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We define a new notion of total curvature, called net total curvature, for
finite graphs embedded in Rn, and investigate its properties. Two guiding
principles are given by Milnor’s way of measuring using a local Crofton-
type formula, and by considering the double cover of a given graph as an
Eulerian circuit. The strength of combining these ideas in defining the cur-
vature functional is that it allows us to interpret the singular/noneuclidean
behavior at the vertices of the graph as a superposition of vertices of a
1-dimensional manifold, so that one can compute the total curvature for
a wide range of graphs by contrasting local and global properties of the
graph utilizing the integral geometric representation of the curvature. A
collection of results on upper/lower bounds of the total curvature on iso-
topy/homeomorphism classes of embeddings is presented, which in turn
demonstrates the effectiveness of net total curvature as a new functional
measuring complexity of spatial graphs in differential-geometric terms.

1. Introduction: curvature of a graph

The celebrated Fáry–Milnor theorem states that a curve in Rn of total curvature at
most 4π is unknotted.

As a key step in his proof, John Milnor [1950] showed that for a smooth Jordan
curve 0 in R3, the total curvature equals half the integral over e∈ S2 of the number
µ(e) of local maxima of the linear height function 〈e, · 〉 along 0. This equality
can be regarded as a Crofton-type representation formula of total curvature where
the order of integrations over the curve and the unit tangent sphere (the space of
directions) are reversed. The Fáry–Milnor theorem follows, since total curvature
less than 4π implies there is a unit vector e0 ∈ S2 so that 〈e0, · 〉 has a unique local
maximum, and therefore that this linear function is increasing on an interval of 0
and decreasing on the complement. Without changing the pointwise value of this
height function, 0 can be topologically untwisted to a standard embedding of S1
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into R3. The Fenchel theorem, that any curve in R3 has total curvature at least 2π ,
also follows from Milnor’s key step, since for all e ∈ S2, the linear function 〈e, · 〉
assumes its maximum somewhere along 0, implying µ(e) ≥ 1. Milnor’s proof is
independent of the proof of Istvan Fáry, published earlier [1949], which takes a
different approach.

We would like to extend the methods of Milnor’s seminal paper, replacing the
simple closed curve by a finite graph 0 in R3. 0 consists of a finite number of
points, the vertices, and a finite number of simple arcs, the edges, each of which
has as its endpoints one or two of the vertices. We shall assume 0 is connected.
The degree of a vertex q is the number d(q) of edges which have q as an endpoint.
(Another word for degree is “valence”.) We remark that it is technically not needed
that the dimension n of the ambient space equals three. All the arguments can be
generalized to higher dimensions, although in higher dimensions (n ≥ 4) there are
no nontrivial knots, and any two homeomorphic graphs are isotopic.

The key idea in generalizing total curvature for curves to total curvature for
graphs is to consider the Euler circuits, namely, parametrizations by S1, of the
double cover of the graph. We note that given a graph of even degree, there can be
several Euler circuits, or ways to trace it without lifting the pen. A topological ver-
tex of a graph of degree d is a singularity, in that the graph is not locally Euclidean.
However by considering an Euler circuit of the double of the graph, the vertex
becomes locally the intersection point of d paths. We will show (Corollary 3.7)
that at the vertex, each path through it has a (signed) measure-valued curvature,
and the absolute value of the sum of those measures is well-defined, independent
of the choice of the Euler circuit of the double cover. We define (Definition 2.1)
the net total curvature (NTC) of a piecewise C2 graph to be the sum of the total
curvature of the smooth arcs and the contributions from the vertices as described.

This notion of net total curvature is substantially different from the total curva-
ture, denoted TC, as defined by Taniyama [1998]. (Taniyama writes τ for TC.) See
Section 2 below.

This is consistent with known results for the vertices of degree d = 2; with
vertices of degree three or more, this definition helps facilitate a new Crofton-type
representation formula (Theorem 3.13) for total curvature of graphs, where the
total curvature is represented as an integral over the unit sphere. Recall that the
vertex is now seen as d distinct points on an Euler circuit. The way we pick up
the contribution of the total curvature at the vertices identifies the d distinct points,
and thus the 2d unit tangent spheres on a circuit. As Crofton’s formula in effect
reverses the order of integrations — one over the circuit, the other over the space of
tangent directions — the sum of the d exterior angles at the vertex is incorporated
in the integral over the unit sphere. On the other hand the integrand of the integral
over the unit sphere counts the number of net local maxima of the height function
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along an axis, where net local maximum means the number of local maxima minus
the number of local minima at these d points of the Euler circuit. This establishes
a correspondence between the differential geometric quantity (net total curvature)
and the differential topological quantity (average number of maxima) of the graph,
as stated in Theorem 3.13 below.

In Section 2, we compare several definitions for total curvature of graphs which
have appeared in the recent literature. In Section 3, we introduce the main tool
(Lemma 3.5) which in a sense reduces the computation of NTC to counting inter-
sections with planes.

Milnor’s treatment [1950] of total curvature also contained an important topo-
logical extension. Namely, in order to define total curvature, the curve needs only
to be continuous. This makes the total curvature a geometric quantity defined on
any homeomorphic image of S1. In this article, we first define net total curva-
ture (Definition 2.1) on piecewise C2 graphs, and then extend the definition to
continuous graphs (Definition 2.3.) In analogy to Milnor, we approximate a given
continuous graph by a sequence of polygonal graphs. In showing the monotonicity
of the total curvature (Proposition 4.1) under the refining process of approximating
graphs we use our representation formula (Theorem 3.13) applied to the polygonal
graphs.

Consequently the Crofton-type representation formula is also extended to cover
continuous graphs (Theorem 4.9). Additionally, we are able to show that continu-
ous graphs with finite total curvature (NTC or TC) are tame. We say that a graph
is tame when it is isotopic to an embedded polyhedral graph.

In sections 5 through 8, we characterize NTC with respect to the geometry and
the topology of the graph. Proposition 5.5 shows the subadditivity of NTC under
the union of graphs which meet in a finite set. In Section 6, the concept of bridge
number is extended from curves to graphs, in terms of which the minimum of NTC
can be explicitly computed, provided the graph has at most one vertex of degree
> 3. In Section 7, Theorem 7.1 gives a lower bound for NTC in terms of the width
of an isotopy class. The infimum of NTC is computed for specific graph types: the
two-vertex graphs θm , the “ladder” Lm , the “wheel” Wm , the complete graph Km

on m vertices and the complete bipartite graph Km,n .
Finally we prove a result (Theorem 8.5) which gives a Fenchel type lower bound

(≥ 3π) for total curvature of a theta graph (an image of the graph consisting of a
circle with an arc connecting a pair of antipodal points), and a Fáry–Milnor type
upper bound (<4π) to imply the theta graph is isotopic to the standard embedding.
A similar result was given by Taniyama [1998], referring to TC. In contrast, for
graphs of the type of Km (m ≥ 4), the infimum of NTC in the isotopy class of a
polygon on m vertices is also the infimum for a sequence of distinct isotopy classes
(Corollary 8.3).
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Many of the results in our earlier preprint [Gulliver and Yamada 2008] have
been incorporated into the present paper.

We thank Yuya Koda for his comments regarding Proposition 6.1, and Jaigyoung
Choe and Rob Kusner for their comments about Theorem 8.5, especially about the
sharp case NTC(0)= 3π of the lower bound estimate.

2. Definitions of total curvature

The first difficulty, in extending the results of Milnor’s classic paper, is to under-
stand the contribution to total curvature at a vertex of degree d(q) ≥ 3. We first
consider the well-known case:

Definition of total curvature for curves. For a smooth closed curve 0, the total
curvature is

C(0)=

∫
0

|Ek| ds,

where s denotes arc length along 0 and Ek is the curvature vector. If x(s) ∈ R3

denotes the position of the point measured at arc length s along the curve, then
Ek = d2x

ds2 . For a piecewise smooth curve, that is, a graph with vertices q1, . . . , qN

having always degree d(qi )= 2, the total curvature is readily generalized to

(2-1) C(0)=

N∑
i=1

c(qi )+

∫
0reg

|Ek| ds,

where the integral is taken over the separate C2 edges of 0 without their endpoints;
and where c(qi ) ∈ [0, π] is the exterior angle formed by the two edges of 0 which
meet at qi . That is, cos(c(qi ))= 〈T1,−T2〉, where T1=

dx
ds (q

+

i ) and T2=−
dx
ds (q

−

i )

are the unit tangent vectors at qi pointing into the two edges which meet at qi . The
exterior angle c(qi ) is the correct contribution to total curvature, since any sequence
of smooth curves converging to 0 in C0, with C1 convergence on compact subsets
of each open edge, includes a small arc near qi along which the tangent vector
changes from near dx

ds (q
−

i ) to near dx
ds (q

+

i ). The greatest lower bound of the contri-
bution to total curvature of this disappearing arc along the smooth approximating
curves equals c(qi ).

Note that C(0) is well defined for an immersed curve 0.

Definitions of total curvature for graphs. When we turn our attention to a graph
0, we find the above definition for curves (degree d(q) = 2) does not generalize
in any obvious way to higher degree (see [Gulliver 2007]). The ambiguity of the
general formula (2-1) is resolved if we specify the replacement for c(0) when 0 is
the cone over a finite set {T1, . . . , Td} in the unit sphere S2.
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The earliest notion of total curvature of a graph appears in the context of the
first variation of length of a graph, which we call variational total curvature, and
is called the mean curvature of the graph in [Allard and Almgren 1976]: we shall
write VTC. The contribution to VTC at a vertex q of degree 2, with unit tangent
vectors T1 and T2, is vtc(q)= |T1+ T2| = 2 sin(c(q)/2). At a nonstraight vertex q
of degree 2, vtc(q) is less than the exterior angle c(q). For a vertex of degree d,
the contribution is vtc(q)= |T1+ · · ·+ Td |.

A rather natural definition of total curvature of graphs was given in [Taniyama
1998]. We have called this maximal total curvature TC(0) in [Gulliver 2007]. The
contribution to total curvature at a vertex q of degree d is

tc(q) :=
∑

1≤i< j≤d

arccos〈Ti ,−T j 〉.

In the case d(q) = 2, the sum above has only one term, the exterior angle c(q) at
q . Since the length of the Gauss image of a curve in S2 is the total curvature of the
curve, tc(q) may be interpreted as adding to the Gauss image in RP2 of the edges,
a complete great-circle graph on T1(q), . . . , Td(q), for each vertex q of degree d .
Note that the edge between two vertices does not measure the distance in RP2 but
its supplement.

In [Gulliver and Yamada 2006], studying the density of an area-minimizing two-
dimensional rectifiable set 6 spanning 0, we found that it was very useful to apply
the Gauss–Bonnet formula to the cone over 0 with a point p of 6 as vertex. The
relevant notion of total curvature in that context is cone total curvature CTC(0),
defined using ctc(q) as the replacement for c(q) in (2-1):

(2-2) ctc(q) := sup
e∈S2

{ d∑
i=1

(
π

2
− arccos〈Ti , e〉

)}
.

Note that in the case d(q)=2, the supremum above is assumed at vectors e lying
in the smaller angle between the tangent vectors T1 and T2 to 0, so that ctc(q) is
then the exterior angle c(q) at q . The main result of [Gulliver and Yamada 2006]
is that 2π times the area density of 6 at any of its points is at most equal to
CTC(0). The same result had been proven by Eckholm, White and Wienholtz for
the case of a simple closed curve [Ekholm et al. 2002]. Taking6 to be the branched
immersion of the disk given by Douglas [1931] and Radó [1933], it follows that
if C(0) ≤ 4π , then 6 is embedded, and therefore 0 is unknotted. Thus [Ekholm
et al. 2002] provided an independent proof of the Fáry–Milnor theorem. However,
CTC(0) may be small for graphs which are far from the simplest isotopy types of
a graph 0.

In this paper, we introduce the notion of net total curvature NTC(0), which
is the appropriate definition for generalizing — to graphs — Milnor’s approach to
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isotopy and total curvature of curves. For each unit tangent vector Ti at q, where
1 ≤ i ≤ d = d(q), let χi : S2

→ {−1,+1} be equal to −1 on the hemisphere with
center at Ti , and +1 on the opposite hemisphere (modulo sets of zero Lebesgue
measure). We then define

(2-3) ntc(q) :=
1
4

∫
S2

[ d∑
i=1

χi (e)
]+

d AS2(e).

We note that the function
∑d

i=1 χi (e) is odd, hence the quantity above can be
written as

ntc(q) :=
1
8

∫
S2

∣∣∣∣ d∑
i=1

χi (e)
∣∣∣∣ d AS2(e).

as well. In the case d(q)= 2, the integrand of (2-3) is positive (and equals 2) only
on the set of unit vectors e which have negative inner products with both T1 and
T2, ignoring e in sets of measure zero. This set is bounded by great semicircles
orthogonal to T1 and to T2, and has spherical area equal to twice the exterior angle.
So in this case, ntc(q) is the exterior angle. Thus, in the special case where 0
is a piecewise smooth curve, the following quantity NTC(0) coincides with total
curvature, as well as with TC(0) and CTC(0):

Definition 2.1. We define the net total curvature of a piecewise C2 graph 0 with
vertices {q1, . . . , qN } as

(2-4) NTC(0) :=
N∑

i=1

ntc(qi )+

∫
0reg

|Ek| ds.

For the sake of simplicity, elsewhere in this paper, we consider the ambient space
to be R3. However the definition of the net total curvature can be generalized for a
graph in Rn by defining the vertex contribution in terms of an average over Sn−1:

ntc(q) := π
?

Sn−1

[ d∑
i=1

χi (e)
]+

d ASn−1(e),

which is consistent with the definition (2-3) of ntc when n = 3.
Recall that Milnor defines the total curvature of a continuous simple closed

curve C as the supremum of the total curvature of all polygons inscribed in C . By
analogy, we define net total curvature of a continuous graph 0 to be the supremum
of the net total curvature of all polygonal graphs P suitably inscribed in 0 as
follows.

Definition 2.2. For a given continuous graph 0, we say a polygonal graph P ⊂R3

is 0-approximating, provided that its topological vertices (those of degree 6= 2) are
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exactly the topological vertices of 0, and having the same degrees; and that the
arcs of P between two topological vertices correspond one-to-one to the edges of
0 between those two vertices.

Note that if P is a 0-approximating polygonal graph, then P is homeomorphic
to 0. According to the statement of Proposition 4.1, whose proof will be given
in the next section, if P and P̃ are 0-approximating polygonal graphs, and P̃ is
a refinement of P , then NTC(P̃) ≥ NTC(P). Here P̃ is said to be a refinement
of P provided the set of vertices of P is a subset of the vertices of P̃ . Assum-
ing Proposition 4.1 for the moment, we can generalize the definition of the total
curvature to nonsmooth graphs.

Definition 2.3. Define the net total curvature of a continuous graph 0 by

NTC(0) := sup
P

NTC(P)

where the supremum is taken over all 0-approximating polygonal graphs P .

For a polygonal graph P , applying Definition 2.1,

NTC(P) :=
N∑

i=1

ntc(qi ),

where q1, . . . , qN are the vertices of P .
Definition 2.3 is consistent with Definition 2.1 in the case of a piecewise C2

graph 0. Namely, as Milnor showed [1950, p. 251], the total curvature C(00) of
a smooth curve 00 is the supremum of the total curvature of inscribed polygons,
which gives the required supremum for each edge. At a vertex q of the piecewise-
C2 graph 0, as a sequence Pk of 0-approximating polygons become arbitrarily
fine, a vertex q of Pk (and of 0) has unit tangent vectors converging in S2 to the
unit tangent vectors to 0 at q. It follows that for 1 ≤ i ≤ d(q), χ Pk

i → χ0i in
measure on S2, and therefore ntcPk (q)→ ntc0(q).

3. Crofton-type representation formula for total curvature

We would like to explain how the net total curvature NTC(0) of a piecewise C2

graph 0 is related to more familiar notions of total curvature. Recall that 0 has an
Euler circuit if and only if its vertices all have even degree, by a theorem of Euler.
An Euler circuit is a closed, connected path which traverses each edge of 0 exactly
once. Of course, we do not have the hypothesis of even degree. We can attain that
hypothesis by passing to the double 0̃ of 0: 0̃ is the graph with the same vertices
as 0, but with two copies of each edge of 0. Then at each vertex q, the degree
as a vertex of 0̃ is d̃(q) = 2 d(q), which is even. By Euler’s theorem, there is an
Euler circuit 0′ of 0̃, which may be thought of as a closed path which traverses
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each edge of 0 exactly twice. Now at each of the points {q1, . . . , qd} along 0′

which are mapped to q ∈ 0, we may consider the exterior angle c(qi ). The sum of
these exterior angles, however, depends on the choice of the Euler circuit 0′. For
example, if 0 is the union of the x-axis and the y-axis in Euclidean space R3, then
one might choose 0′ to have four right angles, or to have four straight angles, or
something in between, with completely different values of total curvature. In order
to form a version of total curvature at a vertex q which only depends on the original
graph 0 and not on the choice of Euler circuit 0′, it is necessary to consider some
of the exterior angles as partially balancing others. In the example just considered,
where 0 is the union of two orthogonal lines, two opposing right angles will be
considered to balance each other completely, so that ntc(q) = 0, regardless of the
choice of Euler circuit of the double.

It will become apparent that the connected character of an Euler circuit of 0̃ is
not required for what follows. Instead, we shall refer to a parametrization 0′ of the
double 0̃, which is a mapping from a 1-dimensional manifold without boundary,
not necessarily connected; the mapping is assumed to cover each edge of 0̃ once.

The nature of ntc(q) is clearer when it is localized on S2, analogously to [Milnor
1950]. In the case d(q) = 2, Milnor observed that the exterior angle at the vertex
q equals half the area of those e ∈ S2 such that the linear function 〈e, · 〉, restricted
to 0, has a local maximum at q . In our context, we may describe ntc(q) as one-
half the integral over the sphere of the number of net local maxima, which is half
the difference of local maxima and local minima. Along the parametrization 0′ of
the double of 0, the linear function 〈e, · 〉 may have a local maximum at some of
the vertices q1, . . . , qd over q, and may have a local minimum at others. In our
construction, each local minimum balances against one local maximum. If there
are more local minima than local maxima, the number nlm(e, q), the net number
of local maxima, will be negative; however, our definition uses only the positive
part [nlm(e, q)]+.

We need to show that ∫
S2
[nlm(e, q)]+ d AS2(e)

is independent of the choice of parametrization, and in fact is equal to 2 ntc(q);
this will follow from another way of computing nlm(e, q) (see Corollary 3.7).

Definition 3.1. Let a parametrization 0′ of the double of 0 be given. Then a
vertex q of 0 corresponds to a number of vertices q1, . . . , qd of 0′, where d is the
degree d(q) of q as a vertex of 0. Choose e ∈ S2. If q ∈ 0 is a local extremum
of 〈e, · 〉, then we consider q as a vertex of degree d(q) = 2. Let lmax(e, q) be
the number of local maxima of 〈e, · 〉 along 0′ at the points q1, . . . , qd over q , and
similarly let lmin(e, q) be the number of local minima. We define the number of
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net local maxima of 〈e, · 〉 at q to be

nlm(e, q)= 1
2 [lmax(e, q)− lmin(e, q)].

Remark 3.2. The definition of nlm(e, q) appears to depend not only on 0 but on
a choice of the parametrization 0′ of the double of 0: lmax(e, q) and lmin(e, q)
may depend on the choice of 0′. However, we shall see in Corollary 3.6 below
that the number of net local maxima nlm(e, q) is in fact independent of 0′.

Remark 3.3. We have included the factor 1
2 in the definition of nlm(e, q) in order

to agree with the difference of the numbers of local maxima and minima along a
parametrization of 0 itself, if d(q) is even.

We shall assume for the rest of this section that a unit vector e has been chosen,
and that the linear height function 〈e, · 〉 has only a finite number of critical points
along 0; this excludes e belonging to a subset of S2 of measure zero. We shall also
assume that the graph 0 is subdivided to include among the vertices all critical
points of the linear function 〈e, · 〉, with degree d(q)= 2 if q is an interior point of
one of the topological edges of 0.

Definition 3.4. Choose a unit vector e. At a point q ∈ 0 of degree d = d(q),
let the up-degree d+ = d+(e, q) be the number of edges of 0 with endpoint q
on which 〈e, · 〉 exceeds 〈e, q〉, the height of q . Similarly, let the down-degree
d−(e, q) be the number of edges along which 〈e, · 〉 is less than its value at q . Note
that d(q)= d+(e, q)+ d−(e, q), for almost all e in S2.

Lemma 3.5 (combinatorial lemma). For all q ∈ 0 and for almost all e ∈ S2,

nlm(e, q)= 1
2 [d
−(e, q)− d+(e, q)].

Proof. Let a parametrization 0′ of the double of 0 be chosen, with respect to
which lmax(e, q) and lmin(e, q) are defined. Recall the assumption above, that 0
has been subdivided so that along each edge, the linear function 〈e, · 〉 is strictly
monotone.

Consider a vertex q of 0, of degree d = d(q). Then 0′ has 2d edges with an
endpoint among the points q1, . . . , qd which are mapped to q ∈ 0. On 2d+, resp.
2d− of these edges, 〈e, · 〉 is greater resp. less than 〈e, q〉. But for each 1 ≤ i ≤ d,
the parametrization 0′ has exactly two edges which meet at qi . Depending on the
up/down character of the two edges of 0′ which meet at qi , 1 ≤ i ≤ d , we can
count:

(+) If 〈e, · 〉 is greater than 〈e, q〉 on both edges, then qi is a local minimum point;
there are lmin(e, q) of these among q1, . . . , qd .
(-) If 〈e, · 〉 is less than 〈e, q〉 on both edges, then qi is a local maximum point;
there are lmax(e, q) of these.
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(0) In all remaining cases, the linear function 〈e, · 〉 is greater than 〈e, q〉 along
one edge and less along the other, in which case qi is not counted in computing
lmax(e, q) nor lmax(e, q); there are d(q)− lmax(e, q)− lmin(e, q) of these.

Now count the individual edges of 0′:

(+) There are lmin(e, q) pairs of edges, each of which is part of a local minimum,
both of which are counted among the 2d+(e, q) edges of 0′ with 〈e, · 〉 greater than
〈e, q〉.
(-) There are lmax(e, q) pairs of edges, each of which is part of a local maximum;
these are counted among the number 2d−(e, q) of edges of 0′ with 〈e, · 〉 less than
〈e, q〉. Finally,
(0) there are d(q)− lmax(e, q)− lmin(e, q) edges of 0′ which are not part of a
local maximum or minimum, with 〈e, · 〉 greater than 〈e, q〉; and an equal number
of edges with 〈e, · 〉 less than 〈e, q〉.

Thus, the total number of these edges of 0′ with 〈e, · 〉 greater than 〈e, q〉 is

2d+ = 2 lmin+ (d − lmax− lmin)= d + lmin− lmax.

Similarly,

2d− = 2 lmax+ (d − lmax− lmin)= d + lmax− lmin.

Subtracting gives the conclusion:

nlm(e, q) :=
lmax(e, q)− lmin(e, q)

2
=

d−(e, q)− d+(e, q)
2

. �

Corollary 3.6. The number of net local maxima nlm(e, q) is independent of the
choice of parametrization 0′ of the double of 0.

Proof. Given a direction e ∈ S2, the up-degree and down-degree d±(e, q) at a
vertex q ∈ 0 are defined independently of the choice of 0′. �

Corollary 3.7. For any q ∈ 0, we have ntc(q)= 1
2

∫
S2[nlm(e, q)]+ d AS2 .

Proof. Consider e ∈ S2. In the definition (2-3) of ntc(q), χi (e) = ±1 whenever
±〈e, Ti 〉 < 0. But the number of 1 ≤ i ≤ d with ±〈e, Ti 〉 < 0 equals d∓(e, q), so
that

d∑
i=1

χi (e)= d−(e, q)− d+(e, q)= 2 nlm(e, q)

by Lemma 3.5, for almost all e ∈ S2. �

Definition 3.8. For a graph 0 in R3 and e ∈ S2, define the multiplicity at e as

µ(e)= µ0(e)=
∑
{nlm+(e, q) : q a vertex of 0 or a critical point of 〈e, · 〉}.
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Note that µ(e) is a half-integer. Note also that in the case when 0 is a curve,
or equivalently, when d(q)≡ 2, µ(e) is exactly the integer µ(0, e), the number of
local maxima of 〈e, · 〉 along 0 as defined in [Milnor 1950, p. 252].

Corollary 3.9. For almost all e ∈ S2 and for any parametrization 0′ of the double
of 0, µ0(e)≤ 1

2µ0′(e).

Proof. We have

µ0(e)= 1
2

∑
q

[
lmax0′(e, q)− lmin0′(e, q)

]
≤

1
2

∑
q

lmax0′(e, q)= 1
2µ0′ . �

If, in place of the positive part, we sum nlm(e, q) itself over q located above a
plane orthogonal to e, we find a useful quantity:

Corollary 3.10. For almost all s0 ∈ R and almost all e ∈ S2,

2
∑{

nlm(e, q) : 〈e, q〉> s0
}
= #(e, s0),

the cardinality of the fiber {p ∈ 0 : 〈e, p〉 = s0}.

Proof. If s0 > maxp∈0〈e, p〉, then #(e, s0) = 0. Now proceed downward, using
Lemma 3.5 by induction. �

Note that the fiber cardinality of Corollary 3.10 is also the value obtained for
curves, where the more general nlm may be replaced by the number of local max-
ima [Milnor 1950].

Remark 3.11. In analogy with Corollary 3.10, we expect that an appropriate gen-
eralization of NTC to curved polyhedral complexes of dimension ≥ 2 will in the
future allow computation of the homology of level sets and sublevel sets of a (gen-
eralized) Morse function in terms of a generalization of nlm(e, q).

Corollary 3.12. The multiplicity of a graph in direction e ∈ S2 may also be com-
puted as µ(e)= 1

2

∑
q∈0 |nlm(e, q)|.

Proof. It follows from Corollary 3.10 with s0<min0〈e, · 〉 that
∑

q∈0 nlm(e, q)=0,
which is the difference of positive and negative parts. The sum of these parts is∑

q∈0 |nlm(e, q)| = 2µ(e). �

It was shown in Theorem 3.1 of [Milnor 1950] that, in the case of curves, C(0)=
1
2

∫
S2 µ(e) d AS2 , where Milnor refers to Crofton’s formula. We may now extend

this result to graphs:

Theorem 3.13. For a (piecewise C2) graph 0 mapped into R3, the net total cur-
vature has the representation

NTC(0)=
1
2

∫
S2
µ(e) d AS2(e).
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Proof. We have NTC(0) =
∑N

j=1 ntc(q j )+
∫
0reg
|Ek| ds, where q1, . . . , qN are the

vertices of 0, including local extrema as vertices of degree d(q j )= 2, and where
ntc(q) := 1

4

∫
S2

[∑d
i=1 χi (e)

]+ d AS2(e) by the definition (2-3) of ntc(q). Apply-
ing Milnor’s result to each C2 edge, we have C(0reg) =

1
2

∫
S2 µ0reg(e) d AS2 . But

µ0(e)= µ0reg(e)+
∑N

j=1 nlm+(e, qj), and the theorem follows. �

Corollary 3.14. If f : 0 → R3 is piecewise C2 but is not an embedding, then
the net total curvature NTC(0) is well defined, using the right-hand side of the
conclusion of Theorem 3.13. Moreover, NTC(0) has the same value when some
or all of the points of self-intersection of 0 are redefined as vertices.

For e∈ S2, we use the notation pe :R
3
→ eR for the orthogonal projection 〈e, · 〉.

We sometimes identify R with the one-dimensional subspace eR of R3.

Corollary 3.15. If {0} is any homeomorphism type of graphs, then the infimum
NTC({0}) of net total curvature among mappings f : 0 → Rn is assumed by a
mapping f0 : 0→ R.

For any isotopy class [0] of embeddings f : 0→ R3, the infimum NTC([0]) of
net total curvature is assumed by a mapping f0 : 0→R in the closure of the given
isotopy class.

Conversely, if f0 :0→R is in the closure of a given isotopy class [0] of embed-
dings into R3, then for all δ > 0 there is an embedding f : 0→ R3 in that isotopy
class with NTC( f )≤ NTC( f0)+ δ.

Proof. Let f : 0→ R3 be any piecewise smooth mapping. By Corollary 3.14 and
Corollary 3.10, the net total curvature of the projection pe◦ f :0→R of f onto the
line in the direction of almost any e∈ S2 is given by 2πµ(e)=π(µ(e)+µ(−e)). It
follows from Theorem 3.13 that NTC(0) is the average of 2πµ(e) over e in S2. But
the half-integer-valued function µ(e) is lower semicontinuous almost everywhere,
as may be seen using Definition 3.1. Let e0 ∈ S2 be a point where µ attains its
essential infimum. Then NTC(0) ≥ πµ(e0) = NTC(pe0 ◦ f ). But (pe0 ◦ f )e0 is
the limit as ε→ 0 of the map fε whose projection in the direction e0 is the same
as that of f and is multiplied by ε in all orthogonal directions. Since fε is isotopic
to f , (pe0 ◦ f )e0 is in the closure of the isotopy class of f .

Conversely, given f0 :0→R in the closure of a given isotopy class, let f be an
embedding in that isotopy class uniformly close to f0 e0; fε as constructed above
converges uniformly to f0 as ε→ 0, and NTC( fε)→ NTC( f0). �

Definition 3.16. We call a mapping f : 0→ Rn flat (or NTC-flat) if NTC( f ) =
NTC({0}), the minimum value for the topological type of 0, among all ambient
dimensions n.

Corollary 3.15 above shows that for any 0, there is a flat mapping f : 0→ R.



TOTAL CURVATURE OF GRAPHS AFTER MILNOR AND EULER 329

Proposition 3.17. Consider a piecewise C2 mapping f1 : 0→ R. There is a map-
ping f0 : 0→ R which is monotonic along the topological edges of 0, has values
at topological vertices of 0 arbitrarily close to those of f1, and has NTC( f0) ≤

NTC( f1).

Proof. Any piecewise C2 mapping f1 : 0→ R may be approximated uniformly
by mappings with a finite set of local extreme points, using the compactness of
0. Thus, we may assume without loss of generality that f1 has only finitely many
local extreme points. Note that for a mapping f :0→R=Re, NTC( f )=2πµ(e):
hence, we only need to compare µf0(e) with µf1(e).

If f1 is not monotonic on a topological edge E , then it has a local extremum at a
point z in the interior of E . For concreteness, we shall assume z is a local maximum
point; the case of a local minimum is similar. Write v,w for the endpoints of E .
Let v1 be the closest local minimum point to z on the interval of E from z to v (or
v1 = v if there is no local minimum point between), and let w1 be the closest local
minimum point to z on the interval from z to w (or w1 = w). Let E1 ⊂ E denote
the interval between v1 and w1. Then E1 is an interval of a topological edge of
0, having end points v1 and w1 and containing an interior point z, such that f1

is monotone increasing on the interval from v1 to z, and monotone decreasing on
the interval from z to w1. By switching v1 and w1 if needed, we may assume that
f1(v1) < f1(w1) < f1(z).

Let f0 equal f1 except on the interior of the interval E1, and map E1 monotoni-
cally to the interval of R between f1(v1) and f1(w1). Then for f1(w1)< s< f1(z),
the cardinality #(e, s) f0 equals #(e, s) f1 − 2. For s in all other intervals of R, this
cardinality is unchanged. Therefore, nlm f1(w1)= nlm f0(w1)− 1, by Lemma 3.5.
This implies that nlm+f1

(w1) ≥ nlm+f0
(w1)− 1. Meanwhile, nlm f1(z) = 1, a term

which does not appear in the formula for µf0 (see Definition 3.8). Thus µf0 ≤µf1 ,
and NTC( f0)≤ NTC( f1).

Proceeding inductively, we remove each local extremum in the interior of any
edge of 0, without increasing NTC. �

4. Representation formula for nowhere-smooth graphs

Recall that, while defining the total curvature for continuous graphs in Section 2,
we needed the monotonicity of NTC(P) under refinement of polygonal graphs P .
We are now ready to prove this.

Proposition 4.1. Let P and P̃ be polygonal graphs in R3, having the same topo-
logical vertices, and homeomorphic to each other. Suppose that every vertex of
P is also a vertex of P̃: P̃ is a refinement of P. Then for almost all e ∈ S2, the
multiplicity µP̃(e)≥ µP(e). As a consequence, NTC(P̃)≥ NTC(P).
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Proof. We may assume, as an induction step, that P̃ is obtained from P by replacing
the edge having endpoints q0, q2 with two edges, one having endpoints q0, q1 and
the other having endpoints q1, q2. Choose e ∈ S2. We consider various cases:

If the new vertex q1 satisfies 〈e, q0〉 < 〈e, q1〉 < 〈e, q2〉, then nlmP̃(e, qi ) =

nlmP(e, qi ) for i = 0, 2 and nlmP̃(e, q1)= 0, hence µP̃(e)= µP(e).
If 〈e, q0〉< 〈e, q2〉< 〈e, q1〉, then nlmP̃(e, q0)= nlmP(e, q0) and nlmP̃(e, q1)=

1. The vertex q2 requires more careful counting: the up- and down-degree satisfy
d±

P̃
(e, q2)= d±P (e, q2)± 1, so that by Lemma 3.5, nlmP̃(e, q2)= nlmP(e, q2)− 1.

Meanwhile, for each of the polygonal graphs, µ(e) is the sum over q of nlm+(e, q),
so the change from µP(e) to µP̃(e) depends on the value of nlmP(e, q2):

(a) If nlmP(e, q2)≤ 0, then nlm+
P̃
(e, q2)= nlm+P(e, q2)= 0.

(b) If nlmP(e, q2)=
1
2 , then nlm+

P̃
(e, q2)= nlm+P(e, q2)−

1
2 .

(c) If nlmP(e, q2)≥ 1, then nlm+
P̃
(e, q2)= nlm+P(e, q2)− 1.

Since the new vertex q1 does not appear in P , recalling that nlmP̃(e, q1) = 1, we
have µP̃(e)−µP(e) = +1,+1

2 or 0 in the respective cases (a), (b) or (c). In any
case, µP̃(e)≥ µP(e).

The reverse inequality 〈e, q1〉< 〈e, q2〉< 〈e, q0〉may be reduced to the case just
above by replacing e ∈ S2 with −e, since µP(−e) = −µP(e) for any polyhedral
graph P . Then, depending whether nlmP(e, q2) is ≤ −1, = −1

2 or ≥ 0, we find
that µP̃(e)−µP(e)= nlm+

P̃
(e, q2)−nlm+P(e, q2)= 0, 1

2 , or 1. In any case, µP̃(e)≥
µP(e).

These arguments are unchanged if q0 is switched with q2. This covers all cases
except those in which equality occurs between 〈e, qi 〉 and 〈e, q j 〉 (i 6= j). The set
of such unit vectors e form a set of measure zero in S2. The conclusion NTC(P̃)≥
NTC(P) now follows from Theorem 3.13. �

We remark here that this step of proving the monotonicity for the nowhere-
smooth case differs from Milnor’s argument for the total curvature of curves, where
it was shown by two applications of the triangle inequality for spherical triangles.

Milnor extended his results for piecewise smooth curves to continuous curves
in [Milnor 1950]; we shall carry out an analogous extension to continuous graphs.

Definition 4.2. We say a point q ∈ 0 is critical relative to e ∈ S2 when q is a
topological vertex of 0 or when 〈e, · 〉 is not monotone in any open interval of 0
containing q.

Note that at some points of a differentiable curve, 〈e, · 〉 may have derivative
zero but still not be considered a critical point relative to e by our definition. This
is appropriate to the C0 category. For a continuous graph 0, when NTC(0) is
finite, we shall show that the number of critical points is finite for almost all e in
S2 (see Lemma 4.7 below).
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Lemma 4.3. Let 0 be a continuous, finite graph in R3, and choose a sequence P̂k

of 0-approximating polygonal graphs with NTC(0) = limk→∞NTC(P̂k). Then
for each e ∈ S2, there is a refinement Pk of P̂k such that limk→∞ µPk (e) exists in
[0,∞].

Proof. First, for each k in sequence, we refine P̂k to include all vertices of P̂k−1.
Then for all e ∈ S2, µP̂k

(e) ≥ µP̂k−1
(e), by Proposition 4.1. Second, we refine P̂k

so that the arc of 0 corresponding to each edge of P̂k has diameter ≤ 1/k. Third,
given a particular e ∈ S2, for each edge Êk of P̂k , we add 0, 1 or 2 points from 0

as vertices of P̂k so that maxÊk
〈e, · 〉 = maxE 〈e, · 〉 where E is the closed arc of

0 corresponding to Êk ; and similarly so that minÊk
〈e, · 〉 = minE 〈e, · 〉. Write Pk

for the result of this three-step refinement. Note that all vertices of Pk−1 appear
among the vertices of Pk . Then by Proposition 4.1,

NTC(P̂k)≤ NTC(Pk)≤ NTC(0),

so we still have NTC(0)= limk→∞NTC(Pk).
Now compare the values of µPk (e)=

∑
q∈Pk

nlmPk
+(e, q)with the same sum for

Pk−1. Since Pk is a refinement of Pk−1, Proposition 4.1 gives µPk (e)≥ µPk−1(e).
Therefore the valuesµPk (e) are nondecreasing in k, which implies they are either

convergent or properly divergent; in the latter case we write limk→∞ µPk (e)=∞.
�

Definition 4.4. For a continuous graph 0, define the multiplicity at e ∈ S2 as
µ0(e) := limk→∞ µPk (e) ∈ [0,∞], where Pk is a sequence of 0-approximating
polygonal graphs, refined with respect to e, as given in Lemma 4.3.

Remark 4.5. Note that any two 0-approximating polygonal graphs have a com-
mon refinement. Hence, from the proof of Lemma 4.3, any two choices of se-
quences {P̂k} of 0-approximating polygonal graphs lead to the same value µ0(e).

Lemma 4.6. Let 0 be a continuous, finite graph in R3. Then µ0 : S2
→ [0,∞]

takes its values in the half-integers, or +∞. Now assume NTC(0) <∞. Then µ0
is integrable, hence finite almost everywhere on S2, and

(4-1) NTC(0)=
1
2

∫
S2
µ0(e) d AS2(e).

For almost all e ∈ S2, a sequence Pk of 0-approximating polygonal graphs, con-
verging uniformly to 0, may be chosen (depending on e) so that each local extreme
point q of 〈e, · 〉 along 0 occurs as a vertex of Pk for sufficiently large k.

Proof. Given e∈ S2, let {Pk} be the sequence of 0-approximating polygonal graphs
from Lemma 4.3. If µ0(e) is finite, then µPk (e)=µ0(e) for k sufficiently large, a
half-integer.
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Suppose NTC(0)<∞. Then the half-integer-valued functions µPk are nonneg-
ative, integrable on S2 with bounded integrals since NTC(Pk) < NTC(0) <∞,
and monotone increasing in k. Thus for almost all e ∈ S2, µPk (e) = µ0(e) for k
sufficiently large.

Since the functions µPk are nonnegative and pointwise nondecreasing almost
everywhere on S2, it now follows from the monotone convergence theorem that∫

S2
µ0(e) d AS2(e)= lim

k→∞

∫
S2
µPk (e) d AS2(e)= 2NTC(0).

Finally, the polygonal graphs Pk have maximum edge length→0. For almost all
e∈ S2, 〈e, · 〉 is not constant along any open arc of0, andµ0(e) is finite. Given such
an e, choose l= l(e) sufficiently large that µPk (e)=µ0(e) and µPk (−e)=µ0(−e)
for all k≥ l. Then for k≥ l, along any edge Ek of Pk with corresponding arc E of 0,
the maximum and minimum values of 〈e, · 〉 along E occur at the endpoints, which
are also the endpoints of Ek . Otherwise, as Pk is further refined, new interior local
maximum and local minimum points of E would each contribute a new, positive
value to µPk (e) or µPk (−e), respectively, as k increases. Since the diameter of the
corresponding arc E of 0 tends to zero as k →∞, any local maximum or local
minimum of 〈e, · 〉 must become an endpoint of some edge of Pk for k sufficiently
large, and for k ≥ l in particular. �

Our next lemma focuses on the regularity of a graph 0, originally only assumed
continuous, provided it has finite net total curvature, or another notion of total
curvature of a graph which includes the total curvature of the edges.

Lemma 4.7. Let 0 be a continuous, finite graph in R3, with NTC(0) <∞. Then
0 has continuous one-sided unit tangent vectors T1(p) and T2(p) at each point
p, not a topological vertex. If p is a vertex of degree d , then each of the d edges
which meet at p have well-defined unit tangent vectors at p: T1(p), . . . , Td(p).
For almost all e ∈ S2,

(4-2) µ0(e)=
∑

q

{nlm(e, q)}+,

where the sum is over the finite number of topological vertices of 0 and critical
points q of 〈e, · 〉 along 0. Further, for each q , nlm(e, q)= 1

2 [d
−(e, q)−d+(e, q)].

All of these critical points which are not topological vertices are local extrema of
〈e, · 〉 along 0.

Proof. We have seen in the proof of Lemma 4.6 that for almost all e ∈ S2, the
linear function 〈e, · 〉 is not constant along any open arc of 0, and by Lemma 4.3
there is a sequence {Pk} of 0-approximating polygonal graphs withµ0(e)=µPk (e)
for k sufficiently large. We have further shown that each local maximum point of
〈e, · 〉 is a vertex of Pk , possibly of degree two, for k large enough. Recall that
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µPk (e) =
∑

q nlm+Pk
(e, q). Thus, each local maximum point q for 〈e, · 〉 along

0 provides a nonnegative term nlm+Pk
(e, q) in the sum for µPk (e). Fix such an

integer k.
Consider a point q ∈0 which is not a topological vertex of0 but is a critical point

of 〈e, · 〉. We shall show, by an argument similar to one used in [van Rooij 1965],
that q must be a local extreme point. As a first step, we show that 〈e, · 〉 is monotone
on a sufficiently small interval on either side of q . Choose an ordering of the closed
edge E of 0 containing q, and consider the interval E+ of points ≥ q with respect
to this ordering. Suppose that 〈e, · 〉 is not monotone on any subinterval of E+ with
q as endpoint. Then in any interval (q, r1) there are points p2 > q2 > r2 so that
the numbers 〈e, p2〉, 〈e, q2〉, 〈e, r2〉 are not monotone. It follows by an induction
argument that there exist decreasing sequences pn → q, qn → q , and rn → q of
points of E+ such that for each n, rn−1> pn >qn > rn >q , but the value 〈e, qn〉 lies
outside of the closed interval between 〈e, pn〉 and 〈e, rn〉. As a consequence, there
is a local extremum sn ∈ (rn, pn). Since rn−1> pn , the sn are all distinct, 1≤n<∞.
But by Lemma 4.6, all local extreme points, specifically sn , of 〈e, · 〉 along 0 occur
among the finite number of vertices of Pk , a contradiction. This shows that 〈e, · 〉
is monotone on an interval to the right of q . An analogous argument shows that
〈e, · 〉 is monotone on an interval to the left of q .

Recall that for a critical point q relative to e, 〈e, · 〉 is not monotone on any
neighborhood of q . Since 〈e, · 〉 is monotone on an interval on either side, the
sense of monotonicity must be opposite on the two sides of q . Therefore every
critical point q along 0 for 〈e, · 〉, which is not a topological vertex, is a local
extremum.

We have chosen k large enough that µ0(e)= µPk (e). Then for any edge Ek of
Pk , the function 〈e, · 〉 is monotone along the corresponding arc E of 0, as well as
along Ek . Also, E and Ek have common end points. It follows that for each t ∈R,
the cardinality #(e, t) of the fiber {q ∈ 0 : 〈e, q〉 = t} is the same for Pk as for 0.
We may see from Lemma 3.5 applied to Pk that for each vertex or critical point q ,
nlmPk (e, q)= 1

2 [d
−

Pk
(e, q)− d+Pk

(e, q)]; but nlm(e, q) and d±(e, q) have the same
values for 0 as for Pk . The formula µ0(e)=

∑
q{nlm0(e, q)}+ now follows from

the corresponding formula for Pk , for almost all e ∈ S2.
Consider an open interval E of 0 with endpoint q . We have just shown that for

almost all e ∈ S2, 〈e, · 〉 is monotone on a subinterval with endpoint q. Choose a
sequence pl from E , pl→ q , and write

Tl :=
pl − q
|pl − q|

∈ S2.

Then liml→∞ Tl exists. Otherwise, since S2 is compact, there are subsequences
{Tmn } and {Tkn } with Tmn → T ′ and Tkn → T ′′ 6= T ′. But for an open set of e ∈ S2,
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〈e, T ′〉 < 0 < 〈e, T ′′〉. For such e, 〈e, qmn 〉 < 〈e, q〉 < 〈e, qkn 〉 for n� 1. That is,
as p→ q, p ∈ E , 〈e, p〉 assumes values above and below 〈e, q〉 infinitely often,
contradicting monotonicity on an interval starting at q for almost all e ∈ S2.

This shows that 0 has one-sided tangent vectors T1(q), . . . , Td(q) at each point
q ∈ 0 of degree d = d(q) (d = 2 if q is not a topological vertex). Further, as
k→∞, T Pk

i (q)→ T 0
i (q), 1≤ i ≤ d(q), since edges of Pk have diameter ≤ 1

k .
The remaining conclusions follow readily. �

Corollary 4.8. Let 0 be a continuous, finite graph in R3, with NTC(0)<∞. Then
for each point q of 0, the contribution at q to net total curvature is given by (2-3),
where for e ∈ S2, χi (e) = the sign of 〈−Ti (q), e〉, 1 ≤ i ≤ d(q). (Here, if q is not
a topological vertex, we understand d = 2.)

Proof. According to Lemma 4.7, for 1 ≤ i ≤ d(q), Ti (q) is defined and tangent
to an edge Ei of 0, which is continuously differentiable at its end point q . If Pn

is a sequence of 0-approximating polygonal graphs with maximum edge length
tending to 0, the corresponding unit tangent vectors T Pn

i (q)→ T 0
i (q) as n→∞.

For each Pn , we have

ntcPn (q)=
1
4

∫
S2

[ d∑
i=1

χi
Pn (e)

]+
d AS2(e),

and χi
Pn → χi

0 in measure on S2. Hence, the integrals for Pn converge to those
for 0, which is (2-3). �

We are ready to state the formula for net total curvature, by localization on S2,
a generalization of Theorem 3.13:

Theorem 4.9. For a continuous graph 0, the net total curvature NTC(0)∈ (0,∞]
has the representation

NTC(0)=
1
4

∫
S2
µ(e) d AS2(e),

where, for almost all e ∈ S2, the multiplicity µ(e) is a positive half-integer or+∞,
given as the finite sum (4-2).

Proof. If NTC(0) is finite, the theorem follows from Lemma 4.6 and Lemma 4.7.
Choose e ∈ S2. Suppose NTC(0) = sup NTC(Pk) is infinite, where Pk is a

refined sequence of polygonal graphs as in Lemma 4.3. Then µ0(e) is the nonde-
creasing limit of µPk (e) for all e ∈ S2. Thus µ0(e) ≥ µPk (e) for all e and k, and
µ0(e) = µPk (e) for k ≥ l(e). This implies that µ0(e) is a positive half-integer or
∞. Since NTC(0) is infinite, the integral

NTC(Pk)=
1
2

∫
S2
µPk (e) d AS2(e)
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is arbitrarily large as k→∞, but for each k is less than or equal to

1
2

∫
S2
µ0(e) d AS2(e).

Therefore this latter integral equals∞, and thus equals NTC(0). �

We turn our attention next to the tameness of graphs of finite total curvature.

Proposition 4.10. Let n be a positive integer, and write Z for the set of nth roots
of unity in C= R2. Given a continuous one-parameter family St , 0≤ t < 1, of sets
of n points in R2, there exists a continuous one-parameter family 8t : R

2
→ R2 of

homeomorphisms with compact support such that 8t(St)= Z , 0≤ t < 1.

Proof. It is well known that there is an isotopy80 :R
2
→R2 such that80(S0)= Z

and 80 = id outside of a compact set. This completes the case t0 = 0 of the
following continuous induction argument.

Suppose that [0, t0] ⊂ [0, 1) is a subinterval such that there exists a continuous
one-parameter family 8t : R

2
→ R2 of homeomorphisms with compact support,

with 8t(St) = Z for all 0 ≤ t ≤ t0. We shall extend this property to an interval
[0, t0+δ]. Write Bε(Z) for the union of balls Bε(ζi ) centered at the n roots of unity
ζ1, . . . ζn . For ε< sin π

n , these balls are disjoint. We may choose 0<δ< 1−t0 such
that8t0(St)⊂ Bε(Z) for all t0≤ t ≤ t0+δ. Write the points of St as xi (t), 1≤ i ≤n,
where 8t0(xi (t))∈ Bε(ζi ). For each t ∈ [t0, t0+δ], each of the balls Bε(ζi ) may be
mapped onto itself by a homeomorphismψt , varying continuously with t , such that
ψt0 is the identity,ψt is the identity near the boundary of Bε(ζi ) for all t ∈[t0, t0+δ],
and ψt(8t0(xi (t)))= ζi for all such t . For example, we may construct ψt so that for
each y∈ Bε(ζi ), y−ψt(y) is parallel to8t0(xi (t))−ζi . We now define8t =ψt◦8t0
for each t ∈ [t0, t0+ δ].

As a consequence, we see that there is no maximal interval [0, t0] ⊂ [0, 1) such
that there is a continuous one-parameter family8t :R

2
→R2 of homeomorphisms

with compact support with8t(St)= Z , for all 0≤ t ≤ t0. Thus, this property holds
for the entire interval 0≤ t < 1. �

In the following theorem, the total curvature of a graph may be understood in
terms of any definition which includes the total curvature of edges and which is
continuous as a function of the unit tangent vectors at each vertex. This includes
net total curvature, TC of [Taniyama 1998] and CTC of [Gulliver and Yamada
2006].

Theorem 4.11. Suppose 0 ⊂ R3 is a continuous graph with finite total curvature.
Then for any ε > 0, 0 is isotopic to a 0-approximating polygonal graph P with
edges of length at most ε, whose total curvature is less than or equal to that of 0.
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Proof. Since 0 has finite total curvature, by Lemma 4.7, at each topological vertex
of degree d the edges have well-defined unit tangent vectors T1, . . . , Td , which
are each the limit as ε→ 0 of the unit tangent vectors to the corresponding edges
of P . If at each vertex the unit tangent vectors T1, . . . , Td are distinct, then any
sufficiently fine 0-approximating polygonal graph will be isotopic to 0; this easier
case is proven.

We thus consider n edges E1, . . . , En ending at a vertex q, with common unit
tangent vectors T1 = · · · = Tn . Choose orthogonal coordinates (x, y, z) for R3 so
that this common tangent vector T1 = · · · = Tn = (0, 0,−1) and q = (0, 0, 1). For
some ε > 0, in the slab 1−ε≤ z≤ 1, the edges E1, . . . , En project one-to-one onto
the z-axis. After rescaling about q by a factor ≥ 1/ε, the edges E1, . . . , En form a
braid B of n strands in the slab 0≤ z < 1 of R3, plus the point q = (0, 0, 1). Each
strand Ei has q as an endpoint, and the coordinate z is strictly monotone along Ei ,
1≤ i ≤ n. Write St = B ∩{z = t}. Then St is a set of n distinct points in the plane
{z= t} for each 0≤ t<1. By Proposition 4.10, there are homeomorphisms8t of the
plane {z= t} for each 0≤ t<1, isotopic to the identity in that plane, continuous as a
function of t , such that8t(St)= Z×{t}, where Z is the set of n-th roots of unity in
the (x, y)-plane, and8t is the identity outside of a compact set of the plane {z= t}.

We may suppose that St lies in the open disk of radius a(1− t) of the plane
{z = t}, for some (arbitrarily small) constant a > 0. We modify 8t , first replacing
its values with (1− t)8t inside the disk of radius a(1− t). We then modify 8t

outside the disk of radius a(1− t), such that 8t is the identity outside the disk of
radius 2a(1− t).

Having thus modified the homeomorphisms 8t of the planes {z = t}, we may
now define an isotopy 8 of R3 by mapping each plane {z = t} to itself by the
homeomorphism 8−1

0 ◦8t , 0≤ t < 1; and extend to the remaining planes {z = t},
t ≥ 1 and t < 0, by the identity. Then the closure of the image of the braid B is the
union of line segments from q = (0, 0, 1) to the n points of S0 in the plane {z= 0}.
Since each 8t is isotopic to the identity in the plane {z = t}, 8 is isotopic to the
identity of R3.

This procedure may be carried out in disjoint sets of R3 surrounding each unit
vector which occurs as tangent vector to more than one edge at a vertex of 0.
Outside these sets, we inscribe a polygonal arc in each edge of 0 to obtain a 0-
approximating polygonal graph P . By Definition 2.3, P has total curvature less
than or equal to the total curvature of 0. �

Artin and Fox [1948] introduced the notion of tame and wild knots in R3; the
extension to graphs is the following:

Definition 4.12. We say that a graph in R3 is tame if it is isotopic to a polyhedral
graph; otherwise, it is wild.
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Milnor [1950] proved that curves of finite total curvature are tame. More gen-
erally, we have

Corollary 4.13. A continuous graph 0 ⊂ R3 of finite total curvature is tame.

Proof. This is an easy consequence of Theorem 4.11, since the 0-approximating
polygonal graph P is isotopic to 0. �

Observation 4.14. Tameness does not imply finite total curvature.

For a well-known example, let 0 ⊂ R2 be the continuous curve

{(x, h(x)) : x ∈ [−1, 1]},

where
h(x)=−

x
π

sin
π

x
for x 6= 0

and h(0)= 0. This function has a sequence of zeroes ±1/n→ 0 as n→∞. The
total curvature of 0 between (0, 1/n) and (0, 1/(n+1)) converges to π as n→∞.
Thus C(0)=∞.

On the other hand, h(x) is continuous on [−1, 1], from which it readily follows
that 0 is tame.

5. On vertices of small degree

We will now illustrate some properties of net total curvature NTC(0) in a few
relatively simple cases, and make some observations regarding NTC({0}), the
minimum net total curvature for the homeomorphism type of a graph 0 ⊂ Rn

(see Definition 3.16 above).

Minimum curvature for given degree.

Proposition 5.1. If a vertex q has odd degree, then ntc(q) ≥ π/2. If d(q) =
3, then equality holds if and only if the three tangent vectors T1, T2, T3 at q are
coplanar but do not lie in any open half-plane. If q has even degree 2m, then the
minimum value of ntc(q) is 0. Moreover, the equality ntc(q)= 0 only occurs when
T1(q), . . . , T2m(q) form m opposite pairs.

Proof. Let q have odd degree d(q)=2m+1. Then from Lemma 3.5, for any e∈ S2,
we see that nlm(e, q) is one of the half-integers ±1

2 , . . . ,±
2m+1

2 . In particular,
|nlm(e, q)| ≥ 1

2 . Corollary 3.7 and the proof of Corollary 3.12 show that

ntc(q)=
1
4

∫
S2

∣∣nlm(e, q)
∣∣ d AS2 .

Therefore ntc(q)≥ π/2.
If the degree d(q)= 3, then |nlm(e, q)| = 1

2 if and only if both d+(q) and d−(q)
are nonzero, that is, q is not a local extremum for 〈e, · 〉. If ntc(q) = π/2, then
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this must be true for almost every direction e ∈ S2. Thus, the three tangent vectors
must be coplanar, and may not lie in an open half-plane.

If d(q)= 2m is even and equality ntc(q)= 0 holds, then the formula above for
ntc(q) in terms of |nlm(e, q)| would require nlm(e, q)≡ 0, and hence d+(e, q)=
d−(e, q)=m for almost all e ∈ S2: whenever e rotates so that the plane orthogonal
to e passes Ti , another tangent vector T j must cross the plane in the opposite
direction, for almost all e, which implies T j =−Ti . �

Observation 5.2. If a vertex q of odd degree d(q) = 2p + 1, has the minimum
value ntc(q) = π/2, and a hyperplane P ⊂ Rn contains an even number of the
tangent vectors at q, and no others, then these tangent vectors form opposite pairs.

The proof is seen by fixing any (n−2)-dimensional subspace L of P and rotating
P by a small positive or negative angle δ to a hyperplane Pδ containing L . Since
Pδ must have k of the vectors T1, . . . , T2p+1 on one side and k + 1 on the other
side, for some 0 ≤ k ≤ p, by comparing δ > 0 with δ < 0 it follows that exactly
half of the tangent vectors in P lie nonstrictly on each side of L . The proof may
be continued as in the last paragraph of the proof of Proposition 5.1. In particular,
any two independent tangent vectors Ti and T j share the 2-plane they span with a
third, the three vectors not lying in any open half-plane: in fact, the third vector
needs to lie in any hyperplane containing Ti and T j .

For example, a flat K5,1 in R3 must have five straight segments, two being op-
posite; and the remaining three being coplanar but not in any open half-plane.
This includes the case of four coplanar line segments, since the four must be in
opposite pairs, and either opposing pair may be considered as coplanar with the
fifth segment.

Nonmonotonicity of NTC for subgraphs.

Observation 5.3. If 00 is a subgraph of a graph 0, then NTC(00) might not be
≤ NTC(0).

For a simple polyhedral example, we may consider the “butterfly” graph 0 in
the plane with six vertices: q±0 = (0,±1), q±1 = (1,±3), and q±2 = (−1,±3). 0 has
seven edges: three vertical edges L0, L1 and L2 are the line segments L i joining
q−i to q+i . Four additional edges are the line segments from q±0 to q±1 and from q±0
to q±2 , which form the smaller angle 2α at q±0 , where tanα= 1/2, so that α <π/4.

The subgraph 00 will be 0 minus the interior of L0. Then NTC(00)=C(00)=

6π − 8α. However, NTC(0)= 4(π − α)+ 2(π/2)= 5π − 4α, which is less than
NTC(00). �

The monotonicity property, which Observation 5.3 shows fails for NTC(0), is
a virtue of Taniyama’s total curvature TC(0).
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Net total curvature 6= cone total curvature 6= Taniyama’s total curvature. It is
not difficult to construct three unit vectors T1, T2, T3 in R3 such that the values of
ntc(q), ctc(q) and tc(q), with these vectors as the d(q) = 3 tangent vectors to a
graph at a vertex q , have different values. For example, we may take T1, T2 and
T3 to be three unit vectors in a plane, making equal angles 2π/3. According to
Proposition 5.1, we have the contribution to net total curvature ntc(q)= π/2. But
the contribution to cone total curvature is ctc(q)= 0. Namely,

ctc(q) := sup
e∈S2

3∑
i=1

(
π

2
− arccos〈Ti , e〉

)
.

In this supremum, we may choose e to be normal to the plane of T1, T2 and T3,
and ctc(q)= 0 follows. Meanwhile, tc(q) is the sum of the exterior angles formed
by the three pairs of vectors, each equal to π/3, so that tc(q)= π .

A similar computation for degree d and coplanar vectors making equal angles
gives ctc(q)=0, and tc(q)= π

2

⌊1
2(d−1)2

⌋
(floor function), while ntc(q)=π/2 for

d odd, ntc(q)=0 for d even. This example indicates that tc(q)may be significantly
larger than ntc(q). In fact, we have

Observation 5.4. If a vertex q of a graph 0 has degree d = d(q)≥ 2, then

tc(q)≥ (d − 1) ntc(q).

This follows from the definition (2-3) of ntc(q). Let T1, . . . , Td be the unit
tangent vectors at q . The exterior angle between Ti and T j is

arccos〈−Ti , T j 〉 =
1
4

∫
S2
(χi +χ j )

+ d AS2 .

The contribution tc(q) at q to total curvature TC(0) equals the sum of these inte-
grals over all 1≤ i < j ≤ d . The sum of the integrands is

∑
1≤i< j≤d

(χi +χ j )
+
≥

[ ∑
1≤i< j≤d

(χi +χ j )

]+
= (d − 1)

[ d∑
i=1

χi

]+
.

Integrating over S2 and dividing by 4, we have tc(q)≥ (d − 1)ntc(q). �

Conditional additivity of net total curvature under taking union. Observation 5.3
shows the failure of monotonicity of NTC for subgraphs due to the cancellation
phenomena at each vertex. The following subadditivity statement specifies the
necessary and sufficient condition for the additivity of net total curvature under
taking union of graphs.
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Proposition 5.5. Given two graphs 01 and 02 ⊂Rn with 01∩02 = {p1, . . . , pN },
the net total curvature of 0 = 01 ∪02 obeys the subadditivity law

(5-1) NTC(0)= NTC(01)+NTC(02)

+
1
2

N∑
j=1

∫
S2
[nlm+0 (e, p j )− nlm+01

(e, p j )− nlm+02
(e, p j )] d AS2

≤ NTC(01)+NTC(02).

In particular, additivity holds if and only if

nlm01(e, p j ) nlm02(e, p j )≥ 0

for all points p j of 01 ∩02 and almost all e ∈ S2.

Proof. The edges of 0 and vertices other than p1, . . . , pN are edges and vertices of
01 or of 02, so we only need to consider the contribution at the vertices p1, . . . , pN

to µ(e) for e ∈ S2 (see Definition 3.8). The subadditivity follows from the general
inequality (a + b)+ ≤ a+ + b+ for any real numbers a and b. Namely, let a :=
nlm01(e, p j ) and b := nlm02(e, p j ), so that nlm0(e, p j )= a+ b, as follows from
Lemma 3.5. Now integrate both sides of the inequality over S2, sum over j =
1, . . . , N and apply Theorem 3.13.

As for the equality case, suppose that ab ≥ 0. We then note that either a > 0
and b > 0, or a < 0 and b < 0, or a = 0, or b = 0. In all four cases, we have
a++b+= (a+b)+. Applied with a=nlm01(e, p j ) and b=nlm02(e, p j ), assuming
that nlm01(e, p j )nlm02(e, p j )≥ 0 holds for all j = 1, . . . , N and almost all e∈ S2,
this implies that NTC(01 ∪02)= NTC(01)+NTC(02).

To show that the equality NTC(01 ∪ 02) = NTC(01)+ NTC(02) implies the
inequality nlm01(e, p j )nlm02(e, p j ) ≥ 0 for all j = 1, . . . , N and for almost all
e ∈ S2, we suppose, to the contrary, that there is a set U of positive measure in S2,
such that for some vertex p j in 01∩02, whenever e is in U , the inequality ab< 0
is satisfied, where a = nlm01(e, p j ) and b= nlm02(e, p j ). Then for e in U , a and
b are of opposite signs. Let U1 be the part of U where a < 0 < b holds: we may
assume U1 has positive measure, otherwise exchange 01 with 02. On U1, we have

(a+ b)+ < b+ = a++ b+.

Recall that a+ b = nlm0(e, p j ). Hence the inequality between half-integers

nlm+0 (e, p j ) < nlm+01
(e, p j )+ nlm+02

(e, p j )

is valid on the set U1, which has positive measure. This, in turn, implies that
NTC(01 ∪02) < NTC(01)+NTC(02), contradicting the assumption of equality.

�
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One-point union of graphs.

Proposition 5.6. If the graph 0 is the one-point union of graphs 01 and 02, where
the points p1 chosen in 01 and p2 chosen in 02 are not topological vertices, then
the minimum NTC among all mappings is subadditive, and the minimum NTC
minus 2π is superadditive:

NTC({01})+NTC({02})− 2π ≤ NTC({0})≤ NTC({01})+NTC({02}).

Further, if the points p1 ∈ 01 and p2 ∈ 02 may appear as extreme points on map-
pings of minimum NTC, then the minimum net total curvature among all mappings,
minus 2π , is additive:

NTC({0})= NTC({01})+NTC({02})− 2π.

Proof. Write p ∈ 0 for the identified points p1 = p2 = p.
Choose flat mappings f1 : 01→ R and f2 : 02→ R, adding constants so that

the chosen points p1 ∈ 01 and p2 ∈ 02 have f1(p1) = f2(p2) = 0. Further, by
Proposition 3.17, we may assume that f1 and f2 are strictly monotone on the
edges of 01 and 02 containing p1 and p2, respectively. Let f : 0→ R be defined
as f1 on 01 and as f2 on 02. Then at the common point of 01 and 02, f (p) = 0,
and f is continuous. But since f1 and f2 are monotone on the edges containing
p1 and p2, nlm01(p1) = 0 = nlm02(p2), so we have NTC({0}) ≤ NTC( f ) =
NTC( f1)+NTC( f2)= NTC({01})+NTC({02}) by Proposition 5.5.

Next, for all g :0→R, we show that NTC(g)≥NTC({01})+NTC({02})−2π .
Given g, write g1, g2 for the restriction of g to 01, 02. Then

µg(e)= µg1(e)− nlm+g1
(p1)+µg2(e)− nlm+g2

(p2)+ nlm+g (p).

Now for any real numbers a and b, the difference (a+b)+− (a++b+) is equal to
±a,±b or 0, depending on the various signs. Let a=nlmg1(p1) and b=nlmg2(p2).
Then since p1 and p2 are not topological vertices of 01 and 02, respectively, we
have a, b ∈ {−1, 0,+1} and a+b= nlmg(p) by Lemma 3.5. In any case, we have

nlm+g (p)− nlm+g1
(p1)− nlm+g2

(p2)≥−1.

Thus, µg(e)≥µg1(e)+µg2(e)−1, and multiplying by 2π , NTC(g)≥NTC(g1)+

NTC(g2)− 2π ≥ NTC({01})+NTC({02})− 2π .
Finally, assume p1 and p2 are extreme points for flat mappings f1 :01→R and

f2 : 02 → R. We may assume that f1(p1) = 0 = min f1(01) and f2(p2) = 0 =
max f2(02). Then nlm f2(p2)=1 and nlm f1(p1)=−1, and hence using Lemma 3.5,
nlm f (p)= 0. So µ f (e)=µf1(e)−nlm+f1

(p1)+µf2(e)−nlm+ f2(p2)+nlm+f (p)=
µf1(e)+µf2(e)− 1. Multiplying by 2π , we have

NTC({0})≤ NTC( f )= NTC({01})+NTC({02})− 2π. �
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6. Net total curvature for degree 3

Simple description of net total curvature.

Proposition 6.1. For any graph 0 and any parametrization 0′ of its double,

NTC(0)≤ 1
2 C(0′).

If 0 is a trivalent graph, that is, having vertices of degree at most three, then
NTC(0) = 1

2 C(0′) for any parametrization 0′ that does not immediately repeat
any edge of 0.

Proof. The first conclusion follows from Corollary 3.9.
Now consider a trivalent graph 0. Observe that 0′ would be forced to imme-

diately repeat any edge which ends in a vertex of degree 1; thus, we may assume
that 0 has only vertices of degree 2 or 3. Since 0′ covers each edge of 0 twice,
we need only show, for every vertex q of 0, having degree d = d(q) ∈ {2, 3}, that

(6-1) 2 ntc0(q)=
d∑

i=1

c0′(qi ),

where q1, . . . , qd are the vertices of 0′ over q . If d = 2, since 0′ does not immedi-
ately repeat any edge of 0, we have ntc0(q) = c0′(q1) = c0′(q2), so (6-1) clearly
holds. For d = 3, write both sides of (6-1) as integrals over S2, using the definition
(2-3) of ntc0(q). Since 0′ does not immediately repeat any edge, the three pairs of
tangent vectors {T 0′

1 (q j ), T 0′

2 (q j )}, 1≤ j ≤ 3, comprise all three pairs taken from
the triple {T 0

1 (q), T 0
2 (q), T 0

3 (q)}. We need to show that

2
∫

S2
[χ1+χ2+χ3]

+ d AS2 =

∫
S2
[χ1+χ2]

+ d AS2

+

∫
S2
[χ2+χ3]

+ d AS2 +

∫
S2
[χ3+χ1]

+ d AS2,

where at each direction e ∈ S2, χ j (e) = ±1 is the sign of 〈−e, T 0
j (q)〉. But the

integrands are equal at almost every point e of S2:

2[χ1+χ2+χ3]
+
= [χ1+χ2]

+
+ [χ2+χ3]

+
+ [χ3+χ1]

+,

as may be confirmed by cases: 6 = 6 if χ1 = χ2 = χ3 = +1; 2 = 2 if exactly one
of the χi equals −1, and 0= 0 in the remaining cases. �

Simple description of net total curvature fails, d ≥ 4.

Observation 6.2. We have seen in Proposition 6.1 that for graphs with vertices
of degree ≤ 3, if a parametrization 0′ of the double 0̃ of 0 does not immediately
repeat any edge of 0, then NTC(0) = 1

2 C(0′), the total curvature in the usual
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sense of the link 0′. A natural suggestion would be that for general graphs 0⊂R3,
NTC(0) might be half the infimum of total curvature of all such parametrizations
0′ of the double. However, in some cases, we have the strict inequality NTC(0) <
inf0′ 1

2 NTC(0′).

In light of Proposition 6.1, we choose an example of a vertex q of degree four,
and consider the local contributions to NTC for 0 = K1,4 and for 0′, which is the
union of four arcs.

Suppose that for a small positive angle α, (α ≤ 1 radian would suffice) the four
unit tangent vectors at q are T1 = (1, 0, 0); T2 = (0, 1, 0); T3 = (− cosα, 0, sinα);
and T4= (0,− cosα,− sinα). Write the exterior angles as θi j =π−arccos〈Ti , T j 〉.
Then inf0′ 1

2 C(0′)= θ13+ θ14 = 2α. However, ntc(q) is strictly less than 2α. This
may be seen by writing ntc(q) as an integral over S2, according to the definition
(2-3), and noting that cancellation occurs between two of the four lune-shaped
sectors. �

Minimum NTC for trivalent graphs. Using the relation NTC(0) = 1
2 NTC(0′)

between the net total curvature of a given trivalent graph 0 and the total curvature
for a nonreversing double cover 0′ of the graph, we can determine the minimum
net total curvature of a trivalent graph embedded in Rn , whose value is then related
to the Euler characteristic of the graph χ(0)=−k/2.

First we introduce the following definition.

Definition 6.3. For a given graph 0 and a mapping f : 0→ R, let the extended
bridge number B( f ) be one-half the number of local extrema. Write B({0}) for
the minimum of B( f ) among all mappings f : 0→ R. For a given isotopy type
[0] of embeddings into R3, let B([0]) be one-half the minimum number of local
extrema for a mapping f : 0→ R in the closure of the isotopy class [0].

For an integer m ≥ 3, let θm be the graph with two vertices q+, q− and m edges,
each of which has q+ and q− as its two endpoints. Then θ = θ3 has the form of
the lower-case Greek letter θ .

Remark 6.4. For a curve, the number of local maxima equals the number of local
minima. The minimum number of local maxima is called the bridge number, and
equals the number of local minima. This is consistent with our Definition 6.3 of
the extended bridge number. Of course, for curves, the minimum bridge number
among all isotopy classes B({S1

})= 1, and only B([S1
]) is of interest for a specific

isotopy class [S1
]. For certain graphs, the minimum numbers of local maxima and

local minima may not occur at the same time for any mapping: see the exam-
ple of Observation 6.9 below. For isotopy classes of θ -graphs, Goda [1997] has
given a definition of an integer-valued bridge index which is similar in spirit to the
definition above.
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Theorem 6.5. If 0 is a trivalent graph, and if f0 : 0→ R is monotone on topo-
logical edges and has the minimum number 2B({0}) of local extrema, then

NTC( f0)= NTC({0})= π
(
2B({0})+ k/2

)
,

where k is the number of topological vertices of 0. For a given isotopy class [0],

NTC([0])= π
(
2B([0])+ k/2

)
.

Proof. Recall that NTC({0}) denotes the infimum of NTC( f ) among f : 0→ R3

or among f : 0→ R, as may be seen from Corollary 3.15.
We first consider a mapping f1 : 0→ R with the property that any local maxi-

mum or local minimum points of f1 are interior points of topological edges. Then
all topological vertices v, since they have degree d(v) = 3 and d±(v) 6= 0, have
nlm(v)=±1/2, by Proposition 5.1. Let3 be the number of local maximum points
of f1, V the number of local minimum points, λ+ the number of vertices with
nlm=+1/2, and λ− the number of vertices with nlm=−1/2. Then λ++λ− = k,
the total number of vertices, and3+V ≥2B({0}). Hence, applying Corollary 3.12,

(6-2) µ=
1
2

∑
v

|nlm(v)| = 1
2

(
3+ V + λ

+
+λ−

2

)
≥ B({0})+ k/4,

with equality if and only if 3+ V = 2B({0}).
We next consider any mapping f0 : 0 → R in general position: in particu-

lar, the critical values of f0 are isolated. In a similar fashion to the proof of
Proposition 3.17, we shall replace f0 with a mapping whose local extrema are
not topological vertices. Specifically, if f0 assumes a local maximum at any topo-
logical vertex v, then, since d(v) = 3, nlm f0(v) = 3/2. f0 may be isotoped in
a small neighborhood of v to f1 : 0 → R so that near v, the local maximum
occurs at an interior point q of one of the three edges with endpoint v, and thus
nlm f1(q)= 1; while the up-degree d+f1

(v)= 1 and the down-degree d−f1
(v)= 2, so

that nlm f1(v) is now 1
2 . Thus, µf1(e) = µf0(e). Similarly, if f0 assumes a local

minimum at a topological vertex w, then f0 may be isotoped in a neighborhood
of w to f1 : 0→ R so that the local minimum of f1 near w occurs at an interior
point of any of the three edges with endpoint w, and µf1(e) = µf0(e). Then any
local extreme points of f1 are interior points of topological edges. Thus, we have
shown that µf0(e) ≥ B({0})+ k/4, with equality if f1 has exactly 2B({0}) as its
number of local extrema, which holds if and only if f0 has the minimum number
2B({0}) of local extrema. Thus

NTC({0})= 2πµf0(e)= 2π
(
B({0})+ k/4

)
= π

(
2B({0})+ k/2

)
.

Similarly, for a given isotopy class [0] of embeddings into R3, we may choose
f0 : 0→ R in the closure of the isotopy class, deform f0 to a mapping f1 in the
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closure of [0] having no topological vertices as local extrema and count µf0(e)=
µf1(e) ≥ B([0])+ k/4, with equality if f0 has the minimum number 2B([0]) of
local extrema. This shows that NTC([0])= π

(
2B([0])+ k/2

)
. �

Remark 6.6. An example geometrically illustrating the lower bound is given by
the dual graph 0∗ of the one-skeleton 0 of a triangulation of S2, with the {∞}
not coinciding with any of the vertices of 0∗. The Koebe–Andreev–Thurston (see
[Stephenson 2003]) theorem says that there is a circle packing that realizes the
vertex set of 0∗ as the set of centers of the circles. The so realized 0∗, stereo-
graphically projected to R2

⊂ R3, attains the lower bound of Theorem 6.5 with
B({0∗}) = 1, namely NTC([0]) = π(2 + k

2) = π(2 − χ(0∗)), where k is the
number of vertices.

Corollary 6.7. If 0 is a trivalent graph with k topological vertices, and f0 :0→R

is a mapping in general position, having 3 local maximum points and V local
minimum points, then

µf0(e)=
1
2(3+ V )+ 1

4 k ≥ B({0})+ 1
4 k.

Proof. Follows immediately from the proof of Theorem 6.5: f0 and f1 have the
same number of local maximum or minimum points. �

An interesting trivalent graph is Lm , the “ladder of m rungs” obtained from two
unit circles in parallel planes by adding m line segments (“rungs”) perpendicular
to the planes, each joining one vertex on the first circle to another vertex on the
second circle. For example, L4 is the 1-skeleton of the cube in R3. Note that Lm

may be embedded in R2, and that the bridge number B({Lm}) = 1. Since Lm has
2m trivalent vertices, we may apply Theorem 6.5 to compute the minimum NTC
for the type of Lm :

Corollary 6.8. The minimum net total curvature NTC({Lm}) for graphs of the type
of Lm equals π(2+m).

Observation 6.9. For certain connected trivalent graphs 0 containing cut points,
the minimum extended bridge number B({0}) may be greater than 1.

Example. Let 0 be the union of three disjoint circles C1,C2,C3 with three edges
Ei connecting a point pi ∈ Ci with a fourth vertex p0, which is not in any of the
Ci , and which is a cut point of 0: the number of connected components of 0 \ p0

is greater than for 0. Given f : 0→ R, after a permutation of {1, 2, 3}, we may
assume there is a minimum point q1 ∈C1∪E1 and a maximum point q3 ∈C3∪E3.
If q1 and q3 are both in C1 ∪ E1, we may choose C2 arbitrarily in what follows.
Restricted to the closed set C2 ∪ E2, f assumes either a maximum or a minimum
at a point q2 6= p0. Since q2 6= p0, q2 is also a local maximum or a local minimum
for f on 0. That is, q1, q2, q3 are all local extrema. In the notation of the proof
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of Theorem 6.5, we have the number of local extrema V + 3 ≥ 3. Therefore
B({0})≥ 3

2 , and NTC({0})≥ π(3+ k/2)= 5π .
The reader will be able to construct similar trivalent examples with B({0}) ar-

bitrarily large. �

In contrast to the results of Theorem 6.5 and of Theorem 6.11, below, for triva-
lent or nearly trivalent graphs, the minimum of NTC for a given graph type cannot
be computed merely by counting vertices, but depends in a more subtle way on the
topology of the graph:

Observation 6.10. When 0 is not trivalent, the minimum NTC({0}) of net total
curvature for a connected graph 0 with B({0})= 1 is not determined by the num-
ber of vertices and their degrees.

Example. We shall construct two planar graphs Sm and Rm having the same number
of vertices, all of degree 4.

Choose an integer m ≥ 3 and take the image of the embedding fε of the “sine
wave” Sm to be the union of the polar-coordinate graphs C±⊂R2 of two functions:
r = 1±ε sin(mθ). Sm has 4m edges; and 2m vertices, all of degree 4, at r = 1 and
θ = π/m, 2π/m, . . . , 2π . For 0 < ε < 1, fε(Sm) = C+ ∪C− is the union of two
smooth cycles. For small positive ε, C+ and C− are convex. The 2m vertices all
have nlm(q)= 0, so

NTC( fε)= NTC(C+)+NTC(C−)= 2π + 2π.

Therefore NTC({Sm})≤ NTC( fε)= 4π .
For the other graph type, let the “ring graph” Rm ⊂R2 be constructed by adding

m disjoint small circles Ci , each crossing one large circle C at two points v2i−1, v2i ,
1 ≤ i ≤ m. Then Rm has 4m edges. We construct Rm so that the 2m vertices
v1, v2, . . . , v2m , appear in cyclic order around C . Then Rm has the same number
2m of vertices as does Sm , all of degree 4. At each vertex v j , we have nlm(v j )= 0,
so in this embedding, NTC(Rm)= 2π(m+1). We shall show that NTC( f1)≥ 2πm
for any f1 : Rm→R3. According to Corollary 3.15, it is enough to show for every
f : Rm → R that µf ≥ m. We may assume f is monotone on each topological
edge, according to Proposition 3.17. Depending on the order of f (v2i−2), f (v2i−1)

and f (v2i ), nlm(v2i−1) might equal ±1 or ±2, but cannot be 0, as follows from
Lemma 3.5, since the unordered pair {d−(v2i−1), d+(v2i−1)} may only be {1, 3}
or {0, 4}. Similarly, v2i is connected by three edges to v2i−1 and by one edge to
v2i+1. For the same reasons, nlm(v2i ) might equal ±1 or ±2, and cannot = 0. So
|nlm(v j )| ≥ 1, 1≤ j ≤ 2m, and thus by Corollary 3.12, µ= 1

2

∑
j |nlm(v j )| ≥ m.

Therefore the minimum of net total curvature NTC({Rm})≥ 2mπ , which is greater
than NTC({Sm})≤ 4π , since m ≥ 3.
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(A more detailed analysis shows that NTC({Sm}) = 4π and NTC({Rm}) =

2π(m+ 1).) �

Finally, we may extend the methods of proof for Theorem 6.5 to allow one
vertex of higher degree:

Theorem 6.11. If 0 is a graph with one vertexw of degree d(w)=m≥3, all other
vertices being trivalent, and if w shares edges with m distinct trivalent vertices,
then NTC({0})=π

(
2B({0})+k/2

)
, where k is the number of vertices of 0 having

odd degree. For a given isotopy class [0], NTC([0])≥ π
(
2B([0])+ k/2

)
.

Proof. Consider any mapping g : 0→ R in general position. If m is even, then
|nlmg(w)| ≥ 0; if m is odd, then |nlmg(w)| ≥

1
2 , by Proposition 5.1. If some

topological vertex is a local extreme point, then as in the proof of Theorem 6.5,
g may be modified without changing NTC(g) so that all 3 + V local extreme
points are interior points of edges, with nlm = ±1. By Corollary 3.12, we have
µg(e)= 1

2

∑
|nlm(v)| ≥ 1

2

(
3+ V + k/2

)
≥ B({0})+ k/4. This shows that

NTC({0})≥ π
(
2B({0})+ k/2

)
.

Now let f0 : 0→ R be monotone on topological edges and have the minimum
number 2B({0}) of local extreme points (see Proposition 3.17). As in the proof of
Theorem 6.5, f0 may be modified without changing NTC( f0) so that all 2B({0})
local extreme points are interior points of edges. f0 may be further modified so that
the distinct vertices v1, . . . , vm which share edges with w are balanced: f (v j ) <

f (w) for half of the j = 1, . . . ,m, if m is even, or for half of m + 1, if m is odd.
Having chosen f (v j ), we define f along the (unique) edge from w to v j to be
monotone, for j = 1, . . . ,m. Therefore if m is even, then nlm f (w) = 0; and if m
is odd, then nlm f (w)=

1
2 , by Lemma 3.5. We compute

µ f (e)= 1
2

∑
|nlm(v)| = 1

2(3+ V + k/2)= B({0})+ k/4.

We conclude that NTC({0})= π
(
2B({0})+ k/2

)
.

For a given isotopy class [0], the proof is analogous to the above. Choose a
mapping g :0→R in the closure of [0], and modify g without leaving the closure
of the isotopy class. Choose f : 0→ R which has the minimum number 2B([0])
of local extreme points, and modify it so that topological vertices are not local
extreme points. In contrast to the proof of Theorem 6.5, a balanced arrangement
of vertices may not be possible in the given isotopy class. In any case, if m is even,
then |nlm f (w)| ≥ 0; and if m is odd, |nlm f (w)| ≥

1
2 , by Proposition 5.1. Thus

applying Corollary 3.12, we find NTC([0])≥ π
(
2B([0])+ k/2

)
. �
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Observation 6.12. When all vertices of 0 are trivalent except w, d(w) ≥ 4, and
when w shares more than one edge with another vertex of 0, then in certain cases,
NTC({0}) > π

(
2B({0})+ k

2

)
, where k is the number of vertices of odd degree.

Example. Choose 0 to be the one-point union of 01, 02 and 03, where 0i = θ = θ3,
i = 1, 2, 3, and the point wi chosen from 0i is one of its two vertices vi , wi . Then
the identified point w = w1 = w2 = w3 of 0 has d(w) = 9, and each of the other
three vertices v1, v2, v3 has degree 3.

Choose a flat map f :0→R. We may assume that f is monotone on each edge,
applying Proposition 3.17. If f (v1) < f (v2) < f (w) < f (v3), then d+(w) = 3,
d−(w) = 6, so nlm(w) = 3

2 , while vi is a local extreme point, so nlm(vi ) = ±
3
2 ,

1 = 1, 2, 3. This gives µ = 3. The case where f (v1) < f (w) < f (v2) < f (v3)

is similar. If w is an extreme point of f , then nlm(w) = ±9
2 and µ ≥ 9

2 > 3,
contradicting flatness of f . This shows that NTC({0})= NTC( f )= 6π .

On the other hand, we may show as in Observation 6.9 that B({0}) = 3
2 . All

four vertices have odd degree, so k = 4, and π
(
2B({0})+ k/2

)
= 5π . �

Let Wm denote the “wheel” of m spokes, consisting of a cycle C containing m
vertices v1, . . . , vm (the “rim”), a central vertex w (the “hub”) not on C , and edges
Ei (the “spokes”) connecting w to vi , 1≤ i ≤ m.

Corollary 6.13. The minimum net total curvature NTC({Wm}) for graphs in R3

homeomorphic to Wm equals π(2+dm/2e).

Proof. We have one “hub” vertex w with d(w)=m, and all other vertices have de-
gree 3. Observe that the bridge number B({Wm})= 1. According to Theorem 6.11,
we have NTC({Wm}) = π

(
2B({Wm})+ k/2

)
, where k is the number of vertices

of odd degree: k = m if m is even, or k = m + 1 if m is odd: k = 2dm/2e. Thus
NTC({Wm})= π

(
2+dm/2e

)
. �

7. Lower bounds of net total curvature

The width of an isotopy class [0] of embeddings of a graph 0 into R3 is the mini-
mum among representatives of the class of the maximum number of points of the
graph meeting a family of parallel planes. More precisely, we write

width([0]) := min
f :0→R3| f ∈[0]

min
e∈S2

max
s∈R

#(e, s).

For any homeomorphism type {0} define width({0}) to be the minimum over iso-
topy types.

Theorem 7.1. Let 0 be a graph, and consider an isotopy class [0] of embeddings
f : 0→ R3. Then

NTC([0])≥ π width([0]).
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As a consequence,
NTC({0})≥ π width({0}).

Moreover, if for some e ∈ S2, an embedding f : 0→ R3 and s0 ∈ R, the integers
#(e, s) are increasing in s for s < s0 and decreasing for s > s0, then NTC([0]) =
#(e, s0) π .

Proof. Choose an embedding g : 0→ R3 in the given isotopy class, with

min
e∈S2

max
s∈R

#(e, s)= width([0]).

There exist e∈ S2 and s0 ∈R with #(e, s0)=maxs∈R #(e, s)=width([0]). Replace
e if necessary by a nearby point in S2 so that the values g(vi ), i = 1, . . . ,m are
distinct. Next do cylindrical shrinking: without changing #(e, s) for s ∈ R, shrink
the image of g in directions orthogonal to e by a factor δ > 0 to obtain a family
{gδ} from the same isotopy class [0], with NTC(gδ)→ NTC(g0), where we may
identify g0 : 0→ Re ⊂ R3 with pe ◦ g = pe ◦ gδ : 0→ R. But

NTC(pe ◦ g)=
1
2

∫
S2
µ(u) d AS2(u)= 2π µ(e),

since for pu ◦ pe ◦ g, the local maximum and minimum points are the same as for
pe ◦ g if 〈e, u〉> 0 and reversed if 〈e, u〉< 0 (recall that µ(−e)= µ(e)).

We write the topological vertices and the local extrema of g0 as v1, . . . , vm . Let
the indexing be chosen so that g0(vi ) < g0(vi+1), i = 1, . . . ,m− 1. Now estimate
µ(e) from below: using Lemma 3.5 and Corollary 3.10,

(7-1) µ(e)=
m∑

i=1

nlm+g0
(e, vi )≥

m∑
i=k+1

nlmg0(e, vi )=
1
2 #(e, s)

for any s, g0(vk)< s<g0(vk+1). This shows thatµ(e)≥ 1
2 width([0]), and therefore

NTC(g)≥ NTC(g0)= 2π µ(e)≥ π width([0]).

Now suppose that the integers #(e, s) are increasing in s for s<s0 and decreasing
for s > s0. Then for g0(vi ) > s0, we have nlm(e, g0(vi )) ≥ 0 by Lemma 3.5, and
the inequality (7-1) becomes equality at s = s0. �

Lemma 7.2. For an integer l, the minimum width of the complete graph K2l on 2l
vertices is width({K2l})= l2; for 2l + 1 vertices, width({K2l+1})= l(l + 1).

Proof. Write Ei j for the edge of Km joining vi to v j , 1≤ i < j ≤ m, and suppose
g : Km→ R has distinct values at the vertices: g(v1) < g(v2) < · · ·< g(vm).

Then for any g(vk)< s< g(vk+1), there are k(m−k) edges Ei j with i ≤ k< j ;
each of these edges has at least one interior point mapping to s, which shows that
#(e, s) ≥ k(m − k). If m is even: m = 2l, these lower bounds have the maximum
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value l2 when k= l. If m is odd: m=2l+1, these lower bounds have the maximum
value l(l + 1) when k = l or k = l + 1. This shows that the width of K2l ≥ l2 and
the width of K2l+1 ≥ l(l + 1). On the other hand, equality holds for the piecewise
linear embedding of Km into R with vertices in general position and straight edges
Ei j , which shows that width({K2l})= l2 and width({K2l+1})= l(l + 1). �

Proposition 7.3. For all g : Km → R, NTC(g) ≥ π l2 if m = 2l is even; and
NTC(g) ≥ π l(l + 1) if m = 2l + 1 is odd. Equality holds for an embedding of
Km into R with vertices in general position and monotone on each edge; therefore
NTC({K2l})= π l2, and NTC({K2l+1})= π l(l + 1).

Proof. The lower bound on NTC({Km}) follows from Theorem 7.1 and Lemma 7.2.
Now suppose g : Km → R is monotone on each edge, and number the vertices

of Km so that for all i , g(vi ) < g(vi+1). Then as in the proof of Lemma 7.2,
#(e, s)= k(m− k) for g(vk) < s < g(vk+1). These cardinalities are increasing for
0≤ k ≤ l and decreasing for l+1< k <m. Thus, if g(vl) < s0 < g(vl+1), then by
Theorem 7.1, NTC([0])= #(e, s0) π = l(m− l) π , as claimed. �

Let Km,n be the complete bipartite graph with m + n vertices divided into two
sets: vi , 1 ≤ i ≤ m and w j , 1 ≤ j ≤ n, having one edge Ei j joining vi to w j , for
each 1≤ i ≤ m and 1≤ j ≤ n.

Proposition 7.4. NTC({Km,n})= dmn/2eπ .

Proof. Km,n has vertices v1, . . . , vm of degree d(vi ) = n and vertices w1, . . . , wn

of degree d(w j ) = m. Consider a mapping g : Km,n → R in general position, so
that the m + n vertices of Km,n have distinct images. We wish to show µ(e) =
µg(e)≥ mn/4, if m or n is even, or (mn+ 1)/4, if both m and n are odd.

For this purpose, according to Proposition 3.17, we may first reduce µ(e) or
leave it unchanged by replacing g with a mapping (also called g) which is mono-
tone on each edge Ei j of Km,n . The values of nlm(w j ) and of nlm(vi ) are now
determined by the order of the vertex images g(v1), . . . , g(vm), g(w1), . . . , g(wn).
Since Km,n is symmetric under permutations of {v1, . . . , vm} and permutations
of {w1, . . . , wn}, we shall assume that g(vi ) < g(vi+1), i = 1, . . . ,m − 1 and
g(w j ) < g(w j+1), j = 1, . . . , n− 1. For i = 1, . . . ,m we write ki for the largest
index j such that g(w j ) < g(vi ). Then 0 ≤ k1 ≤ · · · ≤ km ≤ n, and these integers
determine µ(e). According to Lemma 3.5, nlm(vi )= ki − n/2, i = 1, . . . ,m. For
j ≤ k1 and for j ≥ km + 1, we have nlm(w j ) = ±m/2; for k1 < j ≤ k2 and for
km−1< j≤km , we find nlm(w j )=±

(
m/2−1

)
; and so on until we find nlm(w j )=0

on the middle interval kp < j ≤ kp+1, if m = 2p is even; or, if m = 2p+ 1 is odd,
nlm(w j )=−

1
2 for kp < j ≤ kp+1 and nlm(w j )=+

1
2 for the other middle interval

kp+1 < j ≤ kp+2. Thus according to Lemma 3.5 and Corollary 3.12, if m = 2p is
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even,
(7-2)

2µ(e)=
m∑

i=1

∣∣nlm(vi )
∣∣+ n∑

j=1

∣∣nlm(w j )
∣∣= m∑

i=1

∣∣∣ki −
n
2

∣∣∣+ (k1+ n− km)
m
2

+ (k2− k1+ km − km−1)
[m

2
− 1

]
+ · · ·

+ (kp − kp−1+ kp+2− kp+1)
[m

2
− (p− 1)

]
+ (kp+1− kp)[0]

=

m∑
i=1

∣∣∣ki −
n
2

∣∣∣+ mn
2
+

p∑
i=1

ki −

m∑
i=p+1

ki

=
mn
2
+

p∑
i=1

[∣∣∣ki −
n
2

∣∣∣+ (ki −
n
2

)]
+

m∑
i=p+1

[∣∣∣ki −
n
2

∣∣∣− (ki −
n
2

)]
.

Note that formula (7-2) assumes its minimum value 2µ(e)= mn/2 when

k1 ≤ · · · ≤ kp ≤ n/2≤ kp+1 ≤ · · · ≤ km .

If m = 2p+ 1 is odd, then

(7-3) 2µ(e)=
m∑

i=1

∣∣∣ki−
n
2

∣∣∣+(k1+n−km)
m
2
+(k2−k1+km−km−1)

[m
2
−1
]
+· · ·

+ (kp+3− kp+2)
[m

2
− (p− 1)

]
+ (kp+2− kp)

[1
2

]
=

=

m∑
i=1

∣∣∣ki −
n
2

∣∣∣+ mn
2
+

p∑
i=1

ki −

m∑
i=p+2

ki

=
mn
2
+

p∑
i=1

[∣∣∣ki −
n
2

∣∣∣+ (ki −
n
2

)]
+

m∑
i=p+2

[∣∣∣ki −
n
2

∣∣∣− (ki −
n
2

)]
+

∣∣∣kp+1−
n
2

∣∣∣.
Observe that formula (7-3) has the minimum value 2µ(e) = 1

2 mn when n is even
and k1 ≤ · · · ≤ kp ≤

1
2 n = kp+1 ≤ · · · ≤ km . If n as well as m is odd, then the

last term
∣∣kp+1−

1
2 n
∣∣ is at least 1

2 , and the minimum value of 2µ(e) is 1
2(mn+ 1),

attained if and only if k1 ≤ · · · ≤ kp ≤
1
2 n ≤ kp+2 ≤ · · · ≤ km .

This shows that for either parity of m or of n, µ(e)≥ 1
4 mn. If n and m are both

odd, we have the stronger inequality µ(e)≥ 1
4(mn+1). We may summarize these

conclusions as 2µ(e) ≥
⌈ 1

2 mn
⌉

, and therefore as in the proof of Corollary 3.15,
NTC({Km,n})≥

⌈ 1
2 mn

⌉
π , as we wished to show.

By abuse of notation, write the formula (7-2) or (7-3) as µ(k1, . . . , km).
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To show the inequality in the opposite direction, we need to find a mapping
f : Km,n→R with NTC( f )= 1

2 mn π (m or n even) or NTC( f )= 1
2(mn+1) π (m

and n odd). The above computation suggests choosing f with f (v1), . . . , f (vm)

together in the middle of the images of the w j . Write n = 2l if n is even, or
n = 2l + 1 if n is odd. Choose values f (w1) < · · · < f (wl) < f (v1) < · · · <

f (vm) < f (wl+1) < · · · < f (wn), and extend f monotonically to each of the mn
edges Ei j . From formulas (7-2) and (7-3), we have µ f (e)=µ(l, . . . , l)= 1

4 mn, if
m or n is even; or µ f (e)= µ(l, . . . , l)= 1

4(mn+ 1), if m and n are odd. �

Recall that θm is the graph with two vertices q+, q− and m edges.

Corollary 7.5. NTC({θm})= m π .

Proof. θm is homeomorphic to the complete bipartite graph Km,2, and by the
proof of Proposition 7.4, we find µ(e) ≥ 1

2 m for almost all e ∈ S2, and hence
NTC({Km,2})= m π . �

8. Fáry–Milnor type isotopy classification

Recall the Fáry–Milnor theorem, which states that if the total curvature of a Jor-
dan curve 0 in R3 is less than or equal to 4π , then 0 is unknotted. As we have
demonstrated above, there are a collection of graphs whose values of the minimum
total net curvatures are known. It is natural to hope when the net total curvature
is small, in the sense of being in a specific interval to the right of the minimal
value, that the isotopy type of the graph is restricted, as is the case for curves:
0 = S1. The following proposition and corollaries, however, tell us that results of
the Fáry–Milnor type cannot be expected to hold for more general graphs.

Proposition 8.1. If 0 is a graph in R3 and if C ⊂ 0 is a cycle, such that for some
e ∈ S2, pe ◦C has at least two local maximum points, then for each positive integer
q , there is a nonisotopic embedding 0̃q of 0 in which C is replaced by a knot not
isotopic to C , with NTC(0̃q) as close as desired to NTC(pe ◦0).

Proof. It follows from Corollary 3.15 that the one-dimensional graph pe ◦0 may
be replaced by an embedding 0̂ into a small neighborhood of the line Re in R3,
with arbitrarily small change in its net total curvature. Since pe ◦ C has at least
two local maximum points, there is an interval of R over which pe ◦ C contains
an interval which is the image of four oriented intervals J1, J2, J3, J4 appearing in
that cyclic order around the oriented cycle C . Consider a plane presentation of 0
by orthogonal projection into a generic plane containing the line Re. Choose an
integer q ∈ Z, |q| ≥ 3. We modify 0̂ by wrapping its interval J1 q times around
J3 and returning, passing over any other edges of 0, including J2 and J4, which it
encounters along the way. The new graph in R3 is called 0̃q . Then, if C was the
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unknot, the cycle C̃q which has replaced it is a (2, q)-torus knot (see [Lickorish
1997]). In any case, C̃q is not isotopic to C , and therefore 0̃q is not isotopic to 0.

As in the proof of Theorem 7.1, let gδ : R3
→ R3 be defined by cylindrical

shrinking, so that g1 is the identity and g0 = pe. Then pe ◦ 0̃q = g0(0̃q), and for
δ > 0, gδ(0̃q) is isotopic to 0̃q . But NTC(gδ)→ NTC(g0) as δ→ 0. �

Corollary 8.2. If e= e0 ∈ Sn−1 minimizes NTC(pe◦0), and there is a cycle C ⊂0
so that pe0 ◦C has two (or more) local maximum points, then there is a sequence of
nonisotopic embeddings 0̃q of 0 with NTC(0̃q) less than, or as close as desired,
to NTC(0), in which C is replaced by its connected sum with a (2, q)-torus knot.

Corollary 8.3. If 0 is an embedding of Km into R3, linear on each topological
edge of Km , m ≥ 4, then there is a sequence of nonisotopic embeddings 0̃q of 0
with NTC([0̃q ]) as close as desired to NTC([0]), in which an unknotted cycle C
of 0 is replaced by a (2, q)-torus knot.

Proof. According to Corollary 8.2, we only need to construct an isotopy of Km

with the minimum value of NTC, such that there is a cycle C so that pe ◦C has
two local maximum points, where µ(e) is a minimum among e ∈ S2.

Choose g :Km→R which is monotone on each edge of Km , and has distinct val-
ues at vertices. Then according to Proposition 7.3, we have NTC(g)=NTC({Km}).
Number the vertices v1, . . . , vm so that g(v1) < g(v2) < · · · < g(vm). Write E j i

for the edge Ei j with the reverse orientation, i 6= j . Then the cycle C formed in
sequence from E13, E32, E24 and E41 has local maximum points at v3 and v4, and
covers the interval

(
g(v2), g(v3)

)
⊂ R four times. Since C is formed out of four

straight edges, it is unknotted. The procedure of Corollary 8.2 replaces C with a
(2, q)-torus knot, with an arbitrarily small increase in NTC. �

Note that Corollary 8.2 gives a set of conditions for those graph types where a
Fáry–Milnor type isotopy classification might hold. In particular, we consider one
of the simpler homeomorphism types of graphs, the theta graph θ = θ3 = K3,2

(cf. description following Definition 6.3). The standard theta graph is the isotopy
class in R3 of a plane circle plus a diameter. We have seen in Corollary 7.5 that the
minimum of net total curvature for a theta graph is 3π . On the other hand note that
in the range 3π ≤ NTC(0) < 4π , for e in a set of positive measure of S2, pe(0)

cannot have two local maximum points. In Theorem 8.5 below, we shall show that
a theta graph 0 with NTC(0) < 4π is isotopically standard.

We may observe that there are nonstandard theta graphs in R3. For example,
the union of two edges might be knotted. Moreover, as S. Kinoshita has shown,
there are θ -graphs in R3, not isotopic to a planar graph, such that each of the three
cycles formed by deleting one edge is unknotted [Kinoshita 1972].

We begin with a well-known property of curves, whose proof we give for the
sake of completeness.
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Lemma 8.4. Let C ⊂ R3 be homeomorphic to S1, and not a convex planar curve.
Then there is a nonempty open set of planes P ⊂ R3 which each meet C in at least
four points.

Proof. For e ∈ S2 and t ∈ R write the plane Pe
t = {x ∈ R3

: 〈e, x〉 = t}.
If C is not planar, then there exist four noncoplanar points p1, p2, p3, p4, num-

bered in order around C . Note that no three of the points can be collinear. Let an
oriented plane P0 be chosen to contain p1 and p3 and rotated until both p2 and p4

are above P0 strictly. Write e1 for the unit normal vector to P0 on the side where
p2 and p3 lie, so that P0 = Pe1

t0=0. Then the set Pt ∩C contains at least four points,
for t0 = 0< t < δ1, with some δ1 > 0, since each plane Pt = Pe1

t meets each of the
four open arcs between the points p1, p2, p3, p4. This conclusion remains true,
for some 0 < δ < δ1, when the normal vector e1 to P0 is replaced by any nearby
e ∈ S2, and t is replaced by any 0< t < δ.

If C is planar but nonconvex, then there exists a plane P0 = Pe1
0 , transverse to

the plane containing C , which supports C and touches C at two distinct points, but
does not include the arc of C between these two points. Consider disjoint open
arcs of C on either side of these two points and including points not in P0. Then
for 0 < t < δ � 1, the set Pt ∩ C contains at least four points, since the planes
Pt = Pe1

t meet each of the four disjoint arcs. Here once again e1 may be replaced
by any nearby unit vector e, and the plane Pe

t will meet C in at least four points,
for t in a nonempty open interval t1 < t < t1+ δ. �

Using the notion of net total curvature, we may extend the theorems of Fenchel
[1929] as well as the Fáry–Milnor theorem, for curves homeomorphic to S1, to
graphs homeomorphic to the theta graph. An analogous result is given by Taniyama
[1998], who showed that the minimum of TC for polygonal θ -graphs is 4π , and
that any θ -graph 0 with TC(0) < 5π is isotopically standard.

Theorem 8.5. Suppose f : θ → R3 is a continuous embedding, 0 = f (θ). Then
NTC(0)≥ 3π . If NTC(0)< 4π , then 0 is isotopic in R3 to the planar theta graph.
Moreover, NTC(0) = 3π if and only if the graph is a planar convex curve plus a
straight chord.

Proof. We consider first the case when f : θ→ R3 is piecewise C2.

(1) We have shown the lower bound 3π for NTC( f ), where f : θ → Rn is any
piecewise C2 mapping, since θ = θ3 is one case of Corollary 7.5, with m = 3.

(2) We show next that if there is a cycle C in a graph 0 (a subgraph homeomorphic
to S1) which satisfies the conclusion of Lemma 8.4, then µ(e) ≥ 2 for e in a
nonempty open set of S2. Namely, for t0 < t < t0+ δ, a family of planes Pe

t meets
C , and therefore meets 0, in at least four points. This is equivalent to saying that
the cardinality #(e, t) ≥ 4. This implies, by Corollary 3.10, that

∑
{nlm(e, q) :
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pe(q) > t0} ≥ 2. Thus, since nlm+(e, q) ≥ nlm(e, q), using Definition 3.8, we
have µ(e)≥ 2.

Now consider the equality case of a theta graph 0 with NTC(0) = 3π . As we
have seen in the proof of Proposition 7.4 with m = 3 and n = 2, the multiplicity
µ(e) ≥ 3

2 =
1
4 mn for almost all e ∈ S2, while the integral of µ(e) over S2 equals

2 NTC(0) = 6π by Theorem 3.13, implying µ(e) = 3/2 almost everywhere on
S2. Thus, the conclusion of Lemma 8.4 is impossible for any cycle C in 0. By
Lemma 8.4, all cycles C of 0 must be planar and convex.

Now 0 consists of three arcs a1, a2 and a3, with common endpoints q+ and
q−. As we have just shown, the three Jordan curves 01 := a2 ∪ a3, 02 := a3 ∪ a1

and 03 := a1 ∪ a2 are each planar and convex. It follows that 01, 02 and 03 lie
in a common plane. In terms of the topology of this plane, one of the three arcs
a1, a2 and a3 lies in the middle between the other two. But the middle arc, say
a2, must be a line segment, as it needs to be a shared piece of two curves 01 and
03 bounding disjoint convex open sets in the plane. The conclusion is that 0 is a
planar, convex Jordan curve 02, plus a straight chord a2, whenever NTC(0)= 3π .

(3) We next turn our attention to the upper bound of NTC, to imply that a θ -graph is
isotopically standard: we shall assume that g : θ→R3 is an embedding in general
position with NTC(g) < 4π , and write 0 = g(θ). By Theorem 3.13, since S2 has
area 4π , the average of µ(e) over S2 is less than 2, and it follows that there exists
a set of positive measure of e0 ∈ S2 with µ(e0) < 2. Since µ(e0) is a half-integer,
and since µ(e)≥ 3

2 , as we have shown in part (1) of this proof, we have µ(e0)=
3
2

exactly.
From Corollary 6.7 applied to pe0 ◦ g : θ→R, we find µg(e0)=

1
2(3+V )+ k

4 ,
where3 is the number of local maximum points, V is the number of local minimum
points and k=2 is the number of vertices, both of degree 3. Thus, 3

2=
1
2(3+V )+ 1

2 ,
so that 3 + V = 2. This implies that the local maximum/minimum points are
unique, and must be the unique global maximum/minimum points pmax and pmin

(which may be one of the two vertices q±). Then pe0 ◦ g is monotone along edges
except at the points pmax, pmin and q±.

Introduce Euclidean coordinates (x, y, z) for R3 so that e0 is in the increasing
z-direction. Write tmax = pe0 ◦ g(pmax) = 〈e0, pmax〉 and tmin = 〈e0, pmin〉 for the
maximum and minimum values of z along g(θ). Write t± for the value of z at
g(q±), where we may assume tmin ≤ t− < t+ ≤ tmax.

We construct a “model” standard θ -curve 0̂ in the (x, z)-plane, as follows. 0̂
will consist of a circle C plus the straight chord of C , joining q̂− to q̂+ (points to be
chosen). Choose C so that the maximum and minimum values of z on C equal tmax

and tmin. Write p̂max and p̂min for the maximum and minimum points of z along C .
Choose q̂+ as a point on C where z= t+. There may be two nonequivalent choices
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for q̂− as a point on C where z = t−: we choose so that p̂max and p̂min are in the
same or different topological edge of 0̂, where pmax and pmin are in the same or
different topological edge, respectively, of 0. Note that there is a homeomorphism
from 0 to 0̂ which preserves z.

We now proceed to extend this homeomorphism to an isotopy. For t ∈ R, write
Pt for the plane {z= t}. As in the proof of Proposition 4.10, there is a continuous 1-
parameter family of homeomorphisms8t : Pt→ Pt such that8t(0∩Pt)= 0̂∩Pt ;
8t is the identity outside a compact subset of Pt ; and 8t is isotopic to the identity
of Pt , uniformly with respect to t . Defining8 :R3

→R3 by8(x, y, z) :=8z(x, y),
we have an isotopy of 0 with the model graph 0̂.

(4) Finally, consider an embedding g : θ→R3 which is only continuous, and write
0 = g(θ).

It follows from Theorem 4.11 that for any θ -graph 0 of finite net total curvature,
there is a 0-approximating polygonal θ -graph P isotopic to 0, with NTC(P) ≤
NTC(0) and as close as desired to NTC(0).

If a θ -graph 0 would have NTC(0) < 3π , then the 0-approximating polygonal
graph P would also have NTC(P) < 3π , in contradiction to what we have shown
for piecewise C2 theta graphs in part (1) above. This shows that NTC(0)≥ 3π .

If equality NTC(0) = 3π holds, then NTC(P) ≤ NTC(0) = 3π , so that by
the equality case part (2) above, NTC(P) must equal 3π , and P must be a convex
planar curve plus a chord. But this holds for all 0-approximating polygonal graphs
P , implying that 0 itself must be a convex planar curve plus a chord.

Finally, If NTC(0)<4π , then NTC(P)<4π , implying by part (3) above that P
is isotopic to the standard θ -graph. But 0 is isotopic to P , and hence is isotopically
standard. �
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