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INVARIANTS OF TOTALLY REAL LEFSCHETZ FIBRATIONS

NERMIN SALEPCi

We introduce certain invariants of real Lefschetz fibrations and call these
invariants real Lefschetz chains. We prove that if the fiber genus is greater
than 1, then the real Lefschetz chains are complete invariants of totally real
Lefschetz fibrations. If however the fiber genus is 1, real Lefschetz chains
are not sufficient to distinguish real Lefschetz fibrations. We show that by
adding a certain binary decoration to real Lefschetz chains, we get a com-
plete invariant.

1. Introduction

This note is devoted to a topological study of Lefschetz fibrations equipped with
certain Z; actions compatible with the fiber structure. The action is generated by
an involution, which is called a real structure. Intuitively, real structures are topo-
logical generalizations of the complex conjugation on complex algebraic varieties
defined over the reals. Real Lefschetz fibrations appear, for instance, as blow-ups of
pencils of hyperplane sections of complex projective algebraic surfaces defined by
real polynomial equations. Regular fibers of real Lefschetz fibrations are compact
oriented smooth genus g surfaces, while singular fibers have a single node. The
invariant fibers, called the real fibers, inherit a real structure from the real structure
of the total space. We focus on fibrations whose critical values are all fixed by the
action and call such fibrations fotally real. We also assume that the fixed point set
of the base space is oriented. We use the term directed to indicate such fibrations.

The main results of this article are exhibited in Sections 6 and 8 in which we
treat the cases of fiber genus ¢ > 1 and g = 1, respectively. In Section 6, we
introduce real Lefschetz chains and prove that if g > 1, real Lefschetz chains
are complete invariants of directed genus g totally real Lefschetz fibrations over
the disk (Corollary 6.4). The case of g = 1 (elliptic fibrations) is considered in
Theorem 8.1. We show that directed totally real elliptic Lefschetz fibrations over
D? are determined uniquely by their decorated real Lefschetz chains. In both cases
we study extensions of such fibrations to fibrations over a sphere and obtain com-
plete invariants of directed totally real Lefschetz fibrations over a sphere.
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It is possible to give a purely combinatorial shape to decorated real Lefschetz
chains. We discuss such combinatorial objects, which we call necklace diagrams,
and their applications in [Salepci 2012]; see [Degtyarev 2011; Degtyarev and
Salepci 2011] for other applications of necklace diagrams.

This paper is organized as follows. In Section 2, we settle the definitions and
introduce basic notions. Section 3 is devoted to the topological classification of
equivariant neighborhoods of real singular fibers. We show that real Lefschetz
fibrations around real singular fibers are determined by the pair consisting of the
inherited real structure on one of the nearby regular real fibers and the vanishing
cycle that is invariant under the action of the real structure. We call such a pair a
real code.

Real Lefschetz chains are, indeed, sequences of real codes each of which is
associated to a neighborhood of a real singular fiber. Obviously, each real Lef-
schetz fibration with real critical values defines a real Lefschetz chain that is, by
definition, invariant of the fibration. The natural question to ask is to what extent
real Lefschetz chains determine the fibration.

In Section 4, we compute the fundamental group of the components of the space
of real structures on a genus g surface. These computations are applied in Section 5
where we define a strong boundary fiber sum (that is, the boundary fiber sum of C-
marked real Lefschetz fibrations) and show that if the fiber genus is greater than 1,
then the strong boundary fiber sum is well defined. Section 6 is devoted to C-
marked genus g > 1 fibrations. We show that directed C-marked genus g > 1
totally real Lefschetz fibrations are classified by their strong real Lefschetz chains.
As a corollary, we obtain the result for nonmarked fibrations.

Because of the different geometric nature of the surfaces of genus g > 1 and
g = 1, we apply slightly different techniques to deal with the case of g = 1. In
Section 7, we define a boundary fiber sum of nonmarked real elliptic Lefschetz
fibrations. We observe that the boundary fiber sum is not always well defined.
This observation leads to a decoration of directed totally real Lefschetz chains.
In the last section, we introduce decorated real Lefschetz chains and prove that
they are complete invariants of real elliptic Lefschetz fibrations. We also study
extensions of such fibrations to fibrations over a sphere.

2. Basic definitions

Throughout the paper X will stand for a compact connected oriented smooth 4-
manifold and B for a compact connected oriented smooth 2-manifold.

Definition 2.1. A real structure cx on a smooth 4-manifold X is an orientation-

preserving involution cff = id, such that the set Fix(cx) of fixed points of cy is

empty or of the middle dimension.
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Two real structures cx and ¢’ are considered equivalent if there is an orientation-
preserving diffeomorphism v/ : X — X such that Yy ocx = ¢y o ¥

A real structure cp on a smooth 2-manifold B is an orientation-reversing in-
volution B — B. Such structures are similarly considered up to conjugation by
orientation-preserving diffeomorphisms of B.

This definition mimics the properties of the standard complex conjugation on
complex manifolds. Actually, around a fixed point, every real structure defined as
above behaves like complex conjugation.

We will call a manifold together with a real structure a real manifold and the
fixed point set the real part.

Remark 2.2. It is well known that for given g there is a finite number of equiv-
alence classes of real structures on a genus g surface X,. These classes can be
distinguished by their types and the number of real components. Namely, one
distinguishes two types of real structures: separating and nonseparating. A real
structure is called separating if the complement of its real part has two connected
components; otherwise we call it nonseparating (indeed, in the first case the quo-
tient surface ¥, /c is orientable while in the second case it is not). The number of
real components of a real structure (note that the real part forms the boundary of
X, /c), can be at most g + 1. This estimate is known as Harnack inequality. By
looking at the possible number of connected components of the real part, one can
see that on X, there are 1+[g/2] separating real structures and g+ 1 nonseparating
ones. A significant property of the case of genus 1 surfaces is that the number of
real components, which can be 0, 1 or 2, is enough to distinguish the real structures.

In this article we stick to the following definition of Lefschetz fibrations.

Definition 2.3. A Lefschetz fibration is a surjective smooth map 7 : X — B such
that

e 7(0X) = 0B and the restriction 0 X — 9B of 7 is a submersion;

o 7 has only a finite number of critical points (that is, the points where dx
is degenerate), all the critical points belong to X \ dX, and their images are
distinct points of B\ d B; and

« around each of the critical points one can choose orientation-preserving charts
Y :U—C?>and¢:V — Csothat pomoyy!is given by (z1, z2) = 212 +22°.

When we want to specify the genus of the nonsingular fibers, we prefer calling
them genus g Lefschetz fibrations. In particular, we will use the term elliptic Lef-
schetz fibrations when the genus is equal to one. For each integer g, we will fix a
closed oriented surface of genus g, which will serve as a model for the fibers, and
denote it by X,. In what follows we will always assume that a Lefschetz fibration is
relatively minimal; that, is none of its fibers contains a self intersection —1 sphere.
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Definition 2.4. A real structure on a Lefschetz fibration 7 : X — B is a pair of
real structures (cx, cg) of X and B such that the diagram

X
|
B

commutes. A Lefschetz fibration equipped with a real structure is called a real
Lefschetz fibration and is sometimes referred as RLF. When the fiber genus is 1,
we call it a real elliptic Lefschetz fibration (abbreviated RELF).

cx
_ X
ln

cB

_)B

Definition 2.5. An R-marked RLF is a triple (, b, p) consisting of a real Lef-
schetz fibration 77 : X — B, areal regular value b and a diffeomorphism p : £, — F},
such that cx|r, o p = poc, where ¢ : ¥, — X, is a real structure. Note that if
0B # &, then b will be chosen in 9 B.

A C-marked RLF is a triple (m, {m,m}, {p, p}), including a real Lefschetz
fibration 7 : X — B, a pair of regular values m, in = cp(m) and a pair of diffeomor-
phisms p : ¥, — Fy, and p = cx|f, o p: ¥; — Fg, where F,, and Fiz = cx(Fy,)
are the fibers over m and i, respectively. As in the case of R-marking, if 0B # &,
then we choose m in d B. When precision is not needed we will denote F,, and Fy;
by F and F, respectively.

Two real Lefschetz fibrations w : X — B and n’ : X’ — B’ are said to be
isomorphic if there exist orientation-preserving diffeomorphisms H : X — X’ and
h : B — B’ such that this diagram is commutative:

H
oy S X———— X
X/| " X,/X,lﬂ/

e
T s s
h /B’

B—— B

Two R-marked RLFs are called isomorphic if they are isomorphic as RLFs such
that 2(b) = b’ and the following diagram is commutative:

F H F
cx g cyr

F/

A
\
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Two C-marked RLFs are called isomorphic if they are isomorphic as RLFs and
the following diagram is well defined and commutative:

Definition 2.6. A real Lefschetz fibration 7 : X — B is called directed if the real
part of (B, cp) is oriented. (If cp is separating, then we consider an orientation on
the real part inherited from one of the halves B \ Fix(cp).)

Two directed RLFs are isomorphic if they are isomorphic as RLFs with the
additional condition that the diffeomorphism % : B — B preserves the chosen
orientation on the real part.

Unless otherwise stated, all fibrations we consider are directed.

Remark 2.7. The notion of Lefschetz fibration can be slightly generalized to cover
the case of fibrations whose fibers have nonempty boundary. Then, X turns into
a manifold with corners and its boundary 0 X becomes naturally divided into two
parts, the vertical boundary 3 X that is the inverse image 7 ~!(d B), and the hori-
zontal boundary 3" X that is formed by the boundaries of the fibers. We call such
fibrations Lefschetz fibrations with boundary.

3. Elementary real Lefschetz fibrations

In this section, we classify real structures on a neighborhood of a real singular fiber
of a real Lefschetz fibration. Such a neighborhood can be viewed as a Lefschetz
fibration over a disc D? with a unique critical value ¢ = 0 € D?. We call such
a fibration an elementary real Lefschetz fibration. Without loss of generality, we
may assume that the real structure on D? is the standard one, conj, induced from
C> D>

Let 7 : X — D? be an elementary RLF. By definition, there exist equivari-
ant local charts (U, ¢y) and (V, ¢y) around the critical point p € 7~1(0) and
the critical value 0 € D?, respectively, such that U and V are closed discs and
|y : (U, cy) = (V, conj) is equivariantly isomorphic (via ¢y and ¢y ) to either
of &L : (E4, conj) — (De, conj), where

E:={(z1,22) € C*:|z1] < e, |23+ 25| < €%}

and
D.={teC:|t|<€’} forO0<e<l,
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o

. real part

Figure 1. Actions of real structures on the singular fibers of &..

with £4.(z1,22) =27 £ 23.

The real local models above, £+ : E.+ — D, can be seen as two real structures on
the neighborhood of a critical point. These two real structures are not equivalent.
The difference can be seen already at the level of the singular fibers: In the case
of &, the two branches are imaginary and they are interchanged by the complex
conjugation; in the case of £_ the two branches are both real (see Figure 1).

To understand the action of the real structures on the regular real fibers of &y,
we can use the branched covering defined by the projection (z;, z2) — z;. Thus:

« In the case of &, there are two types of real regular fibers; the fibers F; with
t < 0 have no real points, their vanishing cycles have invariant representatives
(that is, c(a;) = a; set-theoretically), and in this case, ¢ acts on the invariant
vanishing cycles as an antipodal involution; the fibers F; with t > 0 have a
circle as their real part and this circle is an invariant (pointwise fixed) repre-
sentative of the vanishing cycle.

o In the case of &_, all the real regular fibers are of the same type and the
real part of such a fiber consists of two arcs each having its endpoints on the
two different boundary components of the fiber; the vanishing cycles have
invariant representatives, and c acts on them as a reflection.

Using the ramified covering (z1, z2) — z1, we observe that the horizontal bound-
ary of the fibration &4 is equivariantly trivial and has a distinguished equivariant
trivialization. Moreover, since the complement of U in 7~ 1(V) does not contain
any critical point, X can be written as union of two RLFs with boundary: One of
them, U — V, is isomorphic to &1 : Ex — D,, and the other one is isomorphic to
the trivial real fiber bundle R — D, whose real fibers are equivariantly diffeomor-
phic to the complement of an open regular neighborhood of the vanishing cycle
a C Fp. The action of the complex conjugation on the boundary components of
the real fibers of R — D, determines the type §1 : E; — D, of the model glued
to R — D¢: In the case of &4, it switches the boundary components while in the
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2 2 2 2
zi +z25=-—r zi +25=0 zf—l—z%zr

> < real part
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Figure 2. Nearby regular fibers of £, and the vanishing cycles.

case of £_, boundary components are preserved (and the complex conjugation acts
as a reflection on each of them).

We use the decomposition above to get first a classification of directed R-marked
elementary RLF, and then discuss the cases of C-marked and nonmarked fibrations.

Let sdy denote the set of equivariant isotopy classes of noncontractible curves
on a real surface (Xg, ¢), let Vy denote the set of equivariant isotopy classes of
noncontractible embeddings v: S!' x I — X ¢ such that cov=v, and let 585’” denote
the set of isomorphism classes of directed R-marked elementary real Lefschetz
fibrations whose distinguished fiber is identified with (X, ¢).

We consider the map €2 :°lf§ — QEE’C defined as follows. Let [v] be a class in °l/é€
with a representative v. As cov =, the closure X, of X \v(S ' I') inherits a real
structure from (X,, ¢). Let R” = E; x D, — D, be the trivial real fibration with
the real structure cgr = (c, conj) : R” — R and let E}, — D, denote the model
£, 1 E — D, whose marked fiber is identified with v(S! x I). Depending on the
real structure on the horizontal boundary S I'x D. — D, (where the real structure



414 NERMIN SALEPCI

on S! x D, is taken as (Cazlg, conj)) of RY — D, we choose either of E} — D,.
We then glue R¥ — D, and the suitable model E} — D, along their horizontal
trivial boundaries to get a fibration in 585’6.

Lemma 3.1. Q7 — i/’f*c is well defined.

Proof. Let v, : S' x I — X, be an isotopy between vy and vy. Then, there exists
an equivariant ambient isotopy W, : £, — X, such that ¥y =id and v, = ¥, o1y
with W, oc = c o ¥, for all ¢. The diffeomorphism W, induces equivariant diffeo-
morphisms Wf : R — R" and Wf : E} — EY' that respect the fibrations and
the gluing; thus, it gives an isomorphism of the images 2([vp]) and 2([v;]) as
R-marked fibrations. O

Since cov = v, we have c(v(S' x {%})) =v(S! x {%})). Hence, we can define
£ :°ng — 5&2 such that e([v]) = [v(S! x {%})]. This mapping is two-to-one. Since
the monodromy does not depend on the orientation of the vanishing cycle, there
exists a well-defined mapping €2 such that the following diagram commutes:

c € c
OVg ‘Sﬁg

| 4

R,c
§£g .

Theorem 3.2. 2 Ay — 585’5 is a bijection.

Proof. As discussed in the beginning of the section, any elementary RLF can be
divided equivariantly into two RLFs with boundary: an equivariant neighborhood
of the critical point (isomorphic to one of the models, £1) and the complement
of this neighborhood (isomorphic to a trivial real Lefschetz fibration). Such a
decomposition defines the equivariant isotopy class of the vanishing cycle. Thus,
< is surjective.

To show that € is injective, let us consider the classes [a], [a'] € sﬁc such that
Q([a]) = Q([a/]) Letw : X — D, and 7’ : X' — D, denote the i 1mages of [a]
and [a'], respectively. Since €2 is well defined, there exist equivariant orientation-
preserving diffeomorphisms H : X — X’ and & : D — D, such that we have the
commutative diagrams

H|p
X X’ F——F——F
ar 7 ‘ ‘,\ 7 ‘
X—>X/ cx Eg cy/
ﬂJ/ C
ﬂl conj D —> D F H|p — 3 F
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/%

Figure 3. Relation between R-marking and C-marking.

Clearly, H(p(a)) is equivariantly isotopic to p’(a’), where a and a’ are repre-
sentatives of [a] and [a'], respectively. Moreover, since H|r o p = p’, we have
H(p(a)) = p'(a), so p’(a) is equivariant isotopic to p’(a’).

For t € [0, 1], let ¥, : F/ — F’ such that ¥o = id and v¥;(0'(a)) = p'(a’) and
that ¥; o’ = ¢’ oy, Then, ¥, = p'" Loy, 0 p’: B, — X, is the required isotopy
between a and a’. O

Theorem 3.2 shows that c-equivariant isotopy classes of vanishing cycles on
(Xg, ¢ classify directed R-marked elementary RLFs. To obtain a classification for
directed C-marked RLFs, we study the difference between two C-markings; see
Figure 3.

Let ({m, m}, {om, cx o pm}) be a C-marking on a directed RLF 7 : X — D?. The
complement, d D*\ {m, m}, has two pieces S (left/right semicircles) distinguished
by the direction. By considering a trivialization of the fibration over the piece
of S; connecting m to the marked real point b (the trivialization over the piece
connecting i to the real point obtain by the symmetry), we can pull the marking
Pm i Xg — F, to Fp in order to obtain a marking o, : £, — F}, and a real structure
c=p, Tocxo P i Lg — Xg. Any other trivialization results in another marking
isotopic to p, and a real structure isotopic to ¢ : ¥, — X,. Hence, a directed
elementary C-marked RLF defines a vanishing cycle defined up to c-equivariant
isotopy, where the real structure c is also considered up to isotopy.

Definition 3.3. A pair (c, a) of a real structure ¢ : ¥, — X, and a noncontractible
simple closed curve a € X, is called a real code if c(a) = a.

Two real codes (cg, ag) and (c1, a;) are said to be isotopic if there exist a pair
(cs, ay) of isotopies of real structures and vanishing cycles such that ¢,(a;) = a; for
all r € [0, 1]. Two real codes (cg, ag) and (c1, a;) are called conjugate if there is
an orientation-preserving diffeomorphism ¢ : ¥, — X, such that pocop =cj 0 ¢
and that ¢ (ag) is isotopic to aj.

We denote the isotopy class of the real code by [c, a] and the conjugacy class

by {c, a}.
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Proposition 3.4. There is a bijection between the isomorphism classes of directed
C-marked elementary RLFs and the isotopy classes of real codes.

Proof. We already discussed how to assign a real code to a directed C-marked
elementary RLF. It is straightforward to check that this map is well defined and
surjective.

To show that it is injective, we consider two isotopy classes [c1, a1] and [¢3, a3]
such that [c1, a1] = [c2, az]. Let

(r1: X1 —> D?, {my, i1}, {Omy» om,}) and  (m2: Xp— D2, {ma, 2}, {Pmys Py )})

be two directed C-marked elementary RLFs associated to the classes [c1, a;] and
[c2, a2], respectively. We need to show that 7| and m, are isomorphic as directed
C-marked RLFs.

Note that we can always choose a representative ¢ for both [c¢{] and [c;] such
that [a1] = [a2] € &Qg. Then, by Theorem 3.2, 7} is isomorphic to 7, as R-marked
RLFs. An isomorphism of R-marked RLFs may not preserve the C-markings;
however, it can be modified to preserve them.

Up to homotopy one can identify X, with a subset X » of X. Since the difference
X1\ Xz has no singular fiber, one can transform the marking m, of X ) to my,
preserving the real marking and the trivializations over the corresponding paths,
S+ and §+ (see Figure 4). This way we get an isomorphism of C-marked RLFs
preserving the isomorphism class of R-marked RLFs. ([

For fibrations without marking we allow [c, a] to change by an equivariant dif-
feomorphism. Hence, we have the following:

Corollary 3.5. There is a bijection between the set of conjugacy classes of real
codes and the set of classes of directed nonmarked elementary real Lefschetz fibra-
tions.

Remark 3.6. As the classification of real structures on a genus g surface is known,
it is possible to enumerate the conjugacy classes {c, a} of real codes. In the case
when a is nonseparating, there are 6 classes if g =1; 8g — 3 classes if g > 1 and

my
S

o
mao S
Sy

Figure 4. The difference of two C-markings.
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is odd; and 8g — 4 classes otherwise. The formulas for separating curves can be
found in [Salepci 2007].

Remark 3.7. There is no preferable real fiber over the boundary of the disk if
the fibration is not directed. Thus, to an elementary nondirected RLF, we can
associate two real codes (c_, a_) and (c4, ay) extracted from the “left” and “right”
real fibers, respectively. It is a fundamental property of the monodromies of real
Lefschetz fibrations that the real structures c_ and c are related by the monodromy
such that c; oc_ =1, =1,,; see [Salepci 2010].

4. Equivariant diffeomorphisms and the space of real structures

In this section we compute the fundamental group of the space of real structures
on a genus g surface. The computations will be essential in next sections.

Let 6°(X;) denote the space of real structures on X, that are isotopic to a fixed
real structure c, and let Diffy(X,) denote the group of orientation-preserving dif-
feomorphisms of X, that are isotopic to the identity. We consider two subgroups of
Diffo(X,): One, denoted Diff{;(X,), consists of those diffeomorphisms that com-
mute with ¢, and the other, Diffy (X, c), is the group of diffeomorphisms that are
c-equivariantly isotopic to the identity. The group Diff((X,) acts transitively on
%“(X,) by conjugation. The stabilizer of this action is the group Diff{;(X2,). Hence,
%°(X,) can be identified with the homogeneous space Diffy(X,)/ Diffy(X,).

Lemma 4.1. The space Diff((X,) is connected for all ¢ : ¥, — ¥, if g > 1, and
forc: X, — Xg, which has one real component, if g = 1.

Proof. We will use different techniques for the cases g > 1 and g = 1.

The case of g > 1: We consider the fiber bundle description of conformal struc-
tures on X, introduced in [Earle and Eells 1969]. Let COl’lfzg denote the space
of conformal structures on X, equipped with C*°-topology. The group Diff(Z,)
acts on Confy, by composition from the right. This action is proper, continuous,
and effective; hence, Confy, — Conf;g / Diff(X,) is a principal Diffy (X, )-fiber
bundle; see [Earle and Eells 1969]. The quotient is the Teichmiiller space of X,
denoted Teichy, . Note that conformal structures can be seen as equivalence classes
of Riemannian metrics with respect to the relation that two Riemannian metrics are
equivalent if they differ by a positive function on ¥,. Let Riemy, denote the space
of Riemannian metrics on X,. Then, we have the fibrations

{u:%g — R:u>0} —— Riemy,

le

Diffy(X,) —— Confy,

Pll

Teichgg .
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The real structure ¢ has an action Diff((3,) by conjugation. This action extends
to COl’lfz;g and Rieng as follows: Fix a section s : Teichzg — Confzg of the
bundle p; and consider a family of diffeomorphisms ¢Z : Diffp(Z,) — pl_l(g‘)
parametrized by Teichy, such that qbg (id) = s(¢). Let s(¢) = [t ] for some Rie-
mannian metric p, on X,. Then, define ¢;§ (f(x)) =[p ] forall f € Diffy(Z,).
The action of the real structure, thus, can be written as c.[i r)] = [eo foc(r)]-
Clearly the definition does not depend on the choice of the representative of the
class [1 f(x)], so the action extends to Riemy, .

Let FiXConfzg (c) denote the set of fixed points of the action of ¢ on COl’lfzg and
let FixRieng (¢) be the set of fixed points on Riemsy,. Note that () = ¢§ @id) is
in Fixc(mfzg (c) forall ¢ € Teichgg. Indeed, each [u f(y)] for f € Diffi(X) is in
FiXConfgg (o).

The space Fixc(,nfzg (¢) is connected. If FixCOHfZg (¢) were disconnected, then
the inverse image FixRiemEg (c) would also be disconnected in Riemy,. However,
it is known that Riemy, is convex; thus, FixRiemEg (¢) is convex, so it is connected.
Therefore, FiXConfzg (c)NDiffy(X,) = Diff(X,) is connected since Fixc(mfzg (c) is
a union of sections.

The case of g = 1: If ¢ has one real component, then the quotient X /c is the
Mobius band. The space of diffeomorphisms of the Mébius band has two con-
nected components [Hamstrom 1965]: the identity component and the component
of the diffeomorphism induced from the reflection of / x I with respect to I x %
(if the M&bius band is obtained from I x I, we identify the points ¢ x 0 with the
points 1 —¢ x 1 for ¢t € I =[O0, 1]). This diffeomorphism is not isotopic to the identity
because before identifying the ends it reverses the orientation of 7 x I, and it lifts to
a diffeomorphism of X; (considered as the obvious quotient of [—1, 1] x [—1, 1])
induced from the central symmetry of [—1, 1] x [—1, 1]. This diffeomorphism is
not isotopic to the identity on X; since it reverses the orientation of the real curve.

Therefore, we have

{f:Z1/c— El/c:f: ¥ — Xpisisotopic toid} ={f: Xi/c — Xi/c: f =id}.
The former is identified by Diff{;(X) and the latter is connected. O
Lemma 4.2. For any real structure ¢ : ¥ — X,

0 ifg>1,

Proof. Note that the subgroup Diff(Xg, ¢) acts on Diffy(X,) by composition
from the left. Such an action is free, so Diff(X,) — Diffo(X,)/ Diffg(Xg, ¢) is a
Diffy (X, c¢)-fiber bundle. The fibers, Diffy(X,, ¢), can be identified with the group

Diffo (X, /c) because the lifting of diffeomorphisms of X, /c can always be assured
by means of the orientation double cover of X, /c. (Note that if ¢ is nonseparating,

71 (Diffo(Z,)/ Diffy (. ¢), id) = {
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then X,/c is nonorientable. In this case, Diffo(X,/c) denotes the space of all
diffeomorphisms of X, /c and Diffy(X/c) is component of the identity.)
Now, we consider the long exact homotopy sequence of this fibration:

.+ — my(Diffy(,)) — 2 (Diffy(Z,)/ Diffg(E,, ¢)) — 1 (Diffy (. ¢))
— m1(Diffo(Tg)) — 1 (Diffg(T,)/ Diffy (. ¢)) = mo(Diffo(Tg)) — - - .

The case of g > 1: The space Diffy(X,) is contractible for g > 1 [Earle and Eells
1969], as is Diffy(X,/c) [Earle and Schatz 1970]. Therefore, from the homotopy
long exact sequence of the fibration we get 7 (Diffy (X, )/ Diffo (X, ¢), id) = 0.

The case of g = 1: It is known that X; is a deformation retract of Diffy(X;)
[Ivanov 2001], so the space Diffy(X) can be considered as a group generated by
the rotations that lift to the standard translations on the universal cover.

To understand Diffy(Z,, ¢), we first consider the case when ¢ has two real
components. Note that, in this case, the quotient X;/c is topologically an an-
nulus, so 7 (Diffy(X;/c), id) = Z; see [Ivanov 2001]. We fix an identification of
0 : C/7* — X such that the real structure c is the one induced from the standard
complex conjugation on C. We consider the family

R} : C/7* — C/7?, R?: C/7* — C/7?,
x+iy)p = x+t+iy)pe, x+iy)e = x+i(y+1))r

of diffeomorphisms, where ¢ € [0, 1] and (x +iy)z> denotes the equivalence class
of x + iy in C/Z?. Clearly R/é = R/{ = id, and R’/ is isotopic to identity for
each ¢t € [0, 1] and j = 1, 2. The homotopy classes of Rt1 =po R/,1 oo~ ! and
th =poR ,2 oo~ ! form a basis of m; (Diffy(X), id). Moreover, with respect to
the identification o, each diffeomorphism R,1 is in Diffy(X4, ¢), so the loop Rt1 is
a generator of m(Diffy(X1, c¢), id). Thus, from the homotopy exact sequence we
get 1 (Diffy(X;)/ Diffy(X1, ¢), id) = Z.

If ¢ has no real component, then the quotient X;/c is a Klein bottle, so the
group Diffy(Z;/c) is isomorphic to S' and is generated by the rotation that lifts
to a translation in the universal cover of the Klein bottle [Hamstrom 1965]. Let us
now fix an identification o : R>/Z?> — ¥ such that the real structure c is induced
from the real structure

R*/Z* — R/Z*, (x, )72 (x+ %, —V)z2.
The classes of family of diffeomorphisms Rtj =poR { oo~ ! for j =1,2, where

R} : R}/7? — RY7% R?: R¥/7? — RY/7%
(X,y)zz = (x‘f‘f,Y)ZZ» (X,Y)ZZ = (X’y‘i‘t)ZZ’
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form a basis of m{(Diffp(X;), id). With respect to the identification o each diffeo-
morphism R,l is in Diffy (X, ¢), so R;] is a generator of m (Diffy(Xy, ¢),1d) = Z.
Therefore, we get m (Diffy(X;)/ Diffy(X1, ¢), id) = Z.

If ¢ has a unique real component, C, then the restriction f|c of f € Diffy(X, ¢)
defines a diffeomorphism of C. Such a restriction defines a fibration Diffy (X, ¢) >
Diffy(C) whose fibers isomorphic to Diffy(X,, C) = { f € Diffy(X1, ¢) : f|c =1d}.
Note that Diffy(X,, C) = Diffy(2; \ C, 9) where X; \ C denotes the closure of
21\ C and Diffy(%; \ C, 9) the group diffeomorphisms of X; \ C that are identity
on the boundary.

Topologically X1 \ C is an annulus, so Diffo(T\C, d) is contractible; see
[Ivanov 2001]. From the homotopy long exact sequence of the fibration

Diffy(Z;, C) —— Diffy(Z1, c)

|

Diffy(C),

we get . (Diffy (X1, ¢), id) = m (Diffp(C), id) for all .

Let us now choose an identification ¢ : C/A — X, where A is the lattice gen-
erated by v; = (l/\/i, l/\/i) and vy, = (1/\/5, —1/\/5). Then, the real structure
¢ can be taken as the one induced from the complex conjugation on C.

We consider R!(1) : C/A — C/A, t € [0, 1] such that

R} : C/A — C/A, R?: C/A — C/A,
(x +iy)a = (x+1+1iy)a, (x+iy)a = @ +i(y+1)a.

Again, the classes of Rtj =po R’{ og_l for j =1, 2 form a basis for Diffy(Z),
while Rt1 can be taken as a generator for m((Diffo(Xy, ¢),id) = Z. Therefore,
w1 (Diffy(Z1)/ Diffy (21, ¢), id) = Z. O

Proposition 4.3. For any real structure ¢ : £, — X,

0 ifg>1,
7 ifg=1.
Proof. By Lemma 4.1, Diff{;(X,) is connected for all real ¢ : £, — X, with g > 1
and for the real structure ¢ : ¥; — X that has one real component. Hence, in these
cases Diff;(X1) = Diffo (2, ¢), so the result follows from Lemma 4.2.

In the case when ¢ : ¥1 — X; has 2 real components, the space Diff;(X) has
two connected components. Note that the diffeomorphism R% /» (induced from the
translation (x +iy)z2 — (x +i(y+1/2)),2 on C/Z?) is equivariant; however, it is
not equivariantly isotopic to the identity. Hence, Diff;(X) has two components:
the component Diffy(X2, ¢) of the identity and the component of the rotation R% 12
(In what follows, we denote Rf 12 by Ri2.)

1 (€€ (Z,)) = 11 (Diffy(Z,)/ Diff§ (), id) = {
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We identify rotations in Diffy(X) \ Diffp(X, c) with § ! by letting th — 2mt.
Then rotations in the quotient Diffo(X)/ Diff(X1) are identified with § 1 O~ (1)
so we have 7 (Diffo(%;)/ Diffj (%), id) = Z.

The case when ¢ : ¥; — X; has no real component can be treated similarly
using the identification ¢ : R?/Z%> — X;. O

5. Boundary fiber sum of C-marked real Lefschetz fibrations

Let (D?, conj) be a real disk with oriented real part. We denote by S* the upper/
lower semicircles of 3 D?. We consider also left/right semicircles, denoted by S,
and the quarter circles Si = ST N S.. (Here directions right/left and up/down are
determined by the orientations of D? and its real part.) Let r. be the real points of
Sy, and ¢4 the real structures on Fy = 7~ 1(ry).

Definition 5.1. Let
(' X' = D> (b, b}, {p,p'})) and (m:X— D* {b,b},{p,p})

be two directed C-marked real Lefschetz fibrations such that the real structures ¢/,
on F and c_ on F_ induce (via the markings) isotopic real structures on X. Then,
we define the strong boundary fiber sum (the boundary fiber sum of C-marked
RLFs) as follows.

ib Fﬁ_@f’; c-QF
e T e
v b

We choose trivializations of 7/~! (SI) and 77 ~1(ST) such that the pull backs of
¢’ and c_ give the same real structure ¢ on X,. The trivialization of 7'71(54) can
be obtained as a union X, x Si UZXg x S)/(x.14)~(c),1-) and similarly 7~ 1(S0)
is obtained as X, x stu Y¢ X S~/ (x.~1)~(c(x).—1-). The strong boundary fiber
sum X'z, X — D? 4 D? is thus obtained by gluing 7'~!(S) to 7 ~'(S_) via the
identity map.

Remark 5.2. (1) Infact, the construction described above creates a manifold with

corners, but there is a canonical way to smooth the corners; hence, the strong
boundary fiber sum is the manifold obtained by smoothing the corners.

(2) By definition, the strong boundary fiber sum is associative but not commuta-
tive.
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(3) The strong boundary fiber sum of C-marked RLFs is naturally C-marked.

Proposition 5.3. If g > 1, then the strong boundary fiber sum X' iz, X — D? of
directed C-marked genus g real Lefschetz fibrations is well defined up to isomor-
phism of C-marked RLFs.

Proof. The boundary fiber sum does not affect the fibrations outside a small neigh-
borhood of the interval where the gluing is made. Let us choose a neighborhood N
that is real and far from the critical set. Obviously, the real structures on the fibers
over the real points of N are isotopic. Therefore, each fiber sum defines a path in
the space of real structures on X, and the difference of two strong boundary fiber
sums gives a loop in this space. Thus, the result follows from the contractibility
(shown in Proposition 4.3) of this loop in the case of g > 1. (]

6. Strong real Lefschetz chains associated to
C-marked real Lefschetz fibrations

Let’s consider a directed C-marked totally real Lefschetz fibration 77 : X — D?. We
slice D? into smaller discs Dy, Ds, ..., D, (ordered with respect to the orientation
of the real part of (D?, conj)) such that each D; contains only one critical value
and the base point b (which is chosen to be the “north pole” as in Figure 5). Let
r1,72, ..., Ty, Iyt be the real points of U?:l dD; and let ¢; be the real structure
on X, pulled back from the inherited real structure of F},.

As claimed in Remark 3.7, we have c; | o ¢c; = t,, for each fibration over D;,
where a; denotes the corresponding vanishing cycle. As shown in Proposition 3.4,
each C-marked real Lefschetz fibration over D; is determined by the isotopy class
[ci, a;] of a real code. Hence, the fibration 7 : X — D? yields a sequence of real
codes [c;, a;] satisfying c; 41 o ¢; = t,,. Clearly this sequence is an invariant of .

Definition 6.1. A sequence [c1, a1], [¢c2, az], ..., [cn, a,] of isotopy classes of real
codes is called a strong real Lefschetz chain if we have c;41 o ¢; = t, for all
i=1,...,n.

Figure 5. Slicing D? into small discs having one critical value.
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Theorem 6.2. If g > 1, then there is a one-to-one correspondence between the
strong real Lefschetz chains [ci, a1], [c2, az], ..., [cn, a,] and the isomorphism
classes of directed C-marked genus g totally real Lefschetz fibrations over D.

Proof. Necessity is clear. As for the converse, we consider the unique class (assured
by Proposition 3.4) of directed C-marked elementary real Lefschetz fibration asso-
ciated to each real code [c;, a;]. We then glue these elementary fibrations (from left
to right respecting the order determined by the chain) using the strong boundary
fiber sum. The result, thus, follows from Proposition 5.3. O

Note that if we consider nonmarked fibrations, then the real codes around real
singular fibers are defined up to conjugation. Thus, we are motivated to give the
following definition and state the immediate corollary of Theorem 6.2.

Definition 6.3. A sequence {ci, a1}, {c2, a2}, ..., {cs, a,} of conjugacy classes of
real codes is called a real Lefschetz chain if t, o ¢; is conjugate to ¢;4; for all
1<i<n.

Corollary 6.4. If g > 1, then there is a one-to-one correspondence between the
real Lefschetz chains {c1, a1}, {ca, a2}, ..., {cu, ay} and the isomorphism classes
of nonmarked directed genus g totally real Lefschetz fibrations over D?.

If the total monodromy of the fibration w : X — D? is the identity, then we
can consider the extension of 7 to a fibration 7 : X — S2. Two such extensions
#:X — S%and % : X — S are considered isomorphic if there is an equivariant
orientation-preserving diffeomorphism H : X — X such that # = 7% o H.

Proposition 6.5. Let 7 : X — D? be a C-marked genus g totally real Lefschetz
fibration whose total monodromy is the identity. If g > 1, then w can be extended
uniquely up to isomorphism to a totally real Lefschetz fibration over S>.

Proof. Once again, the difference of two extensions corresponds to a loop in the
space of real structures. Hence, the result follows from Proposition 4.3. ]

Corollary 6.6. If g > 1, then there is a one-to-one correspondence between the
strong real Lefschetz chains [c1, a1], [c2, az], ..., [cn, an] sSuch that c,41 0 c1 =
(t4, © cy) o c1 = id and the isomorphism classes of directed C-marked genus g
totally real Lefschetz fibrations over S°.

Remark 6.7. It is known that the components of the space of diffeomorphisms of
the torus fixing a point are contractible [Earle and Eells 1969], so Theorem 6.2 can
be adapted to C-marked real elliptic Lefschetz fibration admitting a real section
(a section compatible with the real structures). See [Salepci 2007, Section 5.4]
for details. In the next section, we treat the case of nonmarked elliptic Lefschetz
fibrations, which possibly do not admit a real section.
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7. Boundary fiber sum of nonmarked real elliptic Lefschetz fibrations

To deal with the case of elliptic fibrations, we introduce the boundary fiber sum
for nonmarked fibrations. (Although we concentrate on the case of g(F) =1, the
definition applies to any genus.)

Definition 7.1. Let 7' : X’ — D? and w : X — D? be two directed nonmarked
RLFs. We consider the real fibers F| and F_ of 7’ and 7 over the real points
r, and r_, respectively. Let us assume that the real structure ¢/, : F| — F/ is
conjugate to c_ : F_ — F_. That is, there is an orientation-preserving equivariant
diffeomorphism ¢ : F} — F_. Then, the boundary fiber sum of X' i 4 X — D?
is obtained by identifying the fibers F and F_ via ¢, as below.

s

| |

@7'; r_@

The boundary fiber sum does depend on the choice of ¢ in such a way that
the two boundary fiber sums defined by the equivariant diffeomorphisms ¢, ¥ :
F! — F_ are isomorphic, if ¥ o¢p~!: F_ — F_ can be extended to an equivariant
diffeomorphism of X — D? (or similarly if ¢ Loy : F \ — F_canbe extended to an
equivariant diffeomorphism of X’ — D?). The necessary and sufficient condition
for ¥ o' : F_ — F_ to extend to an equivariant diffeomorphism of the fibration
X — D? is that ¥ o ¢~! takes the unique vanishing cycle a of X — D? to a curve
equivariantly isotopic to a.

Now note that if ¢(a) = a, then ¢ induces an action on a. Such an action can
be the identity, a reflection, or an antipodal involution. It is not hard to show that
if ¢ : ¥1 — X has one real component, then | contains a unique c-equivariant
isotopy class of noncontractible curves on which ¢ acts as a reflection, a unique
class of curves where the action of c¢ is an antipodal involution, and a unique real
curve; if ¢ has 2 real components, then X contains no c-equivariant isotopy class
of curves on which ¢ acts as an antipodal involution, a unique class of curves on
which ¢ acts as a reflection, and two classes of real curves (in which case, we
call a pair of representatives of different classes c-twin curves); if ¢ has no real
components, then there exist two c-equivariant isotopy classes where ¢ acts as an
antipodal involution (as above, a pair of representatives of different classes are
called c-twin curves) and no classes of other types. The boundary fiber sum is,
therefore, well defined unless the real structure ¢ has no real component or ¢ has
two real components one of which is the vanishing cycle a.
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Recall that the rotation R /> (introduced in the proof of Proposition 4.3) switches
the c-twin curves. Hence, c-twin curves can be carried to each other via equivariant
diffeomorphisms although they are not equivariantly isotopic, so in the case of
existence of c-twin curves, there is an ambiguity in the definition of the boundary
fiber sum X’ X — D? (it can be defined in two ways). To resolve the ambiguity, we
should specify how we identify the ¢/, -twin curves on the fiber F in X’ with the
c_-twin curves on the fiber F_ in X. In a certain case, namely, if the real structure
¢/ has two real components and acts on the vanishing cycle a’ as a reflection,
the problem of switching c-twin curves can be eliminated via the transformation
introduced below.

Let 7 : X — D? be an elementary directed real elliptic Lefschetz fibration such
that the real structure ¢y : F; — F, acts on the vanishing cycle as a reflection.
As aresult, one of cy : Firt — F4 has 1 real component while the other has 2 real
components. Without loss of generality, we can assume that the real structure c_
has 1 real component. Our aim is to construct a transformation T;n, of X that does
not change the isomorphism class of the fibration 7 : X — D? and that is identity
over S_ C 3D? and interchanges the real components of F. To construct Ting,
we consider the following well known model for elementary elliptic fibrations.

Let Q = {z ] IRe(z)| < %,Im(z) > 1} U oco. This is the subset bounded by
Im(z) > 1 of the one point compactification of the standard fundamental domain
{z] Re(z)]| < % |z| > 1} of the modular action on C; see Figure 6.

We consider the real structure cg : $2 — € such that cy(w) = —w. Let  denote
the quotient €/ 5+iy~—3+iy. The real structure cg induces a real structure on £2.
Note that € is a topological real disc and can be identified with D? so that the real
part of D? corresponds to the union of the half-lines iy and % + iy, where y > 1.
For any w € , the fiber over w is given by F,, = C/(Z+ wZ), where the fiber F,
has the required nodal-type singularity.

Figure 6. Moduli space of prescribed RELFs.
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1 1
) 0 )
Figure 7. The graph of f.

Let mq : X — 2 denote the fibration such that 7, "w)=F, = C/(Z 4+ wZ)
for all w € Q. Then, we consider the translation T, defined by

To:Xo—> Xa, D740z € Fo > 2+ 17(W)7407 € Fo,
where (-)zt,7 denotes the equivalence class in C/(Z + wZ).
The map 7 : 2 — Q is defined by
T(w) = =1+ (3 — fRe(®)) +i) exp(— Im(w) + 1),
where f :R/Z — R/Z is a smooth mapping whose graph is as shown in Figure 7
and that satisfies the following properties:
« £(0) =1 (modulo 2),
e f(1—x)=1— f(x), (which implies (1) = 1) (modulo Z),
e f is linear on [}l, %] (modulo Z).
Note that 7 has the following properties. (Equations are considered modulo the
relation —3 +iy ~ 5 +iy, with y > 1)
o T(—w) = —1(w).
e T(00) = %
. r(% +iy) = —% +iexp(—y+1)= % + i exp(—y—+1); in particular, if y =1,
then ‘L'(% +i)= % +1i.
o T(iy) = —% +iexp(—y+1)= %—I—i exp(—y -+ 1); in particular, if y = 1, then
T(i) =3 +i.

Let Tging : X — X denote the transformation induced from TS’ing : Xq— Xq. By
definition Tije i equivariant and the identity over S_ C 9 D?, and its restriction to

F is the rotation Ry /. (Figure 8 shows the action of Tijpe.)

Lemma 7.2. Let 7' : X' — D? and w : X — D? be two nonmarked elementary
RELFs such that both ¢ and c_ have 2 real components. We assume that the
vanishing cycle a of ww is real with respect to c—. Then, the boundary fiber sum
X'0r X — D? is well defined if c_ acts on the vanishing cycle a’ as a reflection.
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Figure 8. The action of T, on the real part (in gray).

Proof. The boundary fiber sums X' fp 4 X — D? and X' Fy X — D? are not
isomorphic if ¢ o~ (a) and a are c-twin curves, but in the case when ¢, acts on
the vanishing cycle a’ as a reflection, we can apply Tgjne to X so that Tgne (F))
differs from the fiber F J’r by the rotation Ry ». Hence, X'fr ¢ X — D%is isomorphic
t0 Tsing(X') UF,gor 2 X — D?, which is isomorphic to X’ 0Fy X = D2. O

8. Real Lefschetz chains associated to
nonmarked real elliptic Lefschetz fibrations

We now consider a nonmarked directed totally real elliptic Lefschetz fibration 7 :
X — DZ?, with q1 < g2 <---<q,. Around each critical value g; we choose a small
real disc D; such that

DN {q1,q2,...,q:) ={qi} and D;ND;i 1 ={rix1} Clqi, giv1];

see Figure 9. Let ¢; be the real structures on the fibers F}, for 1 <i <n (where r
is the left real point of 3 D?) and g; be the corresponding vanishing cycle.

By Corollary 3.5, each directed (nonmarked) fibration over D; is classified by
the conjugacy class {c;, a;} of the real code. Thus, we can encode the fibration
7:X— D? by the real Lefschetz chain {cy, a1}, {ca, a2}, ..., {cn, an}.

Clearly, real Lefschetz chains are invariants of directed nonmarked totally real
elliptic Lefschetz fibrations over D?, but they are not sufficient for classifying such
fibrations. Additional information is needed, if for some i the real structure ¢; has
2 real components and vanishing cycles corresponding to the critical values ¢; and

NN radn

Figure 9. Subdividing D? into smaller discs.
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{ci,ai} (e a:)F

OIOIOEENOION

qi i qi+1 qi T qi+1

{ciya;} {c;,a;} R

QOO Olol6

qi Ti Qi1 i i Qit1

Figure 10. Real parts (in gray) of the fibrations associated to
{ci, ai} and {c;, a;}".

gi+1 are real or if ¢; has no real component. Indeed, in these cases the vanishing
cycles corresponding to the critical values ¢; and g;4; can be the same curve, or
they can be c;-twin curves. If they are c;-twin curves, then we mark {c;, a;}¥ the
corresponding real code {c;, a;} by adding R (here R refers to the rotation Rj
that interchanges c-twin curves). The real Lefschetz chain we obtain is called the
decorated real Lefschetz chain. Figure 10 shows all possible configurations of the
real locus associated to {c;, ¢;} and {c;, a;}X.

Theorem 8.1. There exists a one-to-one correspondence between the decorated
real Lefschetz chains and the isomorphism classes of directed nonmarked totally
real elliptic Lefschetz fibrations over D>.

Proof. Necessity is clear. As for the converse, we consider the unique class of
the directed nonmarked elementary RELF (assured by Corollary 3.5) associated
to each real code {c;,a;}. Then, we construct the required fibration by gluing
elementary fibrations (from left to right) using the boundary fiber sum. As dis-
cussed above, the boundary fiber sum is uniquely defined in the case when the real
structure on the fiber where the sum is performed has 1 real component or when
it has 2 real components and acts on the vanishing cycle of the fibration glued to
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Figure 11. Neighborhood over which Ty, is applied.

right as a reflection. In the case when the real structure has 2 real components
and acts as reflection on the vanishing cycle corresponding to the rightmost critical
value of the already constructed 7’ : X’ — D?, the two possible boundary fiber
sums are isomorphic by Lemma 7.2 since in this case we can apply Tgine to X’
(by considering Tiiyg on a neighborhood N of the last critical value, as shown in
Figure 11, and extending it to X’ as the identity outside of 7’~!(N)). In all the
other cases, the boundary fiber sum is defined uniquely by the decoration. (]

If ¢; is conjugate to c,+1, then we can consider an extension of 7 : X — D? to
a fibration over S2. As before, in the case when ¢n+1 has no real components or it
has 2 real components and both a; and a,, are real, a decoration at infinity will be
needed.

Proposition 8.2. Let m : X — D? be a totally real elliptic Lefschetz fibration
associated to a decorated real Lefschetz chain. We assume that the real structures
c1 and c,41 on the fibers over left and respectively right real point of dD?* are
conjugate. If ¢, 11 (and thus c1) has 1 real component or if ¢, 1 (and thus cy) has 2
real components and either c, 1 acts on the vanishing cycle a, as a reflection, or c|
acts on the vanishing cycle a, as a reflection, then 7 extends uniquely to a fibration
over S%. Otherwise, there are two extensions distinguished by the decoration at
infinity.

Proof. An extension of 7 : X — D? to a fibration over S? defines a trivialization
¢ : X1 x S — 7713 D?) over the boundary d D?. Two trivializations ¢ and ¢’
correspond to isomorphic real fibrations if 7' 0 ¢’ : £ x S' — | x S' can be
extended to an equivariant diffeomorphism of X; x D? with respect to the real
structure (c,41, conj) : Xp X D? > ¥, x D?. Let ®, = (qﬁ_] o) X1 — Xy,
t € S'. Since there is no fixed marking, up to change of marking we assume that
@, € Diffy(%y).

The real structure splits the boundary into two symmetric pieces, so instead
of considering an equivariant map over the entire boundary we consider a dif-
feomorphism over one the symmetric pieces. Let ®; for ¢ € [0, 1] denote the
family of such diffeomorphisms. This family defines a path in Diffy(X;) whose
end points lie in the group Diftf)”+1 (21); therefore, @, defines a relative loop in
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N
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Figure 12. Neighborhood over which T is applied.

1 (Diffy(24), Difff)”“(El)), and we are interested in the contractibility of this
relative loop.
We consider the exact sequence

-+ = m(Diffy"*") — 1 (Diffy) EA 71 (Diffy, Diffy"*") LS mo(Diffy" )

L 70(Diffg) — 7o (Diffo, DIffS*) — 0

of the pair (Diffo(Z1), Diffy""' (£1)).

In the case when ¢, 1| has one real component, Difff)”“ (X1) is connected, so the
map 4 is injective; hence f is surjective. Therefore, we can see elements of the
group 11 (Diffp(X1), Diftf;’“rl (21), id) as being in 7y (Diffy(X1), id).

In all the other cases, Difff)’“rl (Z1) has two components. We mark one of the
components to make the map / injective when restricted to the marked component.
Thus, g becomes the zero map, and so f is surjective over the marked component
of Diff;"*' (£1). Note that decoration of real Lefschetz chains distinguishes one of
the component of Difff)"*1 (Z1); hence, marking one component or other give the
two extensions distinguished by the decoration. The distinctive feature of the case
when ¢4+ has 2 real components and acts a,, as a reflection (or c¢; acts on a; as
a reflection) is that the transformation 7;,; changes one marking to other, so the
marking is not essential.

The proposition, thus, follows from Lemma 8.4 in which we show that any
relative loop can be made contractible by means of some transformations 7 of the
fibration 77 : X — D2, O

Let us first define the transformation T of real elliptic Lefschetz fibrations that
is defined over a regular slice N of D?.

Let 7 : X — D? be a directed RELF. We consider a real slice N of D? that
contains no critical value; see Figure 12.

Let&:1xI— N,where I =[0, 1], be an orientation-preserving diffeomorphism
such that first interval corresponds to the real direction on N. The fibration over
N has no singular fiber; hence, it is trivializable. Let us consider a trivialization
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E: X x I x I = n~'(N) such that the following diagram commutes:

I ><I><IE—>71_1(N)

| )

Ix]———N.

Since N has no critical value, the isotopy type of the real structure on the fibers
over the real part of N remains fixed. If the real structure ¢ has 2 real components,
then we consider the model ¢ : C/Z> — X, and set ¢ = (g, id) : C/Z> x I x I —
Y1 x I x I to define T as follows:

T':C/Z*>x I xI—CJ/7*>xIx1I, ((x+iy)p.t,s)— ((x+1+iy)e,t,s).

=—1

Then, weset T = Eo0(oT 05 ) o 8~ on w71 (N). Since T is the identity
att =0, 1, we can extend T to X by the identity outside of 7 ~!(N).

If ¢ has one real component, we construct T using o : C/A — X;. Similarly, if
¢ has no real component, then we repeat the same using o : R?>/Z> — X;.

Remark 8.3. First, since the transformation 7 is defined by a real rotation, T
preserves the isomorphism class of the real Lefschetz fibration.
Second, the map T depends only on the isotopy type of 7 ~!(N).

Lemma 8.4. Let 7 : X — D? be a totally real elliptic Lefschetz fibration. We
assume that there exists at least one vanishing cycle on which corresponding real
structure acts as a reflection. Then, there exists a generating set for

w1 (Diffy(Xy),id) =Z2+7
consisting of transformations Ty for some nonsingular slices N.

Proof. Let g; be the critical value such that the real structure on a nearby regular
real fiber acts on the vanishing cycle as a reflection. This assumption assures that
the neighboring real fibers have one real component on one side and two real com-
ponents on the other side of the critical value g;. Without loss of generality we can
assume that the real structure over a fiber over a real point that lies on the left of g;
has two real components. (The other case can be treated similarly.)

We choose an auxiliary C-marking ({b, b}, {p : 1 — Fj, p: &1 — F3}) and
fix an identification o : S I'x 8§ — ¥,. Since the real structure has 2 real compo-
nents, we can assume that the induced real structure on S' x S! is the reflection
(o, B) — (o, —B). The real part consists of the curves C; = («, 0) and C, = («, 7).
Moreover, a representative of the vanishing cycle can be chosen as (0, 8). As
cy =tz 0c_on S' x S', the real part of c is the curve C; given homologically
by 2« — B; see Figure 13.
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Figure 14. Regular slices Ny.

We now consider two nonsingular real slices N_ and N, of D? as shown in
Figure 14. Let us suppose that the real fibers over N_ are identified to F_ while
real fibers over N, are identified to Fy (where F1 are as shown Figure 13). Let
C} and C| be curves on Fj obtained by pulling back C3 C Fy and C| C F_,
respectively. The curves C} and C| intersect at one point, so we can identify X
with C| x C} so that rotations along C and C generate the group Diffy (X, id).
Hence, {T, T_} generates m; (Diffy(X1), id). U

Theorem 8.1 applies naturally to directed nonmarked RELFs over D? that ad-
mit a real section in which a real-case Lefschetz chain does not contain a real
code (c;, a;) where the real structure has no real component. Besides, in the case
when the real structure has 2 real components and the vanishing cycle is real, the
decoration is not needed since the existence of a real section determines naturally
the gluing. Moreover, the extension to a fibration over S? is uniquely defined by
the section. Hence we have the following proposition.

Proposition 8.5. Two directed totally real elliptic Lefschetz fibrations over S*
admitting a real section and having the same real Lefschetz chain up to cyclic
ordering are isomorphic.

Remark 8.6. Indeed, the proposition holds even for fibrations with a fixed real
section. If there are only real critical values, then the real sections are determined
in a neighborhood of a real part. Moreover, over the real part one can carry one
real section to another using the transformations 7' and double Tgne. Indeed, the
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A double Tyine T~
Figure 15. Modification of the real section over the real part.

double Tijg is defined for real Lefschetz fibrations with two critical values where
the real structure extracted from the real fiber over a real point between the critical
values acts on the vanishing cycles as a reflection. The model we use to define
the double Tj;,, is as follows. Consider the disc D with two critical values as the
double cover of a disc with one critical value branched at a regular real point. Let
D_ and D, be two corresponding copies of the disk on the branched cover. By
pulling back the fibration X over D, we obtain a model fibration over D_ U D
Thus, we can apply Ty at the same time to fibrations over D_ and D,. The
possible modifications of the section is shown in the Figure 15.
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