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Let G be a reductive algebraic group over Q, and suppose that 0 ⊂ G(R) is
an arithmetic subgroup defined by congruence conditions. A basic problem
in arithmetic is to determine the multiplicities of discrete series represen-
tations in L2(0\G(R)), and in general to determine the traces of Hecke
operators on these spaces. In this paper we give a conjectural formula
for the traces of Hecke operators, in terms of stable distributions. It is
based on a stable version of Arthur’s formula for L2-Lefschetz numbers,
which is due to Kottwitz. We reduce this formula to the computation of
elliptic p-adic orbital integrals and the theory of endoscopic transfer. As
evidence for this conjecture, we demonstrate the agreement of the central
terms of this formula with the unipotent contributions to the multiplicity
coming from Selberg’s trace formula of Wakatsuki, in the case G = GSp4
and 0 =GSp4(Z).

1. Introduction

Let G be a reductive algebraic group over Q, and 0 an arithmetic subgroup of
G(R) defined by congruence conditions. Then G(R) acts on L2(0\G(R)) via
right translation; let us write R for this representation. A fundamental problem in
arithmetic is to understand R. As a first step, we may decompose R as

R = Rdisc⊕ Rcont,

where Rdisc is a direct sum of irreducible representations, and Rcont decomposes
continuously. The continuous part may be understood inductively through Levi
subgroups of G as in [Langlands 1976], leaving us with the study of Rdisc. Given
an irreducible representation π of G(R), write Rdisc(π) for the π -isotypic subspace
of Rdisc. Then

Rdisc(π)∼= π
⊕mdisc(π)

MSC2010: 11F46, 11F72, 22E55, 32N10.
Keywords: discrete series, Hecke operators, orbital integrals, Shimura varieties, endoscopy,

fundamental lemma, stable trace formula.

435



436 STEVEN SPALLONE

for some integer mdisc(π). (We may also write mdisc(π, 0).) A basic problem is to
compute these integers.

There is more structure than simply these dimensions, however. Arithmetic
provides us with a multitude of Hecke operators h on L2(0\G(R)) that commute
with R. Write Rdisc(π, h) for the restriction of h to Rdisc(π). The general problem
is to find a formula for the trace of Rdisc(π, h).

We focus on discrete series representations π . These are representations that
behave like representations of compact or finite groups, in the sense that their
associated matrix coefficients are square integrable. Like other smooth representa-
tions, they have a theory of characters developed by Harish-Chandra. They separate
naturally into finite sets called L-packets. For an irreducible finite-dimensional al-
gebraic representation E of G(C), there is a corresponding L-packet5E of discrete
series representations, consisting of those with the same infinitesimal and central
characters as E .

We follow the tradition of computing tr Rdisc(π, h) through trace formulas. This
method has gone through several incarnations, beginning with Selberg [1956] for
GL2, in which he also investigated the continuous Eisenstein series. A goal was
to compute dimensions of spaces of modular forms, and traces of Hecke operators
on these spaces. These spaces of modular forms correspond to the spaces Rdisc(π)

we are discussing in this case. His trace formula is an integral, over the quotient
of the upper half space X by 0, of a sum of functions Hγ , one for each element
of 0. Let us write it roughly as

dimC S(0)=
∫
0\X

∑
γ∈0

Hγ(Z)d Z ,

for some space S(0) of cusp forms with a suitable 0-invariance condition.
Here d Z is a G(R)-invariant measure on X . When the quotient 0\X is com-

pact, the sum and integral may be interchanged, leading to a simple expression
for the dimensions in terms of orbital integrals. The interference of the Eisenstein
series precludes this approach in the noncompact quotient case. Here there are
several convergence difficulties, which Selberg overcomes by employing a trunca-
tion process. Unfortunately the truncation process leads to notoriously complicated
expressions, which are far from being in closed form. This study of Rdisc(π) has
been expanded to other reductive groups using what is called the Arthur–Selberg
trace formula. See [Arthur 2005].

Generally, a trace formula is an equality of distributions on G(R), or on the
adelic group G(A). One distribution is called the geometric side; it is a sum
of terms corresponding to conjugacy classes of G. Given a test function f , the
formula is essentially made up of combinations IM(γ, f ) of weighted integrals
of f over the conjugacy classes of elements γ. (Here M is a Levi subgroup of G.)
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The other distribution is called the spectral side, involving the Harish-Chandra
transforms trπ( f ) for various representations π . Here, the operator π( f ) is given
by weighting the representation π by f . The geometric and spectral sides agree,
and in applications we can learn much about the latter from the former. Some of
the art is in picking test functions to extract information about both sides.

The best general result using the trace formula to study tr Rdisc(π, h) seems to
be Arthur’s [1989]. He produces a formula for

(1-1)
∑
π∈5

tr Rdisc(π, h),

where 5 is a given discrete series L-packet for G(R). He uses test functions
f which he calls “stable cuspidal”. Their Fourier transforms π 7→ trπ( f ) are
“stable” in that they are constant on L-packets, and “cuspidal” in that, considered
as a function defined on tempered representations, they are supported on discrete
series. (Tempered representations are those that appear in the Plancherel formula
for G(R).) Using his invariant trace formula, Arthur [1988a; 1988b] obtains (1-1)
as the spectral side. The geometric side is a combination of orbital integrals for h
and values of Arthur’s 8-function, which describes the asymptotic values of dis-
crete series characters averaged over an L-packet.

In particular, he produces a formula for

(1-2)
∑
π∈5

mdisc(π),

for an L-packet 5 of (suitably regular) discrete series representations.
In the case of G = GL2, there is a discrete series representation πk for each

integer k ≥ 1. In this case mdisc(πk) is the dimension of the space Sk(0) of 0-cusp
forms of weight k on the upper half plane. Restriction to SL2(R) gives two discrete
series {π+k , π

−

k } in each L-packet. However we may still use Arthur’s formula here
since mdisc(π

+

k , 0) = mdisc(π
−

k , 0) for every arithmetic subgroup 0. (Endoscopy
does not play a role.)

For the group GSp4(R) there are two discrete series representations in each L-
packet: one “holomorphic” and one “large” discrete series. Let π be a holomorphic
discrete series, and write π ′ for the large discrete series representation in the same
L-packet as π . The multiplicity mdisc(π, 0) is also the dimension of a certain space
of vector-valued Siegel cusp forms (see [Wallach 1984]) on the Siegel upper half
space, an analogue of the usual cusp forms on the upper half plane. For 0=Sp4(Z),
the dimensions of these spaces of cusp forms were calculated by Tsushima [1983;
1997] by using the Riemann–Roch–Hirzebruch formula, and later by Wakatsuki
[2012] by using the Selberg trace formula and the properties of prehomogeneous
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vector spaces. In [≥ 2012], Wakatsuki then evaluated Arthur’s formula to compute
mdisc(π, 0)+mdisc(π

′, 0), thereby deducing a formula for mdisc(π
′, 0).

A natural approach to isolating the individual mdisc(π), or generally the indi-
vidual tr Rdisc(π, h), is to apply a trace formula to a matrix coefficient, or more
properly, a pseudocoefficient f . This means that f is a test function whose Fourier
transform picks out π rather than the entire packet5 containing π ; see Definition 6
below. Such a function will not be stable cuspidal, but merely cuspidal. Arthur
[1989] (see also [2005]) showed that IM(γ, f ) vanishes when f is stable cuspidal
and the unipotent part of γ is nontrivial. If we examine the geometric side of
Arthur’s formula for a pseudocoefficient f , we must evaluate the more compli-
cated terms IM(γ, f ) for elements γ with nontrivial unipotent part. At the time
of this writing, such calculations have not been made in general; we take another
approach.

Distinguishing the individual representations π from others in its L-packet leads
to the theory of endoscopy, and stable trace formulas. The grouping of representa-
tions π into packets 5 on the spectral side mirrors the fusion of conjugacy classes
that occurs when one extends the group G(R) to the larger group G(C). If F is a
local or global field, then a stable conjugacy class in G(F) is, roughly, the union
of classes which become conjugate in G(F). (See [Langlands 1979] for a precise
definition.)

The distribution that takes a test function to its integral over a regular semi-
simple stable conjugacy class is a basic example of a stable distribution. Indeed,
a stable distribution is defined to be a closure of the span of such distributions;
see [Langlands 1983; 1979]. A distribution on G(F) is stabilized if it can be
written as a sum of stable distributions, the sum being over smaller subgroups
H related to G. These groups H are called endoscopic groups for G; they are
tethered to G not as subgroups but through their Langlands dual groups. As part
of a series of techniques called endoscopy, one writes unstable distributions on G
as combinations of stable distributions on the groups H . Part of this process is the
theory of transfer, associating suitable test functions f H on H(F) to test functions
f on G(F) that yield a matching of orbital integrals. Indeed this was the drive
for [Ngô 2010]. As the name suggests, the theory of endoscopy, while laborious,
leads to an intimate understanding of G.

There has been much work in stabilizing Arthur’s formula. See for example
[Langlands 1983; Arthur 2002; 2001; 2003]. In Kottwitz’s preprint [≥ 2012], he
defines a stable version of Arthur’s Lefschetz formula, which we review below.
(See also [Morel 2010].) It is a combination K( f ) =

∑
H ι(G, H) STg( f H ) of

distributions f 7→ f H
7→ STg( f H ) over endoscopic groups H for G. Here the

distributions STg, defined for each H , are stable. (See Section 5.1 for the definition
of the rational numbers ι(G, H).) Each STg is a sum of terms corresponding to
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stable conjugacy classes of elliptic elements γ ∈ H(Q). Kottwitz’s main result
is that K agrees with Arthur’s distribution, at least for functions f that are stable
cuspidal at the real place.

As part of the author’s thesis [Spallone 2004], the identity terms of K were
evaluated for the group G = SO5 at a function f that was a pseudocoefficient
for a discrete series representation at the real place. Later, Wakatsuki noted that
the resulting expressions match up with the terms in his multiplicity formulas for
mdisc(π, 0) and mdisc(π

′, 0) corresponding to unipotent elements. Moreover, the
contribution in [Spallone 2004] from the endoscopic group accounted for the dif-
ference in these multiplicity formulas, while the stable part corresponded to the
sum. After further investigation, we conjecture simply that Kottwitz’s distribution
evaluated at a function f = fπ,0 suitably adapted to π and 0 is equal to mdisc(π, 0),
under a regularity condition on π . (See Section 5.3 for the precise statement.) Of
course this is compatible with Arthur’s results in [1989].

In this paper we give some computational evidence for this conjecture. We
also reduce the computation of each ST ( f H

π,0) to evaluating elliptic orbital p-adic
integrals for the transfer f∞H at the finite places. The rest breaks naturally into a
problem at the real points and a global volume computation.

The main ingredient at the archimedean place is the 8-function 8M(γ,2
E) of

Arthur, which we review. This quantity gives the contribution from the real place
to the trace formulas in [Arthur 1989] and [Goresky et al. 1997]. It also plays
a prominent role in Kottwitz’s formula. This function, originally defined by the
asymptotic behavior of a stable character near a singular element γ, was expressed
in closed form in many cases by the author in [Spallone 2009].

There are two volume-related constants that enter into any explicit computation
of STg. The first is v(G), which is essentially the volume of an inner form of
G over R. It depends on the choice of local measure dg∞. The second comes
about from orbital integrals at the finite adeles, and depends on the choice of local
measure dg f . These integrals may frequently be written in terms of the volumes
of open compact subgroups K f of G(A f ). In practice, one is left computing ex-
pressions such as v(G)−1 voldg f (K f )

−1, which are independent of the choice of
local measures. More specifically, we define

χK f (G)= v(G)
−1 voldg f (K f )

−1τ(G)d(G).

Here τ(G) is the Tamagawa number of G and d(G) is the index of the real Weyl
group in the complex Weyl group. A main general result of this paper, Theorem 2,
interprets χK f (G) via Euler characteristics of arithmetic subgroups. It extends a
computation of Harder [1971], which was for semisimple simply connected groups,
to the case of reductive groups, under some mild hypotheses on G.

We work out two examples in this paper, one for SL2 and another for GSp4. It
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is easy to verify our conjecture for G = SL2 and 0 = SL2(Z) using the classic
dimension formula for cusp forms. In this case endoscopy does not appear. The
calculations for GSp4 are more complex; we content ourselves with working out
the central terms of Kottwitz’s formula.

If π is a holomorphic discrete series representation of GSp4(R), write Hπ
1 for

the central-unipotent terms of the Selberg trace formula, as evaluated in [Wakatsuki
≥ 2012] to compute mdisc(π, 0). Here 0=GSp4(Z). If π is a large discrete series
representation, write Hπ

1 for the central-unipotent terms in [Wakatsuki ≥ 2012]
contributing to mdisc(π, 0). In both cases, write f = fπ,0 = f∞ f∞, with f∞ a
pseudocoefficient for π , and f∞ the (normalized) characteristic function of the
integer adelic points of G. Write K( f,±1) for the central terms of Kottwitz’s
formula applied to f .

As evidence for our conjecture, we show this:

Theorem 1. For each regular discrete series representation π of G(R), we have

K( fπ,0,±1)= Hπ
1 .

We believe that the K( fπ,0,±1) terms will generally match up with the difficult
central-unipotent terms of the Arthur–Selberg formula, as in this case.

Our conjecture reduces the computation of discrete series multiplicities to the
computation of stable elliptic orbital integrals of various transfers f H

p , written for
functions on G(Qp). Let us write this as SOγH ( f H

p ). Here f p are characteristic
functions of congruence subgroups of G(Qp) related to 0. Certainly at suitably
regular elements, SOγH ( f H

p ) is an unstable combination of orbital integrals of f p;
however there are also contributions from elliptic singular γH , notably γH = 1. At
present, there are expressions for f H

p in the parahoric case and of course for G(Zp),
but less seems to be known for smaller congruence subgroups. On the other hand,
there are many formulas for dimensions of Siegel cusp forms and discrete series
multiplicities for these cases (for example, [Wakatsuki ≥ 2012]). This suggests
that one could predict stable singular elliptic orbital integrals SOγH ( f H

p ) for the
transfer f H

p of characteristic functions of congruence subgroups (see for example
Klingen, Iwahori and Siegel), by comparing our formulas.

Finally, we refer the casual reader to our survey [Spallone 2011] of the present
approach to discrete series multiplicities.

In Section 2, we set up the conventions for this study. We explain how we are
setting up the orbital integrals, and indicate our main computational tools. We also
review the Langlands correspondence for real groups.

The theory of Arthur’s 8-function is reviewed in Section 4. In Section 5, we
review Kottwitz’s stable version of Arthur’s formula from [Kottwitz ≥ 2012]. We
also state our conjecture here. The heart of the volume computations in this paper
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is in Section 6, where we determine χK (G). As a warm up, we work out the classic
case of SL2, with 0 = SL2(Z) in Section 7.

The case of G =GSp4 is considerably more difficult. We must work out several
isomorphisms of real tori. These are described in Section 8. The basic structure of
G and its Langlands dual Ĝ is set up in Section 9. In Section 10 we work out the
Langlands parameters for discrete series of G(R). There is only one elliptic endo-
scopic group H for G. We describe H in Section 11. In Section 12, we describe
the Langlands parameters for discrete series of H(R) and describe the transfer of
discrete series in this case. In Section 13, we describe the Levi subgroups of G and
H and compute various constants that occur in Kottwitz’s formula for these groups.
In Section 14, we compute explicitly Arthur’s8-function for Levi subgroups of G,
and we do this for Levi subgroups of H in Section 15. In Section 16, we write
out the terms of Kottwitz’s formula corresponding to central elements of G and H ,
for a general arithmetic subgroup 0. In Section 17, we specialize to the case of
0 = GSp4(Z), and in Section 18 we gather our results to demonstrate Theorem 1.

2. Preliminaries and notation

If F is a field, write 0F for the absolute Galois group of F . Suppose G is an
algebraic group over F . If E is an extension field of F , we write G E for G viewed
as an algebraic group over E (by restriction). If γ is an element of G(F), we
denote by Gγ the centralizer of γ in G. By G◦ we denote the identity compo-
nent of G (with the Zariski topology). Write Gder for the derived group of G.
If G is a reductive group, write Gsc for the simply connected cover of Gder. Let
X∗(G)= Hom(G F ,Gm) and X∗(G)= Hom(Gm,G F ). These are abelian groups.
Write X∗(G)C and X∗(G)C for the tensor product of these groups over Z with C.
Similarly with the subscript R. Write AG for the maximal F-split torus in the
center of G.

We denote by A the ring of adeles over Q. We denote by A f the ring of finite
adeles over Q, so that A = A f ×R. Write O f for the integral points of A f .

If G is a real Lie group, we write G+ for the connected component of G (using
the classical topology rather than any Zariski topology).

Let G be a connected reductive group over R. A torus T in G is elliptic if T/AG

is anisotropic (as an R-torus). Say that G is cuspidal if it contains a maximal torus
T that is elliptic. An element of G(R) is elliptic if it is contained in an elliptic
maximal torus of G. Having fixed an elliptic maximal torus T , the absolute Weyl
group �G of T in G is the quotient of the normalizer of T (C) in G(C) by T (C).
The real Weyl group �G,R of T in G is the quotient of the normalizer of T (R) in
G(R) by T (R). We may drop the subscript G if it is clear from context. Also fix
a maximal compact subgroup KR of G(R).
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Write q(G) for half the dimension of G(R)/KR Z(R). If we write R for the
roots of G, with a set of positive roots R+, then

q(G)= 1
2(|R

+
| + dim(X)),

where X is the span of R.
If G is an algebraic group over Q, let G(Q)+ = G(R)+ ∩G(Q).

2.1. Endoscopy. Here we review the theory of based root data and endoscopy in
the form we will use in this paper.

The notion of a based root datum is defined in [Springer 1979]. First, a root
datum is a quadruple 9 = (X, R, X∨, R∨), where

• X and X∨ are free, finitely generated abelian groups, in duality by a pairing

〈 · , · 〉 : X × X∨→ Z;

• R and R∨ are finite subsets of X and X∨, respectively;

• there is a bijection α 7→ α∨ from R onto R∨;

• we have 〈α, α∨〉 = 2 for all α ∈ R;

• sα(R) = R if sα is the reflection of X determined by α, and similarly with α
replaced by α∨ and R by R∨.

A based root datum is a quadruple 90 = (X,1, X∨,1∨), where 1 and 1∨ are
sets of simple roots of root system R and R∨ respectively, so that (X, R, X∨, R∨)
is a root datum. The dual of 90 = (X,1, X∨,1∨) is given simply by 9∨0 =
(X∨,1∨, X,1).

Let 90 = (X,1, X∨,1∨) and 9 ′0 = (X
′,1′, X ′∨,1′∨) be two based root data.

Then an isomorphism between 9 and 9 ′ is an isomorphism of groups f : X→ X ′

so that f induces a bijection of 1 onto 1′ and so that the transpose of f induces
a bijection of 1∨ onto 1′∨.

Let G be a connected reductive group over an algebraically closed field F . Fix
a maximal torus T and a Borel subgroup B of G with T ⊆ B. We say in this
situation that (T, B) is a pair (for G). The choice of pair determines a based root
datum

90(G, T, B)= (X∗(T ),1(T, B), X∗(T ),1∨(T, B))

for G. Here 1(T, B) is the set of simple B-positive roots of T , and 1∨(T, B) is
the set of simple B-positive coroots of T . If another pair T ′⊆ B ′ is chosen, the new
based root datum obtained is canonically isomorphic to the original via an inner
automorphism α of G. We have α(T ′) = T and α(B ′) = B. Although the inner
automorphism α need not be unique, its restriction to an isomorphism T ′ ∼→ T is
unique.
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We may remove the dependence of the based root datum on the choice of pair
as follows. Write X∗, 1, X∗, and 1∨ for the inverse limit over the set of pairs
(T, B) of X∗(T ), 1(T, B), X∗(T ) and 1∨(T, B), respectively. Then we simply
define the based root datum of G to be

90(G)= (X∗,1, X∗,1∨).

Let G be a connected reductive group over a field F , and 90(G) a based root
datum of G F . Then 0F acts naturally (via isomorphisms) on 90(G). The action
of 0F on G is said to be an L-action if it fixes some splitting of G; see [Kottwitz
1984, Section 1.3].

Definition 1. A dual group for G is the following data:

(i) A connected complex reductive group with a based root datum 90(Ĝ). We
write its complex points as Ĝ.

(ii) An L-action of 0F on Ĝ.

(iii) A 0F -isomorphism from 90(Ĝ) to the dual of 90(G).

To specify the isomorphism for (iii) above, one typically fixes pairs (T0, B0) of
G and (Ŝ0, B̂0) of a dual group Ĝ and an isomorphism from 90(Ĝ, Ŝ0, B̂0) to the
dual of 90(G, T0, B0).

In the case that G is a torus T , the dual group T̂ is simply given by

(2-1) T̂ = X∗(T )⊗Z C×,

with the 0F -action induced from X∗(T ). There are canonical 0F -isomorphisms
X∗(T̂ ) ∼→ X∗(T ) and X∗(T̂ ) ∼→ X∗(T ).

The formalism for dual groups encodes canonical isomorphisms between tori. If
T and T ′ are tori, and ϕ : T→ T ′ is a homomorphism, it induces a homomorphism
T̂ ′→ T̂ in the evident way.

Suppose that (T, B) is a pair for G and (Ŝ, B̂) is a pair for Ĝ. By (iii) above, one
has in particular a fixed isomorphism from90(G, T, B) to the dual of90(Ĝ, Ŝ, B̂).
In particular this yields an isomorphism from X∗(T ) to X∗(Ŝ), which induces an
isomorphism

(2-2) T̂ ∼→ Ŝ.

Next, let G be a connected reductive group over a field F , which is either local
or global.

Definition 2. An endoscopic group for G is a triple (H, s, η) as follows:

• H is a quasisplit connected group, with a fixed dual group Ĥ as above;

• s ∈ Z(Ĥ).
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• η : Ĥ → Ĝ is an embedding.

• The image of η is (Ĝ)◦η(s), the connected component of the centralizer in Ĝ
of η(s).

• The Ĝ-conjugacy class of η is fixed by 0F .
Cohomology of 0F -modules then yields a boundary map

[Z(Ĥ)/Z(Ĝ)]0F → H 1(F, Z(Ĝ)).

• The image of s in Z(Ĥ)/Z(Ĝ) is fixed by 0, and its image under the boundary
map above is trivial if F is local and locally trivial if F is global.

An endoscopic group is elliptic if the identity components of Z(Ĝ)0F and Z(Ĥ)0F

agree.

Isomorphism of endoscopic groups is defined in [Kottwitz 1984, Section 7.5];
we do not review it here.

2.2. Langlands correspondence. Let G be a connected reductive group over R. In
this section we review elliptic Langlands parameters for G and the corresponding
L-packets for discrete series representations of G(R). Our main references are
[Borel 1979] and [Kottwitz 1990]. Write WR for the Weil group of R, and WC for
the canonical image of C× in WR. There is an exact sequence

1→WC→WR→ 0R→ 1.

The Weil group WR is generated by WC and a fixed element τ satisfying τ 2
=−1

and τ zτ−1
= z for z ∈ WC. The action of 0R on Ĝ inflates to an action of WR

on Ĝ, and through this action we form the L-group LG = Ĝ o WR.
A Langlands parameter ϕ for G is an equivalence class of continuous homo-

morphisms ϕ : WR →
LG commuting with projection to 0R, satisfying a mild

hypothesis on the image; see [Borel 1979]. The equivalence relation is via inner
automorphisms from Ĝ. One associates to a Langlands parameter ϕ an L-packet
5(ϕ) of irreducible admissible representations of G.

Suppose that G is cuspidal, so that there is a discrete series representation
of G(R). This implies that the longest element w0 of the Weyl group � acts as −1
on X∗(T ). If ϕ is a Langlands parameter, write Cϕ for the centralizer of ϕ(WR) in
Ĝ and Ŝ for the centralizer of ϕ(WC) in Ĝ. Write Sϕ for the product CϕZ(Ĝ). We
say ϕ is elliptic if Sϕ/Z(Ĝ) is finite, and describe the L-packet 5(ϕ) in this case.

Since ϕ is elliptic, the centralizer Ŝ is a maximal torus in Ĝ. Since ϕ commutes
with the projection to 0R, it restricts to a homomorphism

WC→ Ŝ×{1}.
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We may view this restriction as a continuous homomorphism ϕ : C×→ Ŝ, which
may be written in exponential form

ϕ(z)= zµzν

with µ and ν regular elements of X∗(T̂ )C. Write B̂ for the unique Borel subgroup
of Ĝ containing Ŝ so that 〈µ, α〉 is positive for every root α of Ŝ that is positive
for B̂. We say that ϕ determines the pair (Ŝ, B̂), at least up to conjugacy in Ĝ.

Let B be a Borel subgroup of GC containing T . Then ϕ and B determine a
quasicharacter χB =χ(ϕ, B), as follows. There is a canonical (up to Ĝ-conjugacy)
homomorphism ηB :

LT → LG described in [Kottwitz 1990] such that

ηB(z)= zρz−ρ × z ∈ Ĝ o WR for z ∈WC.

Here ρ = ρG is the half sum of the B-positive roots for T . Then a Langlands
parameter ϕB for T may be chosen so that ϕ = ηB ◦ ϕB . Finally χB is the quasi-
character associated to ϕB by the Langlands correspondence for T (as described
in [Borel 1979, Section 9.4]).

Write B for the set of Borels of GC containing T . The L-packet associated to
ϕ is indexed by �R\B. For B ∈ �R\B, a representation π(ϕ, B) in the L-packet
is given by the irreducible discrete series representation of G(R) whose character
2π is given on regular elements γ of T (R) by

(−1)q(G)
∑
ω∈�R

χω(B)(γ) ·1ω(B)(γ)
−1.

Here 1B is the usual discriminant

1B(γ)=
∏

α>0 for B

(1−α(γ)−1).

Finally, let

5(ϕ)= {π(ϕ, B) | B ∈�R\B}.

It has order d(G) = |�/�R|. There is a unique irreducible finite-dimensional
algebraic complex representation E of G(C) with the same infinitesimal character
and central character as the representations in this L-packet. It has highest weight
µ−ρ ∈ X∗(T ) with respect to B. The isomorphism classes of such E are in one-
to-one correspondence with elliptic Langlands parameters ϕ, and we often write
5E for 5(ϕ).

Definition 3. We say that a discrete series representation π ∈5E is regular if the
highest weight of E is regular.
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2.3. Measures and orbital integrals. Let G be a locally compact group with Haar
measure dg. If f is a continuous function on G, write f dg for the measure on G
given by

ϕ 7→

∫
G
ϕ(g) f (g)dg,

for ϕ continuous and compactly supported in G. We will refer to the measures
obtained in this way simply as “measures”. If G is a p-adic, real, or adelic Lie
group, we require that f be suitably smooth.

In this paper, we will view orbital integrals and Fourier transforms as distri-
butions defined on measures, rather than on functions. This approach eases their
dependence on choices of local measures, choices that do not matter in the end.

For K an open compact subset of G, write eK for the measure given by f dg,
where f is the characteristic function of K divided by voldg(K ). Note that the
measure eK is independent of the choice of Haar measure dg.

Let G be a reductive group defined over a local field F . Fix a Haar measure
dg on G(F). Let f dg be a measure on G(F), and take a semisimple element
γ ∈ G(F). Fix a Haar measure dt of G(F)◦γ . Then we write Oγ( f dg; dt) for the
usual orbital integral

Oγ( f dg; dt)=
∫

Gγ
◦(F)\G(F)

f (g−1γg)
dg
dt
.

Many cases of finite orbital integrals are easy to compute by the following result,
a special case extracted from [Kottwitz 1986, Section 7].

Proposition 1. Let F be a p-adic field with ring of integers O. Let G be a split
connected reductive group defined over O, and let K = G(O). Suppose that γ ∈ K
is semisimple, and that 1− α(γ) is either 0 or a unit for every root α of G. Let γ′

be stably conjugate to γ. Then Oγ′(eK ; dt) vanishes unless γ′ is conjugate to γ, in
which case

Oγ′(eK ; dt)= voldt(Gγ
◦(F)∩ K )−1.

Now let G be a reductive group defined over Q.
Let f∞dg f be a measure on G(A f ) and take a semisimple element γ ∈G(A f ).

Fix a Haar measure dt f of G◦γ(A f ). Write Oγ( f∞dg f ; dt f ) for the orbital integral

Oγ( f∞dg f ; dt f )=

∫
Gγ
◦(A f )\G(A f )

f∞(g−1γg)
dg f

dt f
.

We also have the stable orbital integrals

SOγ( f∞dg f ; dt f )=
∑

i

e(γi )Oγi ( f∞dg f ; dti, f ),
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the sum being over γi ∈G(A f ) (up to G(A f )-conjugacy) whose local components
are stably conjugate to γ. The centralizers of γ and a given γi are inner forms of
each other, and we use corresponding measures dt f and dti, f . The number e(γi )

is defined as follows: For a reductive group A over a local field, Kottwitz [1983]
has defined an invariant e(A). It is equal to 1 if A is quasisplit. For each place v
of Q, write γi,v for the vth component of γi . Let

e(γi,v)= e(G◦γi,v
(Qv)).

Finally, let

e(γi )=
∏
v

e(γi,v).

Definition 4. Let M be a Levi component of a parabolic subgroup P of G, and
dm f a Haar measure on M(A f ). Given a measure f∞dg f , its M-constant term is
the measure f∞M dm f , where f∞M is defined via

f∞M (m)= δ
−1/2
P(A f )

(m)
∫

N (A f )

∫
K f

f∞(k−1nmk)dk f dn f .

Here we fix the Haar measure dk f on K f giving it mass one, and the Haar measure
dn f on N (A f ) is chosen so that dg f = dk f dn f dm f . The function δP(A f ) is the
modulus function on P(A f ).

It is independent of the choice of parabolic subgroup P .

Proposition 2. Let G be a split group defined over Z and let K f = G(O f ). Then

(eK f )M = eM(A f )∩K f .

Proof. Write eK f = f∞dg f . Then it is easy to see that f∞M (m)= 0 unless m ∈ K f .
If m ∈ K f , we compute that

f∞M (m)=
voldk f (K f ) voldn f (K f ∩ N (A f ))

voldg f (K f )
.

The result follows since

voldg f (K f )= voldm f (M(A f )∩ K f ) voldn f (N (A f )∩ K f ) voldk f (K f ). �

2.4. Pseudocoefficients. We continue with a connected reductive group G over Q,
and adopt some terminology from [Arthur 1989]. Fix a maximal compact sub-
group KR of G(R). We put K ′R = KR AG(R)

+. Given a quasicharacter (smooth
homomorphism to C×) ξ on AG(R)

+, write Hac(G(R), ξ) for the space of smooth,
K ′R-finite functions on G(R) that are compactly supported modulo AG(R)

+, and
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transform under AG(R)
+ according to ξ . Write 5(G(R), ξ) for the set of irre-

ducible representations of G(R) whose central character restricted to AG(R)
+ is

equal to ξ .
Given a function f ∈Hac(G(R), ξ−1), a representation π ∈5(G(R), ξ), and a

Haar measure dg∞ on G(R), write π( f dg∞) for the operator on the space of π
given by the formula

π( f dg∞)=
∫

G(R)/AG(R)+
f (x)π(x)dg∞.

Here we give AG(R)
+ the measure corresponding to Lebesgue measure on Rn , if

AG is n-dimensional. The operator is of trace class.
Write 5temp(G(R), ξ) (respectively 5disc(G(R), ξ)) for the subset of tempered

(respectively discrete series) representations in 5(G(R), ξ).

Definition 5. Suppose that f ∈ Hac(G(R), ξ−1). We say that the measure f dg∞
is cuspidal if trπ( f dg∞), viewed as a function on 5temp(G(R), ξ), is supported
on 5disc(G(R), ξ).

Write Ẽ for the contragredient of the representation E . Arthur [1989] employs
functions fE ∈Hac(G(R), ξ−1) with fE dg∞ cuspidal, whose defining property is
that, for all π ∈5temp(G(R), ξ),

(2-3) trπ( fE dg∞)=
{
(−1)q(G) if π ∈5Ẽ ,

0 otherwise.

Such measures can be broken down further.

Definition 6. Fix a representation π0 ∈ 5disc(G(R), ξ−1), and suppose that f0 ∈

Hac(G(R), ξ−1). Suppose the measure f0dg∞ satisfies, for all π ∈5temp(G(R), ξ),

trπ( f0dg∞)=
{
(−1)q(G) if π ∼= π̃0,

0 otherwise.

It follows from the corollary in [Clozel and Delorme 1984, Section 5.2] that
such functions exist. Pick such a function f0, and put eπ0 = f0dg∞.

Suppose that for each π ∈5E we fix measures eπ as above. Let

fE dg∞ =
∑
π

eπ ,

the sum being over π ∈5E . Then clearly fE dg∞ satisfies Arthur’s condition (2-3).
We remark that the measure (−1)q(G)eπ is called a pseudocoefficient of π̃ .
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3. Transfer

We sketch the important theory of transfer in the form that we will use in this paper.
Suppose that G is a real connected reductive group, and that (H, s, η) is an

elliptic endoscopic group for G. Fix an elliptic maximal torus TH of H , an elliptic
maximal torus T of G, and an isomorphism j : TH

∼
→ T between them. Also

fix a Borel subgroup B of GC containing T and a Borel subgroup BH of HC

containing TH .
Suppose that ξ is a quasicharacter on AG(R), and that f∞ ∈ Hac(G(R), ξ−1),

with f∞dg∞ cuspidal. There is a corresponding quasicharacter ξH on AH (R)

described in [Kottwitz ≥ 2012, Section 5.5].
There is also a measure f H

∞
dh∞ on H(R) with f H

∞
∈ Hac(H(R), ξ−1

H ), having
matching character values. See [Shelstad 1982; Clozel and Delorme 1984; 1990;
Langlands and Shelstad 1987]. More specifically, let ϕH be a tempered Langlands
parameter for HR, and write 5H = 5(ϕH ) for the corresponding L-packet of
discrete series representations of H(R). Transport ϕH via η to a tempered Lang-
lands parameter ϕG for G. The parameters ϕG and ϕH determine pairs (Ŝ, B̂) and
(ŜH , B̂H ) as in Section 2.2.

Then

(3-1) tr5H ( f H
∞

dh∞)=
∑
π∈5

1∞(ϕH , π) · trπ( f∞dg∞),

using Shelstad’s transfer factors 1∞(ϕH , π). Both sides of (3-1) vanish unless
5H is a discrete series packet. In particular, f H

∞
dh∞ is cuspidal, and it may be

characterized by (3-1). (The transfer f H
∞

dh∞ is only defined up to the kernel of
stable distributions.) We may use this formula to identify it as a combination of
pseudocoefficients.

It is a delicate matter to specify the transfer factors. We will use a formula for
1∞(ϕH , π) from [Kottwitz 1990], which is itself a reformulates a formula from
[Shelstad 1982]. One must carefully specify the duality between G and Ĝ, and
between H and Ĥ , because this factor depends on precisely how this is done. It
also depends on the isomorphism j : TH

∼
→T , which must be compatible with cor-

respondences of tori determined by the Langlands parameters, as specified below.

Definition 7. The triple ( j, BT , BTH ) is aligned with ϕH if the following diagram
commutes:

(3-2)

T̂ //

ĵ
��

Ŝ

T̂H // ŜH .

η

OO
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Here the isomorphisms T̂ → Ŝ and T̂H → ŜH are determined, as in (2-2), by
(B, B̂) and (BH , B̂H ), respectively. The map ĵ is the map dual to j using the
identification (2-1) of the dual tori.

For each ω ∈�, there is a character

aω : (T̂ /Z(Ĝ))0R → {±1}

described in [Kottwitz 1990].
If the triple ( j, BT , BTH ) is aligned with ϕH , then we may take as transfer factors

1∞(ϕH , π(ϕ, ω
−1(B)))= 〈aω, ĵ−1(s)〉.

Next, let G be a connected reductive algebraic group over Q, and let (H, s, η)
be an endoscopic group for G. Given a measure f∞dg f on G(A f ), there is a
measure f∞H dh f on H(A f ) such that for all γH ∈ H(A f ) suitably regular, one
has

SOγH ( f∞H dh f )=
∑
γ

1∞(γH , γ)Oγ( f∞dg f ).

The sum is taken over G(A f )-conjugacy classes of “images” γ ∈G(A f ) of γH . We
have written 1∞(γH , γ) for the Langlands–Shelstad transfer factors. One takes
matching measures on the centralizers of γH and the various γ in forming the
quotient measures for the orbital integrals. We have left out many details; please see
[Langlands and Shelstad 1987] and [Kottwitz and Shelstad 1999] for definitions,
and [Ngô 2010] for the celebrated proof.

4. Arthur’s 8-function

In this section we consider a reductive group G defined over R. Let T be a maximal
torus contained in a Borel subgroup B of GC. Let A be the split part of T , let Tc

be the maximal compact subtorus of T , and let M be the centralizer of A in G. It
is a Levi subgroup of G containing T . Let E be an irreducible finite-dimensional
(algebraic) representation of G(C), and consider the L-packet5E of discrete series
representations π of G(R) that have the same infinitesimal and central characters
as E . Write 2π for the character of π , and put

2E
= (−1)q(G)

∑
π∈5E

2π .

Note that 2E(γ) will not extend continuously to all elements γ ∈ T (R), and in
particular not to γ = 1. Define the function DG

M on T by

DG
M(γ)= det(1−Ad(γ);Lie(G)/Lie(M)).
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Then a result of Arthur and Shelstad [Arthur 1989] states that the function

γ 7→ |DG
M(γ)|

1/22E(γ),

defined on the set of regular elements Treg(R), extends continuously to T (R).
We denote this extension by 8M(γ,2

E). The following closed expression for
8M(γ,2

E) when γ ∈ Tc is given in [Spallone 2009].

Proposition 3. If γ ∈ Tc(R), then

(4-1) 8M(γ,2
E)= (−1)q(L)|�L |

∑
ω∈�L M

ε(ω) tr(γ; V M
ω(λB+ρB)−ρB

).

In particular,

(i) if T is compact, then M = G and 8G(γ,2
E)= tr(γ; E);

(ii) if T is split, then M = A and 8A(1,2E)= (−1)q(G)|�G |.

The notation needs to be explained. Here L is the centralizer of Tc in G. The
roots of T in L and M are the real and imaginary roots, respectively, of T in G.
Write �L and �M for the respective Weyl groups. Write �L M for the set of ele-
ments that are simultaneously Kostant representatives for both L and M , relative
to B. We write ε for the sign character of �G . Finally by V M

ω(λB+ρB)−ρB
we de-

note the irreducible finite-dimensional representation of M(C) with highest weight
ω(λB + ρB)− ρB , where λB is the B-dominant highest weight of E .

If z ∈ G(R) is central, it is easy to see that 8M(γz,2E) = λE(z)8M(γ,2
E),

where λE is the central character of E . Thus, for the case of central γ = z,
computing8M(z,2E) amounts to computing the dimensions of finite-dimensional
representations of M(C) with various highest weights. For this we use the Weyl
dimension formula, in the following form.

Proposition 4 (Weyl dimension formula). Let G be a complex reductive group
and T a maximal torus in G, contained in a Borel subgroup B. Write ρB for the
half-sum of the positive roots for T in G (with respect to B). Let λB ∈ X∗(T ) be
a positive weight. Then there is a unique irreducible representation VλB of G with
highest weight λB . Its dimension is given by

dimC VλB =

∏
α>0

〈α, λB + ρB〉

〈α, ρB〉
.

Here 〈 · , · 〉 is a nondegenerate �G-invariant inner product on X∗(T )R, which is
unique up to a scalar.
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5. Kottwitz’s formula

5.1. Various invariants. In this section we introduce some invariants involved in
Kottwitz’s formula.

By G we generally denote an inner form of GR such that G/AG is anisotropic
over R.

Definition 8. Let G be a cuspidal reductive group over R, and dg∞ a Haar measure
on G(R). Let

v(G; dg∞)= e(G) vol(G(R)/AG(R)
+).

This is a stable version of the constant v(G) that appears in [Arthur 1989]. As
before, e(G) is the sign defined in [Kottwitz 1983]. (Note that e(G) = (−1)q(G)

when G is quasisplit.) In both cases the Haar measure on G(R) is transported
from dg∞ on G(R) in the usual way, and the measure on AG(R)

+ is the standard
Lebesgue measure.

Definition 9. Let G be a cuspidal connected reductive group over Q. Then G
contains a maximal torus T such that T/AG is anisotropic over R. Write Tsc

for the inverse image in Gsc of T . Then k(G) is the cardinality of the image
of H 1(R, Tsc)→ H 1(R, T ).

Definition 10. If G is a reductive group over Q, write τ(G) for the Tamagawa
number of G, as defined in [Ono 1966].

By [Kottwitz 1988] or [Kottwitz ≥ 2012], the Tamagawa numbers τ(G) for a
reductive group G over Q may be computed using the formula

τ(G)= |π0(Z(Ĝ)0Q)| · |ker1(Q, Z(Ĝ))|−1.

Here π0 denotes the topological connected component.

Definition 11. Let M be a Levi subgroup of G. Then put

nG
M = [NG(M)(Q) : M(Q)].

Here NG(M) denotes the normalizer of M in G.

Definition 12. Let γ ∈ M(Q) be semisimple. Then put

ιM(γ)= |(Mγ/M◦γ )(Q)| and ιM(γ)= [Mγ(Q) : M◦γ (Q)].

Let (H, s, η) be an endoscopic triple for G, and write Out(H, s, η) for its outer
automorphisms. Put

ι(G, H)= τ(G)τ (H)−1
|Out(H, s, η)|−1.
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5.2. The formula. In this section we give Kottwitz’s formula [≥ 2012].
Our G will now be a cuspidal connected reductive group over Q. Let f∞ ∈

C∞c (G(A f )) and f∞∈Hac(G(R), ξ) for some ξ . We consider measures f dg of the
form f dg= f∞dg f · f∞dg∞∈C∞c (G(A)), for some decomposition dg=dg f dg∞
of the Tamagawa measure on G(A f ). Also choose such decompositions for every
cuspidal Levi subgroup M of G.

First we define the stable distribution S8M at the archimedean place:

Definition 13. Let M be a cuspidal Levi subgroup of G. Let γ ∈M(Q) be elliptic,
and pick a Haar measure dt∞ of M◦γ (R). Then S8M(γ, f∞dg∞; dt∞) is defined
to be

(−1)dim(AM/AG)k(M)k(G)−1v(Mγ
◦
; dt∞)−1

∑
5

8M(γ
−1,25) tr5( f∞dg∞),

the sum being taken over L-packets of discrete series representations.
Here is the basic building block of Kottwitz’s formula:

Definition 14. Let M be a cuspidal Levi subgroup of G, and γ ∈ M(Q) an elliptic
element. Pick Haar measures dt f on M◦γ (A f ) and dt∞ on M◦γ (R) whose product
is the Tamagawa measure dt on M◦γ (A).

We define

STg( f dg, γ,M)

= (nG
M)
−1τ(M)ιM(γ)−1 SOγ( f∞M dm f ; dt f ) S8M(γ, f∞dg∞; dt∞).

Here f∞M dm f is the M-constant term of f∞dg f . The product

SOγ( f∞M dm f ; dt f )v(M; dt∞)

is independent of the decompositions of dt and dg. We will therefore often write
this simply as SOγ( f∞M dm f )v(M), and similarly for other such products.

Kottwitz defines

STg( f dg)=
∑

M

∑
γ∈M

STg( f dg, γ,M).

Here M runs over G(Q)-conjugacy classes of cuspidal Levi subgroups in G, and
the second sum runs over stable M(Q)-conjugacy classes of semisimple elements
γ ∈ M(Q) that are elliptic in M(R).

For convenience we also define, for γ ∈ G(Q) semisimple,

STg( f dg, γ)=
∑

M

STg( f dg, γ,M),

the sum being taken over cuspidal Levi subgroups of G with semisimple γ ∈M(Q)
that are elliptic in M(R).
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Kottwitz’s stable version of Arthur’s trace formula is given by

K( f dg)=
∑

(H,s,η)∈E0

ι(G, H) STg( f H dh),

where E0 is the set of (equivalence classes of) elliptic endoscopic groups for G.
We record here the simpler form of STg( f dg, γ,M)when γ= z is in the rational

points Z(Q) of the center of G. We have

STg( f dg, z,M)

= (−1)dim(AM/AG)
k(M)
k(G)

(nG
M)
−1τ(M) f∞M (z)v(M; dm∞)−18M(z−1,25).

5.3. Conjecture. Recall the stable cuspidal measure fE dg∞ from Section 2.4. Fix
any test function f∞dg f and put f = f∞ fE dg.

Let

Tg( f dg)=
∑

M

(nG
M)
−1
∑
γ

ιM(γ)−1τ(Mγ)Oγ( f∞M dm f )8M(γ, fE dg∞).

Again, the sum is over cuspidal Levi subgroups M and semisimple γ ∈ M(Q) that
are elliptic in M(R). Here as in [Arthur 1989],8M(γ, · ) is the unnormalized form
of the distribution IM defined in [Arthur 1988a].

Now suppose that π ∈5disc(G(R), ξ), and let K f be an open compact subgroup
of G(A f ). Write

L2(G(Q)\G(A)/K f , ξ)

for the space of functions on this double coset space that transform by AG(R)
+

according to ξ and are square integrable modulo center. Write Rdisc(π, K f ) for
the π -isotypical subspace of L2(G(Q)\G(A)/K f , ξ); it is finite-dimensional. If
f∞dg f is K f -biinvariant, then convolution gives an operator Rdisc(π, f∞dg f ) on
Rdisc(π, K f ). According to [Arthur 1989, Corollary 6.2], if the highest weight of
E is regular, then ∑

π∈5E

tr Rdisc(π, f∞dg f )= Tg( f dg).

The main result of [Kottwitz ≥ 2012] is that if f∞dg∞ is stable cuspidal, then
Tg( f dg) = K( f dg). Since we may assume fE dg∞ =

∑
π∈5E

eπ , the following
conjecture is plausible:

Conjecture 1. Fix a regular discrete series representation π of G(R). As in
Section 2.4, let f∞dg∞ = eπ . Pick a measure f∞dg f with f∞ ∈ Cc(G(A f )),
and dg f dg∞ = dg the Tamagawa measure on G(A). Put f = f∞ f∞. Then

K( f dg)= tr Rdisc(π, f∞dg f ).
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In particular, if we choose a compact open subgroup K f of G(A f ), and put
f∞dg f = eK f , we obtain

mdisc(π, K f )= K(eπeK f ).

In this paper we give some evidence for this conjecture. Moreover, we will see
that K( f dg) is given by a closed algebraic expression, which is straightforward to
evaluate, so long as one can compute the transfers eH

π at the real place, and evaluate
the semisimple orbital integrals of f∞H dh f at the finite adeles.

6. Euler characteristics

We have finished our discussion of Kottwitz’s formula, and now solve the arith-
metic volume problem mentioned in the introduction. For simplicity we will write
K rather than K f for open compact subgroups of G(A f ) in this section.

Definition 15. For K a compact open subgroup of G(A f ), we define

χK (G)= v(G; dg∞)−1 voldg f (K )
−1τ(G)d(G)

if G is cuspidal. If G is not cuspidal, then χK (G)= 0.

Note that if K0 is another compact open subgroup of G(A f ), with K ⊆ K0

of finite index, then χK (G) = [K0 : K ]χK0(G). In this section we compute the
quantities χK (G) under some mild hypotheses on G.

6.1. Statement of theorem. Before getting embroiled in details, let us sketch the
idea of the computation of χK (G). The computation is considerably easier if K
is sufficiently small. In this case, χK (G) is the classical Euler characteristic of
a Shimura variety. This in turn may be written in terms of Euler characteristics
of an arithmetic subgroup of Gad(R). For G a semisimple and simply connected
Chevalley group, such Euler characteristics were computed in [Harder 1971].

Our work is to reduce to this case. Given a compact open subgroup K0 of
G(A f ), we will pick a sufficiently small subgroup K of K0. By the above we
know the analogue of χK (G) for Gsc. To compute χK0(G) we have two tasks: to
change between G and Gsc, and to change between K and K0.

The resulting formula entails several standard definitions:

Definition 16. Write G(R)+ ⊆ G(R) for the inverse image of Gad(R)
+. Let

G(Q)+ = G(Q) ∩ G(R)+. Write ν : G � C for the quotient of G by Gder.
Let C(R)† = ν(Z(R)), and C(Q)† = C(Q) ∩ C(R)†. Write ρ : Gsc → Gder for
the usual covering of Gder by Gsc. For K a compact open subgroup of G(A f ),
let K der

= Gder(A f ) ∩ K , and let K sc be the preimage of K in Gsc(A f ). Let
0K = G(Q)+ ∩ K , let 0der

K = Gder(Q)+ ∩ K , let 0sc
K = K sc

∩Gsc(Q)+, and write
0ad

K for the image of 0K in Gad(Q).
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In this section we avoid certain awkward tori for simplicity, preferring the fol-
lowing kind:

Definition 17. A torus T over Q is QR-equitropic if the largest Q-anisotropic torus
in T is R-anisotropic.

Here are some basic facts about QR-equitropic tori.

Proposition 5. If T is a QR-equitropic torus, then T (Q) is discrete in T (A f ). If
G is a reductive group, and the connected component Z◦ of the center of G is
QR-equitropic, then its derived quotient C is also QR-equitropic.

Proof. The first statement follows from [Milne 2005, Theorem 5.26]. The second
is straightforward. �

Serre [1971] introduces an Euler characteristic χalg(0) ∈ Q applicable to any
group 0 with a finite index subgroup 00 that is torsion-free and has finite cohomo-
logical dimension. In particular, it applies to our congruence subgroups 0 = 0K .
Here are some simple properties of χalg:

• For an exact sequence of the form

1→ A→ B→ C→ 1,

with A, B and C groups as above, we have χalg(B)= χalg(A) ·χalg(C).

• If 0 is a finite group, then χalg(0)= |0|
−1.

The theorem of this section relates χK (G) to χalg(0
sc
K ). More precisely:

Theorem 2. Let G be a reductive group over Q. Assume that Gsc has no compact
factors and that the connected component Z◦ of the center of G is QR-equitropic.
Let K0 ⊂ G(A f ) be a compact open subgroup. Then χK0(G) is equal to

|ker(ρ(Q))|[Gder(A f ) : Gder(Q)+K der
0 ]

· [0der
K0
: Gder(Q)+ ∩ ρ(K sc

0 )][C(A f ) : C(Q)†ν(K0)]

[G(R) : G(R)+]|ν(K0)∩C(Q)†|
χalg(0

sc
K0
).

Here ρ(Q) denotes the map ρ(Q) :Gsc(Q)→G(Q) on Q-points. The assump-
tion on the absence of compact factors is needed for strong approximation, and is
discussed in [Milne 2005].

When Gsc is a Chevalley group and 0sc
K0
= Gsc(Z), this reduces the problem to

the calculation of Harder [1971]:

Proposition 6. Let G be a simply connected, semisimple Chevalley group over Z.
Write m1, . . . ,mr for the exponents of its Weyl group �, and put 0 = G(Z). We
have

χalg(0)= (−
1
2)

r
|�R|

−1
r∏

i=1

Bmi+1.
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Here Bn denotes the n-th Bernoulli number. Recall that �R is the real Weyl
group of G.

6.2. Shimura varieties. To prove Theorem 2, we will use some basic Shimura
variety theory, which may be found in [Deligne 1979] or [Milne 2005]. Much of
the theory holds only for K sufficiently small. For simplicity, we will say “K is
small” rather than “K is a sufficiently small finite index subgroup of K0”.

For convenience, we gather here many simplifying properties of small K , which
we will often use without comment. For the rest of this section assume that Z(G)◦

is QR-equitropic, and that Gsc has no compact factors.

Proposition 7. Let K be small.

(i) K ∩ Z(Q)= {1}.

(ii) ν(K )∩C(Q)= {1}.

(iii) G(Q)∩ K Gder(A f )⊆ Gder(Q).

(iv) Gder(A f )∩G(Q)K = Gder(Q)Kder.

(v) K ∩Gder(Q)⊆ ρ(Gsc(Q)).

(vi) K ∩G(Q)⊆ G(Q)+.

Proof. The first two items follow because Z◦ and thus C are QR-equitropic.
Item (iii) follows from [Deligne 1979, Corollaire 2.0.12], and the next is a corol-
lary. Items (v) and (vi) follow from [Deligne 1979, Corollaire 2.0.5 and 2.0.14],
respectively. �

Recall that we have chosen a maximal compact subgroup KR of G(R).

Definition 18. Let

X = G(R)/K+R Z(R), X = G(R)/KR Z(R), SK = G(Q)\X ×G(A f )/K

be the double coset space obtained through the action q(x, g)k = (qx, qgk) of
q ∈ G(Q) and k ∈ K .

Similarly, let
SK = G(Q)\X ×G(A f )/K ,

with the action of G(Q)× K defined in the same way.
The component group of SK is finite and given (see [Deligne 1979, 2.1.3]) by

(6-1) π0(SK )= G(A f )/G(Q)+K .

There is some variation in the literature regarding the use of X versus X . Deligne
[1979] and Milne [2005] implicitly use X (in light of Deligne’s [Proposition 1.2.7]).
Harder [1971] uses X . Arthur [1989] uses

G(R)/K ′R.
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(Recall that K ′R = AG(R)
+KR.) Since for us Z◦ is QR-equitropic, we have

K ′R = Z(R)KR,

and so this quotient is equal to X .
Since we would like to combine results stated in terms of X with others stated

in terms of X , we must understand the precise relationship between the two. This
is the purpose of Proposition 8 below.

Definition 19. Let G be a real group, and Z its center. Write

(6-2) ad : G(R)→ G(R)/Z(R)

for the quotient map.

Note that ad(G(R)) has finite index in Gad(R).

Lemma 1. For this lemma, let G be a Zariski-connected reductive real group, and
KR a maximal compact subgroup of G(R). Let LR be a maximal compact subgroup
of Gad(R) containing ad(KR). Then the following hold:

(i) KR meets all the connected components of G(R).

(ii) KR ∩G(R)+ = K+R .

(iii) ad(KR) is a maximal compact subgroup of ad(G(R)).

(iv) ad(K+R )= L+R .

(v) KR Z(R)∩G(R)+ = K+R Z(R).

Proof. The first two statements follow from the Cartan decomposition [Satake
1980, Corollary 4.5].

For (iii), suppose that C is a subgroup of G(R) with ad(KR)⊆ ad(C) and ad(C)
compact. If ad(KR) 6= ad(C), there is an element a ∈ C Z(R)− KR Z(R). By the
Cartan decomposition, we may assume that a = exp(H), with H a semisimple
element of Lie(G), and α(H) real and nonnegative for every root α of G. Since
a /∈ Z(R), we have α(H) > 0 for some root α. Thus ad(C) is not compact, a
contradiction. Thus ad(KR)= ad(C), and statement (iii) follows.

For (iv), note that LR ∩ ad(G) = ad(KR), and therefore LR/ ad(KR) injects
into Gad(R)/ ad(G(R)). It follows that ad(K+R ) has finite index in LR. Since it is
connected, statement (iv) follows.

For (v), let g ∈ KR Z(R)∩G(R)+. Then ad(g)∈ LR∩Gad(R)
+, so by statement

(ii), we see ad(g) ∈ L+R = ad(K+R ). Thus g ∈ K+R Z(R). The other inclusion is
obvious. �

Proposition 8.

(i) The natural projection pX : X→ X has fibers of order [G(R) : G(R)+].
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(ii) Let X+ be a connected component of X. It is stabilized by G(R)+, and the
restriction of pX to X+ is a G(R)+-isomorphism onto X.

(iii) Let K be small. Then the natural projection pS : SK → SK has fibers of order
[G(R) : G(R)+].

Proof. Consider the natural map

(6-3) KR Z(R)/K+R Z(R)→ G(R)/G(R)+.

It is surjective because KR meets every connected component of G(R). It is injec-
tive because KR Z(R)∩G(R)+⊆ K+R Z(R). It follows that (6-3) is an isomorphism,
and the first statement follows.

We now prove the second statement. Note that pX is both an open and closed
map, so that pX (X+) is a component of X . Since KR meets every connected
component of G(R), the set X is connected. Therefore pX (X+) = X . By [Milne
2005, Proposition 5.7], there are [G(R) : G(R)+] connected components of X ,
each stabilized by G(R)+. Thus the fiber over a point in X is composed of exactly
one point from each component of X . So pX restricted to X+ is an isomorphism;
it is clear that it respects the G(R)+-action.

To prove the third statement, we require K to be sufficiently small, in the
following way. Suppose K∗ is an open compact subgroup of G(A f ) satisfying
K∗ ∩ G(Q) ⊆ G(Q)+. Let g1, . . . , gr be representatives of the finite quotient
group G(Q)K∗\G(A f ). Then we require that

(6-4) K ⊆
r⋂

i=1

g−1
i K∗gi .

Now for x ∈ X , let Fib(x) be the fiber of pX containing x . If we further fix
g ∈G(A f ), let Fib(x, g) be the fiber of pS containing (x, g). (Here we understand
(x, g) as an element of SK .) We claim that for all such x and g, the map

(6-5) Fib(x)→ Fib(x, g)

given by x ′ 7→ (x ′, g) is a bijection. This will imply the third statement.
For surjectivity of (6-5), pick (x ′, g′) ∈ Fib(x, g). Then there are q ∈ G(Q)

and k ∈ G(A f ) such that qpX (x ′) = pX (x) and qg′k = g. Let x ′′ = qx ′. Then
x ′′ ∈ Fib(x) and (x ′′, g)= (x ′, g′).

For injectivity of (6-5), suppose that (x1, g)= (x2, g) in SK with x1, x2 ∈Fib(x).
Then in particular, there is an element q ∈ G(Q) and k ∈ K such that qgk = g and
qx1 = x2. Write g = q0k0gi with q0 ∈ G(Q) and k0 ∈ K∗. Then we have

q(q0k0gi )k = q0k0gi ,
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which we rewrite as
q−1

0 qq0 = k0gi k−1g−1
i k−1

0 .

Using this and (6-4) we see that q−1
0 qq0 ∈ G(Q)∩ K∗ ⊆ G(Q)+. Since G(Q)+ is

normal in G(Q), in fact q ∈ G(Q)+.
Meanwhile, pick ξ1, ξ2 ∈ G(R) representing x1 and x2, respectively. Since

x1, x2 ∈ Fib(x) we have ξ−1
1 ξ2 ∈ KR Z(R). Write ξ2 = ξ1kz, with k ∈ KR and

z ∈ Z(R). Since qx1 = x2, we have ξ−1
2 qξ1 ∈ K+R Z(R), and thus z−1k−1ξ−1

1 qξ1 ∈

K+R Z(R). Using the fact that q is in the normal subgroup G(R)+ of G(R), it
follows that k ∈ G(R)+ ∩ KR ⊆ K+R Z(R). Thus x1 = x2, as desired. �

Proposition 9 (Harder; see [Harder 1971; Serre 1971]). If G is semisimple and K
is small, then χtop(0K \X)= χalg(0K ).

Proposition 10 [Arthur 1989; Goresky et al. 1997]. If K is small, then we have
χK (G)= χtop(SK ).

6.3. Computations. The next three lemmas will allow us to convert our computa-
tion for K0 to a computation for K .

Lemma 2. If K is small, then

|C(Q)†\C(A f )/ν(K )|

= [ν(K0) : ν(K )]|ν(K0)∩C(Q)†|−1
|C(Q)†\C(A f )/ν(K0)|.

Proof. This follows from the exactness of the sequence

1→ ν(K0)∩C(Q)†→ ν(K0)/ν(K )→ C(Q)†\C(A f )/ν(K )

→ C(Q)†\C(A f )/ν(K0)→ 1. �

Lemma 3. If K ⊆ K0 is small, then

(6-6) [0ad
K0
: 0ad

K ] =
[0K0 : ρ(0

sc
K0
)][K0 : K ]

|K0 ∩ Z(Q)|[ν(K0) : ν(K )][K der
0 : K

derρ(K sc
0 )]

.

In the proof we refer to conditions of Proposition 7.

Proof. Consider the map 0der
K0
/0der

K → 0ad
K0
/0ad

K .
The kernel of this map sits in the middle of the exact sequence

1→ 0der
K0
∩ Z(Q)→ (0K Z(Q)∩0der

K0
)/0der

K

→ (0K Z(Q)∩0der
K0
)/0der

K (0der
K0
∩ Z(Q))→ 1,

using condition (i). This last quotient is trivial, because actually 0K = 0
der
K by

condition (iii).
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We have established the exactness of the sequence

1→ 0der
K0
∩ Z(Q)→ 0der

K0
/0der

K → 0ad
K0
/0ad

K → 0K0 Z(Q)/0der
K0

Z(Q)→ 1.

The last quotient is isomorphic to 0K0/(Z(Q) ∩ K0)0
der
K0

, which itself sits inside
the exact sequence

1→ K0 ∩ Z(Q)/0der
K0
∩ Z(Q)→ 0K0/0

der
K0
→ 0K0/(Z(Q)∩ K0)0

der
K0
→ 1.

The quantity |0der
K0
∩ Z(Q)| cancels, and it follows that

(6-7) [0ad
K0
: 0ad

K ] =
[0der

K0
: 0der

K ] · [0K0 : 0
der
K0
]

|K0 ∩ Z(Q)|
.

By condition (v) we have

1→ ρ(0sc
K0
)/ρ(0sc

K )→ 0der
K0
/0der

K → 0der
K0
/ρ(0sc

K0
)→ 1.

Strong approximation tells us that Gsc(Q) is dense in Gsc(A f ). Therefore we
have isomorphisms

ρ(0sc
K0
)/ρ(0sc

K )
∼
→0sc

K0
/0sc

K
∼
→ K sc

0 /K sc ∼
→ ρ(K sc

0 )/ρ(K
sc).

Combining this with the exact sequences

1→ K der
0 /K der

→ K0/K → ν(K0)/ν(K )→ 1

and

(6-8) 1→ ρ(K sc
0 )/ρ(K

sc)→ K der
0 /K der

→ K der
0 /K derρ(K sc

0 )→ 1,

we obtain

[0der
K0
: 0der

K ] =
[0der

K0
: ρ(0sc

K0
)][K0 : K ]

[K der
0 : K

derρ(K sc
0 )][ν(K0) : ν(K )]

.

Plugging this into (6-7) gives the lemma. �

Corollary 1. Suppose that K ⊆ K0 is small, and g ∈ G(A f ) with gK g−1
⊆ K0

also small. Then
[0ad

K0
: 0ad

gK g−1] = [0
ad
K0
: 0ad

K ].

Proof. We show that the expression (6-6) does not change when K is replaced with
gK g−1. Clearly ν(K )= ν(gK g−1). Since

[K0 : K ] = voldg f (K0)/voldg f (K ),

we have [K0 : gK g−1
] = [K0 : K ]. Finally, we claim that

[K der
0 : (gK g−1)derρ(K sc

0 )] = [K
der
0 : K

derρ(K sc
0 )].
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From the exact sequence (6-8), it is enough to show that [K der
0 : (gK g−1)der

] =

[K der
0 :K

der
] and [ρ(K sc

0 ) :ρ((gK g−1)sc)]= [ρ(K sc
0 ) :ρ(K

sc)]. These hold because
(gK g−1)der

= gK derg−1 and ρ((gK g−1)sc)= gρ(K sc)g−1. �

Lemma 4. If G is semisimple and K is small, then

|π0(SK )| = [K0 : Kρ(K sc
0 )][0K0 : G(Q)+ ∩ ρ(K

sc
0 )]|π0(SK0)|.

Proof. The kernel of the projection π0(SK )� π0(SK0) is isomorphic to

K0/(K G(Q)+ ∩ K0).

By [Deligne 1979, Section 2.1.3], we have ρ(Gsc(A f )) ⊆ K G(Q)+. Using the
exact sequence

1→ (K0 ∩ K G(Q)+)/Kρ(K sc
0 )→ K0/Kρ(K sc

0 )→ K0/(K G(Q)+ ∩ K0)→ 1,

we are reduced to computing the order of

(K0 ∩ K G(Q)+)/Kρ(K sc
0 )
∼
→0K0/(Kρ(K

sc
0 )∩G(Q)+).

This group sits in the sequence

1→ (G(Q)+ ∩ Kρ(K sc
0 ))/(G(Q)+ ∩ ρ(K

sc
0 ))

→ 0K0/(G(Q)+ ∩ ρ(K
sc
0 ))→ 0K0/(Kρ(K

sc
0 )∩G(Q)+)→ 1.

We claim the kernel is trivial. Note that Kρ(K sc
0 )⊆ Kρ(Gsc(Q)K sc) by strong

approximation. So

G(Q)+ ∩ Kρ(K sc
0 )⊆ G(Q)+ ∩ Kρ(Gsc(Q))

= G(Q)+ ∩ (K ∩G(Q))ρ(Gsc(Q)).

Since K ∩G(Q)⊆ ρ(Gsc(Q)) by Proposition 7(v), we have G(Q)+∩ Kρ(K sc
0 )⊆

G(Q)+ ∩ ρ(K sc
0 ). This proves the claim, and the lemma follows. �

In the course of proving the theorem, we will pass to the adjoint group to ap-
ply Harder’s theorem (Proposition 9), but lift to Gsc to apply Harder’s calculation
(Proposition 6). We must record the difference between Serre’s Euler characteristic
at Gad and Gsc.

Lemma 5. We have

χalg(0
ad
K0
)=
|ker(ρ(Q))||K0 ∩ Z(Q)|
[0der

K0
: ρ(0sc

K0
)][0K0 : 0

der
K0
]
χalg(0

sc
K0
).

Proof. This follows from the properties of χalg mentioned earlier. �
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Proof of Theorem 2. Pick a set g1, . . . , gr of representatives of π0(SK0), viewed as
a quotient of G(A f ) as in (6-1).

Let K be small subgroup of finite index in K0. Possibly by intersecting finitely
many conjugates of K , we may assume that

• K is normal in K0 and

• gi K g−1
i is a small subgroup of K0 for all i .

By Proposition 10, χK (G) = χtop(SK ). By Proposition 8, this is equal to
[G(R) : G(R)+]−1χtop(SK ). Write 0g for 0ad

gK g−1 . By [Deligne 1979, 2.1.2], the
components of SK are each isomorphic to 0g\X+, where X+ is a component of X .
Here g runs over π0(SK ).

By Proposition 8, the topological spaces 0g\X+ and 0g\X are isomorphic.
Therefore we have χtop(0g\X+)= χtop(0g\X).

Applying Proposition 9 to Gad, this is equal to χalg(0g). Therefore

χK (G)= [G(R) : G(R)+]−1
∑

g∈π0(SK )

χalg(0g).

Every element in π0(SK )may be written as the product of an element of π0(SK0)

with an element of K0. Since K is normal in K0, the groups 0gk0 and 0g are equal
for k0 ∈ K0. It follows that

χK (G)=
|π0(SK )|

[G(R) : G(R)+]|π0(SK0)|

r∑
i=1

χalg(0gi ).

By Corollary 1 we have

χalg(0gi )= [0
ad
K0
: 0gi ]χalg(0

ad
K0
)= [0ad

K0
: 0ad

K ]χalg(0
ad
K0
).

This gives

χK (G)= [G(R) : G(R)+]−1
[0ad

K0
: 0ad

K ]|π0(SK )|χalg(0
ad
K0
).

The component group π0(SK ) fits into the exact sequence

1→ Gder(A f )/(Gder(A f )∩G(Q)+K )→ π0(SK )→ C(Q)†\C(A f )/ν(K )→ 1

This gives

χK (G)=[G(R) :G(R)+]−1
|π0(SK der)||C(Q)†\C(A f )/ν(K )|[0ad

K0
:0ad

K ]χalg(0
ad
K0
).

where here π0(SK der)= Gder(A f )/Gder(Q)+K der.
Using χK0(G)= [K0 : K ]−1χK (G) together with Lemma 2 gives

χK0(G)=
|π0(SK der)|[ν(K0) : ν(K )]|C(Q)†\C(A f )/ν(K0)|[0

ad
K0
: 0ad

K ]

[G(R) : G(R)+]|ν(K0)∩C(Q)†|[K0 : K ]
χalg(0

ad
K0
).
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By Lemmas 3 and 5,

χK0(G)=
|ker(ρ(Q))||π0(SK der)||C(Q)†\C(A f )/ν(K0)|

[G(R) : G(R)+]|ν(K0)∩C(Q)†|[K der
0 : K

derρ(K sc
0 )]

χalg(0
sc
K0
).

The theorem then follows from Lemma 4. �

6.4. Examples. We now use Theorem 2 and Proposition 6 to explicitly compute
some cases of χK0(G). Recall that we write O f for the integer points of A f .

Corollary 2. If T is a torus and K0 ⊂ T (A f ) is a compact open subgroup, then

χK0(T )= |T (Q)\T (A f )/K0| · |K0 ∩ T (Q)|−1.

Let T = Gm , and K0 = T (O f ). Then χK0(T )= 1/2.
Let T be the norm-one subgroup of an imaginary quadratic extension E of Q.

Let K0 = T (O f ). Write O(E) for the integer points of the adeles AE over E . Then
T (Q)\T (A f )/K0 injects into E×\A×E, f /O(E)

×, which is in bijection with the class
group. If the class number of E is trivial, it follows that χK0(T )= |T (Z)|

−1.

Corollary 3. If G is semisimple and simply connected, then

χK0(G)= [G(R) : G(R)+]
−1χalg(0K0).

Let G = SL2 and K0 = G(O f ). Then

χK0(G)= χalg(SL2(Z))=−
1
2 B2 =−2−23−1.

Let G = Sp4 and K0 = G(O f ). Then

χK0(G)= χalg(Sp4(Z))=−
1
8 B2 B4 =−2−53−25−1.

When the derived group is simply connected the calculation is not much harder.

Corollary 4. If Gder is simply connected, then

χK0(G)=
|C(Q)†\C(A f )/ν(K0)|

[G(R) : G(R)+]|ν(K0)∩C(Q)†|
χalg(0

der
K0
).

Let G = GL2 and K0 = G(O f ). Then χK0(G)=
1
2χalg(SL2(Z))=−2−33−1.

Let G=GSp4 and K0=G(O f ). Then χK0(G)=
1
2χalg(Sp4(Z))=−2−63−25−1.

Lemma 6. If all the points of ker ρ are Q-rational, then

[0der
K0
: Gder(Q)+ ∩ ρ(K sc

0 )] = 1.

Proof. By [Deligne 1979, Section 2.0.3], we have an injection

Gder(Q)/ρ(Gsc(Q)) ↪→ H 1(im(Gal(Q/Q)), (ker ρ)(Q)),
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using the cohomology group defined in that paper. We also have an injection

0der
K0
/(Gder(Q)+ ∩ ρ(K sc

0 )) ↪→ Gder(Q)/ρ(Gsc(Q)).

Since all the points of ker ρ are Q-rational, all these groups are trivial. �

Let G = PGL2 and K0 = G(O f ). The only nontrivial factors in the formula
are [G(R) : G(R)+] = 2, |ker ρ(Q)| = 2, and χalg(SL2(Z)) = −2−23−1. Thus
χK0(G)=−2−23−1.

7. The case of SL2

Let G = SL2, defined over Q. Let A be the subgroup of diagonal matrices in G,
and let T be the maximal elliptic torus of G given by matrices

(7-1) γa,b =

(
a −b
b a

)
,

with a2
+ b2
= 1.

The characters and cocharacters of T are both isomorphic to Z. We identify
Z ∼→ X∗(T ) via n 7→ χn , where χn(γa,b) = (a+ bi)n . We specify Z ∼→ X∗(T ) by
identifying n with the cocharacter taking α to diag(α, α−1). The roots of T in G
are then {±2}, and the coroots of T in G are {±1}. The Weyl group � of these
systems has order 2 and the compact Weyl group�R is trivial. Thus each L-packet
of discrete series has order 2. The group dual to G is Ĝ = PGL2(C) in the usual
way.

Pick an element ξ ∈ G(C) such that

Ad(ξ)
(

a −b
b a

)
=

(
a+ ib

a− ib

)
,

and put BT = Ad(ξ−1)BA. Then BT is a Borel subgroup of G(C) containing T .
Consider the Langlands parameter ϕG : WR→ Ĝ given by ϕG(τ ) =

( 0
1

1
0

)
× 1,

and
ϕG(z)= diag(zn, zn)× z = zµzν × z,

where µ corresponds to n ∈ X∗(T̂ ) ∼→ X∗(T ) and ν corresponds to −n. The corre-
sponding representation E of G(C) has highest weight λB = n− 1 ∈ X∗(T ). It is
the (n−1)-st symmetric power of the standard representation. Its central character
is λE(z)= zn−1, where z =±1.

We put πG = π(ϕG, BT ), in the notation from Section 2.2. Write π ′G for the
other discrete series representation in 5E . Thus the L-packet determined by ϕG is

5E = {πG, π
′

G}.

We will put f∞dg∞ = eπG as in Section 2.4.
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7.1. Main term. First we consider the terms STg( f dg,±1).
We have S8G(1, eπG )=−nv(G; dg∞)−1, and so

STg( f dg,±1,G)= (±1)nnv(G; dg∞)−1 f∞(±1).

We have S8A(1, eπG )=−v(G; dg∞)−1, and so

STg( f dg,±1, A)= (±1)n 1
2v(G; dg∞)−1 f∞A (±1).

If γ is a regular semisimple element of G(C) with eigenvalues α and α−1, then
according to the Weyl character formula,

tr(γ; E)=
αn
−α−n

α−α−1 .

Define t4(n)= tr(diag(i,−i); E), where i is a fourth root of unity. Then t4(n)=0
if n is even, and t4(n)= (−1)(n−1)/2 if n is odd.

Similarly, define t3(n) = tr(diag(ζ, ζ 2); E), where ζ is a third root of unity.
Then t3(n)= [0, 1,−1; 3]n , meaning that

t3(n)=


0 if n ≡ 0,
1 if n ≡ 1,
−1 if n ≡ 2.

Here the congruence is modulo 3.
There are three stable conjugacy classes of elliptic γ∈G(Q), which we represent

by

γ3 =

(
−1 −1

1 0

)
, γ4 =

(
0 −1
1 0

)
, γ6 =

(
0 −1
1 1

)
.

Note that −γ4 ∼ γ4, γ2
6 = γ3, and −γ3 ∼ γ6.

Write T3 for the elliptic torus consisting of elements(
a a− b

b− a b

)
, with a2

− ab+ b2
= 1.

We have S8G(γ3, eπG )=−v(T3)
−1t3(n), and so

STg( f dg, γ3,G)=−v(T3)
−1 SOγ3( f∞dg f )t3(n).

We have S8G(γ4, eπG )=−v(T )
−1t4(n), and so

STg( f dg, γ4,G)=−v(T )−1 SOγ4( f∞dg f )t4(n).

Finally S8G(γ6, eπG )=−v(T3)t3(n)(−1)n−1, and so

STg( f dg, γ6,G)=−v(T3)
−1 SO−γ3( f∞dg f )t3(n)(−1)n−1.
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Thus, STg( f dg) is equal to the sum

−nv(G; dg∞)−1 f∞(1)+ nv(G; dg∞)−1 f∞(−1)(−1)n − 1
2v(A; da∞)−1 f∞A (1)

+
1
2v(A; da∞)−1 f∞A (−1)(−1)n − v(T3)

−1 SOγ3( f∞dg f )t3(n)

−v(T )−1 SOγ4( f∞dg f )t4(n)+ v(T3)
−1 SO−γ3( f∞dg f )t3(n)(−1)n.

7.2. Endoscopic terms.

Definition 20. Let E be an imaginary quadratic extension of Q. Write HE for the
kernel of the norm map ResE

Q Gm→ Gm .

The HE comprise the (proper) elliptic endoscopic groups for G = SL2. For
each H = HE we have τ(H) = 2 and |Out(H, s, η)| = 1; see [Kottwitz 1984,
Section 7]. Therefore ι(G, H) = 1

2 . The character identities of Shelstad [1982]
give eH

πG
= eχn + eχ−1

n
.

Write f H dh= f∞H dh f eH
πG

, where f∞H dh f is the transfer of f∞dg f . Choose
dh∞ so that dh f dh∞ is the Tamagawa measure on H . Then we obtain

STg( f H dh)= 2v(H ; dh∞)
∑
γH

f∞,H (γH )TrE
Q(γ

n
H ),

the sum being taken over γH ∈ H(Q).

Remark. Consider the local transfer, where f pdgp is a spherical (that is, invariant
under G(Zp)) measure on G(Qp). Then if H ramifies over p, a representation πp

in one of the L-packets transferring from H will also be ramified. This means that
trπp( f pdgp)= 0. So we take f H

p = 0 in this case. Thus

K( f dg)= STg( f dg);

there is no (proper) endoscopic contribution. This is compatible with the fact that
mdisc is constant on L-packets in this case.

7.3. Case of 0 = SL2(Z). We take K f = K0 to be the integral points of G(A f ).
Also let K A = K0 ∩ A(A f ) and KT = K0 ∩ T (A f ). Each of these breaks into a
product of local groups K0,p, etc.

We put f∞dg f = eK0 . Note that f∞(g) = f∞(−g) for all g ∈ G(A f ) and
f∞A (a)= f∞A (−a) for all a ∈ A(A f ). Therefore, if n is even, then STg( f dg)= 0.
So assume henceforth that n is odd. Then our expression is equal to

−2nv(G; dg∞)−1 f∞(1)− v(A; da∞)−1 f∞A (1)

− 2v(T3)
−1 SOγ3( f∞dg f )t3(n)+ v(T )−1 SOγ4( f∞dg f )(−1)(n+1)/2.
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We have

−2nv(G; dg∞)−1 f∞(1)=−2nv(G; dg∞)−1 voldg f (K0)
−1

=−2nτ(G)−1d(G)−1χK0(G)=
1

12 n,

−v(A; da∞)−1 f∞A (1)=−v(A; da∞)−1 volda f (K A)
−1

=−τ(A)−1d(A)−1χK A(A)=−
1
2 .

Now we consider SOγ4( f∞dg f ; dt f ). We have 1− α(γ4) = 2 for the positive
root α of G. Therefore by Proposition 1, the local orbital integrals are equal to
voldtp(KT,2)

−1 for p 6= 2. At p = 2, one has two stable conjugacy classes γ4 and
γ′4 in the conjugacy class of γ4, where γ′4 =

( 0
−1

1
0

)
.

It follows that

SOγ4( f∞dg f ; dt f )=
(
Oγ4(eK2; dt2)+Oγ′4

(eK2; dt2)
)∏

p 6=2

voldtp(T (Qp)∩K p)
−1.

To compute the local integral at p = 2, we reduce to a GL2-computation by the
following lemma. Its proof is straightforward.

Lemma 7. Let F be a p-adic local field with ring of integers O. Put G = SL2,
G̃ = GL2, and Z for the center of G̃. Pick Haar measures dg on G(F), dg̃ on
G̃(F), and dz on Z(F). Let f ∈ Cc(Z(F)\G̃(F)). Then

voldz(Z(O))

voldg̃(G̃(O))

∫
Z(F)\G̃(F)

f (g)
dg̃
dz
= voldg(G(O))−1

|O×/O×2
|
−1
∑
α

∫
G(F)

f (tαg)dg.

Here α runs over the square classes in F×, and tα = diag(α, 1).

Proposition 11. We have

Oγ4(eK2; dt2)+ Oγ′4
(eK2; dt2)= 2 voldt2(KT,2)

−1.

Proof. Write f̃2 for the characteristic function of GL2(Z2)Z(Q2). By the lemma,∫
Z(Q2)\GL2(Q2)

f̃2(g−1γ4g)
dg̃
dz
=voldt2(KT,2)|Z

×

2 /Z
×2
2 |
−1
∑
α

OAd(tα)(γ4)(eK0; dt2).

Here we are normalizing dg̃ and dz so that voldz(Z(Z2))= voldg̃(GL2(Z2))= 1.
In fact, Ad(tα)(γ4) is conjugate in G(Q2) to γ4 if and only if α is a norm from

Q2(
√
−1), and in the contrary case, it is conjugate to γ′4. It follows that∫

Z(Q2)\GL2(Q2)

f̃2(g−1γ4g)
dg̃
dz
=
(
Oγ4(eK2; dt2)+ Oγ′4

(eK2; dt2)
)

voldt2(KT,2).

By an elliptic orbital integral computation in [Kottwitz 2005], the left hand side
is equal to 2. �
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We conclude that

SOγ4( f∞dg f ; dt f )= 2 voldt f (T (A f )∩ K0)
−1,

and so

−v(T )−1 SOγ4( f∞dg f )t4(n)=−2v(T )−1 voldt f (T (A f )∩ K0)
−1t4(n)

=−2τ(T )−1χKT (T )t4(n)= 2−2(−1)(n+1)/2.

Similarly, we find that

SOγ3( f∞dg f )= 2 voldt3, f (T3(A f )∩ K0)
−1,

and so
−2v(T3)

−1 SOγ3( f∞dg f )t3(n)=−3−1t3(n).

We conclude that in this case,

STg( f dg)= 1
12 n− 1

2 +
1
4(−1)(n+1)/2

−
1
3 t3(n).

Note that for n > 1 this agrees precisely with the discrete series multiplicities.
For n= 1, this expression is equal to−1, but of course in this case π is not regular.

8. Real tori

We have finished our discussion of SL2. Starting with this section, we begin to
work out the example of GSp4. Various isomorphisms of tori must be written
carefully, so we begin by explicitly working out their parametrizations.

8.1. The real tori Gm, S, and T1. We identify the group of characters of Gm with
Z in the usual way, via (a 7→ an)↔ n.

Let A0=Gm×Gm , viewed as a maximal torus in GL2 in the usual way. Via the
identification above we obtain X∗(A0)∼= Z2 and X∗(A0)∼= Z2.

Let S = ResC
R Gm . Recall that ResC

R Gm denotes the algebraic group over R

whose A-points are (A⊗C)× for an R-algebra A. By choosing the basis {1, i} of
C over R, we have an injection (A×C)×→GL(A⊗C)∼=GL2(A). Thus we have
an embedding ιS : S→ GL2 as an elliptic maximal torus.

There is a ring isomorphism ϕ :C⊗C∼→C×C such that ϕ(z1⊗z2)= (z1z2, z1z2),
which restricts to an isomorphism ϕ : S(C) ∼→Gm(C)×Gm(C). This isomorphism
is also actualized by conjugation within GL2(C). Fix x ∈ GL2(C) so that

Ad(x)
(

a −b
b a

)
=

(
a+ ib

a− ib

)
;

then Ad(x) : S(C) ∼→ A0(C) is identical to ϕ, viewing these two tori under the
embeddings above.
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We fix the isomorphism from Z2 to X∗(S) that sends (1, 0) and (0, 1) to the char-
acter ϕ composed with projection to the first and, respectively, second component
of Gm×Gm . Similarly we fix the isomorphism from Z2 to X∗(S) that sends (1, 0)
and (0, 1) to the cocharacters a 7→ ϕ−1(a, 1) and a 7→ ϕ−1(1, a), respectively.

Write Ŝ for the Langlands dual torus to S. It is isomorphic to C× × C× as
a group, with 0R-action defined by σ(α, β) = (β, α). We fix the isomorphism
X∗(S) ∼→ X∗(Ŝ) given by (a, b) 7→ (z 7→ (za, zb)).

We have an inclusion ιS : Gm → S given on A-points by a 7→ a⊗ 1. Write σS

for the automorphism of S given by 1⊗ σ on A-points. Note that the fixed point
set of σS is precisely the image of ιS .

Write Nm : S→ Gm for the norm map given by s 7→ s · σS(s). Note that the
product s · σS(s) is in ιS(Gm), which we identify here with Gm . One computes
that the norm map induces the map n 7→ (n, n) from X∗(Gm) to X∗(S) with the
identifications above.

Write T1 for the kernel of this norm map. Its group of characters fits into the
exact sequence

0→ X∗(Gm)→ X∗(S)→ X∗(T1)→ 0.

We identify X∗(T1) with Z so that the restriction map X∗(S)→ X∗(T1) is given
by (a, b) 7→ a− b. The corresponding map Ŝ→ T̂ is given by (α, β) 7→ αβ−1.

8.2. The kernel and cokernel tori.

Definition 21. We define Aker to be the kernel of the map from Gm
4
→Gm given

by (a, b, c, d) 7→ (ab)/(cd). We define Acok to be the cokernel of the map from
Gm to Gm

4 given by x 7→ (x, x, x−1, x−1). Write Tker for the kernel of the map

S× S→ Gm, (α, β) 7→ Nm(α/β),

and Tcok for the cokernel of the map

Gm→ S× S, x 7→ (ιS(x), ιS(x−1)).

Identifying X∗(Gm) and X∗(Gm) with Z as before, we obtain exact sequences

0→ X∗(Aker)→ Z4
→ Z→ 0,

0→ Z→ Z4
→ X∗(Aker)→ 0,

0→ Z→ Z4
→ X∗(Acok)→ 0,

0→ X∗(Acok)→ Z4
→ Z→ 0.

Here the maps from Z→ Z4 are both n 7→ (n, n,−n,−n), and the maps from
Z4
→ Z are both (n1, n2, n3, n4) 7→ n1+ n2− n3− n4.



STABLE TRACE FORMULAS AND DISCRETE SERIES MULTIPLICITIES 471

Thus we obtain isomorphisms

gkc : X∗(Aker)
∼
→ X∗(Acok) and gck : X∗(Acok)

∼
→ X∗(Aker),

obtained from the exact sequences defining Aker and Acok. In this way we view
Acok(C) and Aker(C) as the dual tori Âker and Âcok, respectively.

The isomorphism ϕ × ϕ : S(C) × S(C) ∼→ (C×)4 gives isomorphisms 8ker :

Tker(C)
∼
→ Aker(C) and 8cok : Tcok(C)

∼
→ Acok(C).

Consider the map from S× S to S× S given by (a, b) 7→ (ab, aσS(b)). This fits
together with the previous maps to form an exact sequence

1→ Gm→ S× S→ S× S→ Gm→ 1,

and yields an isomorphism 9T : Tcok
∼
→ Tker.

Consider the map from Gm
4 to Gm

4 given by (a, b, c, d) 7→ (ac, bd, ad, bc).
This fits together with the previous maps to form an exact sequence

1→ Gm→ Gm
4
→ Gm

4
→ Gm→ 1

and yields an isomorphism 9A : Acok
∼
→ Aker. On C-points we have

(8-1) 8ker ◦9T (C)=9A(C) ◦8cok.

9. Structure of GSp4(F)

9.1. The general symplectic group. Let F be a field of characteristic 0. Put

J =


1

−1
1

−1

 .
Take G to be the algebraic group GSp4 = {g ∈ GL4 | g Jgt

= µJ, some µ =
µ(g) ∈ Gm}. It is closely related to the group G ′ = Sp4 = {g ∈ GSp4 | µ(g)= 1}.
Write A for the subgroup of diagonal matrices in G, and Z for the subgroup of
scalar matrices in G.

We fix the isomorphism ιA : Aker
∼
→ A given by

(9-1) (a, b, c, d) 7→ diag(a, c, d, b).

Let BA be the Borel subgroup of upper triangular matrices in G.

9.2. Root data. Although A and Aker are isomorphic tori, we prefer to parame-
trize their character and cocharacter groups differently, since the isomorphism ιA

permutes the order of the components.
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So we express X∗(A)= Hom(A,Gm) as the cokernel of the map

(9-2) i : Z→ Z4,

given by i(n)= (n,−n,−n, n).
We write e1, . . . , e4 for the images in X∗(A) of (1, 0, 0, 0), . . . , (0, 0, 0, 1).

Thus e1 + e4 = e2 + e3. The basis 1G of simple roots corresponding to BA is
{e1−e2, e2−e3}, with corresponding positive roots {e1−e2, e1−e4, e2−e3, e1−e3}.
The half-sum of the positive roots is then ρB =

1
2(4e1− e2− 3e3) ∈ X∗(A).

Definition 22. Write � for the Weyl group of A in G. Write w0, w1, w2 for the
elements of � that conjugate diag(a, b, c, d) ∈ A to

diag(d, c, b, a), diag(a, c, b, d), diag(b, a, d, c),

respectively.

� has order 8 and is generated by w0, w1, and w2.
Express X∗(A) as the kernel of the map

(9-3) p : Z4
→ Z, (a, b, c, d) 7→ a− b− c+ d.

Let ϑ1= (1, 0, 0,−1) and ϑ2= (0, 1,−1, 0)∈ X∗(A). Then the coroots of A in G
are given by R∨ = R∨(A,G) = {±ϑ1± ϑ2,±ϑ1,±ϑ2}. The basis 1∨G of simple
coroots dual to 1G is {ϑ1 − ϑ2, ϑ2}. Then (X∗(A),1G, X∗(A),1∨G) is a based
root datum for G.

9.3. The dual group Ĝ. We will take Ĝ to be GSp4(C), with trivial L-action, and
the same based root data as already discussed for G. The isomorphism

(9-4) X∗(A)
(ιA)

∗

−−→ X∗(Aker)
(9A)

∗

−−−→ X∗(Acok)
gck
−→ X∗(Aker)

(ιA)∗
−−→ X∗(A)

(and its inverse) furnish the required isomorphism of based root data. Let us write
this out more explicitly. Note that (ιA)∗ and (ιA)∗ are given by

(ιA)∗(a, b, c, d)= (a, c, d, b) and (ιA)
∗(a, b, c, d)= (a, d, b, c).

The isomorphism in (9-4) is induced from the linear transformation6 :Z4
→Z4

represented by the matrix 
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ,
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which gives the exact sequence 0 → Z
i
−→ Z4 6

−→ Z4 p
−→ Z → 0, and thus an

isomorphism

(9-5) X∗(A)
6

−
∼
→ X∗(A).

This agrees with the isomorphism used in [Roberts and Schmidt 2007, Section 2.3].
We have 6(e1−e2)= ϑ2 and 6(e2−e3)= ϑ1−ϑ2. Thus the based root datum

above is self-dual. Note that 6(ρ)= 3
2ϑ1+

1
2ϑ2. Write Â for A(C); it is the torus

dual to A via the isomorphism in (9-5).

10. Discrete series for GSp4(R)

10.1. The maximal elliptic torus T of G. Consider the map GL2×GL2→ GL4

given by

(
a b
c d

)
×

(
e f
g h

)
7→


a b

e f
g h

c d

 .
The composition of this with the natural inclusion S × S→ GL2×GL2 gives

an embedding of S × S into GL4. This restricts to an embedding of Tker into G,
whose image is an elliptic maximal torus T of G. Thus we have ιT : Tker

∼
→ T .

T (R) is the subgroup of matrices of the form

(10-1) γr,θ1,θ2 =


r cos(θ1) −r sin(θ1)

r cos(θ2) −r sin(θ2)

r sin(θ2) r cos(θ2)

r sin(θ1) r cos(θ1)


for r > 0 and angles θ1, θ2.

Pick an element ξ ∈ G(C) so that

Ad(ξ)


a −b

c −d
d c

b a

=


a+ ib
c+ id

c− id
a− ib

 ,
and put BT =Ad(ξ−1)BA. Then BT is a Borel subgroup of GC containing T , and
Ad(ξ) : T (C) ∼→A(C) is the canonical isomorphism associated to the pairs (T, BT )

and (A, BA). The definitions have been set up so that

ιA ◦8ker = Ad(ξ) ◦ ιT .
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We identify A(C) as the torus dual T̂ to T via the isomorphisms

(10-2) X∗(T )
(ιT )

∗

−−→ X∗(Tker)
8∗ker
−−→ X∗(Aker)

(9A)
∗

−−−→ X∗(Acok)
gck
−→ X∗(Aker)

(ιA)∗
−−→ X∗(A).

10.2. Real Weyl group. We use Ad(ξ) to identify � with the Weyl group of T (C)
in G(C). Recall that �R denotes the Weyl group of T (R) in G(R). By [Warner
1972, Proposition 1.4.2.1], we have

�R = NKR
(T (R))/(T (R)∩ KR).

When discussing maximal compact subgroups of GSp4(R), it is convenient
to use a different realization of these symplectic groups. Following [Pitale and
Schmidt 2009], take for J the symplectic matrix

1
1

−1
−1

 .
Take for KR the standard maximal compact subgroup of GSp4(R) (the intersection
of G(R) with the orthogonal group), and SKR the intersection of KR with Sp4(R).
One finds that SKR is isomorphic to the compact unitary group U2(R), and yields
the Weyl group element w2. The element diag(1, 1,−1,−1) ∈ NG(R)(T (R))∩KR

gives w0 ∈ �R, and these two elements generate �R. This subgroup has index 2
in �, and does not contain the element w1.

10.3. Admissible embeddings. Consider the admissible embedding ηB :
LT→ LG.

Write θ(z)= z/|z| for z ∈C×. We have LT = T̂ oWR, with τ acting as the longest
Weyl group element on T̂ .

Writing LT = T̂ ×WR, we put

ηB(1× z)= diag(θ(z)3, θ(z), θ(z)−1, θ(z)−3)× z for z ∈ C× ∼=WC,

ηB(t̂ × 1)= t̂ × 1 for t̂ ∈ T̂ ,

ηB(1× τ)= J × τ.

10.4. Elliptic Langlands parameters. Let a, b be odd integers with a > b > 0.
Let t be an even integer. Put

µ= 1
2 [(t, t, t, t)+ (a, b,−b,−a)] and ν = 1

2 [(t, t, t, t)+ (−a,−b, b, a)],

viewed in X∗(T̂ )C. Then we may define a Langlands parameter ϕG :WR→
L G by

ϕG(z)= zµzν × z = |z|t diag(θ(z)a, θ(z)b, θ(z)−b, θ(z)−a)× z,
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and ϕG(τ )= J × τ .
Note that the centralizer of ϕG(WC) in Ĝ is simply Â, and that 〈µ, α〉 is positive

for every root of A that is positive for BA(C). Thus ϕG determines the pair ( Â, B̂A),
where B̂A is simply BA(C).

Define a Langlands parameter ϕB :WR→
LT by

ϕB(z)= |z|t diag(θ(z)a−3, θ(z)b−1, θ(z)1−b, θ(z)3−a)× z,

and ϕB(τ )= 1× τ . Then ϕG = ηB ◦ϕB .
Let πG =π(ϕG, BT ) and π ′G =π(ϕG, w1(BT )), with notation from Section 2.2.

The L-packet determined by ϕG is5={πG, π
′

G}. Here πG is called a holomorphic
discrete series representation, and π ′G is called a large discrete series representation.

The highest weight for the associated representation E of G(C) is

λB =
1
2(a+ b− 4, t − b+ 1, t − a+ 3, 0) ∈ X∗(A).

From this we may read off the central character λE(z I )= zt for z I ∈ AG(C).

11. The elliptic endoscopic group H

11.1. Root data. Let H be the cokernel of the map Gm → GL2×GL2 given by
t 7→ t I × t−1 I . Write AH for the diagonal matrices in H , and BH for the pairs of
upper triangular matrices in H . Fix ιAH : Acok

∼
→ AH given by

(a, b, c, d) 7→ diag(a, b)× diag(d, c).

Write TH for the image of S× S in H . It is an elliptic maximal torus in H . Fix
ιTH : Tcok

∼
→TH obtained from the map S× S→GL2×GL2, α 7→ (ιS(α), ιS(α)).

Put BTH =Ad(x×x)−1 BH , a Borel subgroup of HC containing TH . Then Ad(x×x)
is the canonical isomorphism TH (C)

∼
→ AH (C) associated to the pairs (TH , BTH )

and (AH , BH ). We view X∗(TH ) as the kernel of the map p : Z2
×Z2

→ Z given
by (a, b)× (c, d) 7→ a+ b− c− d . We have a basis of roots 1H given by

(11-1) 1H = {(1,−1)× (0, 0), (0, 0)× (1,−1)},

and ρH =
1
2(1,−1)× 1

2(1,−1).
Furthermore, X∗(TH ) is the cokernel of the map ι : Z → Z2

× Z2 given by
a 7→ (a, a)× (−a,−a). We have a basis of coroots 1∨H given by

(11-2) 1∨H = {(1,−1)× (0, 0), (0, 0)× (1,−1)},

viewed in the quotient X∗(TH ).
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11.2. Dual group Ĥ. Let Ĥ ={(g, h)∈GL2(C)×GL2(C) | det(g)= det(h)}. We
have an inclusion Aker(C)→ Ĥ given by

(a, b, c, d) 7→ diag(a, b)× diag(d, c).

Write ÂH
⊂ Ĥ for the image. We thus have an isomorphism ι ÂH : Aker(C)

∼
→ ÂH .

Also write B̂H for the subgroup of upper triangular matrices in Ĥ . This Borel
subgroup determines a based root datum for Ĥ .

Giving Ĥ the trivial L-action, we view it as a dual group to H via the isomor-
phisms

X∗(AH )
(ιAH )

∗

−−−→ X∗(Acok)
gck
−→ X∗(Aker)

(ι ÂH )∗
−−−→ X∗( ÂH ),

X∗( ÂH )
(ι ÂH )

∗

−−−→ X∗(Aker)
gkc
−→ X∗(Acok)

(ιAH )∗
−−−→ X∗(AH ).

We identify ÂH as the torus T̂H dual to TH via the isomorphisms

(11-3) X∗(TH )
(ιTH )

∗

−−−→ X∗(Tcok)
8∗cok
−−→ X∗(Acok)

gck
−→ X∗(Aker)

(ι ÂH )
∗

−−−→ X∗( ÂH ).

Let η : LH → LG be given by

(11-4)
(

a b
c d

)
×

(
e f
g h

)
×w 7→


a b

e f
g h

c d

×w.
Let s = diag(1, 1)× diag(−1,−1) ∈ Ĥ .
The image η(Ĥ) is the connected centralizer in Ĝ of η(s). Thus, (H, s, η) is an

elliptic endoscopic triple for G. In fact it is the only one, up to isomorphism.
Moreover note that η restricted to ÂH is given by

(11-5) η| ÂH = ιA ◦ (ι ÂH )
−1.

(Recall that Â = A(C).)

12. Transfer for H(R)

The goal of this section is Proposition 12, in which we identify eH
πG

and eH
π ′G

. This
is part of the global transfer f H dh that is to be entered into STg for the endoscopic
group H . We will recognize it using the character theory of transfer reviewed in
Section 3.

12.1. Parametrization of discrete series. First we must set up the Langlands pa-
rameters for discrete series representations of H(R), and describe how they transfer
to L-packets in G(R). Recall that we have fixed three integers a, b, t , with a, b odd,
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t even, and a > b> 0. Define the Langlands parameter ϕH :WR→
LH = Ĥ×WR

by
ϕH (z)= |z|t diag(θ(z)a, θ(z)−a)× |z|t diag(θ(z)b, θ(z)−b)× z

for z ∈WC, and
ϕH (τ )=

(
−1

1)
×
(

1
−1)
× τ.

Then ϕH determines the pair ( ÂH , B̂H ). The L-packet is a singleton {πH }. The
corresponding representation EH of H(C) has highest weight

λH =
1
2(t + a− 1, t − a+ 1)× 1

2(t + b− 1, t − b+ 1)

and central character λEH (z1, z2)= (z1z2)
t . Most importantly, we have ϕG=η◦ϕH .

There is another Langlands parameter ϕ′H given by

ϕ′H (z)= |z|
t diag(θ(z)b, θ(z)−b)× |z|t diag(θ(z)a, θ(z)−a)× z,

and by ϕ′H (τ )= ϕH (τ ) as above.
Again the L-packet is a singleton {π ′H }. The corresponding representation E ′H

has highest weight

λ′H =
1
2(t + b− 1, t − b+ 1)× 1

2(t + a− 1, t − a+ 1),

and central character λE ′H = λEH above.
Let ϕ′G = η◦ϕ

′

H . Then ϕ′G = Int(w2)◦ϕG , so it is equivalent to ϕG . In particular,
both L-packets {πH } and {π ′H } transfer to 5= {πG, π

′

G}.

12.2. Alignment. Recall the definition of alignment from Section 3.

Lemma 8. Define j : TH
∼
→ T by j = ιT ◦ 9T ◦ (ιTH )

−1. Then ( j, BT , BTH ) is
aligned with ϕH , and ( j, w1 BT , BTH ) is aligned with ϕ′H .

Proof. Since the parameter ϕG gives the pair ( Â, B̂), the parameter ϕ′G gives the
pair ( Â, w1 B̂), and because ϕH and ϕ′H both give ( Â, B̂H ), the horizontal maps
in (3-2) are identities. The map ĵ : T̂ → T̂H may be computed by composing the
isomorphism X∗(T̂ )∼→X∗(T ) in (10-2) with the induced map j∗ : X∗(T )∼→X∗(TH )

and finally with the inverse of the isomorphism X∗(T̂H )
∼
→X∗(TH ) in (11-3). Using

equations (8-1) and (11-5), one finds that ĵ = ι ÂH
◦ (ιA)

−1
= η−1, as desired. �

12.3. Transfer for HR.

Proposition 12. Let πG = π(ϕG, BT ) and π ′G = π(ϕG, ω
−1(BT )) as described in

Section 10.4. Then (using notation from Section 2.4) we may take eH
πG
= eπH +eπ ′H ,

where πH and π ′H are the discrete series representation determined by ϕH and ϕ′H ,
respectively, as above. Furthermore, we may take eH

π ′G
=−eH

πG
.
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Proof. By Lemma 8, we may use

1∞(ϕH , π(ϕG, ω
−1(BT )))= 〈aω, ĵ−1(s)〉,

1∞(ϕ
′

H , π(ϕG, ω
−1(w1 BT )))= 〈aw1ω, ĵ−1(s)〉

for ω ∈�. In both cases, this is given by

〈aω, s〉 =
{

1 if ω ∈�R,

−1 if ω /∈�R.

Note that 〈aw1ω, ĵ−1(s)〉 = −〈aω, ĵ−1(s)〉. Therefore the characterization (3-1)
becomes, for a general measure f∞dg∞ at the real place,

2πH ( f H
∞

dh∞)=
∑

π∈5(ϕG)

1∞(ϕH , π)2π ( f∞dg∞)

=2πG ( f∞dg∞)−2π ′G ( f∞dg∞)

and similarly

2π ′H ( f H
∞

dh∞)=2πG ( f∞dg∞)−2π ′G ( f∞dg∞).

In our case, we obtain

2πH (e
H
πG
)=2π ′H (e

H
πG
)= (−1)q(G) and 2πH (e

H
π ′G
)=2π ′H (e

H
π ′G
)=−(−1)q(G).

The proposition follows. �

13. Levi subgroups

13.1. Levi subgroups. We give the standard Levi subgroups of G, which are those
of the parabolic subgroups containing BA. We have the group A, the group G itself,
and the following two Levi subgroups:

M1 = {diag(g, λg) | g ∈ GL2, λ ∈ Gm},

M2 = {diag(a, g, b) | g ∈ GL2, a, b ∈ Gm, det(g)= ab}.

Note that both M1 and M2 are isomorphic to Gm ×GL2.
The group H also has four Levi subgroups, namely AH , the group H itself, the

image M H
1 of GL2×A0 in H , and the image M H

2 of A0 ×GL2 in H . Note that
both M H

1 and M H
2 are isomorphic to GL2×Gm .

13.2. Miscellaneous constants. We now compute the invariants from Section 5.1
for the Levi subgroups of G and H .

First, we compute the various k(M). When M is the split torus A its derived
group is trivial and so k(A)= 1. For i = 1, 2, the Levi subgroup Mi is isomorphic



STABLE TRACE FORMULAS AND DISCRETE SERIES MULTIPLICITIES 479

to GL2×Gm , and the torus is isomorphic to S×Gm . Since S and Gm have trivial
first cohomology, again k(M1)= 1.

Lemma 9. We have k(G)= 2.

Write T as before for the elliptic torus of G.

Proof. Recall that T1 is the kernel of Nm and H 1(R, T1) has order 2.
Recall that the torus T is isomorphic to the kernel of the map

S× S→ Gm, (α, β) 7→ Nm(α/β).

Projection to the first (or second) component followed by Nm gives an exact se-
quence

(13-1) 1→ T1× T1→ T → Gm→ 1.

We have that Gsc=Gder and the inclusion Tsc=Gder∩T ⊂ T may be identified
with the map T1 × T1 → T in the sequence above. In particular, H 1(R, Tsc) has
order 4.

Taking the cohomology of (13-1) gives the exact sequence

1→ R×/R×2
→ H 1(R, Tsc)→ H 1(R, T )→ 1,

from which we conclude that H 1(R, Tsc)→ H 1(R, T ) is surjective and H 1(R, T )
has order 2. �

One must also compute k(MH ) for Levi subgroups MH of H . The intermediate
Levi subgroups are again isomorphic to GL(2)×Gm , and for AH the derived group
is trivial. So k(MH )= 1 for each of these.

Lemma 10. We have k(H)= 1.

Proof. We have T = P(S × S), Hsc = SL2×SL2, and Tsc = T1 × T1. The map
Tsc→ T factors through T1×T1→ S×S. As above we conclude that k(H)= 1. �

Secondly, we compute the Tamagawa numbers. Recall that

τ(G)= |π0(Z(Ĝ)0Q)| · |ker1(Q, Z(Ĝ))|−1.

Proposition 13. We have τ(M)= 1 for all Levi subgroups of G and for all proper
Levi subgroups of H , and τ(H)= 2.

Proof. For each of these groups, Z(M̂) is either the group C× with trivial 0Q-
action, or a product of such groups. By the Chebotarev density theorem, the
homomorphism

Hom(0Q,C×)→
∏
v

Hom(0Qv
,C×)
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is injective. So |ker1(Q, Z(Ĝ))| is trivial for our examples. Computing the com-
ponent group of each Z(M̂) is straightforward. �

The quantities nG
M are easy to compute using NG(M) ⊆ NG(Z(M)). If M is a

maximal torus, nG
M is of course the order of the Weyl group. For the intermediate

cases, one finds that nG
Mi
= nH

M H
i
= 2.

If γ = 1, then ιM(γ)= 1 for each M , since each M is connected. Note that for
Levi subgroups M of G, all proper Levi subgroups M of H , and all semisimple
elements γ in G or H , we have ιM(γ)=1 since in all these cases the derived groups
are simply connected.

Finally, we compute ι(G, H), which we recall is given by

ι(G, H)= τ(G)τ (H)−1
|Out(H, s, η)|−1.

One may compute the order of Out(H, s, η) through [Kottwitz 1984, Section 7.6],
which shows that this set is in bijection with

∧
(η(s), ρ), in the notation of that

paper. This last set is represented by {1, g}, where

g =


1

1
1

1

 .
The conclusion is that ι(G, H)= 1

4 .

14. Computing S8M for Levi subgroups of G

Recall from Proposition 3 the formula

8M(γ,2
E)= (−1)q(L)|�L |

∑
ω∈�L M

ε(ω) tr(γ; V M
ω(λB+ρB)−ρB

) for γ ∈ Te(R).

In this section, the maximal torus will be conjugate to A, and the character group
will be identified with X∗(A). We specify an inner product we use on X∗(A)R for
the Weyl dimension formula (Proposition 4).

Definition 23. The usual dot product gives an inner product ( · , · ) on X∗(A)R,
viewing it as a hypersurface in R4.

Consider the isomorphism

pr : X∗(A)R ∼→ X∗(A)R

given by

pr(a, b, c, d)= (a, b, c, d)− 1
4(a+ d − b− c)(1,−1,−1, 1),

and let 〈λ,µ〉 = (pr(λ), pr(µ)).
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For instance,

pr(λB)=
1
4(a+ b+ t − 4, a− b+ t − 2,−a+ b+ t + 2,−a− b+ t + 4).

It will also be necessary to compute �L M for each example. Recall that this is
the set of w ∈ � such that w−1α > 0 for positive roots α that are either real or
imaginary.

14.1. The term 8G . By (4-1) we have 8G(γ,2
E) = tr(γ; E). Using the Weyl

dimension formula, we compute

S8G(1, eπG )=−
1

24ab(a+ b)(a− b)v(G)−1.

14.2. The term S8M1 . Consider the torus TM1 given by
a b
−b a

λa λb
−λb λa

 ,
with a2

+ b2
6= 0 and λ 6= 0. This is an elliptic torus in M1.

There is one positive real root e1 − e3 and one positive imaginary root αM1 =

e1− e2. We have �L M
= {1, w1}, q(L)= 1, and |�L | = 2. This gives

8M1(1,2
E)= (−2)

(
dimC V M1

λB
− dimC V M1

λ′B

)
,

where λ′B =
1
2(a+ b− 4, t − a+ 1, t − b+ 3, 0) ∈ X∗(T ).

Note that 〈αM1, λB〉 =
1
2(b− 1). The Weyl dimension formula yields

dimC V M1
λB
= b and dimC V M1

λ′B
= a.

Thus
S8M1(1, eπG )=−(b− a)v(M1)

−1.

14.3. The term S8M2 . Consider the torus TM2 given by
s

a −b
b a

t

 ,
with st = a2

+ b2
6= 0. This is an elliptic torus in M2.

We may conjugate this in G(C) to matrices of the form

γ = diag(s, a+ ib, a− ib, t)
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in A(C). Composing the roots of A with this composition, we determine the posi-
tive imaginary root αM2 = e2− e3. We have �L M

= {1, w2}.
This gives

8M2(1,2
E)= (−2)

(
dimC V M2

λB
− dimC V M2

λ′′B

)
,

where λ′′B =
1
2(t − b− 1, a+ b− 2, 0, t − a+ 3) ∈ X∗(T ). Note that

pr(λ′′B)=
1
4(t + a− b− 4, t + a+ b− 2, t − a− b+ 2, t − a+ b+ 4).

The Weyl dimension formula yields

dimC V M2
λB
=

1
2(a− b) and dimC V M2

λ′′B
=

1
2(a+ b),

and so
S8M2(1, eπG )= b · v(M2)

−1.

14.4. The term S8A. By (4-1), we have 8A(1,2E) = (−1)q(G)|�G | = −8, and
so

S8A(1, eπG )= 4v(A)−1.

15. Computing S8MH for Levi subgroups of H

Since eH
πG
= eπH + eπ ′H , we have

S8MH (1, eH
πG
)

= (−1)q(G)(−1)dim(AMH /AH )v(MH )
−1(8MH (1,2πH )+8MH (1,2π ′H )

)
.

15.1. The term S8H(1, eH
πG
). In this case H has the elliptic torus TH .

From (4-1), we obtain 8H (1,2πH ) = dimC EH . To apply the dimension for-
mula, we compute for instance 〈α1, λH 〉=a−1, 〈α2, λH 〉=b−1, and 〈αi , ρH 〉=1.

We find that
8H (1,2EH )=8H (1,2E ′H )= ab.

Therefore
S8H (1, eH

πG
)=−2v(H)−1ab.

15.2. The term S8AH (1, eH
πG
). From (4-1), we obtain

8AH (1,2EH )=8AH (1,2E ′H )= 4.

Therefore
S8AH (1, eH

πG
)=−8v(AH )−1.
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15.3. The terms S8MH (1, eH
πG
) for the intermediate Levi subgroups. For both

M = M1
H and M = M2

H , we have �G = �L�M , and so formula (4-1) becomes
simply 8MH (1,2

EH )= (−2) dimC V MH
λH

for both of these Levi subgroups.
We obtain

8M1
H
(1,2EH )=8M2

H
(1,2E ′H )=−2a

and

8M2
H
(1,2EH )=8M1

H
(1,2E ′H )=−2b.

Therefore

S8M1
H
(1, eH

πG
)= S8M2

H
(1, eH

πG
)=−2v(M1

H )
−1(a+ b).

16. Final form: γ central

Recall that G = GSp4. For the convenience of the reader, we recall the setup.
Let a and b be odd integers with a > b> 0, and t an even integer. Consider the

Langlands parameter ϕG :WR→
L G given by

ϕG(z)= |z|t diag(θ(z)a, θ(z)b, θ(z)−b, θ(z)−a)× z and ϕG(τ )= J × τ.

Let πG be the discrete series representation π(ϕG, BT ) of G(R) as in Section 2.2.
Write π ′G for the other representation in 5(ϕG).

Put f∞dg∞= eπG as in Section 2.4 for πG and any measure f∞dg f on G(A f ).
Let f dg = eπG f∞dg f , a measure on G(A). By the theory of endoscopic transfer
there is a matching measure f H dh on H(A), where H is the elliptic endoscopic
group P(GL2×GL2) discussed above.

If z ∈ AG(Q), then
∑

M STg( f dg, z,M) is given by the product of λE(z) = zt

with

−
1
24ab(a+ b)(a− b)v(G)−1 f∞(z)+ 1

2(a− b)v(M1)
−1 f∞M1

(z)

+
1
2 bv(M2)

−1 f∞M2
(z)+ 1

2v(A)
−1 f∞A (z).

If z = (z1, z2) ∈ AH (Q), then
∑

MH
STg( f H dh, z,MH ) is given by the product of

λEH (z)= (z1z2)
t with

−4abv(H)−1 f H,∞(z)− 2(a+ b)v(M1
H )
−1 f∞M2

(z)− 2v(AH )−1 f∞AH (z).

17. The case 0 = Sp4(Z)

Let f∞dg f = eK0 , where K0 = G(O f ). Here dg f is an arbitrary Haar measure on
G(A f ), so that dg = dg f dg∞ is the Tamagawa measure on G(A).
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17.1. Central terms in G. Note that f∞M (z) = 0 for all z ∈ Z(Q) unless z = ±1,
and that f∞M (1)= f∞M (−1) for all Levi subgroups M .

First we compute STg( f dg,±1,G). We have

−
1

233
ab(a+ b)(a− b)v(G)−1 f∞(±1)

=−
1

233
ab(a+ b)(a− b)τ (G)−1d(G)−1χK0(G)

= 2−103−35−1ab(a+ b)(a− b).

Next we treat the ±1∈ Mi terms, for the intermediate Levi subgroups. We have

STg( f dg,±1,M1)=
1
2(a− b)v(M1)

−1 f∞M1
(±1)=−2−53−1(a− b),

STg( f dg,±1,M2)=
1
2 bv(M2)

−1 f∞M2
(±1)=−2−53−1b.

Next we treat the±1∈ A terms. We have f A(1)= volda f (K ∩ A(A f ))
−1, which

is 1. Moreover we take Lebesgue measure on A(R) so that v(A) = 8. It follows
that

STg( f dg,±1, A)= 1
2v(A)

−1 f∞A (±1)= 2−4.

Doubling these terms to account for both central elements, we compute

(17-1)
∑
z,M

STg( f dg, z,M)

= 2−93−35−1ab(a+ b)(a− b)− 2−43−1(a− b)− 2−43−1b+ 2−3.

17.2. Central terms in H. By the fundamental lemma ([Hales 1997; Weissauer
2009] for GSp4, and of course [Ngô 2010] in general), we may write (eK0)

H
= eK H ,

where K H = H(O f ). Thus ( f∞)H
M(z) = 0 for all z ∈ H(Q) unless z = (1,±1),

and

f H∞
M (1, 1)= f H∞

M (1,−1)

for all Levi subgroups M = MH of H .
The only nontrivial factors in the formula of Theorem 2 are |ker ρ(Q)| = 2,
[H(R) : H(R)+] = 4, and χalg(H sc(Z)). Note that H sc

= SL2×SL2.
Therefore

χK H (H)= 2−1χalg(SL2(Z))
2
= 2−53−2.

We conclude that

STg( f H dh, (1,±1), H)=−4abv(H)−1 vol(K H )
−1
=−2−43−2ab.
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Next we find that
2∑

i=1

STg( f H dh, (1,±1),M H
i )=−2(a+ b)v(M H

1 )
−1 vol(KM)

−1

= 2−33−1(a+ b).

Finally, we have

STg( f H dh, (1,±1), AH )=−2v(A)−1 vol(K A)
−1
=−2−2.

Multiplying by ι(G, H) = 4−1 and then doubling to account for both central
elements, we compute

(17-2) ι(G, H)
∑
z,MH

STg( f H dh, z,MH )=−2−53−2ab+ 2−43−1(a+ b)− 2−3.

18. Comparison

As mentioned in the introduction, Wakatsuki [≥ 2012; 2012] has used the Selberg
trace formula and Arthur’s L2-Lefschetz number formula to compute the discrete
series multiplicities mdisc(π, 0) for π both holomorphic and large discrete series
representations for Sp4(R), and for many cases of arithmetic subgroups 0. We will
compare our formula to his when 0 is the full modular group. (Note that if π is
a discrete series representation of GSp4(R) with trivial central character, and π1

is its restriction to Sp4(R), then mdisc(π, 0)=mdisc(π1, 01), where 01 = Sp4(Z).)
Since he is using the Selberg trace formula, his formula breaks into contributions
from each conjugacy class in 0. In particular, he identifies the central-unipotent
contributions H Hol

1 and H Large
1 to mdisc(πG) and mdisc(π

′

G), respectively. Namely,

H Hol
1 = 2−93−35−1ab(a− b)(a+ b)− 2−53−2ab+ 2−43−1b,

H Large
1 = 2−93−35−1ab(a− b)(a+ b)+ 2−53−2ab− 2−33−1b+ 2−2.

(To translate from his notation to ours, use j = b− 1 and k = 1
2(a− b)+ 2.)

Comparing these formulas to our formulas above, we observe

H Hol
1 =

∑
M

STg( f dg,±1,M)+ ι(G, H)
∑
MH

STg( f H dh, (1,±1),MH )

when f dg = eπG eK0 and

H Large
1 =

∑
M

STg( f dg,±1,M)+ ι(G, H)
∑
MH

STg( f H dh, (1,±1),MH ).

when f dg = eπ ′G eK0 .
This proves Theorem 1. �
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