined the
map Q : ∂FN → T̂ , characterized as follows:
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Proposition 4.1. Let T be an R-tree in CVN with dense orbits. There exists a
unique map Q : ∂FN → T̂ such that for any sequence (un)n∈N of elements of FN

which converges to X ∈ ∂FN , and any point P ∈ T , if the sequence of points
(un P)n∈N converges to a point Q ∈ T̂ , then Q(X)= Q. Moreover, Q is onto.

Let us consider the case of a tree T dual to a measured foliation (F, µ) on a
hyperbolic surface S with boundary (T is a surface tree). Let F̃ be the lift of F to
the universal cover S̃ of S. The boundary at infinity of S̃ is homeomorphic to ∂FN .
On the one hand, a leaf ` of F̃ defines a point in T . On the other hand, the ends
of ` define points in ∂FN . The map Q precisely sends the ends of ` to the point
in T . The Poincaré–Lefschetz index of the foliation F can be computed from the
cardinal of the fibers of the map Q. This leads to the following definition of the
Q-index of an R-tree T in a more general context.

Let T be an R-tree in CVN with dense orbits. The Q-index of the tree T is
defined by

indQ(T )=
∑

[P]∈T̂ /FN

max(0; indQ(P)),

where the local index of a point P in T is

indQ(P)= #(Q−1
r (P)/Stab(P))+ 2 rank(Stab(P))− 2

with Q−1
r (P)= Q−1(P)r ∂Stab(P) the regular fiber of P .

Levitt and Lustig [2003] proved that points in ∂T have exactly one pre-image
by Q. Thus, only points in T contribute to the Q-index of T .

We proved in [Coulbois and Hilion 2010] that the Q-index of an R-tree in the
boundary of outer space with dense orbits is bounded above by 2N − 2. And it is
equal to 2N − 2 if and only if it is of surface type.

The botanical classification in [Coulbois and Hilion 2010] of a tree T with a
minimal very small indecomposable action of FN by isometries is as follows:

geometric not geometric
indgeo(T )= 2N−2 indgeo(T ) < 2N−2

Surface type: indQ(T )= 2N−2 surface pseudo-surface
Levitt type: indQ(T ) < 2N−2 Levitt pseudo-Levitt

The following remark is not necessary for the sequel of the paper, but may help
the reader’s intuition.

Remark. In [Coulbois et al. 2008a; 2008b], in collaboration with Lustig, we de-
fined and studied the dual lamination of an R-tree T with dense orbits:

L(T )= {(X, Y ) ∈ ∂2 FN | Q(X)= Q(Y )}.
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The Q-index of T can be interpreted as the index of this dual lamination.
Using the dual lamination, with Lustig [Coulbois et al. 2009], we defined the

compact heart K A ⊆ T (for a basis A of FN ). We proved that the tree T is com-
pletely encoded by a system of partial isometries SA = (K A, A). We also proved
that the tree T is geometric if and only if the compact heart K A is a finite tree (that
is to say the convex hull of finitely many points). In [Coulbois and Hilion 2010]
we used the Rips machine on the system of isometries SA to get the bound on the
Q-index of T . In particular, an indecomposable tree T is of Levitt type if and only
if the Rips machine never halts.

4B. Geometric index. As in Section 2B, an iwip outer automorphism 8 has an
expansion factor λ8> 1, an attracting R-tree T8 in ∂CVN . For each automorphism
ϕ in the outer class8 there is a homothety H of the metric completion T̄8, of ratio
λ8, such that

(4-1) ∀P ∈ T8, ∀u ∈ FN , H(u P)= ϕ(u)H(P).

In addition, the action of 8 on the compactification of Culler and Vogtmann’s
outer space has north-south dynamics and the projective class of T8 is the attracting
fixed point [Levitt and Lustig 2003]. Of course the attracting trees of 8 and 8n

(n > 0) are equal.
For the attracting tree T8 of the iwip outer automorphism8, the geometric index

is well understood.

Proposition 4.2 [Gaboriau et al. 1998, Section 4]. Let 9 be an iwip outer auto-
morphism. There exists a power 8=9k (k > 0) of 9 such that

2 ind(8)= indgeo(T8),

where T8 is the attracting tree of 8 (and of 9). �

4C. Q-index. Let8 be an iwip outer automorphism of FN . Let T8 be its attracting
tree. The action of FN on T8 has dense orbits.

Let ϕ an automorphism in the outer class 8. The homothety H associated to
ϕ extends continuously to an homeomorphism of the boundary at infinity of T8
which we still denote by H . We get from Proposition 4.1 and identity (4-1):

(4-2) ∀X ∈ ∂FN , Q(∂ϕ(X))= H(Q(X)).

We are going to prove that the Q-index of T8 is twice the index of 8−1. As
mentioned in the introduction for geometric automorphisms both these numbers are
equal to 2N −2 and thus we restrict to the study of nongeometric automorphisms.
For the rest of this section we assume that 8 is nongeometric. This will be used
in two ways:
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• The action of FN on T8 is free.

• For any ϕ in the outer class 8, all the fixed points of ϕ in ∂FN are regular.

Let CH be the center of the homothety H . The following Lemma is essentially
contained in [Gaboriau et al. 1998], although the map Q is not used there.

Lemma 4.3. Let 8 ∈ Out(FN ) be a FR nongeometric iwip outer automorphism.
Let T8 be the attracting tree of 8. Let ϕ ∈ 8 be an automorphism in the outer
class8, and let H be the homothety of T8 associated to ϕ, with CH its center. The
Q-fiber of CH is the set of repelling points of ϕ.

Proof. Let X ∈ ∂FN be a repelling point of ∂ϕ. By definition there exists an
element u ∈ FN such that the sequence (ϕ−n(u))n converges towards X . By (4-1),

ϕ−n(u)CH = ϕ
−n(u)H−n(CH )= H−n(uCH ).

The homothety H−1 is strictly contracting and therefore the sequence of points
(ϕ−n(u)CH )n converges towards CH . By Proposition 4.1 we get that Q(X)= CH .

Conversely let X ∈ Q−1(CH ) be a point in the Q-fiber of CH . Using the iden-
tity (4-2), ∂ϕ(X) is also in the Q-fiber. The Q-fiber is finite by [Coulbois and Hilion
2010, Corollary 5.4], X is a periodic point of ∂ϕ. Since8 satisfies property (FR1),
X is a fixed point of ∂ϕ. From [Gaboriau et al. 1998, Lemma 3.5], attracting fixed
points of ∂ϕ are mapped by Q to points in the boundary at infinity ∂T8. Thus X
has to be a repelling fixed point of ∂ϕ. �

Proposition 4.4. Let 8 ∈ Out(FN ) be a FR nongeometric iwip outer automor-
phism. Let T8 be the attracting tree of 8. Then

2 ind(8−1)= indQ(T8).

Proof. To each automorphism ϕ in the outer class 8 is associated a homothety H
of T8 and the center CH of this homothety. As the action of FN on T8 is free, two
automorphisms are isogredient if and only if the corresponding centers are in the
same FN -orbit.

The index of 8−1 is the sum over all essential isogrediency classes of automor-
phism ϕ−1 in 8−1 of the index of ϕ−1. For each of these automorphisms the index
2 ind(ϕ−1) is equal by Lemma 4.3 to the contribution #Q−1(CH ) of the orbit of CH

to the Q index of T8.
Conversely, let now P be a point in T8 with at least three elements in its Q-fiber.

Let ϕ be an automorphism in 8 and let H be the homothety of T8 associated to ϕ.
For any integer n, the Q-fiber Q−1(H n(P)) = ∂ϕn(Q−1(P)) of H n(P) also has at
least three elements. By [Coulbois and Hilion 2010, Theorem 5.3] there are finitely
many orbits of such points in T8 and thus we can assume that H n(P) = wP for
some w ∈ FN and some integer n > 0. Then P is the center of the homothety
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w−1 H n associated to iw−1 ◦ ϕn . Since 8 satisfies property (FR2), P is the center
of a homothety u H associated to iu ◦ϕ for some u ∈ FN . This concludes the proof
of the equality of the indices. �

This proposition can alternatively be deduced from the techniques of [Handel
and Mosher 2011].

5. Botanical classification of irreducible automorphisms

Theorem 5.1. Let 8 be an iwip outer automorphism of FN . Let T8 and T8−1 be
its attracting and repelling trees. Then, the Q-index of the attracting tree is equal
to the geometric index of the repelling tree:

indQ(T8)= indgeo(T8−1).

Proof. First, if8 is geometric, then the trees T8 and T8−1 have maximal geometric
indices 2N−2. On the other hand the trees T8 and T8−1 are surface trees and thus
their Q-indices are also maximal:

indgeo(T8)= indQ(T8)= indgeo(T8−1)= indQ(T8−1)= 2N − 2.

We now assume that 8 is not geometric and we can apply Propositions 4.2 and
4.4 to get the desired equality. �

From Theorem 5.1 and from the characterization of geometric and surface-type
trees by the maximality of the indices we get

Theorem 5.2. Let 8 be an iwip outer automorphism of FN . Let T8 and T8−1 be
its attracting and repelling trees. Then exactly one of the following occurs:

(1) T8 and T8−1 are surface trees.

(2) T8 is Levitt and T8−1 is pseudo-surface.

(3) T8−1 is Levitt and T8 is pseudo-surface.

(4) T8 and T8−1 are pseudo-Levitt.

Proof. The trees T8 and T8−1 are indecomposable by Theorem 2.1 and thus they
are either of surface type or of Levitt type by [Coulbois and Hilion 2010, Proposi-
tion 5.14]. Recall, from [Gaboriau and Levitt 1995] (see also [Coulbois and Hilion
2010, Theorem 5.9] or [Coulbois et al. 2009, Corollary 6.1]) that T8 is geometric
if and only if its geometric index is maximal:

indgeo(T8)= 2N − 2.

From [Coulbois and Hilion 2010, Theorem 5.10], T8 is of surface type if and only
if its Q-index is maximal:

indQ(T8)= 2N − 2.
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The theorem now follows from Theorem 5.1. �

Let 8 ∈ Out(FN ) be an iwip outer automorphism.
The outer automorphism 8 is geometric if both its attracting and repelling trees

T8 and T8−1 are geometric. This is equivalent to saying that 8 is induced by a
pseudo-Anosov homeomorphism of a surface with boundary; see [Guirardel 2005]
and [Handel and Mosher 2007]. This is case (1) of Theorem 5.2.

The outer automorphism8 is parageometric if its attracting tree T8 is geometric
but its repelling tree T8−1 is not. This is case (2) of Theorem 5.2.

The outer automorphism 8 is pseudo-Levitt if both its attracting and repelling
trees are not geometric. This is case (4) of Theorem 5.2

We now bring expansion factors into play. An iwip outer automorphism 8 of
FN has an expansion factor λ8 > 1: it is the exponential growth rate of (nonfixed)
conjugacy classes under iteration of 8.

If 8 is geometric, the expansion factor of 8 is equal to the expansion factor of
the associated pseudo-Anosov mapping class and thus λ8 = λ8−1 .

Handel and Mosher [2007] proved that if 8 is a parageometric outer automor-
phism of FN then λ8 >λ8−1 (see also [Behrstock et al. 2010]). Examples are also
given by Gautero [2007].

For pseudo-Levitt outer automorphisms of FN nothing can be said on the com-
parison of the expansion factors of the automorphism and its inverse. On one hand,
Handel and Mosher [2007, Introduction] gave an explicit example of a nongeomet-
ric automorphism with λ8=λ8−1 : thus this automorphism is pseudo-Levitt. On the
other hand, there are examples of pseudo-Levitt automorphisms with λ8 > λ8−1 .
Let ϕ ∈ Aut(F3) be the automorphism such that

ϕ : a 7→ b
b 7→ ac
c 7→ a

and ϕ−1
: a 7→ c

b 7→ a
c 7→ c−1b

Let8 be its outer class. Then86 is FR, has index ind(86)= 3
2 < 2. The expansion

factor is λ8 ' 1,3247. The outer automorphism 8−3 is FR, has index ind(8−3)=
1
2 < 2. The expansion factor is λ8−1 ' 1,4655 > λ8. The computation of these
two indices can be achieved using the algorithm of [Jullian 2009].

Now that we have classified outer automorphisms of FN into four categories,
questions of genericity naturally arise. In particular, is a generic outer automor-
phism of FN iwip, pseudo-Levitt and with distinct expansion factors? This was
suggested in [Handel and Mosher 2007], in particular for statistical genericity:
given a set of generators of Out(FN ) and considering the word metric associated
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to it, is it the case that

lim
k→∞

#(pseudo-Levitt iwip with λ8 6= λ8−1)∩ B(k))
#B(k)

= 1,

where B(k) is the ball of radius k, centered at 1, in Out(FN )?

5A. Botanical memo. In this section we give a glossary of our classification of
automorphisms for the working mathematician.

For a FR iwip outer automorphism8 of FN , we used 6 indices which are related
in the following way:

2 ind(8)= indgeo(T8) = indQ(T8−1),

2 ind(8−1)= indgeo(T8−1)= indQ(T8).

All these indices are bounded above by 2N − 2. We sum up our Theorem 5.2 in
the following table.

Automorphisms Trees Indices

8 geometric ⇔ T8 and T8−1 geometric ⇔ ind(8)= ind(8−1)= N−1
m m

8−1 geometric T8 surface
m

T8−1 surface

8 parageometric ⇔


T8 geometric
and
T8−1 nongeometric

⇔


ind(8)= N−1
and
ind(8−1) < N−1

m

T8 Levitt
m

T8−1 pseudo-surface

8 pseudo-Levitt ⇔ T8, T8−1 nongeometric
m m

8−1 pseudo-Levitt T8 pseudo-Levitt ⇔


ind(8) < N−1
and
ind(8−1) < N−1m

T8−1 pseudo-Levitt
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