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Let U be a maximal unipotent subgroup of a connected semisimple group G
and U’ the derived group of U. If X is an affine G-variety, then the algebra
of U’-invariants, k[X]Y ', is finitely generated and the quotient morphism
x:X —> XJU = Speck[X 1Y" is well-defined. In this article, we study
properties of such quotient morphisms, e.g. the property that all the fibres
of = are equidimensional. We also establish an analogue of the Hilbert-
Mumford criterion for the null-cones with respect to U’-invariants.

Introduction

The ground field k is algebraically closed and of characteristic zero. Let G be a
semisimple algebraic group with Lie algebra g. Fix a maximal unipotent subgroup
U C G and a maximal torus T of the Borel subgroup B = Ng(U). SetU'= (U, U).
Let X be an irreducible affine variety acted upon by G. The algebra of covariants
(or, U-invariants) k[X]Y is a classical and important object in Invariant Theory.
It is known that k[ XY is finitely generated and has many other useful properties
and applications, see e.g. [9, Ch.3, §3]. For a factorial conical variety X with
rational singularities, there are interesting relations between the Poincaré series
of the graded algebras k[X] and k[X1Y, see [3], [12, Ch.5]. Similar results for
U’-invariants are obtained in [14].

A surprising observation that stems from [14] is that, to a great extent, the theory
of U'-invariants is parallel to that of U-invariants. In this article, we elaborate on
further aspects of this parallelism. Our main object is the quotient 7y ¢/ : X —
XU’ =Spec(k[X]Y"). Specifically, we are interested in the property that X J U’ is
an affine space and/or the morphism mx ¢ is equidimensional (i.e., all the fibres of
7x v have the same dimension). Our ultimate goal is to prove for U’ an analogue
of the Hilbert—-Mumford criterion and to provide a classification of the irreducible
representations V' of simple algebraic groups G such that k[ V] is a free k(V]Y'-
module. We also develop some theory for U’-actions on the affine prehomogeneous
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horospherical varieties of G (¥-varieties in terminology of [22]). As U’ = {1} for
G = SL,, one sometimes has to assume that G has no simple factors SL.

If X has a G-fixed point, say x¢, then the fibre of wy ¢+ containing xq is called
the null-cone, and we denote it by My (X). (The null-cone My (X) can be defined
for any subgroup H C G such that k[ X ] is finitely generated.) If G has no simple
factors SL, nor SLj, then the canonical affine model of k[G/U’] constructed in
[14, Sect. 2] consists of unstable points in the sense of GIT, and using this property
we give a characterisation of 91y (X) in terms of one-parameter subgroups of 7.
We call it the Hilbert—Mumford criterion for U'. This is inspired by similar results
of Brion for U-invariants [3, Sect.IV]. It is easily seen that 1y/(X) C N (X).
Therefore G- Ny (X) C NG (X). Using the Hilbert—-Mumford criterion for U’ we
prove that G-y (X) = Ng(X) whenever G has no simple factors SL,. This
should be compared with the result of Brion [3] that G-Iy (X) = N (X) for all
G.

The ¥-varieties are in one-to-one correspondence with the finitely generated
monoids & in the monoid X of dominant weights, and the ¥-variety correspond-
ing to & C X is denoted by 6(S). We give exhaustive answers to three natural
problems related to the actions of U’ on ¥-varieties. A set of fundamental weights
M is said to be sparse if the corresponding nodes of the Dynkin diagram are disjoint
and, moreover, there does not exist any node (not in M) that is adjacent to two nodes
from M. Our results are:

a) k[€(&)]Y" is a polynomial algebra if and only if the monoid & is generated
by a set of fundamental weights;

b) Kk[€(&)]1Y "isa polynomial algebra and 74,7 is equidimensional if and
only if the monoid & is generated by a sparse set of fundamental weights;

c) the morphism ¢ v is equidimensional if and only if the convex poly-
hedral cone R*& is generated by a sparse set of fundamental weights. (In
particular, the cone R & is simplicial.)

Part a) is rather easy, while parts b) and c) require technical details related to
the Bruhat decomposition of the flag variety associated with €(&). If & has one
generator, say A, and R(A) is a simple G-module with highest weight X, then €(&)
is the closure of the orbit of highest weight vectors in the dual G-module R(1)*.
Such a variety is denoted by 6(1). As in [22], we say that €(A) is an HV-variety.
Our results for HV-varieties are more complete. For instance, we compute the
homological dimension of 6(A) /U’ and prove that Dty (€(A)) is always of codi-
mension 2 in €(A). The criterion of part b) is then transformed into a sufficient
condition applicable to a wider class of affine varieties:

Theorem 0.1. Suppose that G acts on an irreducible affine variety X such that
(1) k[X1Y is a polynomial algebra and (2) the weights of free generators are
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fundamental, pairwise distinct, and form a sparse set. Then k[X 1Y" is also poly-
nomial, of Krull dimension 2dim X JU, and the quotient tx y : X — XU’ is
equidimensional.

This exploits the theory of “contractions of actions” of G [15] and can be re-
garded as a continuation of our work in [13, Sect. 5], where the equidimensionality
problem was considered for quotient morphism by U. For instance, under the
hypotheses of Theorem 0.1, the morphism 7y y is also equidimensional.

In [14], we obtained a classification of the irreducible representations of simple
algebraic groups such that k[V]Y" is a polynomial algebra. Now, using Theo-
rem 0.1 and some ad hoc arguments, we extract from that list the representations
having the additional property that wy - is equidimensional. The resulting list is
precisely the list of representations such that k[V] is a free [|<[V]U/-m0dule (such
G-representations are said to be U’-cofree).

This work is organized as follows. Section 1 contains auxiliary results on &-
varieties [22], U’-invariants [14], and equidimensional morphisms. In Section 2,
we consider U’-actions on the HV-varieties. Section 3 is devoted to the U’-actions
on arbitrary ¥-varieties. Here we prove results of items a) and b) above (Theo-
rems 3.2, 3.4, and 3.7). In Section 4, we prove the general equidimensionality
criterion for $-varieties (item c)). The Hilbert—-Mumford criterion for U’ and re-
lations between two null-cones are discussed in Section 5. In Section 6, we prove
Theorem 0.1 and obtain the classification of U’-cofree representations of G.

Notation. If an algebraic group Q acts regularly on an irreducible affine variety
X, then X is called a Q-variety and

o O,={q € Q|qgx=x}isthe stabiliser of x € X;

o Kk[X]9 isthe algebra of Q-invariant polynomial functions on X. If k[ X 1€ is
finitely generated, then X/ Q := Spec (k[X 19), and the quotient morphism T =
x,0: X — X/ Q is the mapping associated with the embedding k(X192 — K[X].
Throughout, G is a semisimple simply-connected algebraic group, W = Ng(T)/T
is the Weyl group, B =TU, and r = rk G. Then

— A is the root system of (G, T), I1 = {ay, ..., a,} C A are the simple roots
corresponding to U, and @1, ..., @, are the corresponding fundamental weights.

— The character group of T is denoted by X. All roots and weights are regarded
as elements of the r-dimensional real vector space Xg := X @ R.

- (, ) is a W-invariant symmetric non-degenerate bilinear form on X and
s; € W is the reflection corresponding to «;. For any A € X, let A* denote the
highest weight of the dual G-module, i.e., R(A)* ~ R(1*). The u-weight space of
R(%) is denoted by R(1) .

We refer to [21] for standard results on root systems and representations of
semisimple algebraic groups.
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1. Recollections

1.1. Horospherical varieties with a dense orbit. A G-variety X is said to be horo-
spherical if the stabiliser of any x € X contains a maximal unipotent subgroup of
G. Following [22], affine horospherical varieties with a dense G-orbit are called
S-varieties. Let G be a finitely generated monoid in X, and {A{, ..., Ay} the
minimal set of generators of &. Let v_;, € R(A) be a lowest weight vector. Set
v=(v_y,,...,V_;,) and consider

6(6):=GvCROL)HD---®ROY).

Clearly, €(S) is an ¥-variety; conversely, each ¥-variety is obtained in this way
[22]. Write (&) for the linear span of & in X and set rk & =dimg(S). Let L be
the Levi subgroup such that 7 C Lg and the roots of Lg are those orthogonal to
Al ..., Ap. Then Ps = LsNg is the standard parabolic subgroup, with unipotent
radical Ng C U.

Theorem 1.1 ([22]). The affine variety €(S) has the following properties:

1. The algebra k[€(S)] is a multiplicity free G-module. More precisely,
k[€(6)] = @MG R(A) and this decomposition is a multigrading, i.e.,
RR() =R+ p);

2. The G-orbits in €(S) are in a one-to-one correspondence with the faces of
the convex polyhedral cone in X generated by S;

3. ©(6) is normal if and only if Z&EN QTG = &;
4, dim%6(6) =dimG/Pgs+rk S.

If G = N, then we write €()), P, ... in place of ‘€(NA), Pyj,.... The variety
€ (A) is the closure of the G-orbit of highest weight vectors in R(A*). Such va-
rieties are called HV-varieties; they are always normal. Recall that a G-variety
X is spherical, if B has a dense orbit in X. Since B-v is dense in 6(&), all
S-varieties are spherical. By [15, Theorem 10]), a normal spherical variety has
rational singularities and therefore is Cohen-Macaulay. In particular, if S is a free
monoid, then €(S) has rational singularities.

1.2. Generalities on U’-invariants. We recall some results of [14] and thereby
fix relevant notation. We regard X as a poset with respect to the root order “<”.
This means that v < u if © — v is a non-negative integral linear combination of
simple roots. For any A € X, we fix a simple G-module R(A) and write % (1) for
the set of T-weights of R(X). Then (?(X), <) is a finite poset and A is its unique
maximal element. Let e; € u = Lie U be a root vector corresponding to «; € II.
Then (e, ..., e,) is a basis for Lie (U/U").
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The subspace of U’-invariants in R(A) has a nice description. Since ROLY is
acted upon by B/U’, it is T-stable. Hence R(\)Y" = P R(WY', where $ is a
subset of P (A).

Theorem 1.2 ([14, Theorem 1.6]). Suppose that ». = ";_, ajw; € X. Then

(1) r={r—=3 iy biei |0<bi <a; Vil

(2) dim R(k)g/ =1forallpe9,,ie., R()»)U/ is a multiplicity free T-module;

(3) A nonzero U'-invariant of weight . — Y _;_, a;c;, say f, is a cyclic vector
of the U/ U’-module RO\)Y'. That is, the vectors (T, ef’i)(f) |0<b; <a; Vi)
form a basis for RO)Y'.
It follows from (1) and (2) that dimR(M)Y" = []/_;(a; + 1). In particu-
lar, dim R(wl-)U/ = 2. The weight spaces R(w;),, and R(w;)y,—o, are one-
dimensional, and we fix corresponding nonzero weight vectors f;, f; such that
ei(f,-) = f;. That is, fl is a cyclic vector of R(w,-)U/.

The biggest F-variety corresponds to the monoid G = X .. Here

KG/UI =KX )] = P RM),

)\E%Jr

HEP)

and the multiplicative structure of k[6(X)] together with Theorem 1.2 imply

Theorem 1.3 (cf. [14, Theorem 1.8]). The algebra of U'-invariants k[%6 (%+)]U/ is
freely generated by fi, fi1,..., fr, fr. Therefore, any basis for the 2r-dimensional
vector space B;_, R(w)V' yields a free generating system for k[€(X;)]Y'.

The algebra k[G /U] is sometimes called the flag algebra for G, because it can be

realized as the multi-homogeneous coordinate ring of the flag variety G/B. More
generally, we have

Theorem 1.4. If G is generated by some fundamental weights, say {w; | i € M},
then any basis for @, .y, R(@i)V' yields a free generating system for k[¢(&)]Y".

Proof. As in the proof of [14, Theorem 1.8], one observes that, for A=), _,, ai i,
the monomials {[[;,, fibi fiai —bi | 0 < b; < a;} form a basis for the space R(A)V'.
[Another way is to consider the natural embedding €(&) — 6(X) [22] and the
surjective homomorphism k[ (.’£+)]U/ — |]<[<6(6)]U/.] U

Given A € X, we always consider a basis for R(L)Y' generated by a cyclic
vector and elements e; € gq,, i.€., a basis {f, € R(A), | n € 9,} such that

f[L—H)l," /’L+ai€§)\a

U=, uva g

However, for the fundamental G-modules R(w;), we write f; in place of f, and
fi in place of fr, _q;.
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1.3. Equidimensional morphisms and conical varieties. Letw: X — Y be adom-
inant morphism of irreducible algebraic varieties. We say that 7 is equidimensional
at y € Y if all irreducible components of 7~ (y) are of dimension dim X —dim Y.
Then 7 is said to be equidimensional if it is equidimensional at any y € 7 (X).
By a result of Chevalley [6, Ch.5, n.5, Prop.3], if y = 7w (x) is a normal point,
7 is equidimensional at y, and 2 C X is a neighbourhood of x, then 7 (2) is
a neighbourhood of y. Consequently, an equidimensional morphism to a normal
variety is open.

An affine variety X is said to be comical if k[X] is N-graded, k[X] =
D, >0 k[X1,, and k[X]p =k. Then the point xy corresponding to the maximal ideal
@n>1 k[X], is called the vertex. Geometrically, this means that X is equipped with
an action of the multiplicative group k> such that {x¢} is the only closed k*-orbit
in X.

Lemma 1.5. Suppose that both X and Y are conical, and w : X — Y is dominant
and k> -equivariant. (Then 7w (xo) =: yo is the vertex in Y.) If Y is normal and 7 is
equidimensional at yy, then 1 is onto and equidimensional.

This readily follows from the above-mentioned result of Chevalley and standard
inequalities for the dimension of fibres.

Remark 1.6. As G lies in an open half-space of Xp, taking a suitable N-
specialisation of the multi-grading of k[€(&)] shows that €(&) is conical and the
origin in R(A]) @ - - - ® R(A},) is its vertex. This implies that €(&) /U’ is conical,
too. We will apply the above lemma to the study of equidimensional quotient maps
7 :6(6) — 6(S)/U’. It is important that such 7 appears to be onto.

The idea of applying Chevalley’s result to the study of equidimensional quotients
(by U) is due to Vinberg and Gindikin [20].

2. Actions of U’ on HV-varieties

Let €(A) = G-v_; C R(A*) be an HV-variety. The algebra k[€())] is N-graded
and its component of degree n is R(nA). Since 6 (1) is normal, 6(A) /U’ is normal,
too.

Theorem 2.1. 6(A) /U’ is an affine space if and only if A is a fundamental weight.

Proof. 1) Suppose that A is not fundamental, i.e., A =---+aw; +bw; +--- with
a,b>1.

o If i # j, then R(A\)Y" contains linearly independent vectors f, fi—a;s fa—q;s
Ja—a;—e; that occur in any minimal generating system, since k[€(1)]1 =~ R(A).
Using the relations e; (fi—q,—a;) = fi—q; €tc., one easily verifies that

P = f)\f)»—ai—aj - f)»—()l,’f)\,—aj
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is a U-invariant function on “€(A), of degree 2. The only highest weight in degree 2
is 2. Since the weight of p is not 2A, we must have p =0, and this is a non-trivial
relation.

e If i = j, then the coefficient of w; is at least 2 and we consider vectors f;,
Sr—a;s faz2a; € R()L)U/. Then p =2f; fi—ow, — ffﬁai is a U-invariant function of
degree 2 and weight 2(A — a;), and this yields the relation p = 0 in k[€(1)]Y".

2) If A = w;, then dim R(w;)V" =2 and 6(w;) /U’ ~ A2 by Theorem 1.4. [

For an affine variety X, let edim X denote the minimal number of generators of
k[X] and hd(X) the homological dimension of k[X]. If k[X] is a graded Cohen-
Macaulay algebra, then hd(X) = edim X —dim X [17, Ch.IV].

Theorem 2.2. If A=) _, a;w; € X, then
(i) dim@€G) U =1+#{j|a; #0);

(ii) the graded algebra k[€ ()Y is generated by functions of degree one, i.e., by
the space R(\)Y', and edim € (1) J U’ = [Tio (@i + D).

Proof. (i) Recall that P, = L, N, is the standard parabolic subgroup associated with
“(A) and the simple roots of L, are those orthogonal to A. Set k =#{j | a; # 0}.
Thensrk Ly :=rk (L;, L;) =rk G—k and dim 6(1) =dim N, + 1. Since U-(kv_,)
is dense in €(1), U(L,) := U N L, is a generic stabiliser for the U-action on €()).
By [14, Lemma2.5], the minimal dimension of stabilisers for the U’-action on
% (M) equals dim(U (L) NU’) =dim U (L;) — srk L;.. Consequently,

dim6(1)/U" = dim6(%) —dim U’ 4+ min dimU, =
xeB(r)
=dim N, +1—(dimU —rk G)+(dim U(L;)—stk L)) =1+rk G —srk L) = 1+k.

(i) By Theorem 1.2, dimR()Y" = []/_;(a; + 1), which shows that
edim6(1) /U’ > ], (a; +1). Therefore, it suffices to prove that the graded alge-
bra k[¢(1)]V" is generated by elements of degree 1. The weights of U’-invariants
of degree n are

%:{nx—Zb,ai |b; =0,1, ..., na).

In particular,
Fr={—=> b |b;=0,1,....a;}.

1

Obviously, each element of ¥, is a sum of n elements of .$,. Since R(n)»)U/ 18
a multiplicity free 7-module, this space is spanned by products of n elements of
RWY'. a
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Corollary 2.3. We have hd(€(A) JU")=[1;_;(14+a;)—1—#{j |a; #0}. Therefore,

e hd(€(A)JU’) =0 if and only if A is fundamental;

e hd(6(1)/U")=1ifand only if » = w; + @w; or 2w;.
Proof. As it was mentioned above, the HV-varieties have rational singularities. In
view of [14, Theorem 2.3], 6(A) / U’ also has rational singularities and in particular
is Cohen-Macaulay. Hence hd(€(1)JU’) = edim6(A) /U’ —dimeé(r)JU’'. O
Remark 2.4. 1) As above, k = rk G — srk L, and hence dim€(1)JU’ =k + 1.
Another consequence of Theorems 1.2 and 2.2 is that €(1)/U’ is a toric va-
riety with respect to k* x 7T, where k* acts on R(A*) (and hence on €(}))
by homotheties. Note that the 7T-action on 6(1)/U’ has a non-effectivity ker-
nel of dimension rk G — k. The quotient morphism m¢ ¢ has the follow-
ing description. Let ann(R()\)U/) be the annihilator of R()\)U/ in R(A*). Then
(R(M)YY* = R(OX)/ann(R(A)Y) and 7¢ . is the restriction to €(1) of the pro-
jection R(A*) — (R()L)U/)*. Thus, €(1) /U’ is embedded in the vector space
(R(A)U/)*. Consequently, P(6(1)JU’) C P((R(X)U/)*) is a normal toric variety
with respect to 7. As is well-known, a projective toric T -variety can be described
via a convex polytope in Xg [7, 5.8]. The polytope corresponding to P(6(x)/U")
is the convex hull of $,. It is a k-dimensional parallelepiped, in particular, a simple
polytope. It follows that the corresponding complete fan is simplicial. Therefore
the complex cohomology of P(‘¢(1)/ U’) satisfies Poincaré duality and has a num-
ber of other good properties, see [7, § 14].

2) Along with the toric structure (i.e., a dense T-orbit), the projective variety
P(6(1)JU’) also has a dense orbit of the commutative unipotent group U/ U’.

3. Actions of U’ on arbitrary S-varieties

Let €(&) be an F-variety. In this section, we answer the following questions:
— When is 6(6) /U’ an affine space?
— Suppose that 6(&) /U’ is an affine space. When is ¢ (s, equidimensional?
We begin with a formula for dim 6(&) / U’, which generalises Theorem 2.2(i).

Proposition 3.1. dim6(&)JU’' =rk S + (rk G —srk Lg).

Proof. By Theorem 1.1, dim6(&) =dim Ng+rk & and dim€(6) /U =rk &. This
readily implies that U(Lg) := U N Lg is a generic stabiliser for the U-action on
%(S). By [14, Lemma 2.5], the minimal dimension of stabilisers for the U’-action
on €(6) equals dim(U(Lg) NU’) =dim U (Lg) — stk Lg. Consequently,
dim%6(6)/U' =dim%(S) —dimU' 4+ min dimU, =

x€€(OS)
=dim Ng+rk &S—(dim U —rk G)+(dim U (Lg)—srk Lg) =rk &+(rk G—srk Lg).

Here we use the fact that U is a semi-direct product of Ng and U (L g). O
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Remark. Note that rk S < rk G — srk L, and the equality here is equivalent to
the fact that the space (&) has a basis that consists of fundamental weights.

Theorem 3.2. Let G C X be an arbitrary finitely generated monoid. Then
6(S) ) U’ is an affine space if and only if & is generated by fundamental weights.

Proof. 1) Suppose that ‘€(&)/ U’ is an affine space. If A is a generator of &, then
any generating system of k[6(&)]V" contains a basis for R(A)Y". Arguing as in the
proof of Theorem 2.1, we conclude that A must be a fundamental weight. [Another
way is to use Proposition 3.1 and the inequality dim€(S) /U’ > 2rk S.]

2) The converse is contained in Theorem 1.4. O

In the rest of this section, we only consider monoids generated by fundamental
weights. Fix a numbering of the simple roots (fundamental weights). For any
M cC{1,2,...,r}, let €(M) denote the S-variety corresponding to the monoid
S =) ;e No;. Our aim is to characterise the subsets M having the property that
Ty €M) — €(M)J U’ is equidimensional. The origin (vertex) is the only G-
fixed point of €(M) and the corresponding fibre of 7y (the null-cone) is denoted
by Ny (M).

Recall that k[€(M)] is a graded Cohen-Macaulay ring and k[ (M )]U/ is a poly-
nomial algebra freely generated by { f;, f, | i € M} (Theorem 1.4). Therefore, my
is equidimensional if and only if the functions {f;, f; | i € M} form a regular
sequence in k[€(M)] if and only if dim Ny (M) =dim€(M) —2(#M) [16, § 17].

Definition 1. A subset M C {1, ..., r} is said to be sparse, if 1) the roots «; with
i € M are pairwise orthogonal, i.e., disjoint in the Dynkin diagram; 2) there are no
i, j € M and no k ¢ M such that (o, ;) <0 and (o, @) <0, i.e., ay is adjacent
to both o; and «;.

Accordingly, we say that a certain set of fundamental weights (simple roots) is
sparse.

Clearly, if M is sparse and J C M, then J is also sparse.

Lemma 3.3. Let o, ..., a; be a sequence of different simple roots such that
®i;, i, are adjacent for j = 1,2,...,1 —1). Then p = w; — le:l w; is a
weight of R(w;,) and dim R(w;,), = 1.

Proof. The first assertion is easily proved by induction on /. The second assertion
follows from [1, Prop. 2.2] O

Theorem 3.4. If the quotient wy : €(M) — €(M)J U’ is equidimensional, then
M is sparse.

Proof. As we already know, k[€(M NY'is freely generated by the functions { f;, f, |
i € M}. Assuming that M is not sparse, we point out certain relations in k[€(M)],
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which show that these free generators do not form a regular sequence. There are
two possibilities for that.

e Suppose first that ; and «; are adjacent simple roots for some i, j € M.
Then A;; := @w; + @w; — a; — «; is dominant. Consider upper parts of the Hasse
diagrams of weight posets for R(w;) and R(w):

w; w;—u; w;—U; —Olj
O ) ) ..
R(w;): z
@, . pi
wj ZD'j—Olj ZD'j—Ol[—Olj
R O O O “ee
wij): 3
(@) i [ pj

In these figures, each node depicts a weight space, and we put the weight over the
node and a weight vector under the node. There can be other edges incident to the
node @; — «; (if there exist other simple roots adjacent to «;), but we do not need
them. By Lemma 3.3, the weight spaces R(@;),;, R(@i) &, —qo;, and R(@1)w;—a;—a;
are one-dimensional. Here f;, f~l~, and p; are normalised such that e; ( f,-) = f; and
ej(pi) = f,-; and likewise for R(z ;). Note also that ¢; (p;) = 0, since @; — «; is
not a weight of R(z;). It is then easily seen that

[i®pi—fi®fi+pi®f

is a U-invariant of weight 2;; in R(zw;) ® R(z ;). However, only the Cartan com-
ponent of R(zw;) ® R(w;) survives in the algebra k[€(M)], i.e., in the product
R(w;)-R(w ;). Consequently, f;p; — f; f;+ pi f; =0 in k[¢(M)]. This means that
(fi, fj fi, fj) is not a regular sequence in k[€(M)].

e Yet another possibility is that there are k ¢ M and i, j € M such that o is
adjacent to both o; and «;. Here one verifies that A;; := @; + @ —; — o — @
is dominant. In this situation, we need larger fragments of the weight posets:

wj w;—; w; —u; —0 W —U—0pg—Qj
wj). F
@) p, fi pi gi
wi ZD'j—Olj ZD'j—Otj—Olk zzrj—aj—ak—ai
R(w) o O O
wi). 3
J fi fi pj qj

Here all the weight spaces are one-dimensional by Lemma 3.3, and we follow the
same conventions as above. Additionally, we assume that e;(g;) = p;. Note that
er(gi) =0 and e;(g;) = 0, since neither @; —a; —o; nor w; —ax—a; is a weight of
R(w;). (And likewise for R(z;).) Then fi®q; — fi®p;+pi® fj —q: ® fj isa
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U -invariant of weight ii ;» and hence

(3-1) fiaj— fipi+pifj—aifi=0
in k[€(M)] for the same reason as above. This again implies that (f;, f;, fi, fj)
is not a regular sequence in k[€(M)]. O

Example 3.5. Let g = sl4 and M = {1, 3} in the usual numbering of I1. Then
dim R(w1) = dim R(w3) = 4 and dim%6(M) = 7. In this case, the above 4-node
fragments provide the whole weight posets. Therefore, R(w1) = (fi, f1. P1., q1)s
R(@3) = (f3, f3, D3, q3), and (3-1) with (i, j) = (1, 3) is the equation of the hy-
persurface €(M). Since dim6(M)JU’' = 4 and Ny (M) D (p1,q1, p3, q3), the
morphism 7y is not equidimensional.

To prove the converse to Theorem 3.4, we need some preparations. Recall that
the partial order “<” is defined in 1.2. We also write v < p if v < w and o # v.

Lemma 3.6. Suppose that M is sparse and w € W has the property that w(w;) <
w; —«o; foralli € M. Then £(w) = 2-#(M).

Proof. Since w(w;) < w;, any reduced decomposition of w contains s;. Fur-
thermore, since w(w;) < @; — «;, there exists a node i’ adjacent to i such that
w(w;) <X w; — a; — a;r. Therefore, w must also contain the reflection s;;. Because
M is sparse, all the reflections {s;, s;» | i € M} are different. Thus, £(w) > 2-#(M).

[l

For any I C II, we consider the following objects. Let P; = L;N; be the
standard parabolic subgroup of G. Here L; is the Levi subgroup whose set of
simple roots is I and N; is the unipotent radical of P;. Then P, = L;N; is the
opposite parabolic subgroup of G. We also need the factorisation

wW=w!xWw,,

where W; is the subgroup generated by {s; | o; € I} and W/ is the set of represen-
tatives of minimal length for W/ W, [8, 1.10]. It is also true that W/ = {w € W |
w(a;) € AT Vo, €I} [8,5.4]. If I = {a € 1| (o, 1) = 0} for some A € X, then
we write P, W, W*, etc.

For each w € W, we fix a representative, w, in Ng(T). As is well-known, the
U-orbits in G/ P;” can be parametrised by W/, and letting O(w) = UwP; CG/P/
(w e W), we have G/P; =Uycw:0(w) and codim O(w) = £(w).

Theorem 3.7. If M C {1,...,r} is sparse, then the quotient wy : €(M) —
G(M) U’ is equidimensional.

Proof. Setm =#M and I =TI\ {o; | i € M}. Consider v = ) ;3 V—; €
@D, R(@/). As explained in Subsection 1.1, then 6(M) ~ G-v and dim 6(M) =
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dim G/P; +m. We also have dim<€(M )/ U’ =2m. Therefore, our goal is to prove
that dim ‘JIU/ (M) <dimG/P,

Set V=Tv=E,y kv_w,. It is an m-dimensional subspace of &, _,, R(w /"),
which is contained in ‘€(M) and is P, -stable. Recall that G x P V is a homoge-
neous vector bundle on G/ P, . A typical element of it is denoted by g * v, where
geGandv = ZieM v; € V. Our main tool for estimating dim 1y (M) is the
following diagram:

Gxp-V s @M

b

G/P; M) U’

where ¢ (g xv) := gP; and t(g * v) := g-v. Note that 9y (M) is B-stable, and
hence so is 7'My (M)). Tt is easily seen that the morphism 7 is birational and
therefore it is an equivariant resolution of singularities of ‘6 (M).

Letn e U and w € W!. As k[€(M)]V is generated by { f;, fi | i € M}, we have
(3-2)
¢ M P) N Ny (M) = (mib* v | fi(nb-v) =0, fi(mib-v)=0 Vie M).

Here f; (resp. fi) is regarded as the coordinate of v_g;, € R(w/") (resp. V_g, 4o, €
R(w/")). Note that f;(nw-v) depends only on the component v; of v, and v; is
proportional to v_g;. Let us simplify condition (3-2). Since f; is actually a U-
invariant, we have f;(nw-v;) = f;(w-v;). Next, f, is invariant with respect to
a subgroup of codimension 1 in U. Namely, consider the decomposition U =
U% Uy, =~ U% x Uy, where Uy, is the root subgroup and U% is the unipotent
radlcal of the minimal parabohc subgroup associated with «;. If n; € Uy, and
i e U%, then ii-f; = f,andn -fi = fi +ci fi for some ¢; = ¢;(n;) € k. Hence
for n = nn; € U, we have

finiv) = fi(np-vy) = (n;7 - f) ov) = fi(-vp) + fi(b-vy)ei -

Therefore, (3-2) reduces to the following:
(3-3)
¢’1(nu')P1_) Nt My (M) = {nbxv | f;(bv) =0, fi(b-v)=0 VieM).

Thus, the dimension of this intersection does not depend on n € U; it depends only
onw e W/, ie., on O(w) C G/P; . We can make (3-3) more precise by using
the partition of €(M) into (finitely many) G-orbits. For any subset J C M, let
Vy =1 ;c;V-w €V. Then {v; | J C M} is a complete set of representatives of

the G-orbits in 6(M) (Theorem 1.1(2)). Set \O/J =G-vy;NV =T-v;. Itis an open
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subset of a (#J)-dimensional vector space. Then
¢ (PNt Oy (M)NGvy)

={nwxv|veVy, fi(wv)=0, fi(wv)=0VieM).
This set is non-empty if and only if w-v_,, has the trivial projection to
(V_w;s Vommy1q;) C R(zw}) for all i € J, ie., w(w;) < @; —a; foralli e J.
In this case the dimension of this set equals dim V ; = #J. Consequently, if
o~ LOW)NT ' My (M)NG-vy) # @, then

w(w;) <w; —«; forall i € J and

dim(qb’l(@(w)) N~ My (M) N G-v,)) — #J + dim O(w).

By Lemma 3.6, ¢(w) > 2-#J. Therefore,

dim<¢_1(@(w)) Nz My (M) N G-vJ)) =
#J —codimO(w) +dim G/ P, =#J —{(w) +dimG/P; <dimG/P; —#/J.

This is an upper bound for the dimension of the pullback in G x P V of a subset

of My (M). If vy is not generic, i.e., J # M, then dim 7' (v;) > 0 and the actual
subset of Ny (M) has smaller dimension. More precisely, set [ = {a; |1 & J}.
Then I D I and ) ~ P]T/PI_. Since srk (Lj) = srk (Ly) + (m —#J), we
have dim r‘l(vj) >m —#J. Thus, for all w € W/ and J € M, we have

dim( (¢~ (©()) NN (M) N G0, ) <
dim G/P; —#J — (m —#J) =dim G/P] —m,
and therefore dim 9y (M) < dim G/P; —m. U

Remark 3.8. A “dual” approach is to consider the P;-stable subspace V =
D;cu [I<vwi* C®Bicu R(w ) and the map G x p, vV > %(M). Then one has to
work with U_-orbits in G/P; and U_-invariants in k[‘6(M)], but all dimension
estimates remain the same. Such an approach is realised in [13, Sect. 5], where the
equidimensionality problem is considered for the actions of U on ¥-varieties.

Combining Theorems 3.2, 3.4, and 3.7, we obtain the general criterion:

Theorem 3.9. For a finitely generated monoid & C X, the following conditions
are equivalent:
(i) €(S)/ U’ is an affine space and we). v : €(S) — €(S) J U’ is equidimen-
sional;

(i) © is generated by a sparse set of fundamental weights.
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4. Equidimensional quotients by U’

In this section, the quotient morphism for the &-variety €(S) will be denoted by
wg,yr- Similarly, for the HV-variety €(1), we use notation ) 7. Our goal is to
characterise the monoids & such that 7g 7 : 6(&) — 6(S) / U’ is equidimensional
(i.e., without assuming that ‘€(&) / U’ is an affine space). We assume that U’ # {1},
i.e., G is not a product of several SL;.

First, we consider the case of HV-varieties.

Theorem 4.1. For any A € X, the null-cone Ny (€(L)) is of codimension 2 in
€(r).

Proof. As in the proof of Theorem 3.7, we work with the diagram

Gxp-V - @)

o I

G/P] €O U,

where V = kv_;, ¢(g *xv) := gP, and 7(g * v) := g-v. Note that P, is just
the stabiliser of the line V C R(A*). For simplicity, we write 91y (L) in place of
Ny (€(1)).

Since My (A) is U-stable, ¢ (t =" (Ny-(1))) is a union of U-orbits. Recall that
k€ ()»)]U/ is generated by the space R(1)V ', and the corresponding set of 7' -weights
18 5’)“

We point out a w € W* such that the U-orbit O(w) C G/ P, is of codimension 2
and ¢~ 1(O(w)) C T='(My/(1)). Suppose that (r, o)) =a; > 1 and oy is a simple
root of a simple component of G of rank > 2. Let o be a simple root adjacent to
o in the Dynkin diagram. Take w = s,s51. Regardless of the value of (X, ), it is
true that w € W* and £(w) = 2. We have

s251(A) = A —ajay — (a2 — ap (e, o) )oa < A — ajo — (ay + az)e,
where a; = (A, ;). Hence s251(1) & $,. It follows that s>57 (v_,) € My (1) and

(¢~ (OW))) = U-(s251(V)) € Ny (M),

Thus, w = s»s1 is the required element. Since 7 is injective outside the zero
section of ¢, it is still true that codim <g(,\)r(qb_1 (O(w))) = 2. This proves that
codim Ny (1) < 2.

On the other hand, the similar argument shows that if w € W* and £(w) =1 (i.e.,
w =s;, where («;, ) #0), then w-v_; €y (A). Therefore, codim Ny (A) =2. U

Corollary 4.2. Suppose that U' # {1}. Then m, y : €(L) — €(X)J U’ is equidi-
mensional if and only if A = a;w; for some i. In particular, if the action of G on
€ (A) is effective and 7,y is equidimensional, then G is simple.
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Proof. Tt follows from Theorem 2.2(i) that dim 6 (A) J U’ =2 if and only if A = a; w;.
O

Now, we turn to considering general monoids & C X;. For any § C X, let
con(S) denote the closed cone in X generated by S.

Lemma 4.3. Suppose that we are given two monoids & and &, such that
con(S;) = con(Sy). Then ng, v is equidimensional if and only if e, v is.

Proof. It suffices to treat the case in which G, = con(&1) N X 4. Then k[€(S,)] is
a finite k[6(S)]-module [22, Prop. 4]. Consider the commutative diagram

€Sy L %®)

lﬂez,U/ lﬂGI,U/

172%
GGy JU — G(G))U'".
Here i is finite, and it suffices to prove that /U’ is also finite, i.e., that
|]<[<6(62)]U, is a finite k[€(& 1)]U/—m0dule. By the “transfer principle” ([2, Ch. 1],
[15, § 3]), we have
kX1Y ~ (KX1®KIG/U'])

for any affine G-variety X. Hence, one has to prove that (k[&,] ® k[G/U’])¢
is a finite (k[&1] ® k[G/U’])¢-module, which readily follows from the fact that
k[G/U’] is finitely generated and G is reductive. O

Theorem 4.4. The quotient morphism ne yr is equidimensional if and only if
con(8) is generated by a sparse set of fundamental weights.

Proof. 1) The “if” part readily follows from Lemma 4.3 and Theorem 3.7.

2) Suppose that g,y : 6(&) — €(S) /U’ is equidimensional. By Lemma 4.3,
it suffices to consider the case in which & = con(&) N X .. Then (&) is normal
(see Theorem 1.1(3)). Consider an arbitrary edge, con(A), of con(G). It is assumed
that A € G is a primitive element of X,. By [22, Prop. 7], the HV-variety €(1)
is a subvariety of €(&). On the other hand, k[€(A)] = @@0 R(n)) is a G-stable
subalgebra of k[€¢(&)] =P LS R(w). This yields the chain of G-equivariant maps

C(L) — €(6) —> €(1).

Here the composite map is the identity, i.e., r is a G-equivariant retraction. Fur-
thermore, passage to the subalgebras of U’-invariants (= quotient varieties) yields
the maps

2y

G JU — (S)JU" — (G(A)//U
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which shows that r/ U’ is a retraction, too. This also shows that both r and r /U’
are onto. Consider the commutative diagram

G (M) 6(&) ——=6(1)

U’ l s, v/ L TTu! j
2%

G J U — 6(&) U (W)U’

As €(6) is normal, the same is true for €(&)/U’. Since 7 ' is equidimensional
and both 6(S) and €(&)/ U’ are conical, it follows from Lemma 1.5 that ng
is onto. Therefore, 7, y is onto as well. Furthermore, 7, ¢ = 7, v le), since
€ (1) is a G-stable subvariety of €(&). This shows that g ¢/ (€())) is a closed
subset of €(&)/U’.

Let Y C 6(S) be an irreducible component of né’lU, (me,y (4(1))) that contains
“€(A) and maps dominantly to wg, y/(6(1)). Consider the commutative diagram

rly

Y €(A)

m Afém

e, v (€(1))

By the very construction of Y, the morphism r|y is onto and 7e |y is equidi-
mensional. It follows that we yr|¢@y is also equidimensional. Consequently,
U = Te,uleo) 1S equidimensional and, by Corollary 4.2, A = w; for some
i (recall that A is supposed to be primitive). Thus, the edges of con(&) are gen-
erated by fundamental weights. Finally, by Theorem 3.4, the corresponding set of
fundamental weights is sparse. (|

Remark 4.5. Our proof of the “only if”” part exploits ideas of Vinberg and Wehlau
for the equidimensional quotients by G (see [23, Theorem 8.2] and [24, Prop. 2.6]).

Remark 4.6. We can prove a general equidimensionality criterion for the quotients
of F-varieties by U. This topic will be considered in a forthcoming publication.
5. The Hilbert—-Mumford criterion for U’

Let X be an irreducible affine G-variety and xo € X¢. For any H C G, define the
null-cone with respect to H and xg as

Nu(X)={xeX|F(x)=F(xo) VFekX]?}.

If K[X]H is finitely generated, then 91 (X) can be regarded as the fibre of wx g
containing xo. Below, we give a characterisation of 1y (X) via one-parameter
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subgroups (1-PS for short) of 7. This is inspired by Brion’s description of null-
cones for U-invariants [3, Sect. IV]. Recall that the Hilbert—-Mumford criterion for
G asserts that

x € Ng(X) if and only if there is a 1-PS t : k* — G such that lim;_, ¢ T(t)-x = xg
(cf. [9,101.2], [23, § 5.3]). By [14, Theorem 2.2], there is the canonical affine model
of the homogeneous space G/U’, that is, an affine pointed G-variety (G/U’, p)
such that

 G,=U";
e G-pisdensein G/U’;
« K[G/U1=KGY.

Here p = (fi, f1. ..., f+, f,) is a direct sum of weight vectors in 2R(w) ®--- @
2R(w), with weights @;, @w; —a; (1 <i <r). If G has no simple factors SL;, SLs,
then all these weights belong to an open half-space of Xg (see the proof of [14,
Prop. 1.9]). In this case, p is unstable and G/ U’ contains the origin in 2R(z) @
-+ @ 2R(w,). Let T : k* — T be a 1-PS. Using the canonical pairing between
X and the set of 1-PS of T, we will regard 7 as an element of Xg. Let us say
that T is U’-admissible, if (t, @;) > 0 and (7, w; — «;) > 0 for all i; that is, if
lim; o 7(t)-p=0. Since k|G/U’'] = I]<[G]U/, one has the isomorphism

(5-1) kX x G/U'1° = (KX]1QKG]Y)? = k[ Xx]V
that takes F (-, ) e k[X x G/U'1° to F(-) = F(-, p) e k[ x]V'.
Theorem 5.1. Suppose that G has no simple factors SLy, SL3. Then the following
conditions are equivalent:
(i) x € Ny(X), i.e, F(x) = F(xo) forall F e kK[X]Y';
(i) there is u € U and a U'-admissible 1-PS t : k* — T such that
lim; o T(H)u-x = xp.

Proof. (i) = (ii). Suppose that x € Ny (X). Then F(x, p) = F(x) = F(xy) =
F(x0, p). Since p is unstable in G/U’, we have F(xg, p) = F(xg,0). Thus,
F(x, p) = F(x0,0) forall F e (KX]@KG]YV), ie., (x,p) e Ne(X x G/U").
By the Hilbert-Mumford criterion for G, there is a 1-PS v : k* — G such that
v(t)-(x, p) = (x0, 0).

By a result of Grosshans [10, Cor. 1] (see also [3, IV.1]), we may assume that
p(k*) C B. Then there is u € U such that 7(t) :== uv(t)u~! € T. Therefore,

T(Ou(x, p) — (%0, 0).

Note that u-p (u € U) does not differ much from p. Namely, each component f;
remains intact, whereas f; is replaced with f; 4+ ¢; f; for some ¢; € k. This means
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that 7 (*)u-p :: Oifandonlyif t(¢)-p :()) 0. That is, 7 is actually U’-admissible
and lim;_.o T(H)u-x = xg.

(i) = (i). Suppose that F € k[ X ]U/ and F is the corresponding G-invariant in
k[X x G/U’]. Then F(x) = F(x, p) = F(t(t)u-x, T(t)u-p). Since u-p is a linear
combination of weight vectors with the same weights and 7 is U’-admissible, we
have lim;_.o 7(#)u-p = 0. Hence F(x) = I:"(xo, 0) = I:”(xo, p) = F(xp). [l

Remark 5.2. Our Theorem 5.1 is similar to Theorem 5 in [3] on null-cones for U -
invariants. The only difference is that we end up with a smaller class of admissible
1-PS.

Obviously, there are inclusions 91y (X) C Ny (X) C N (X) and hence
G Ny (X) C GNy(X) C N (X).

It is proved in [3, Théoréme 6(ii)] that actually G-ty (X) = N (X). Below, we
investigate the similar problem for U’.

Recall that con(S) is the closed cone in XR generated by S. If K C Xp is a
closed cone, then K+ denotes the dual cone and K° denotes the relative interior of
K. By the very definition, the cone generated by the U’-admissible 1-PS is open,
and its closure is dual to con({z;, w; —«; |i =1, ...,r}). By [14, Theorem 4.2],
we have

con({wj, m; —a; |i=1,..., r})J‘ =con(AT \ IT).
Hence the cone generated by the U’-admissible 1-PS equals con(A™ \ TT)°.

Theorem 5.3. Suppose that G has no simple factors of type SL. Then
1) con(wy, ..., w,) C con(AT\II),
2) GNy (X)) =Ng(X) for all affine G-varieties X.

Proof. 1) Taking the dual cones yields the equivalent condition that
con({wj, mi —a; |i=1,...,r}) Ccon(AT).

That is, one has to verify that each @; — o; has non-negative coefficients in the
expression via the simple roots. Let C denote the Cartan matrix of a simple group
G. All the entries of C~! are positive and the rows of C~! provide the expressions
of the fundamental weights via the simple roots. Hence it remains to check that
the diagonal entries of C~! are > 1. An explicit verification shows that this is true
if G # SL,,1. (The matrices C~! can be found in [21, Table 2].)

2) Suppose that x € 9 (X). Then there exist g € G and 7 : k* — T such
that lim; o t(¢#)g-x = xo. Let y = g-x. The set of all 1-PS v : k* — T such
that lim;_, ¢ v(¢)-y = x¢ generates an open cone in Xg. Therefore, we may assume
that 7 is a regular 1-PS. Now, in view of the Hilbert—-Mumford criterion for G and
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Theorem 5.1, it suffices to prove that any regular 1-PS of T is W-conjugate to a U'-

admissible one. This follows from part 1), since con(z1, ..., @,) is a fundamental
domain for the W-action on X and con(w, ..., @,)° C con(A™T \ I1)°. U
For G = SL,,;, we have @w; — aj, @, — a, & con(A™) and therefore,

con(wy, ..., w,) ¢ con(A™ \ IT). More precisely, @i, @, ¢ con(A* \ IT). This
means that one may expect that, for some SL,-varieties, there is the strict inclu-
sion G-MNy(X) G N (X).

Example 5.4. For m > 3, consider the representation of G = SL3 in the space
V = R(@mw) of forms of degree m in three variables x, y, z. By Theorem 1.2,
dim VY =m+1. Let U be the subgroup of the unipotent upper-triangular matrices
in the basis dual to (x, y, z). The U’-invariants of degree 1 are the coefficients of
x™, xmly . xy™~ y™. Therefore, My (V) is contained in the subspace of
forms having the linear factor z and all the forms in SL3-91y (V) have a linear
factor. On the other hand, the null-form (with respect to SL3) x™ + y" !z is

irreducible. Hence, SL3- Ny (V) # N, (V).

Remark. In view of Theorem 5.1, it would be much more instructive to have such
an example for SL,, n > 4. However, we are unable to provide it yet.

6. Equidimensional quotients and irreducible representations of simple
groups

In this section, we transform the criterion of Theorem 3.9 in a sufficient condition
applicable to a wider class of G-varieties. Then we obtain the list of irreducible
representations V of simple algebraic groups G # SL, such that k[V] is a free
k[V1Y -module.

For any affine irreducible G-variety Z, there is a flat degeneration k[Z] ~~
gr(k[Z]). (Brion attributes this to Domingo Luna in his thesis, see [2, Lemma 1.5]).
Here gr(k[Z]) is again a finitely generated k-algebra and a locally-finite G-module,
and grZ := Spec (gr(k[Z])) is an affine horospherical G-variety. The whole theory
of “contractions of actions of reductive groups” is later developed in [15]. (See
also [4], [19], [11] for related results and other applications.) The “contraction”
Z ~~ grZ has the property that the algebras k[Z] and k[grZ] = gr(k[Z]) are iso-
morphic as G-modules. But the multiplication in k[grZ] is simpler than that in
k[Z]; namely, if M and N are two simple G-modules in k[grZ], then M-N (the
product in k[grZ]) is again a simple G-module. Furthermore, k[grZ]¥ ~ k[Z]Y
and G-((grZ)V) = grZ. This means that if Z is a spherical G-variety, then grZ is
an J-variety.
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Theorem 6.1. Suppose that G acts on an irreducible affine variety X such that (1)
k[X1Y is a polynomial algebra and (2) the weights of free generators are funda-
mental, different and form a sparse set. Then K[X1V' is also polynomial, of Krull
dimension 2dim X J U, and the quotient tx y - X — X J U’ is equidimensional.

Proof. The idea is the same as in the proof of the similar result for U-invariants in
[13, Theorem 5.5]. We use the fact that in our situation grX is an ¥-variety whose
monoid of dominant weights is generated by a sparse set of fundamental weights.

Letwy, ..., @, be the weights of free generators of k[ X 1Y.SetI' = Z;": | Nw;.
It follows from the hypotheses on weights that k[X] is a multiplicity free G-
module, i.e., X is a spherical G-variety [18, Theorem 2]. Therefore, k[X] is iso-
morphic to @, .- R(A) as G-module and grX >~ €(T").

By [15, §5], there exists a G-variety Y and a function g € k[Y]° such that
k[Y1/(g —a) ~ Kk[X] for all a € k*, k[Y][g~'] ~ k[X]lg, g~ '], and k[Y]/(q) ~
klgrX]. Recall some details on constructing ¥ and grX. Let o be the half-sum
of the positive coroots. For A € X, we set ht () = (A, 0). Letting k[X],) =
D, e (y<n R(), one obtains an ascending filtration of the algebra k[X]:

{0} C |]<[X](0) - |]<[X](1) c---C [|<[X](n) cee

Each subspace k[ X],) is G-stable and finite-dimensional and k[ X] ) =k[X 19 =k.
Let g be a formal variable. Then the algebras k[Y] and gr(k[X]) are defined as
follows:

KY]=EP K Xlwg" CKXllg],
n=0

gr(k[X]) = @D KXo /KX 1) -

n=0

Let f1, ..., fn be the free generators of k[ XY, where f; € R(w;)Y, as usual. They
can also be regarded as free generators of k[grX1Y. By Theorem 1.4, I]<[ng]U/
is freely generated by f1, ﬂ, R ﬁ,, and by Theorem 3.9, 7y x v : grX —
(grX)/ U’ is equidimensional. On the other hand, it follows from [14, Theo-
rem 2.4] that f7, fl, coes fus fm also generate k[ X ]U/. Therefore, to conclude that
k[X1Y" is polynomial, it suffices to know that dim X /U’ = dim(grX) /U’ (= 2m).
To this end, we exploit the following facts:

a) For an irreducible G-variety X, there always exists a generic stabiliser for the
U-action on X [5, Corollaire 1.6], which we denote by g.s.(U:X);

b) If X is affine, then this generic stabiliser depends only on the G-module struc-
ture of k[X], i.e., on the highest weights of G-modules occurring in k[X] [12,
Theorem 1.2.9]. Consequently, g.s.(U:X) = g.s.(U:grX);
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c¢) the minimal dimension of U’-stablisers in X equals dim(U’ Ng.s.(U:X)) [14,
Lemma 2.5]. Therefore it is the same for X and grX;
d) Since U’ is unipotent, we have dim X /U’ = dim X —dim U’ 4+ min,cx dim U.
Combining a)-d) yields the desired equality and thereby the assertion that k[ X v
is polynomial, of Krull dimension 2m =2dim X/ U.
Let n; be the smallest integer such that R(w;) C k[X](,,). Using the above
description of k[ Y] and k[grX ]U/, one easily obtains that

KY1Y =Klg, " fi, -+ 4" fl
Ik[Y]U/ = Ik[Qs qn1f17 qnl.fla L] qnmfm, qnmfm],

i.e., both algebras are polynomial, of Krull dimension m + 1 and 2m + 1, respec-
tively. By a result of Kraft, the first equality implies that Y has rational singularities
(see [2, Theorem 1.6], [15, Theorem 6]). One has the following commutative dia-
gram:

CT) ~ gX — Y <« XxAl

l”ng,U’ lnY,U’

AP~ (grX) U — YU ~ AT
la
{0} — Al
Consequently,

Ny (grX) =gy 1 (Tgrx.v/(0) =7y 1), (y.07(0)) = Ny (Y),

where 0 € grX C Y is the unique G-fixed point of grX. Since dim Y = dim X + 1,
dimY /U’ = dim(grX)/U’ + 1, and mgx, ¢ is equidimensional, the morphism
myy is equidimensional as well. As Y has rational singularities and hence is
Cohen-Macaulay, this implies that k[ Y] is a flat k[ Y ]U'—module. Since k[Y ][q_l] ~
k[X1[g, g "1 and k[Y1'[¢~"1 ~ k[X]Y'[g, ¢ "], we conclude that k[X] is a flat
k[X]Y"-module. Thus, 7y ¢ is equidimensional. O

Our next goal is to obtain the list of all irreducible representations V of simple
algebraic groups such that k[ V] is a free I]<[V]U/—module. As is well known, k[ V]
is a free k[V]Y "-module if and only if I]<[V]U/ is polynomial and 7y - is equidi-
mensional [16, Prop. 17.29]. Therefore, the required representations are contained
in [14, Table 1] and our task is to pick from that table the representations having the
additional property that 7y ¢ is equidimensional. The numbering of fundamental
weights of simple algebraic groups follows [21, Tables].

Theorem 6.2. Let G be a connected simple algebraic group with rk G > 2 and
R(X) a simple G-module. The following conditions are equivalent:
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(i) KIR(W)] is a free KIR(A)]Y -module;

(i) Up to symmetries of the Dynkin diagram of G, the pairs (G, A) occur in the
following list: (A,, @), B,, @), (C,, @), r = 2;
Dy, w1), r 23;
(B3, @3), (B4, @wa), (D5, ws), (B¢, @1), (G2, @1).

Proof. (ii)=(i). By [14, Theorem 5.1], all these representations have a polynomial
algebra of U’-invariants. Consider X = 95 (R(1)), the null-cone with respect to
G. The nonzero weights of generators of k[R(1)]Y (and hence the weights of
generators of k[ X]Y) given by Brion [3, p. 13] are fundamental and form a sparse
set. Consequently, Theorem 6.1 applies to X, and wx ¢ is equidimensional. Since
X is either a G-invariant hypersurface in R(A) or equal to R(X), R, v is also
equidimensional.

(i)=(ii). We have to prove that, for the other items in [14, Table 1], the quotient

is not equidimensional. The list of such “bad” pairs (G, A) is: (A, @;) withr > 4;
(Bs, ws), (D, we), (E7, @1), (F4, ). Note that (A3, @) = (D3, @) and this
good pair is included in the list in (ii).
It suffices to check that the free generators of |]<[R()L)]U/ given in that Table do not
form a regular sequence. To this end, we point out a certain relation in k[R(A)]
using the fact the weights of generators do not form a sparse set (cf. the proof of
Theorem 3.4).

The only “bad” serial case is (A,, ;) with r > 4. The algebra I]<[R(w2*)]U has
free generators f>; (1 <i < [r/2]) of degree i and weight @v;, and for r odd, there
is also the Pfaffian, which is G-invariant. Then I]<[R(w2*)]U’ is freely generated by
fa, fz, fa, f4, ... (and the Pfaffian, if r is odd). Using the 4-nodes fragments of
the weight posets % (w») and P (ww4) and notation of the proof of Theorem 3.4, we
construct a U-invariant function f>q4 — fpa—+ pa fa — q» f4 of degree 3 and weight
oy + Wy — oy — a3 — oy = wy + @s. (Cf. Eq. (3-1).) However, there are no such
nonzero U-invariants in k[R(zo})]. This yields a relation in k[R(z;})] involving
free generators fa, fo, f1, f1 € KIR(@)1Y.

In all other cases, we can do the same thing using a pair of generators of
K[R(A)]Y corresponding to suitable fundamental weights. The only difference is
that one of these two U -invariants is not included in the minimal generating system
of I]<[R()»)]U/ and should be expressed via some other U’-invariants. Nevertheless,
the resulting relation still shows that the U’-invariants involved do not form a reg-
ular sequence.

For instance, consider the pair (D¢, ). Here the free generators of K[R(w¢)1Y
have the following degrees and weights: (1, ws), (2, @2), (3, we), (4, wa), (4,0)
[3]. The invariants themselves are denoted by fél), f, f6(3), fa, F, respectively.
Starting with the U-invariants f> and f4, we obtain, as a above, a relation of the
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form

(6-1) f2qs— fops+ prfi—qafs=0

in k[R(w/)]. However, f4 is not a generator in |]<[R(w6)]U/. Taking the sec-
ond U’-invariant in each fundamental G-submodule, we obtain nine functions
fé(l), ];6(1), f, fz, f6(3), ];6(3), fa, ];4, F that generate |]<[R(w6)]U/. Here f;, =
fél) ~6(3) — fél) f6(3) and the remaining eight functions freely generate k[R(we)]Y".
Substituting this expression for f; in (6-1), we finally obtain the relation

. < D23 #) .G
f2fI4—f2P4+p2f4—92(f6( ) 6()—f6( )fé( )) =0,

which shows that the free generators of [I<[R(w6)]U/ do not form a regular sequence.
O

Some open problems. Let V be a rational G-module.

1°. Suppose that V U is an affine space. Is it true that V U’ is a complete
intersection?

2°. Suppose that V J U’ is an affine space and G has no simple factors SL,. Is it
true that V J U is an affine space? (In [14], we have proved that V /G is an affine
space, but this seems to be too modest.)
Direct computations provide an affirmative answer to both questions if G is simple
and V is a simple G-module.
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