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ASYMPTOTICALLY ROBERTSON–WALKER SPACETIMES

CLAUS GERHARDT

We prove that the leaves of the rescaled curvature flow considered in earlier
work converge to the graph of a constant function.

1. Introduction

In [Gerhardt 2004] and [Gerhardt 2006a, Chapter 7] we considered the inverse
mean curvature flow in a Lorentzian manifold N = N n+1 which we called an
asymptotically Robertson–Walker space, and which is defined by the following
conditions:

Definition 1.1. A cosmological spacetime N , dim N = n+1, is said to be asymp-
totically Robertson–Walker (ARW) with respect to the future, if a future end of
N , N+, can be written as a product N+ = [a, b) × S0, where S0 is a compact
Riemannian space, and there exists a future directed time function τ = x0 such
that the metric in N+ can be written as

(1-1) ds̆2
= e2ψ̃{

−
(
dx0)2

+ σi j (x0, x) dx i dx j},
where S0 corresponds to x0

= a, ψ̃ is of the form

(1-2) ψ̃(x0, x)= f (x0)+ψ(x0, x),

and we assume that there exists a positive constant c0 and a smooth Riemannian
metric σ i j on S0 such that

(1-3) lim
τ→b

eψ = c0 and lim
τ→b

σi j (τ, x)= σ i j (x),

and

(1-4) lim
τ→b

f (τ )=−∞.
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Without loss of generality we shall assume c0= 1. Then N is ARW with respect
to the future if the metric is close to the Robertson–Walker metric

(1-5) ds2
= e2 f {

−
(
dx0)2

+ σ i j (x) dx i dx j}
near the singularity τ = b. By close we mean that the derivatives of arbitrary order
with respect to space and time of the conformal metric e−2 f ğαβ in (1-1) should
converge to the corresponding derivatives of the conformal limit metric in (1-5)
when x0 tends to b. We emphasize that in our terminology Robertson–Walker
metric does not imply that (σ i j ) is a metric of constant curvature, it is only the
spatial metric of a warped product.

We assume, furthermore, that f satisfies the following five conditions:

(1-6) − f ′ > 0.

There exists ω ∈ R such that

(1-7) n+ω− 2> 0 and lim
τ→b
| f ′|2e(n+ω−2) f

= m > 0.

Set γ̃ = 1
2(n+ω− 2), then the limit

(1-8) lim
τ→b

(
f ′′+ γ̃ | f ′|2

)
exists and

(1-9) |Dm
τ ( f ′′+ γ̃ | f ′|2)| ≤ cm | f ′|m for all m ≥ 1,

as well as

(1-10) |Dm
τ f | ≤ cm | f ′|m for all m ≥ 1.

We call N a normalized ARW spacetime if

(1-11)
∫

S0

√
det σ i j = |Sn

|.

Remark 1.2. (i) If these assumptions are satisfied, then we proved in [Gerhardt
2004] that the range of τ is finite, hence, we shall assume without loss of generality
that b = 0, that is,

(1-12) a < τ < 0.

(ii) Any ARW spacetime can be normalized as one easily checks. For normalized
ARW spaces the constant m in (1-7) is defined uniquely and can be identified with
the mass of N , see [Gerhardt 2006b].

(iii) In view of the assumptions on f the mean curvature of the coordinate slices
Mτ = {x0

= τ } tends to∞ if τ goes to zero.
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(iv) ARW spaces satisfy a strong volume decay condition, see [Gerhardt 2008,
Definition 0.1].

(v) Similarly one can define N to be ARW with respect to the past. In this case the
singularity would lie in the past, correspond to τ = 0, and the mean curvature of
the coordinate slices would tend to −∞.

We assume that N satisfies the timelike convergence condition. Consider the
future end N+ of N and let M0 ⊂ N+ be a spacelike hypersurface with positive
mean curvature H̆|M0 > 0 with respect to the past directed normal vector ν̆—we
shall explain in Section 2 why we use the symbols H̆ and ν̆ and not the usual ones
H and ν. Then, as we have proved in [Gerhardt 2008], the inverse mean curvature
flow

(1-13) ẋ =−H̆−1 ν̆

with initial hypersurface M0 exists for all time, is smooth, and runs straight into
the future singularity.

If we express the flow hypersurfaces M(t) as graphs over S0

(1-14) M(t)= graph u(t, · ),

then one of the main results in our former paper was:

Theorem 1.3. (i) Let N satisfy the above assumptions, then the range of the time
function x0 is finite, that is, we may assume that b = 0. Set

(1-15) ũ = ueγ t ,

where γ = 1
n γ̃ , then there are positive constants c1, c2 such that

(1-16) −c2 ≤ ũ ≤−c1 < 0,

and ũ converges in C∞(S0) to a smooth function, if t goes to infinity. We shall also
denote the limit function by ũ.

(ii) Let ği j be the induced metric of the leaves M(t), then the rescaled metric

(1-17) e
2
n t ği j

converges in C∞(S0) to

(1-18) (γ̃ 2m)
1
γ̃ (−ũ)

2
γ̃ σ i j .

(iii) The leaves M(t) get more umbilical if t tends to infinity, namely,

(1-19) H̆−1∣∣h̆ j
i −

1
n H̆δ j

i

∣∣≤ ce−2γ t .
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In case n+ω− 4> 0, we even get a better estimate

(1-20)
∣∣h̆ j

i −
1
n H̆δ j

i

∣∣≤ ce−
1

2n (n+ω−4)t
.

The results for the mean curvature flow have recently also been proved for other
inverse curvature flows, where the mean curvature is replaced by a curvature func-
tion F of class (K ∗) homogeneous of degree 1, which includes the n-th root of the
Gaussian curvature, see Kröner [2011].

In this note we want to prove that the functions in (1-15) converge to a constant.
This result will also be valid when, instead of the mean curvature, other curvature
functions F homogeneous of degree one will be considered satisfying

(1-21) F(1, . . . , 1)= n

provided the rescaled functions in (1-15) can be estimated as in (1-16) and converge
in C3(S0). For simplicity we shall formulate the result only for the solution in
Theorem 1.3, but it will be apparent from the proof that the result is also valid for
different curvature functions.

Theorem 1.4. The functions ũ in (1-15) converge to a constant.

2. Proof of Theorem 1.4

When we proved the convergence results for the inverse mean curvature flow
in [Gerhardt 2004], we considered the flow hypersurfaces to be embedded in N
equipped with the conformal metric

(2-1) ds2
=−

(
dx0)2

+ σi j (x0, x) dx i dx j .

Though, formally, we have a different ambient space we still denote it by the
same symbol N and distinguish only the metrics ğαβ and ḡαβ

(2-2) ğαβ = e2ψ̃ ḡαβ

and the corresponding geometric quantities of the hypersurfaces h̆ i j , ği j , ν̆, respec-
tively h i j , gi j , ν, and so on.

The second fundamental forms h̆ j
i and h j

i are related by

(2-3) eψ̃ h̆ j
i = h j

i + ψ̃αν
αδ

j
i

and, if we define F by

(2-4) F = eψ̃ H̆ ,

then

(2-5) F = H − nṽ f ′+ nψανα,
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where

(2-6) ṽ = v−1,

and

(2-7) v2
= 1− σ i j uuu j ≡ 1− |Du|2.

The evolution equation can be written as

(2-8) ẋ =−F−1ν,

since

(2-9) ν̆ = e−ψ̃ν.

The flow (2-8) can also be considered to comprise more general curvature functions
F by assuming that F = F

(
ȟi

j

)
, where ȟi

j is an abbreviation for the right-hand side
of (2-3). Stipulating that indices of tensors will be raised or lowered with the help
of the metric

(2-10) gi j =−ui u j + σi j ,

we may also consider F to depend on

(2-11) ȟ i j = h i j − ṽ f ′gi j +ψαν
αgi j

and we define accordingly

(2-12) F i j
=
∂F
∂ ȟ i j

.

Now, let us prove Theorem 1.4. We use the relation

(2-13) ṽ2
= 1+‖Du‖2 = 1+ g i j ui u j

and shall prove that

(2-14) lim
t→∞

(
‖Du‖2

)′e2γ t
= 2γ∆ũ ũ,

where

(2-15) ũ = lim
t→∞

ueγ t ,

as well as

(2-16) lim
t→∞

(
ṽ2)′e2γ t

=−2γ ‖Dũ‖2

yielding

(2-17) −∆ũ ũ = ‖Dũ‖2
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on the compact limit hypersurface M . Since ũ is strictly negative we then conclude

(2-18)
∫

M
‖Dũ‖2ũ−1

= 0,

hence ‖Dũ‖ = 0.
Let us first derive (2-14). Using

(2-19) ġi j =−2F−1h i j ,

see [Gerhardt 2006a, Lemma 2.3.1], where we write gi j = gi j (t, ξ), ξ = (ξ i ) are
local coordinates for S0, and where

(2-20) ġi j =
∂gi j

∂t
= u̇i u j + ui u̇ j + σ̇i j u̇,

and σ̇i j is defined by

(2-21) σ̇i j =
∂σi j

∂u
,

we deduce

(2-22)
(
‖Du‖2

)′
=
(
g i j ui u j

)′
= 2g i j u̇i u j − ġi j ui u j

= 2F−1 H + g i j σ̇i j u̇− ġi j ui u j

= 2F−1 H + ṽF−1g i j σ̇i j + 2F−1h i j ui u j

= 2F−1 H + ṽF−1σ i j σ̇i j + ṽ
3 F−1σ̇i j ǔi ǔ j

+ 2F−1h i j ui u j ,

where we used the relation

(2-23) g i j
= σ i j

+ ṽ2ǔi ǔ j

and where ǔi is defined by

(2-24) ǔi
= σ i j u j .

The last two terms on the right-hand side of (2-22) are an o
(
e−2γ t

)
, thus we

have

(2-25)
(
‖Du‖2

)′
= 2F−1(H + ṽ 1

2σ
i j σ̇i j

)
+ o

(
e−2γ t).

On the other hand,

(2-26) h i j ṽ =−u i j + h̄ i j ,

where h̄ i j is the second fundamental form of the slices {x0
= const}

(2-27) h̄ i j =−
1
2 σ̇i j
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and we infer

H ṽ =−∆u+ g i j h̄ i j =−∆u+ H̄ + ṽ2h̄ i j ǔi ǔ j .(2-28)

Combining (2-22), (2-27) and (2-28) we obtain

(2-29)
(
‖Du‖2

)′
= 2F−1(H − ṽ H̄

)
+ o

(
e−2γ t)

= 2F−1(H − H̄
)
+ o

(
e−2γ t)

=−2F−1∆u+ o
(
e−2γ t).

In view of [Gerhardt 2006a, Lemma 7.3.4], the estimates for h i j , u, and ψ , and the
homogeneity of F , we have

(2-30) lim
t→∞

F(−u)= nγ̃−1
= γ−1,

hence we deduce

(2-31) lim
t→∞

(
‖Du‖2

)′e2γ t
= 2γ∆ũ ũ.

Let us now differentiate ṽ2. From the relation

(2-32) ṽ = ηαν
α, (ηα)= (−1, 0, . . . , 0),

we infer

(2-33) ˙̃v = ηαβν
α ẋβ + ηα ν̇α =−F−1ηαβν

ανβ +
(
F−1)

k uk,

where we used

(2-34) ν̇ =
(
−F−1)k xk,

see [Gerhardt 2006a, Lemma 2.3.2]. The first term on the right-hand side of (2-33)
is an o

(
e−2γ t

)
in view of the asymptotic behavior of an ARW space, see the defi-

nition of close in Definition 1.1, while

(2-35)
(
F−1)

k

=−F−2 F i j{hi j;k − ṽk f ′gi j − f̃ ′′uk gi j +ψαβν
αxβk gi j +ψαxαl hl

k gi j
}
,

where we applied the Weingarten equation to derive the last term on the right-hand
side. Therefore, we infer

(2-36) lim
t→∞

(
F−1)

kuke2γ t
= ‖Dũ‖2 1

n lim
f ′′

| f ′|2
=−

γ̃

n
‖Dũ‖2 =−γ ‖Dũ‖2,

in view of (1-8) and the definition of γ in Theorem 1.3, and we deduce further

(2-37) lim
t→∞

(
ṽ2)′e2γ t

=−2γ ‖Dũ‖2,
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hence the limit function ũ satisfies

(2-38) ‖Dũ‖2 =−∆ũ ũ

completing the proof of Theorem 1.4.

Remark 2.1. We believe that this method of proof will also work for other curva-
ture flows driven by extrinsic curvatures, in Riemannian or Lorentzian manifolds,
to prove that the leaves of the rescaled curvature flows converge to the graph of a
constant function.

Indeed, applying this method we proved in [Gerhardt 2011, Lemma 6.12] that
the rescaled curvature flow converges to a sphere.
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