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We prove that the Halperin–Carlsson conjecture holds for any free (Z2)
m-

action on a compact manifold whose orbit space is a small cover.

1. Introduction

For any prime p, let Zp denote the quotient group Z/pZ, and S1 the circle group.

The Halperin–Carlsson Conjecture. If G = (Zp)
m or (S1)m can act freely on a

finite CW-complex X , then, respectively,
∞∑

i=0

dimZp H i (X,Zp)≥ 2m or
∞∑

i=0

dimQ H i (X,Q)≥ 2m .

This was proposed by Halperin [1985] for the torus case and by Carlsson [1986]
for the Zp-torus case. It is also called the toral rank conjecture in some papers.

At first this conjecture mainly took the form of whether a free (Zp)
m-action on

a product of spheres Sn1×· · ·× Snk implies m ≤ k. Many authors have studied this
intriguing conjecture in its various aspects [Conner 1957; Carlsson 1982; Adem
1987; Adem and Browder 1988; Adem and Benson 1998; Hanke 2009]. For a
survey of results on the topic, see [Adem 2004; Allday and Puppe 1993]. The
general case is still open for any prime p.

For general finite CW-complexes, the conjecture was proved in [Puppe 2009]
for m ≤ 3 in the torus and Z2-torus cases and m ≤ 2 in the odd Zp-torus case.
Also we have the following result, achieved independently, which confirmed the
Halperin–Carlsson conjecture for some special Z2-torus actions on real moment-
angle complexes:
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Theorem 1.1 [Cao and Lü 2009; Ustinovskii 2011]. Let K n−1 be an (n − 1)-
dimensional simplicial complex on the vertex set [d]. Then the real moment-angle
complex RZK n−1 over K n−1 must satisfy

∑
i dimZ2 H i (RZK n−1,Z2) ≥ 2d−n . In

particular, if Pn is an n-dimensional simple convex polytope with d facets, then the
real moment-angle manifold RZPn must satisfy

∑
i dimZ2 H i (RZPn ,Z2)≥ 2d−n .

Remark 1.2. Stronger results were obtained in [Cao and Lü 2009] and [Usti-
novskii 2011]; for example, Theorem 1.1 holds even if the Z2-coefficients are
replaced by rational coefficients.

Remark 1.3. There is a purely algebraic analogue of the Halperin–Carlsson con-
jecture, which was proposed in [Carlsson 1986] in the context of commutative
algebras. Some related results were obtained in [Carlsson 1987].

Here we only study the conjecture for G = (Z2)
m and X a closed manifold. We

use the following conventions:

• we treat (Z2)
m as an additive group;

• all manifolds and submanifolds are smooth;

• we do not distinguish between an embedded submanifold and its image.

Suppose that (Z2)
m acts freely and smoothly on a closed n-manifold Mn . Let

Qn
= Mn/(Z2)

m be the orbit space. Then Qn is a closed n-manifold too. Let π :
Mn
→ Qn be the orbit map. We can think of Mn either as a principal (Z2)

m-bundle
over Qn or as a regular covering over Qn whose deck transformation group is (Z2)

m .
In algebraic topology, we have a standard way to recover Mn from Qn , using the
universal covering space of Qn and the monodromy of the covering [Hatcher 2002].
However, it is not so easy for us to visualize the total space of the covering with this
approach. In [Yu 2012], a new way of constructing principal (Z2)

m-bundles over
closed manifolds is introduced, which allows us to visualize this kind of object
more easily.

Indeed, it is shown in [Yu 2012] that π : Mn
→ Qn determines a (Z2)

m-coloring
λπ on a nice manifold with corners V n (called a Z2-core of Qn), and up to equi-
variant homeomorphism, we can recover Mn by a standard glue-back construction
from V n and λπ . Using this new language, we prove the following theorem, which
supports the Halperin–Carlsson conjecture.

Theorem 1.4. Suppose that (Z2)
m acts freely on a closed n-manifold Mn whose

orbit space is homeomorphic to a small cover; then

(1)
∑

i

dimZ2 H i (Mn,Z2)≥ 2m .

Recall that an n-dimensional small cover is a closed n-manifold with a locally
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standard (Z2)
n-action whose orbit space can be identified with an n-dimensional

simple convex polytope [Davis and Januszkiewicz 1991].
Given an arbitrary n-dimensional simple convex polytope Pn , there may not

exist any small cover over Pn . But we can always define a closed manifold RZPn

associated to Pn called a real moment-angle manifold [Davis and Januszkiewicz
1991, Construction 4.1]. Let F(Pn) = {F1, . . . , Fr } be the set of facets of Pn ,
and let {e1, . . . , er } be a basis of (Z2)

r . For 1 ≤ i ≤ r , we define a function
λ∗ : F(Pn)→ (Z2)

r by

(2) λ∗(Fi )= ei .

For any proper face f of Pn , let G f denote the subgroup of (Z2)
r generated by

the set {λ∗(Fi ) | f ⊂ Fi }. The real moment-angle manifold RZPn of Pn is defined
to be the quotient space

(3) RZPn := Pn
× (Z2)

r/∼,

where (p, g)∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ G f (p), with f (p) being
the unique face of Pn that contains p in its relative interior. Let [(p, g)] denote
the equivalence class of (p, g) in RZPn . There is a canonical action of (Z2)

r on
RZPn by

g′ · [(p, g)] = [(p, g′+ g)],

for all p ∈ Pn and g, g′ ∈ (Z2)
r . This (Z2)

r -action on RZPn is not free. But a
subgroup N ⊂ (Z2)

r might act freely on RZPn through the canonical action. In that
case, the quotient space RZPn/N is called a partial quotient of RZPn [Buchstaber
and Panov 2002, Section 7.5]. Also, if there is another subgroup Ñ of (Z2)

r with
Ñ ⊃ N , and Ñ also acts freely on RZPn through the canonical action, we get an
induced free action of Ñ/N on RZPn/N whose orbit space is RZPn/Ñ . By abuse
of terminology, we also call this (Ñ/N )-action on RZPn/N canonical.

It is known that any small cover over Pn (if it exists) is a partial quotient of RZPn

by a rank (r − n) subgroup of (Z2)
r [Buchstaber and Panov 2002, Section 7.5].

Proposition 1.5. Suppose that Qn is a small cover over a simple convex polytope
Pn of dimension n, and that Mn is a principal (Z2)

m-bundle over Qn . If Mn is
connected, then there exists a subgroup N of (Z2)

r , where r is the number of facets
of Pn , such that Mn is equivalent to the partial quotient RZPn/N as principal
(Z2)

m-bundles over Qn .

Recall that two principal (Z2)
m-bundles Mn

1 and Mn
2 over a space Qn are called

equivalent if there are a homeomorphism f : Mn
1 → Mn

2 and a group automorphism
σ : (Z2)

m
→ (Z2)

m such that
• f (g · x)= σ(g) · f (x) for all g ∈ (Z2)

m and x ∈ Mn
1 , and

• f induces the identity map on the orbit space.
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Under these conditions, we also say that the free (Z2)
m-actions on Mn

1 and Mn
2 are

equivalent.
This paper is organized as follows. In Section 2, we review how to construct

principal (Z2)
m-bundles over a manifold from the classical theory of fiber bundles

and from the glue-back construction introduced in [Yu 2012]. We compare these
two constructions, using them to prove several lemmas on principal (Z2)

m-bundles,
and then give a proof of Proposition 1.5. In Section 3, we prove Theorem 1.4.

2. Glue-back construction

Suppose (Z2)
m acts freely and smoothly on an n-dimensional closed manifold Mn .

Then the orbit space Qn
=Mn/(Z2)

m is naturally a closed manifold. In this section,
we assume that Qn is connected and that H 1(Qn,Z2) 6= 0. Indeed, if Qn is not
connected, we can just apply our discussion to each connected component of Qn .
And if H 1(Qn,Z2)= 0, then Mn must be homeomorphic to Qn

× (Z2)
m .

Let π : Mn
→ Qn be the orbit map of the free (Z2)

m-action. If we think of Mn

as a principal (Z2)
m-bundle over Qn , then it determines an element

(4) 3π ∈ Hom
(
H1(Qn,Z2), (Z2)

m)∼= H 1(Qn, (Z2)
m).

If we think of Mn as a regular covering space over Qn , its monodromy is a group
homomorphism Hπ : π1(Qn, q0)→ (Z2)

m , where q0 is a base point of Qn . Then
Hπ factors through 3π via the canonical group homomorphism

(5) π1(Qn, q0)→ H1(Qn,Z)→ H1(Qn,Z2).

Conversely, given any element 3 ∈ Hom(H1(Qn,Z2), (Z2)
m), we can obtain a

principal (Z2)
m-bundle X (Qn,3) over Qn as follows. We compose 3 with the

group homeomorphism in (5) and obtain a group homomorphism

(6) 83 : π1(Qn, q0)→ (Z2)
m .

Then we define a left action of π1(Qn, q0) on (Z2)
m by

(7) γ · g =83(γ )+ g,

for all γ ∈ π1(Qn, q0) and g ∈ (Z2)
m . Also, suppose p : Q̃n

→ Qn is a universal
covering of Qn , and let π1(Qn, q0) act freely on Q̃n from the right. Then we can
define a free action of π1(Qn, q0) on Q̃n

× (Z2)
m thus: for any γ ∈ π1(Qn, q0) and

(x, g) ∈ Q̃n
× (Z2)

m ,

(8) γ · (x, g) := (x · γ−1, γ · g)= (x · γ−1,83(γ )+ g).

Let X (Qn,3) be the quotient space of this π1(Qn, q0) action on Q̃n
× (Z2)

m , and
let 23 : Q̃n

× (Z2)
m
→ X (Qn,3) be the corresponding quotient map. So for all
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γ ∈ π1(Qn, q0) and (x, g) ∈ Q̃n
× (Z2)

m , we have

23(x · γ, g)=23(x, γ · g).

Now, for any (x, g) ∈ Q̃n
× (Z2)

m , we define a map

(9) π3 : X (Qn,3)→ Qn, 23(x, g) 7→ p(x).

Clearly π3 : X (Qn,3)→ Qn is a principal (Z2)
m-bundle with a canonical free

(Z2)
m-action defined by

(10) g′ ·23(x, g) :=23(x, g+ g′),

for all x ∈ Q̃n and g, g′ ∈ (Z2)
m . Therefore the monodromy of X (Qn,3) is given

by 83. We call X (Qn,3) the bundle associated to p : Q̃n
→ Qn (thought of as

a principal π1(Qn)-bundle) and the π1(Q)-action (7) on (Z2)
m . In the theory of

fiber bundles, we may also write

X (Qn,3)= Q̃n
×3 (Z2)

m .

Also, any subgroup H of (Z2)
m acts freely on X (Qn,3) via (10). Then the quotient

space X (Qn,3)/H is naturally equipped with a free (Z2)
m/H -action. We call

X (Qn,3)/H with this free (Z2)
m/H -action a partial quotient of X (Qn,3).

For a principal (Z2)
m-bundle π : Mn

→ Qn , it is easy to verify that X (Qn,3π )

is equivalent to Mn as principal (Z2)
m-bundles over Qn .

But this way of constructing Mn from Qn and 3π is not so convenient for the
proof of Theorem 1.4, so we use another way of constructing principal (Z2)

m-
bundles over Qn , introduced in [Yu 2012]. First, we construct a manifold with
corners from Qn that can carry the information of any element of H 1(Qn, (Z2)

m).
This is done as follows [Yu 2012].

By a standard argument of intersection theory in differential topology, we can
show that there exists a collection of (n− 1)-dimensional compact embedded sub-
manifolds 61, . . . , 6k in Qn such that their homology classes {[61], . . . , [6k]}

form a basis of Hn−1(Qn,Z2) ∼= H 1(Qn,Z2) 6= 0. Also, we can put 61, . . . , 6k

in general position in Qn , which means that

• 61, . . . , 6k intersect transversely with each other, and

• if 6i1 ∩ · · · ∩6is is not empty, then it is an embedded submanifold of Qn of
codimension s.

Then we cut Qn open along 61, . . . , 6k ; that is, we choose a small tubular
neighborhood N (6i ) of each 6i and remove the interior of each N (6i ) from Qn .
Then we get a nice manifold with corners V n

= Qn
−
⋃

i int(N (6i )), which is
called a Z2-core of Qn from cutting Qn open along 61, . . . , 6k (see Figure 1 for
an example). A manifold with corners is called nice if each codimension-l face
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Figure 1. A Z2-core of a torus.

of the manifold belongs to exactly l facets [Jänich 1968; Davis 1983]. Here, the
niceness of V n follows from 61, . . . , 6k being in general position in Qn . The
boundary of N (6i ) is called the cut section of 6i in Qn , and {61, . . . , 6k} is
called a Z2-cut system of Qn . We can choose each 6i to be connected.

The projection ηi : ∂N (6i )→6i is a double cover, either trivial or nontrivial.
Let τ i be the generator of the deck transformation of ηi . Then τ i is a free involution
on ∂N (6i ); that is, τ i is a homeomorphism with no fixed point, and τ 2

i = id.
By applying some local deformations to these τ i if necessary [Yu 2012], we can
construct an involutive panel structure on ∂V n , which means that the boundary of
V n is the union of some compact subsets P1, . . . , Pk (called panels) that satisfy
the following conditions:

(a) each panel Pi is a disjoint union of facets of V n , and each facet is contained
in exactly one panel;

(b) there exists a free involution τi on each Pi that sends a face f ⊂ Pi to a face
f ′ ⊂ Pi (it is possible that f ′ = f );

(c) for all i 6= j , we have τi (Pi∩Pj )⊂ Pi∩Pj and τi◦τ j =τ j◦τi : Pi∩Pj→ Pi∩Pj .

The Pi above consists of those facets of V n that lie in the cut section of 6i , and
τi : Pi → Pi is the restriction of the modified τ i to Pi (see [Yu 2012] for the details
of these constructions).

Remark 2.1. A more general notion of involutive panel structure is introduced
in [Yu 2012], where the involution τi in (b) is not required to be free. This general
notion is used in [Yu 2012] to unify the construction of all locally standard (Z2)

m-
actions on closed manifolds from the orbit spaces.

Let P(V n) = {P1, . . . , Pk} denote the set of all panels in V n . Any map λ :
P(V n)→ (Z2)

m is called a (Z2)
m-coloring on V n , and any element in (Z2)

m is
called a color.

Now, let us see how to recover a principal (Z2)
m-bundle π :Mn

→ Qn from a Z2-
core V n of Qn and the element 3π ∈ Hom(H1(Qn,Z2), (Z2)

m). By the Poincaré
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duality for closed manifolds, there is a group isomorphism

κ : Hn−1(Qn,Z2)→ H1(Qn,Z2).

So we can assign an element of (Z2)
m to each panel Pi of V n by

(11) λπ (Pi )=3π (κ([6i ])) ∈ (Z2)
m .

We call λπ the associated (Z2)
m-coloring of π : Mn

→ Qn on V n .
Generally, for any (Z2)

m-coloring λ on V n , we can glue 2m copies of V n by

(12) M(V n, {Pi , τi }, λ) := V n
× (Z2)

m/∼,

where (x, g)∼ (x ′, g′) whenever x ′= τi (x) for some Pi and g′= g+λ(Pi )∈ (Z2)
m .

If x is in the relative interior of Pi1 ∩ · · · ∩ Pis , then (x, g)∼ (x ′, g′) if and only
if (x ′, g′)=

(
τ
εs
is
◦ · · · ◦ τ

ε1
i1
(x), g+ ε1λ(P1)+· · ·+ εsλ(Ps)

)
, where ε j = 0 or 1 for

any 1≤ j ≤ s and τ 0
i j
:= id.

M(V n, {Pi , τi }, λ) is called the glue-back construction from (V n, λ). Also, we
use M(V n, λ) to denote M(V n, {Pi , τi }, λ) in contexts where there is no ambiguity
about the involutive panel structure on V n .

Example 2.2. Figure 2 shows two principal (Z2)
2-bundles over a torus T 2 via

glue-back constructions from two different (Z2)
2-colorings on a Z2-core of T 2.

The {e1, e2} in the picture is a linear basis of (Z2)
2. The first (Z2)

2-coloring gives
a torus, and the second one gives a disjoint union of two tori. Also, we can define
a double covering map (as defined later in (16)) from the torus on the top to either
one of the tori below it.

Example 2.3. Figure 3 shows a Z2-core of the Klein bottle with three different
Z2-colorings, where Z2 = 〈a〉. So from the glue-back construction, we get three
inequivalent double coverings of the Klein bottle. From left to right in Figure 3,
the first Z2-coloring gives a torus, while the second and the third both give a Klein
bottle.
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Let θλ : V n
×(Z2)

m
→M(V n, λ) be the quotient map defined in (12). It is shown

in [Yu 2012] that M(V n, λ) is a closed manifold with a smooth free (Z2)
m-action

defined by

(13) g′ · θλ(x, g) := θλ(x, g+ g′),

for all x ∈ V n and g, g′ ∈ (Z2)
m . The orbit space of M(V n, λ) under this free

(Z2)
m-action is homeomorphic to Qn . We say that (13) defines the natural (Z2)

m-
action on M(V n, λ). Here, we always associate this natural free (Z2)

m-action
to M(V n, λ). Any subgroup H ⊂ (Z2)

m also acts freely on M(V n, λ) through the
natural action. The induced action of (Z2)

m/H on M(V n, λ)/H is also free, and its
orbit space is homeomorphic to M(V n, λ)/(Z2)

m
= Qn . By abuse of terminology,

we also call this (Z2)
m/H -action on M(V n, λ)/H natural and call M(V n, λ)/H

with the natural (Z2)
m/H -action a partial quotient of M(V n, λ).

We have defined “partial quotient” in three different contexts : RZPn , X (Qn,3)

and M(V n, λ). The common property of these notions is that each of them denotes
the quotient space of some free Z2-torus action on a space.

Theorem 2.4 [Yu 2012, Theorem 3.5]. Let π : Mn
→ Qn be a principal (Z2)

m-
bundle, and let λπ be the associated (Z2)

m-coloring on V n . Then M(V n, λπ ) and
Mn are equivalent principal (Z2)

m-bundles over Qn .

For any integer m ≥ 1, define

Colm(V n) := the set of all (Z2)
m-colorings on V n

= {λ | λ : P(V n)→ (Z2)
m
},

Lλ := the subgroup of (Z2)
m generated by {λ(P1), . . . , λ(Pk)},

rank(λ) := dimZ2 Lλ, for all λ ∈ Colm(V n).

For any g ∈ (Z2)
m , it is clear from (13) that Lλ acts freely on θλ(V n

× (g+ Lλ)),
whose orbit space is Qn .

Theorem 2.5 [Yu 2012, Theorem 3.7]. For any (Z2)
m-coloring λ on V n , M(V n, λ)

has 2m−rank(λ) connected components that are pairwise homeomorphic, and Lλ ∼=
(Z2)

rank(λ) acts freely on each connected component of M(V n, λ) whose orbit space
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is Qn . Each connected component of M(V n, λ) is equivalent to θλ(V n
× Lλ) as

principal (Z2)
rank(λ)-bundles over Qn .

An element λ ∈ Colm(V n) is called maximally independent if rank(λ) = k =
dimZ2 Hn−1(Qn,Z2). If λ ∈ Colm(V n) is maximally independent, then m ≥ k.

Obviously, the relation in (11) defines a one-to-one correspondence between the
elements of Colm(V n) and Hom(H1(Qn,Z2), (Z2)

m)∼= H 1(Qn, (Z2)
m). Suppose

3 ∈Hom(H1(Qn,Z2), (Z2)
m) is the element corresponding to λ ∈Colm(V n); then

Lλ is nothing but the image Im(3)⊂ (Z2)
m of 3, and λ is maximally independent

if and only if 3 is injective. We define

rank(3) := dimZ2(Im(3))= dimZ2(Lλ)= rank(λ).

It is clear that X (Qn,3) and M(V n, λ) are equivalent principal (Z2)
m-bundles

over Qn , and so are 23(Q̃n
× Im(3)) and θλ(V n

× Lλ). The canonical free (Z2)
m-

action on X (Qn,3) defined by (10) corresponds exactly to the natural (Z2)
m-

action on M(V n, λ) defined by (13). So for any subgroup H of (Z2)
m , the par-

tial quotients X (Qn,3)/H and M(V n, λ)/H are equivalent. Then we can write
Theorem 2.5 in terms of X (Qn,3) as follows.

Theorem 2.5∗. For any 3 ∈ Hom(H1(Qn,Z2), (Z2)
m), X (Qn,3) has 2m−rank(3)

connected components that are pairwise homeomorphic, and Im(3)∼= (Z2)
rank(3)

acts freely on each connected component of X (Qn,3) whose orbit space is Qn .
Each connected component of X (Qn,3) is equivalent to 23(Q̃n

× Im(3)) as
principal (Z2)

rank(3)-bundles over Qn .

We prove several lemmas on principal (Z2)
m-bundles over a closed manifold.

The statements of these lemmas are written in the language of glue-back construc-
tion. But we use X (Qn,3) and M(V n, λ) alternatively in the proofs of these
lemmas, depending on what is convenient.

Lemma 2.6. For any m≥ dimZ2 Hn−1(Qn,Z2), if λ1, λ2 ∈Colm(V n) are both max-
imally independent, then M(V n, λ1) must be equivalent to M(V n, λ2) as principal
(Z2)

m-bundles over Qn .

Proof. Let 31 and 32 be the elements of Hom(H1(Qn,Z2), (Z2)
m) corresponding

to λ1 and λ2. Then by our assumption, 31 and32 are both injective. So there exists
a group automorphism σ of (Z2)

m such that σ ◦31 =32. Then we can define a
homeomorphism φ : Q̃n

× (Z2)
m
→ Q̃n

× (Z2)
m , for x ∈ Q̃n and g ∈ (Z2)

m , by

φ(x, g)= (x, σ (g)).

Obviously, 231(x, g)=231(x
′, g′) if and only if 232(φ(x, g))=232(φ(x

′, g′)).
So φ induces an equivalence between the two principal (Z2)

m-bundles X (Qn,31)

and X (Qn,32). So M(V n, λ1) is equivalent to M(V n, λ2). �



498 LI YU

Lemma 2.7. Suppose M1 and M2 are two principal (Z2)
k-bundles over Qn , where

k = dimZ2 Hn−1(Qn,Z2). If M1 and M2 are both connected, then M1 must be
equivalent to M2 as principal (Z2)

k-bundles over Qn .

Proof. Using this notation, for some λi ∈ Colk(V n), i = 1, 2, Theorem 2.4 gives

Mi ∼= M(V n, λi ).

Also, because M1 and M2 are both connected, Theorem 2.5 implies that rank(λ1)=

rank(λ2)= k; that is, λ1 and λ2 are both maximally independent. So by Lemma 2.6,
M(V n, λ1) and M(V n, λ2) are equivalent principal (Z2)

k-bundles over Qn . �

We study some relations between M(V n, λ) for different λ ∈ Colm(V n). For
conciseness, for any topological space B and field F, we define

hrk(B, F) :=

∞∑
i=0

dimF H i (B, F).

Lemma 2.8. For any double covering ξ : B̃→ B and any i ≥ 0,

dimZ2 H i (B̃,Z2)≤ 2 · dimZ2 H i (B,Z2).

So hrk(B̃,Z2)≤ 2 · hrk(B,Z2).

Proof. The Gysin sequence of ξ : B̃→ B, in Z2-coefficient, reads:

· · · → H i−1(B,Z2)
φi−1
−→ H i (B,Z2)

ξ∗

−→ H i (B̃,Z2)→ H i (B,Z2)
φi
−→ . . . ,

where φi (γ )= γ ∪ e for all γ ∈ H i (B,Z2) and e ∈ H 1(B,Z2) is the first Stiefel–
Whitney class (mod 2 Euler class) of B̃. Then by the exactness of the Gysin
sequence, we have

dimZ2 H i (B̃,Z2)= dimZ2 H i (B,Z2)− dimZ2 Im(φi−1)+ dimZ2 ker(φi )

= 2 · dimZ2 H i (B,Z2)− dimZ2 Im(φi−1)− dimZ2 Im(φi )

≤ 2 · dimZ2 H i (B,Z2). �

Remark 2.9. In Lemma 2.8, if we replace the Z2-coefficients by Zp (p is an odd
prime) or Q (rational) coefficients, the conclusion in the lemma might fail. For
example, let B = RP2

∨RP2 be a one-point union of two RP2’s, and let B̃ be the
union of two spheres that intersect at two points (see Figure 4). It is clear that B̃
is a double covering of B. But for any field F= Zp or Q, we have hrk(B, F)= 1,
while hrk(B̃, F)= 4.
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Lemma 2.10. Suppose that λmax ∈ Colk(V n) is a maximally independent (Z2)
k-

coloring on V n , where k = dimZ2 Hn−1(Qn,Z2). Then, for any λ ∈ Colk(V n),

hrk(M(V n, λ),Z2)≥ hrk(M(V n, λmax),Z2).

Proof. Suppose 3 is the element of Hom(H1(Qn,Z2), (Z2)
k) corresponding to λ.

Let {α1, . . . , αk} be a Z2-linear basis of H1(Qn,Z2). Without loss of generality, we
assume that {3(α1), . . . , 3(αs)} is a Z2-linear basis of Im(3)⊂ (Z2)

k . Then we
can choose ω1, . . . , ωk−s ∈ (Z2)

k such that (Z2)
k
= Im(3)⊕〈ω1〉⊕ · · ·⊕ 〈ωk−s〉.

We define a sequence of elements 30, . . . , 3k−s ∈ Hom(H1(Qn,Z2), (Z2)
k)

thus: for any 0≤ j ≤ k− s,

(14) 3 j (αi ) :=

{
3(αi ) if 1≤ i ≤ s or s+ j < i ≤ k;
ωi−s if s+ 1≤ i ≤ s+ j .

Clearly 30 =3 and Im(3)= Im(30)⊂ Im(31)⊂ · · · ⊂ Im(3k−s)= (Z2)
k , and

for 1≤ j ≤ k− s,
rank(3 j )= rank(3 j−1)+ 1.

Let λ j be the elements of Colk(V n) corresponding to 3 j , with 0 ≤ j ≤ k − s.
Then λk−s is maximally independent. So by Lemma 2.6, we have

(15) hrk(M(V n, λmax),Z2)= hrk(M(V n, λk−s),Z2)= hrk(X (Qn,3k−s),Z2).

To prove the lemma, it suffices to show that for all 1≤ j ≤ k− s,

hrk(X (Qn,3 j−1),Z2)≥ hrk(X (Qn,3 j ),Z2).

Notice that Im(3 j )= Im(3 j−1)⊕〈ω j 〉 ⊂ (Z2)
k , and the only difference between

3 j−1 and 3 j is that 3 j−1(αs+ j )=3(αs+ j ) while 3 j (αs+ j )= ω j . Let

K j =23 j (Q̃
n
× Im(3 j ))

for all 1≤ j ≤ k− s, where p : Q̃n
→ Qn is a universal covering of Qn .

We define a free involution t j on K j : for any (x, g) ∈ Q̃n
× Im(3 j ),

(16) t j (23 j (x, g))=23 j (x, g+3(αs+ j )+ω j ).
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Let K j/t j be the quotient space of K j under t j , and let 23 j (x, g) ∈ K j/t j denote
the equivalence class of 23 j (x, g). So K j is a double covering of K j/t j .

By (9), the bundle map π3 j : X (Q
n,3 j )→ Qn restricted to K j gives a bundle

map π3 j : K j→ Qn that sends any 23 j (x, g) to p(x), and the monodromy of π3 j

is 83 j : π1(Qn, q0)→ Im(3 j )⊂ (Z2)
k ; see (6). So π3 j induces a map

π3 j : K j/t j → Qn, 23 j (x, g) 7→ p(x).

By the definition (16) of t j , we can easily see that π3 j is a fiber bundle whose fiber
is Im(3 j ) modulo the relation ∼, where for all g ∈ Im(3 j ),

g ∼ g+3(αs+ j )+ω j ,

or equivalently, ω j ∼ 3(αs+ j ). Now by (14), Im(3 j )/∼ can be identified with
Im(3 j−1), so the fiber of π3 j : K j/t j → Qn is isomorphic to Im(3 j−1). Let

% : Im(3 j )→ Im(3 j−1)= Im(3 j )/∼ .

So the monodromy of π3 j is % ◦83 j : π1(Qn, q0)→ Im(3 j−1). Also, it is easy
to check that % ◦83 j coincides with the monodromy 83 j−1 of the bundle π3 j−1 :

K j−1 → Qn . Therefore, the two bundles K j/t j and K j−1 over Qn are actually
equivalent. So by Lemma 2.8,

hrk(K j ,Z2)≤ 2 · hrk(K j/t j ,Z2)= 2 · hrk(K j−1,Z2).

Also, because by Theorem 2.5∗, X (Qn,3 j ) consists of 2k−rank(3 j ) copies of K j

for each 0≤ j ≤ k− s and rank(3 j )= rank(3 j−1)+ 1, we get

hrk(X (Qn,3 j−1),Z2)= 2k−rank(3 j−1) hrk(K j−1,Z2)

≥ 2k−rank(3 j ) hrk(K j ,Z2)= hrk(X (Qn,3 j+1),Z2).

Therefore,

hrk(M(V n, λ),Z2)= hrk(X (Qn,30),Z2)≥ hrk(X (Qn,3k−s),Z2)

= hrk(M(V n, λmax),Z2),

where we use (15) for the final equality. �

Lemma 2.11. Let Mn be a connected principal (Z2)
s-bundle over Qn . Then there

exist a maximally independent coloring λ̃ ∈ Colk(V n), where

k = dimZ2 Hn−1(Qn,Z2),

and a free (Z2)
k−s-action on M(V n, λ̃) whose orbit space is homeomorphic to Mn .

Also, Mn is equivalent to a partial quotient M(V n, λ̃)/H for some subgroup H of
(Z2)

k with rank k− s.
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Proof. We use a similar argument to the proof of Lemma 2.10. Because Mn is
connected, Theorem 2.5 implies that s≤ k and that there is an element λ∈Colk(V n)

such that rank(λ)= s and Mn is homeomorphic to θλ(V n
× Lλ)⊂ M(V n, λ).

As in the proof of Lemma 2.10, let3 be the element of Hom(H1(Qn,Z2), (Z2)
k)

corresponding to λ, and let {α1, . . . , αk} be a Z2-linear basis of H1(Qn,Z2) such
that {3(α1), . . . , 3(αs)} is a Z2-linear basis of Im(3)⊂ (Z2)

k . Suppose also that
(Z2)

k
= Im(3)⊕〈ω1〉⊕ · · · ⊕ 〈ωk−s〉, and define the same sequence of elements

3 = 30,31, . . . , 3k−s ∈ Hom(H1(Qn,Z2), (Z2)
k) as in (14) and corresponding

elements λ0, λ1, . . . , λk−s ∈ Colk(V n). So λk−s is maximally independent.
Let Ĥ = 〈ω1〉⊕· · ·⊕〈ωk−s〉 ⊂ (Z2)

k . Then Ĥ ∼= (Z2)
k−s , and there exists a free

action ? of Ĥ on X (Qn,3k−s)∼= M(V n, λk−s) defined by

ω j ?23 j−s (x, g) :=23 j−s (x, g+3(αs+ j )+ω j ),

for 1≤ j ≤ k− s. As in the proof of Lemma 2.10, we can show that the orbit space
of the action of Ĥ is homeomorphic to 23(Q̃n

× Im(3))∼= θλ(V n
× Lλ)∼= Mn .

The action of Ĥ on X (Qn,3k−s) can be identified with the canonical action (10)
of H = 〈3(αs+1) + ω1〉 ⊕ · · · ⊕ 〈3(αk) + ωk−s〉 on X (Qn,3k−s) via a group
isomorphism σ : Ĥ → H , where for 1≤ j ≤ k− s,

σ(ω j )=3(αs+ j )+ω j .

Here σ is an isomorphism because (Z2)
k
= Im(3)⊕〈ω1〉⊕· · ·⊕〈ωk−s〉. So Mn is

equivalent to the partial quotient X (Qn,3k−s)/H ∼= M(V n, λk−s)/H as principal
(Z2)

s-bundles over Qn . This completes the lemma. �

Proof of Proposition 1.5. Suppose the polytope Pn has k+ n facets. Then

Hn−1(Qn,Z2)∼= (Z2)
k .

So by Lemma 2.11, there exist a maximally independent coloring λ̃ ∈ Colk(V n)

and a subgroup H ⊂ (Z2)
k such that Mn is equivalent to the partial quotient

M(V n, λ̃)/H as principal (Z2)
m-bundles over Qn . Both M(V n, λ̃) and the real

moment-angle manifold RZPn are principal (Z2)
k-bundles over Qn , and they are

both connected. So by Lemma 2.7, RZPn is equivalent to M(V n, λ̃).
Let Ñ ⊂ (Z2)

k+n be a subgroup of rank k such that Qn is homeomorphic to
the partial quotient RZPn/Ñ (such a subgroup Ñ is not unique). The equivalence
between M(V n, λ̃) and RZPn determines a group isomorphism σ : (Z2)

k
→ Ñ .

Then M(V n, λ̃)/H is equivalent to the partial quotient RZPn/N of RZPn , where
N = σ(H)⊂ Ñ ⊂ (Z2)

k+n . This proves our proposition. �

3. Proof of Theorem 1.4

We adapt the following lemma for our proof of Theorem 1.4.
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Lemma 3.1 [Ustinovskii 2011]. Let (X, A) be a pair of CW-complexes such that
A has a collar neighborhood U (A) in X , that is,

(U (A), A)∼= (A×[0, 1), A× 0).

Take a homeomorphism ϕ : A → A that can be extended to a homeomorphism
ϕ̃ : X → X. Let Y = X1 ∪ϕ X2 be the space obtained by gluing two copies of X
along A via the map ϕ. Then for any field F, we have hrk(Y, F)≥ hrk(A, F).

Proof. The argument is almost the same as in [Ustinovskii 2011]. Let U1(A) and
U2(A) be the collar neighborhoods of A in X1 and X2. Consider an open cover
Y = W1 ∪W2, where W1 = X1 ∪U2(A) and W2 = X2 ∪U1(A). Then the Mayer–
Vietoris sequence of cohomology groups for this open cover reads (we omit the
coefficients F):

· · · → H j−1(W1 ∩W2)
δ∗( j)
−→ H j (Y )
g∗( j)
−→ H j (W1)⊕ H j (W2)

p∗( j)
−→ H j (W1 ∩W2)→ . . . .

Here the map p∗( j) equals i∗1 ⊕−i∗2 , where i1 and i2 are inclusions of W1 ∩ W2

into W1 and W2. Because W1 and W2 are both homotopy equivalent to X and
W1 ∩W2 =U1(A)∪U2(A)∼= A× (−1, 1), we get another, equivalent, long exact
sequence

· · · → H j−1(A)
δ̂∗( j)
−→ H j (Y )

ĝ∗( j)
−→ H j (X1)⊕ H j (X2)

p̂∗( j)
−→ H j (A)→ . . . .

Now p̂∗( j) = ι
∗

1 ⊕−(ι2 ◦ ϕ)
∗, where ι1 and ι2 are inclusions of A into X1 and X2.

For any γ ∈ H j (X1), it is easy to see that (γ, (ϕ̃−1)∗γ ) is in ker( p̂∗( j)). Thus
dim ker( p̂∗( j))≥ dim H j (X), and so dim Im( p̂∗( j))≤ dim H j (X). Then

dim H j (Y )= dim ker(ĝ∗( j))+ dim Im(ĝ∗( j))= dim Im(̂δ∗( j))+ dim ker( p̂∗( j))

≥ dim H j−1(A)− dim Im( p̂∗( j−1))+ dim H j (X)

≥ dim H j−1(A)− dim H j−1(X)+ dim H j (X).

Summing up these inequalities over all indices j , we get

hrk(Y, F)=
∑

j

dim H j (Y )≥
∑

j

dim H j−1(A)− dim H j−1(X)+ dim H j (X)

=

∑
j

dim H j−1(A)= hrk(A, F). �

Remark 3.2. In Lemma 3.1, the assumption that ϕ : A→ A can be extended to a
homeomorphism ϕ̃ : X → X is essential; otherwise the claim may not hold. For
example, let X be a solid torus and A∼= T 2 the boundary of X . Let ϕ : A→ A be the
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homeomorphism interchanging the meridian and longitude of T 2. If we glue two
copies of X along their boundaries via ϕ, we get a 3-sphere S3. But hrk(S3,Z2)= 2,
while hrk(A,Z2)= 4. The reason why the conclusion of Lemma 3.1 does not hold
in this example is that ϕ cannot be extended to a homeomorphism on the whole X .

We introduce an auxiliary notion that plays an important role in our proof of
Theorem 1.4. Suppose V n is a Z2-core of a closed manifold Qn and the involutive
panel structure on V n is {Pi , τi }. For any panel Pj of V n , we define the space

(17) M\Pj (V
n, λ) := V n

× (Z2)
m/∼Pj ,

where (x, g)∼Pj (x
′, g′) whenever x ′ = τi (x) for some Pi 6= Pj and

g′ = g+ λ(Pi ) ∈ (Z2)
m .

In other words, M\Pj (V
n, λ) is the quotient space of V n

× (Z2)
m under the rule

in (12), except that we leave the interior of those facets in Pj × (Z2)
m open. We

call M\Pj (V
n, λ) a partial glue-back from (V n, λ). Let the corresponding quotient

map be

(18) θ
\Pj
λ : V n

× (Z2)
m
→ M\Pj (V

n, λ).

Then the boundary of M\Pj (V
n, λ) can be written as θ\Pj

λ (Pj × (Z2)
m).

Proof of Theorem 1.4. The proof is by induction on the dimension of Mn . When
n = 1, the only small cover is a circle. Because a principal (Z2)

m-bundle over a
circle must be a disjoint union of 2m or 2m−1 circles, the theorem holds. Now we
assume the theorem holds for manifolds with dimension less than n.

Suppose that Pn is an n-dimensional simple convex polytope with k+ n facets
F1, . . . , Fk+n , with k ≥ 1, and that πµ : Qn

→ Pn is a small cover over Pn with
the characteristic function µ. For any face f = Fi1 ∩ · · · ∩ Fil of Pn , let Gµ

f be the
rank-l subgroup of (Z2)

n generated by µ(F1), . . . , µ(Fl). Then by definition,

(19) Qn
= Pn

× (Z2)
n/∼, with

(p, w)∼ (p′, w′) ⇐⇒ p = p′ and w−w′ ∈ Gµ

f (p),

where f (p) is the unique face of Pn that contains p in its relative interior. It was
shown in [Davis and Januszkiewicz 1991] that the Z2-Betti numbers of Qn can be
computed from the h-vector of Pn . In particular, Hn−1(Qn,Z2)∼= (Z2)

k .
We choose an arbitrary vertex v0 of Pn . By reindexing the facets of Pn , we can

assume that F1, . . . , Fk are all the facets of Pn that are not incident to v0. Then ac-
cording to [Davis and Januszkiewicz 1991], the homology classes of the embedded
submanifolds π−1

µ (F1), . . . , π
−1
µ (Fk) (called facial submanifolds of Qn) form a Z2-

linear basis of Hn−1(Qn,Z2). Cutting Qn open along π−1
µ (F1), . . . , π

−1
µ (Fk) gives

us a Z2-core of Qn , denoted by V n . We can think of V n as a partial gluing of the 2n



504 LI YU
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Figure 5. A Z2-core of a small cover in dimension 2.

copies of Pn according to the rule in (19), except that we leave the facets F1, . . . , Fk

in each copy of Pn open (see Figure 5 for an example). Let ζ : Pn
× (Z2)

n
→ V n

denote the quotient map and let P1, . . . , Pk be the panels of V n corresponding to
π−1
µ (F1), . . . , π

−1
µ (Fk). Then each Pi consists of 2n copies of Fi , and for all p ∈ Fi

and w ∈ (Z2)
n , the involutive panel structure {τi : Pi → Pi }1≤i≤k on V n can be

written

(20) τi (ζ(p, w))= ζ(p, w+µ(Fi )).

Obviously, each τi extends to an automorphism τ̃i of V n given by the same form:
for all p ∈ Pn and w ∈ (Z2)

n ,

(21) τ̃i (ζ(p, w))= ζ(p, w+µ(Fi )).

These τ̃i commute with each other; that is, τ̃i ◦ τ̃ j = τ̃ j ◦ τ̃i , for 1 ≤ i, j ≤ k. So
each τ̃i preserves any panel Pj of V n .

To prove Theorem 1.4, it suffices to show that hrk(M(V n, λ),Z2)≥ 2m for any
λ ∈ Colm(V n), because of Theorem 2.4.

We assume m = k. Let λ0 be a maximally independent (Z2)
k-coloring of V n;

that is, rank(λ0)= k. By Lemma 2.10, hrk(M(V n, λ),Z2)≥ hrk(M(V n, λ0),Z2)

for all λ ∈ Colk(V n). So it suffices to prove that

(22) hrk(M(V n, λ0),Z2)≥ 2k .

Inequality (22) follows from Theorem 1.1 and Lemma 2.7 (see Remark 3.3 below).
But here we give another proof of (22), which only uses Lemma 3.1. This proof
takes advantage of the interior symmetries of small covers (see (20) and (21)), and
is more natural from the viewpoint of the glue-back construction.

Because λ0 is maximally independent, by Lemma 2.6, we can assume λ0(Pi )=

ei for 1≤ i ≤ k, where {e1, . . . , ek} is a linear basis of (Z2)
k . Let θλ0 : V

n
×(Z2)

k
→

M(V n, λ0) be the quotient map defined by (12).
Now take an arbitrary panel of V n , say P1, and let M\P1(V

n, λ0) be a partial
glue-back from (V n, λ0) defined by (17). Let θ\P1

λ0
: V n
× (Z2)

k
→ M\P1(V

n, λ0)
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be the corresponding quotient map. Suppose H is the subgroup of (Z2)
k generated

by {e2, . . . , ek}. Then we define

Y1 = θ
\P1
λ0
(V n
× H), Y2= θ

\P1
λ0
(V n
× (e1+ H)),(23)

A1 = θ
\P1
λ0
(P1× H), A2= θ

\P1
λ0
(P1× (e1+ H)).(24)

Obviously, A1 = ∂Y1 and A2 = ∂Y2, and there is a homeomorphism 5 : Y1→ Y2

with 5(A1)= A2. Indeed, for all x ∈ V n and h ∈ H , 5 is given by

5(θ
\P1
λ0
(x, h))= θ\P1

λ0
(x, h+ e1).

It is easy to see that M(V n, λ0) is the gluing of Y1 and Y2 along their boundary by
a homeomorphism ϕ : A1→ A2 defined by

ϕ(θ
\P1
λ0
(x1, h))= θ\P1

λ0
(τ1(x1), h+ e1),

for all x1 ∈ P1 and h ∈ H .
Also, because τ1 : P1→ P1 extends to a homeomorphism τ̃1 : V n

→ V n (see (20)
and (21)), we can extend ϕ to a homeomorphism ϕ̃ : Y1→ Y2 by

ϕ̃(θ
\P1
λ0
(x, h))= θ\P1

λ0
(̃τ1(x), h+ e1),

for all x ∈ V n and h ∈ H . We know ϕ̃ is well-defined because τ̃1 commutes with
each τi on Pi (see (12) and (21)).

Identifying (Y1, A1) with (Y2, A2) via 5, we get a decomposition of M(V n, λ0)

that satisfies all the conditions in Lemma 3.1. So Lemma 3.1 implies that

(25) hrk(M(V n, λ0),Z2)≥ hrk(A1,Z2).

Also, let q : Y1 ∪ Y2→ M(V n, λ0) be the quotient map and let

ξλ0 : M(V
n, λ0)→ Qn

be the orbit map of the natural (Z2)
k-action on M(V n, λ0) (see (13)). It is easy to

see that
A1 ∼= q(A1)= ξ

−1
λ0
(π−1
µ (F1)).

Because ξ−1
λ0
(π−1
µ (F1)) is a principal (Z2)

k-bundle over π−1
µ (F1) and π−1

µ (F1)

is a small cover over F1 of dimension n− 1, we have hrk
(
ξ−1
λ0
(π−1
µ (F1)),Z2

)
≥ 2k ,

by the induction hypothesis. Then hrk(A1,Z2) ≥ 2k also. So the case m = k is
confirmed, because by (25), hrk(M(V n, λ0),Z2)≥ 2k .

Now we assume m < k. Let ι : (Z2)
m ↪→ (Z2)

k be the standard inclusion, and
define λ̂ := ι ◦ λ. We consider λ̂ as a (Z2)

k-coloring on V n . So by the above
argument, hrk(M(V n, λ̂),Z2)≥ 2k . By Theorem 2.5, M(V n, λ̂) consists of 2k−m

copies of M(V n, λ), so hrk(M(V n, λ),Z2)≥ 2m .
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Finally, we assume m > k. Because rank(λ)≤ k, with a proper change of basis,
we can assume Lλ ⊂ (Z2)

k
⊂ (Z2)

m . Let % : (Z2)
m
→ (Z2)

k be the standard
projection. Define λ := % ◦ λ. Similarly, we consider λ as a (Z2)

k-coloring on V n ,
and so we have hrk(M(V n, λ),Z2) ≥ 2k . By Theorem 2.5, M(V n, λ) consists of
2m−k copies of M(V n, λ), so hrk(M(V n, λ),Z2)≥ 2m .

So for any m ≥ 1 and λ ∈ Colm(V n), we always have hrk(M(V n, λ),Z2)≥ 2m .
The induction is complete. �

Remark 3.3. Both M(V n, λ0) and RZPn are connected principal (Z2)
k-bundles

over Qn . Then by Lemma 2.7, M(V n, λ0) is homeomorphic to RZPn . So the
conclusion of Theorem 1.1 also tells us that hrk(M(V n, λ0),Z2)≥ 2k .

A crucial step in this proof is that when λ0 ∈Colk(V n) is maximally independent,
we can always get the type of decomposition of M(V n, λ0) as in Lemma 3.1, which
allows us to use the induction hypothesis. However, for an arbitrary λ ∈ Colk(V n),
this type of decomposition of M(V n, λ) may not exist (at least not obviously).

For example, in the lower picture in Figure 2, we have a principal (Z2)
2-bundle

π : M2
→ T 2, where M2 is a disjoint union of two tori. The union of the two

meridians in M2 is the inverse image of a meridian in T 2 under π . If we cut M2

open along these two meridians, we get two circular cylinders. But M2 is not
obtained by gluing these two cylinders together, because the colors of the (Z2)

2-
coloring on the two panels are not linearly independent. So the construction in (23)
for this case fails to give us the type of decomposition of M2 as in Lemma 3.1.

So when λ ∈ Colk(V n) is not maximally independent, we may not be able to
directly apply the induction hypothesis to M(V n, λ) as we do to M(V n, λ0) above.
But these cases are settled by Lemma 2.10.

Acknowledgement

The author thanks B. Hanke for Remark 3.2.

References

[Adem 1987] A. Adem, “Z/pZ actions on (Sn)k”, Trans. Amer. Math. Soc. 300:2 (1987), 791–809.
MR 88b:57037 Zbl 0623.57025

[Adem 2004] A. Adem, “Constructing and deconstructing group actions”, pp. 1–8 in Homotopy
theory: relations with algebraic geometry, group cohomology, and algebraic K -theory (Evanston,
IL, 2002), edited by P. Goerss and S. Priddy, Contemp. Math. 346, American Mathematical Society,
Providence, RI, 2004. MR 2005d:57048 Zbl 1101.57017 arXiv math.AT/0212280

[Adem and Benson 1998] A. Adem and D. J. Benson, “Elementary abelian groups acting on products
of spheres”, Math. Z. 228:4 (1998), 705–712. MR 99k:57033 Zbl 0913.57020

[Adem and Browder 1988] A. Adem and W. Browder, “The free rank of symmetry of (Sn)k”, Invent.
Math. 92:2 (1988), 431–440. MR 89e:57034 Zbl 0644.57022

http://dx.doi.org/10.2307/2000370
http://www.ams.org/mathscinet-getitem?mr=88b:57037
http://www.emis.de/cgi-bin/MATH-item?0623.57025
http://www.ams.org/books/conm/346/6283
http://www.ams.org/mathscinet-getitem?mr=2005d:57048
http://www.emis.de/cgi-bin/MATH-item?1101.57017
http://arxiv.org/abs/math.AT/0212280
http://dx.doi.org/10.1007/PL00004637
http://dx.doi.org/10.1007/PL00004637
http://www.ams.org/mathscinet-getitem?mr=99k:57033
http://www.emis.de/cgi-bin/MATH-item?0913.57020
http://dx.doi.org/10.1007/BF01404462
http://www.ams.org/mathscinet-getitem?mr=89e:57034
http://www.emis.de/cgi-bin/MATH-item?0644.57022


SMALL COVERS AND THE HALPERIN–CARLSSON CONJECTURE 507

[Allday and Puppe 1993] C. Allday and V. Puppe, Cohomological methods in transformation groups,
Cambridge Stud. in Adv. Math. 32, Cambridge University Press, Cambridge, 1993. MR 94g:55009
Zbl 0799.55001

[Buchstaber and Panov 2002] V. M. Buchstaber and T. E. Panov, Torus actions and their applica-
tions in topology and combinatorics, University Lecture Ser. 24, American Mathematical Society,
Providence, RI, 2002. MR 2003e:57039 Zbl 1012.52021

[Cao and Lü 2009] X. Cao and Z. Lü, “Möbius transform, moment-angle complex and Halperin–
Carlsson conjecture”, preprint, 2009. arXiv 0908.3174

[Carlsson 1982] G. Carlsson, “On the rank of abelian groups acting freely on (Sn)k”, Invent. Math.
69:3 (1982), 393–400. MR 84e:57033 Zbl 0517.57020

[Carlsson 1986] G. Carlsson, “Free (Z/2)k -actions and a problem in commutative algebra”, pp. 79–
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