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ENERGY AND VOLUME OF VECTOR FIELDS
ON SPHERICAL DOMAINS

FABIANO G. B. BRITO, ANDRÉ O. GOMES AND GIOVANNI S. NUNES

We present a “boundary version” for theorems about minimality of volume
and energy functionals on a spherical domain of an odd-dimensional Eu-
clidean sphere.

1. Introduction

Let (M, g) be a closed, n-dimensional Riemannian manifold and T 1 M the unit
tangent bundle of M considered as a closed Riemannian manifold with the Sasaki
metric. Let X : M → T 1 M be a unit vector field defined on M , regarded as
a smooth section of the unit tangent bundle T 1 M . The volume of X was de-
fined in [Gluck and Ziller 1986] by vol X := vol X (M), where vol X (M) is the
volume of the submanifold X (M) ⊂ T 1 M . Using an orthonormal local frame
{e1, e2, . . . , en−1, en = X}, the volume of the unit vector field X is given by

vol X =
∫

M

(
1+

n∑
a=1

∥∥∇ea X
∥∥2
+

∑
a<b

∥∥∇ea X ∧∇eb X
∥∥2
+ · · ·

+

∑
a1<···<an−1

∥∥∇ea1
X ∧ · · · ∧∇ean−1

X
∥∥2
)1/2

νM (g)

and the energy of the vector field X is given by

E(X)=
n
2

vol M + 1
2

∫
M

n∑
a=1

∥∥∇ea X
∥∥2
νM (g).

The Hopf vector fields on S2k+1 are unit vector fields tangent to the classical Hopf
fibration S1 ↪→ S2k+1. The following theorems gives a characterization of Hopf
flows as absolute minima of volume and energy functionals:

Theorem 1 [Gluck and Ziller 1986]. The unit vector fields of minimum volume on
the sphere S3 are precisely the Hopf vector fields and no others.

MSC2010: 53C20.
Keywords: energy of vector fields, volume of vector fields, Hopf flow.
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2 FABIANO G. B. BRITO, ANDRÉ O. GOMES AND GIOVANNI S. NUNES

Theorem 2 [Brito 2000]. The unit vector fields of minimum energy on the sphere
S3 are precisely the Hopf vector fields and no others.

We prove in this paper the following boundary version for these theorems:

Theorem 3. Let U be an open set of the (2k + 1)-dimensional unit sphere S2k+1

and let K ⊂ U be a connected (2k + 1)-submanifold with boundary of the sphere
S2k+1. Let Ev be an unit vector field on U which coincides with a Hopf flow H along
the boundary of K. Then

E(Ev)≥

(
2k+ 1

2
+

k
2k− 1

)
vol K and vol Ev ≥

4k(2k
k

) vol K .

(Other results for higher dimensions may be found in [Brito et al. 2004; Borrelli
and Gil-Medrano 2006; Chacón et al. 2001].)

2. Preliminaries

Let U ⊂ S2k+1 be an open set of the unit sphere and let K ⊂ U be a connected
(2k + 1)-submanifold with boundary of S2k+1. Let H be a Hopf vector field on
S2k+1 and let Ev be an unit vector field defined on U . We also consider the map
ϕ Evt : U → S2k+1(

√
1+ t2) given by ϕ Evt (x) = x + t Ev(x). This map was introduced

in [Asimov 1978; Brito et al. 1981; Milnor 1978].

Lemma 4. For t > 0 sufficiently small, the map ϕ Evt is a diffeomorphism.

Proof. A simple application of the identity perturbation method. �

From now on, we assume that t > 0 is small enough so that the map ϕ Evt is a
diffeomorphism. In order to find the Jacobian matrix of ϕ Evt , we define the unit
vector field Eu on ϕ Evt (U )⊂ S2k+1(

√
1+ t2) by

Eu(x) :=
1

√
1+ t2

Ev(x)−
t

√
1+ t2

x .

Using an adapted orthonormal frame {e1, . . . , e2k, Ev} on a neighborhood V of U ,
we obtain an adapted orthonormal frame on ϕ Evt (V ) given by {ē1, . . . , ē2k, Eu}, where
ēi = ei for all i ∈ {1, . . . , 2k}.

In this manner, we can write

dϕ Evt (e1)=
〈
dϕ Evt (e1), e1

〉
e1+ . . .+

〈
dϕ Evt (e1), e2k

〉
e2k +

〈
dϕ Evt (e1), Eu

〉
Eu,

dϕ Evt (e2)=
〈
dϕ Evt (e2), e1

〉
e1+ . . .+

〈
dϕ Evt (e2), e2k

〉
e2k +

〈
dϕ Evt (e2), Eu

〉
Eu,

...

dϕ Evt (e2k)=
〈
dϕ Evt (e2k), e1

〉
e1+ . . .+

〈
dϕ Evt (e2k), e2k

〉
e2k +

〈
dϕ Evt (e2k), Eu

〉
Eu,

dϕ Evt (Ev)=
〈
dϕ Evt (Ev), e1

〉
e1+ . . .+

〈
dϕ Evt (Ev), e2k

〉
e2k +

〈
dϕ Evt (Ev), Eu

〉
Eu.
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Now, by Gauss’s equation for the trivial immersion S2k+1 ↪→ R2k+2, we have

∇̃Y Ev = d Ev(Y )=∇Y Ev−〈Ev, Y 〉 x

for every vector field Y on S2k+1, and then〈
dϕ Evt (e1), e1

〉
=
〈
e1+ td Ev(e1), e1

〉
= 1+ t

〈
∇e1 Ev, e1

〉
Analogously, we can conclude that〈

dϕ Evt (ei ), ei
〉
= 1+ t

〈
∇ei Ev, ei

〉
for i ∈ {1, . . . , 2k},〈

dϕ Evt (ei ), e j
〉
= t
〈
∇ei Ev, e j

〉
for i, j ∈ {1, . . . , 2k}, i 6= j,〈

dϕ Evt (ei ), Eu
〉
= 0 for i ∈ {1, . . . , 2k},〈

dϕ Evt (Ev), Eu
〉
=

√
1+ t2.

By employing the notation hi j (Ev) := 〈∇ei Ev, e j 〉 (where i, j ∈ {1, . . . , 2k}), we can
express the determinant of the Jacobian matrix of ϕ Evt in the form

det(dϕ Evt )=
√

1+ t2

(
1+

2k∑
i=1

σi (Ev)t2
)
,

where, by definition, the functions σi are the i-symmetric functions of the hi j . For
instance, if k = 1, we have

σ1(Ev) := h11(Ev)+ h22(Ev),

σ2(Ev) := h11(Ev)h22(Ev)− h12(Ev)h21(Ev).

3. Proof of the Theorem

The energy of the vector field Ev (on K ) is given by

E(Ev) :=
1
2

∫
K
‖d Ev‖2 =

2k+ 1
2

vol K +
1
2

∫
K
‖∇Ev‖2

Using the notation above, we have

E(Ev)=
2k+ 1

2
vol K +

1
2

∫
K

( 2k∑
i, j=1

(hi j (Ev))
2
+

2k∑
i=1

〈∇Ev Ev, ei 〉
2
)

and then

(1) E(Ev)≥
2k+ 1

2
vol K +

1
2

∫
K

2k∑
i, j=1

(hi j (Ev))
2.
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Now observe that∑
i< j

(hi i − h j j )
2
= (2k− 1)

∑
i

h2
i i − 2

∑
i< j

hi i h j j

and ∑
i< j

(hi j + h j i )
2
=

∑
i 6= j

h2
i j + 2

∑
i< j

hi j h j i .

If we sum these last two equations, we get

(2k− 1)
∑

i

h2
i i +

∑
i 6= j

h2
i j ≥ 2σ2

and then

(2)
∑

i

h2
i i +

1
2k− 1

∑
i 6= j

h2
i j ≥

2
2k− 1

σ2.

Also, we can write

2k∑
i, j=1

h2
i j =

∑
i 6= j

h2
i j +

∑
i

h2
i i ≥

∑
i

h2
i i +

1
2k− 1

∑
i 6= j

h2
i j .

From this and (2), we obtain

2k∑
i, j=1

(hi j (Ev))
2
≥

2
2k− 1

σ2(Ev).

But then, using inequality (1), we find that

(3) E(Ev)≥
2k+ 1

2
vol K +

1
2k− 1

∫
K
σ2(Ev).

On the other hand, by the change of variables theorem, we obtain

volϕH
t (K )=

∫
K

√
1+ t2(1+

2k∑
i=1

σi (H)t i )

By a straightforward computation shown in [Chacón 2000] and [Brito et al. 2004],
we have σi (H)= ηi for all i ∈ {1, . . . , 2k}, where

ηi =

{( k
i/2

)
if i is even,

0 if i is odd.

We know that the vector fields Ev and H are the same on ∂K . Thus, ϕ Evt (K ) and
ϕH

t (K ) are (2k+1)-submanifolds of S2k+1(
√

1+ t2) with the same boundary. We
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claim that ϕ Evt (K ) = ϕ
H
t (K ) for all t sufficiently small. In fact, if p is an interior

point of K ,
lim
t→0

ϕ Evt (p)= lim
t→0

ϕH
t (p)= p

and then we have necessarily

ϕ Evt (K )= ϕ
H
t (K )

for all t sufficiently small; equivalently,∫
K

√
1+ t2

(
1+

2k∑
i=1

σi (Ev)t i
)
=

∫
K

√
1+ t2

(
1+

2k∑
i=1

ηi t i
)

for all t > 0 sufficiently small. Consequently, after canceling the factor
√

1+ t2

and rearranging the terms, we obtain(∫
K
[σ1(Ev)− η1]

)
t +

(∫
K
[σ2(Ev)− η2]

)
t2
+ . . .+

(∫
K
[σ2k(Ev)− η2k]

)
t2k
= 0

for all sufficiently small t . By identity of polynomials, we conclude∫
K
σi (Ev)=

∫
K
ηi = ηi vol K for i ∈ {1, . . . , 2k}.

Using this (for i = 2) together with (3), we get

E(Ev)≥
2k+ 1

2
vol K +

η2

2k− 1
vol K =

(
2k+ 1

2
+

k
2k− 1

)
vol K .

We can obtain an analogue of this result for volumes using the following inequality
(see [Brito et al. 2004] or [Chacón 2000, page 59]):

vol Ev ≥
∫

K

(
1+

k∑
i=1

(k
i

)(2k
2i

)σ2i (Ev)

)
.

But
∫

K
σ2i =

∫
K
η2i = η2i vol K for all i ∈ {1, . . . , k}. Then, we have

vol Ev ≥

(
1+

k∑
i=1

(k
i

)2(2k
2i

)) vol K ≥
4k(2k
k

) vol K

4. Final remarks

(1) If K is a spherical cap (the closure of a connected open set with round bound-
ary of the three unit sphere), the theorem provides a “boundary version” for
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the minimalization theorem of energy and volume functionals on [Brito 2000]
and [Gluck and Ziller 1986].

(2) The “Hopf boundary” hypothesis is essential. In fact, if there is no constraint
for the unit vector field Ev on ∂K , it is possible to construct vector fields on
“small caps” such that ‖∇Ev‖ is small on K (exponential maps may be used
on that construction). A consequence of this is that E(Ev) and vol Ev are less
than volume and energy of Hopf vector fields respectively.
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MAPS ON 3-MANIFOLDS GIVEN BY SURGERY

BOLDIZSÁR KALMÁR AND ANDRÁS I. STIPSICZ

Suppose that the 3-manifold M is given by integral surgery along a link
L ⊂ S3. In the following we construct a stable map from M to the plane,
whose singular set is canonically oriented. We obtain upper bounds for
the minimal numbers of crossing singularities, nonsimple singularities, and
connected components of fibers of stable maps from M to the plane in terms
of properties of L.

1. Introduction

It is well-known that a continuous map between smooth manifolds can be approxi-
mated by a smooth map and any smooth map on a 3-manifold can be approximated
by a generic stable map. This line of argument, however, gives no concrete map on
a given 3-manifold M even if it is given by some explicit construction. Recall that
by [Lickorish 1962; Wallace 1960] a closed oriented 3-manifold M can be given
by integral surgery along some link L in S3. In the present work we construct an
explicit stable map F : M→ R2 based on such a surgery presentation of M .

Results of Gromov [2009; 2010] give lower bounds on the topological complex-
ity of the set of critical values of generic smooth maps and on the complexity of
the fibers in terms of the topology of the source and target manifolds. In a slightly
different direction, [Costantino and Thurston 2008] gives a lower bound for the
number of crossing singularities of stable maps from a 3-manifold to R2 in terms
of the Gromov norm of the 3-manifold. Recently Baykur [2008; 2009] and Gay
and Kirby [2007] studied the topology of 4-manifolds through the singularities of
their maps into surfaces.

In the present paper we give upper bounds on the minimal numbers of the cross-
ing and nonsimple singularities and of the connected components of the fibers of
stable maps on the 3-manifold M in terms of properties of diagrams of L (e.g.,
the number of crossings or the number of critical points when projected to R). As
an additional result, these constructions lead to upper bounds on a version of the
Thurston–Bennequin number of negative Legendrian knots.

MSC2010: primary 57R45; secondary 57M27.
Keywords: stable map, 3-manifold, surgery, negative knot, Thurston-Bennequin number.
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Before stating our main results, we need a little preparation. First of all, a stable
map of a 3-manifold into the plane can be easily described by its Stein factorization.

Definition 1.1. Let F be a map of the 3-manifold M into R2. Let us call two points
p1, p2 ∈ M equivalent if and only if p1 and p2 lie on the same component of an
F-fiber. Let WF denote the quotient space of M with respect to this equivalence
relation and qF :M→WF the quotient map. Then there exists a unique continuous
map F̄ :WF→R2 such that F = F̄ ◦qF . The space WF or the factorization of the
map F into the composition of qF and F̄ is called the Stein factorization of the
map F . (Sometimes the map F̄ is also called the Stein factorization of F .)

In other words, the Stein factorization WF is the space of connected components
of fibers of F . Its structure is strongly related to the topology of the 3-manifold
M . For example, an immediate observation is that the quotient map qF : M→WF

induces an epimorphism between the fundamental groups since every loop in WF

can be lifted to M . If F : M→ R2 is a stable map, then its Stein factorization WF

is a 2-dimensional CW complex. The local forms of Stein factorizations of proper
stable maps of orientable 3-manifolds into surfaces are described in [Kushner et al.
1984; Levine 1985]; see Figure 1. Indeed, let F be a stable map of the closed
orientable 3-manifold M into R2. We say that a singular point p ∈ M of F is of
type (A), . . . , (E), respectively, if the Stein factorization F̄ at qF (p) looks locally
like (a), . . . , (e) of Figure 1, respectively. We will call a point w ∈ WF a singular
point of type (A), . . . , (E), respectively, if w= qF (p) for a singular point p ∈M of
type (A), . . . , (E), respectively. According to [Kushner et al. 1984; Levine 1985]
we give the following characterization of the singularities of F : The singular point
p is a cusp point if and only if it is of type (C), the singular point p is a definite
fold point if and only if it is of type (A) and p is an indefinite fold point if and
only if it is of type (B), (D) or (E). Singular points of types (D) and (E) are called
nonsimple, while the others are called simple. A double point in R2 of two crossing

(a) (b) (c) (d) (e)

Figure 1. The local forms of Stein factorizations of stable maps
from orientable 3-manifolds to surfaces. The map (symbolized by
an arrow) maps from the CW complex WF to R2.
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images of singular curves which is not an image of a nonsimple singularity is called
a simple singularity crossing. A simple singularity crossing or an image in R2 of
a nonsimple singularity is called a crossing singularity. A stable map is called a
fold map if it has no cusp singularities.

Let L ⊂ R3
⊂ S3 be a given link, and let L denote a generic projection of it

to the plane. Let n(L) and cr(L) denote the number of components of L and the
number of crossings of L , respectively.

Choose a direction in R2, which we represent by a vector v∈R2. We can assume
that v satisfies the condition that the projection of the diagram L to Rv⊥ along v
yields only non-degenerate critical points. Let t(L) = tv(L) denote the number
of times L is tangent to v. Suppose at each v-tangency p the half line emanating
from p in the direction of v avoids the crossings of L and intersects L transversally
(at the points different from p). Denote the number of transversal intersections by
`(L, v, p). Let `(L, v) denote the maximum of the values `(L, v, p), where p runs
over the v-tangencies. With these definitions in place now we can state the main
result of the paper.

Theorem 1.2. Suppose that the 3-manifold M is obtained by integral surgery on
the link L ⊂ S3. Then there is a stable map F : M→ R2 such that

(1) the Stein factorization WF is homotopy equivalent to the bouquet
∨n(L)

i=1 S2,

(2) the number of cusps of F is equal to tv(L),

(3) all the nonsimple singularities of F are of type (D), and their number is equal
to cr(L)+ 3

2 tv(L)− n(L),

(4) the number of nonsimple singularities which are not connected by any singu-
lar arc of type (B) to any cusp is equal to cr(L)+ 1

2 tv(L)− n(L),

(5) the number of simple singularity crossings of F in R2 is no more than

8 cr(L)+ 6`(L, v)tv(L)+ tv(L)2,

(6) the number of connected components of the singular set of F is no more than
n(L)+ 3

2 tv(L)+ 1, and

(7) the maximal number of the connected components of any fiber of F is no more
than tv(L)+ 3.

(8) Suppose we got M by cutting out and gluing back the regular neighborhood
NL of L from S3. Then the indefinite fold singular set of F contains a link in
S3
− NL , which is isotopic to L in S3 and whose F-image coincides with L.

Remarks 1.3. (1) Let Y be a closed orientable 3-manifold, f a given smooth
map of Y into R2 and L ⊂ Y a link disjoint from the singular set of f . Suppose
furthermore that f |L is an immersion. Let M denote the 3-manifold obtained
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by some integral surgery along L . Then the method developed in the proof of
Theorem 1.2 provides a stable map of M into R2 (relative to f ).

(2) In constructing the map F , the proof of Theorem 1.2 provides a sequence of
stable maps f0, f1, . . . , f6 of S3 into R2, where each fi is obtained from fi−1 by
some deformation, i = 1, . . . , 6. Finally, the map F is obtained from f6. Suppose
that X is a compact 4-manifold which admits a handle decomposition with only
0- and 2-handles; i.e., X can be given by attaching 4-dimensional 2-handles to D4

along S3. Using our method we can construct a stable map G of X into R2
×[0, 1].

Recall that according to [Burlet and de Rham 1974] a closed orientable 3-
manifold M has a stable map into R2 without singularities of types (B), (C), (D)
and (E) if and only if M is a connected sum of finitely many copies of S1

× S2.
According to [Saeki 1996] a closed orientable 3-manifold M has a stable map into
R2 without singular points of types (C), (D) and (E) if and only if M is a graph
manifold. By [Levine 1965] a 3-manifold always has a stable map into R2 without
singular points of type (C). Our arguments imply a constructive proof for

Theorem 1.4. Every closed orientable 3-manifold has a stable map into R2 with-
out singular points of types (C) and (E).

Remarks 1.5. (1) One cannot expect to eliminate the singular points of types (A),
(B) or (D) of stable maps from arbitrary closed orientable 3-manifolds to R2. In
this sense our Theorem 1.4 gives the best possible elimination on 3-manifolds.

(2) By taking an embedding R2
⊂ S2 we get for every closed orientable 3-manifold

a stable map into S2 as well without singular points of types (C) and (E). Then by
using the method of [Saeki 2006], for example, for eliminating the singular points
of type (A), we get a stable map, which is a direct analogue of the indefinite generic
maps appearing in [Baykur 2008; 2009; Gay and Kirby 2007].

The construction also implies certain relations between quantities one can nat-
urally associate to stable maps and to surgery diagrams.

Definition 1.6. Suppose that M is a fixed closed, oriented 3-manifold and that
F : M→ R2 is a stable map with singular set 6.

• Let s(F) denote the number of simple singularity crossings of F .

• Let ns(F) denote the number of nonsimple singularities of F .

• Let d(F) denote the number of crossing singularities of F . Clearly s(F)+
ns(F)= d(F).

• Let nsnc(F) denote the number of nonsimple singularities of F which are not
connected by any singular arc of type (B) to any cusp.

• Let c(F) denote the number of cusps of F . Clearly nsnc(F)+ c(F)≥ ns(F).
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• Let cc(F) denote the number of connected components of F(6). Clearly it
is no more than the number of connected components of 6.

• Let cf(F) denote the maximum number of connected components of the fibers
of F .

The inequality

rank H∗(M)≤ 2d(F)+ c(F)+ 2cc(F)

has been shown to hold in [Gromov 2009, Section 2.1].1 In addition, by [Costantino
and Thurston 2008, Theorem 3.38] we have d(F) ≥ ‖M‖/10, where ‖M‖ is the
Gromov norm of M ; see also [Gromov 2009, Section 3].

Theorem 1.2 provides several estimates for upper bounds on the topological
complexity of smooth maps of a 3-manifold given by surgery. For example, by
summing quantities in Definiton 1.6 and their estimates in Theorem 1.2, we im-
mediately obtain

Corollary 1.7. Suppose that the 3-manifold M is obtained by integral surgery on
the link L ⊂ S3. Let L be any diagram of L and v a general position vector in R2.
Then

• min d(F)≤ 9cr(L)+ (6`(L, v)+ 3
2)tv(L)+ tv(L)2− n(L),

• min cf(F)≤ tv(L)+ 3,

• min{2d(F)+c(F)+2cc(F)} ≤ 18cr(L)+(12`(L, v)+7)tv(L)+2tv(L)2+2,

where the minima are taken for all the stable maps F of M into R2. Evidently, we
can estimate other properties in Definiton 1.6 of stable maps on M as well.

These expressions can be simplified by estimating `(L, v) as

(1-1) `(L, v)≤ tv(L)− 1;

see Lemma 3.7.
The number of tangencies of a projection of a knot in a fixed direction is rem-

iniscent to the number of cusp singularities of a front projection of a Legendrian
knot in the standard contact 3-space. Based on this analogy, our previous results
imply an estimate on a quantity attached to a Legendrian knot in the following way.

Recall first that the standard contact structure ξst on R3 is the 2-plane field given
by the kernel of the 1-form α = dz+ xdy. A knot L is Legendrian if the tangent
vectors of L are in ξst . (To indicate the Legendrian structure on the knot, we will
denote it by L and reserve the notation L for smooth knots and links.) If L is chosen
generically within its Legendrian isotopy class, its projection to the (y, z) plane will
have no vertical tangencies, and at any crossing the strand with smaller slope will

1The paper [Motta et al. 1995] is also closely related.
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be over the one with higher slope. Consider now a Legendrian knot L and let L

denote such a projection (called a front projection) of L. The Thurston–Bennequin
number tb(L) of L is given by the formula w(L) − 1

2 #cusps(L), where w(L)
stands for the writhe (i.e., the signed sum of the double points) of the projection.
Although the definition of tb(L) uses a projection of the Legendrian knot L, it is
not hard to show that the resulting number is an invariant of the Legendrian isotopy
class of L.

If the projection has only negative crossings, we have thatw(L)=−cr(L), hence
the resulting Thurston–Bennequin number can be identified with −cr(L)− 1

2 tv(L)
after choosing v appropriately; cf. [Geiges 2008; Ozbagci and Stipsicz 2004]. (In
this case the generic projection L used in the definitions of tv(L) and cr(L) is
derived from the front projection L by rounding the cusps.)

As it is customary, we define TB(L) as the maximum of all Thurston–Bennequin
numbers of Legendrian knots smoothly isotopic to L . (It is a nontrivial fact, and
follows from the tightness of ξst that this maximum exists.) A modification of
this definition for negative knots (i.e., for knots admitting projections with only
negative crossings) provides

Definition 1.8. For a negative knot L⊂R3 let TB−(L) denote the value max{tb(L)}
where L runs over those Legendrian knots smoothly isotopic to L which admit
front diagrams with only negative crossings.

It is rather easy to see that if the knot L admits a projection with only negative
crossings, then it also has a front projection with the same property. Clearly
TB−(L)≤ TB(L).

Theorem 1.9. For a negative knot L ⊂ R3 and any 3-manifold M obtained by an
integral surgery along L we have

TB−(L)≤−min
√

s(F)

2
√

7
,

TB−(L)≤−min
√

d(F)

2
√

7
,

TB−(L)≤−min nsnc(F)− 1,

where the minima are taken for all the stable maps F of M into R2.

By Theorem 1.9 and [Costantino and Thurston 2008, Theorem 3.38] we obtain:

Corollary 1.10. For a negative knot L ⊂ R3 and any 3-manifold M obtained by
an integral surgery along L , we have

TB−(L)≤−
√
‖M‖

2
√

70
.
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2. Preliminaries

In this section, we recall and summarize some technical tools. First, we show that
a cusp can be pushed through an indefinite fold arc as in Figure 2.

Lemma 2.1 (moving cusps). Suppose that in a neighborhood U of a point p ∈ M
the Stein factorization of a map f : M → R2 is given by Figure 2(a). Then f can
be deformed in this neighborhood to a map f ′ so that the Stein factorization of f ′

is as the diagram of Figure 2(b).

Proof. Suppose q ∈ M is the cusp singular point and α ⊂ M is the indefinite fold
arc at hand. Let x ∈R2 be a point on the other side of f (α) in f (U ). Connect f (q)
and x by an embedded arc β ′. Then there is an arc β ⊂ M such that f (β) = β ′,
β starts at q , and β and α do not intersect. By using the technique of [Levine 1965]
we can now deform f in a small tubular neighborhood of β to achieve the claimed
map f ′. Note that during this move one singular point of type (D) appears. �

An analogous statement holds if we move a cusp from a 1-sheeted region to a
2-sheeted region.

According to the next result, two cusps can be eliminated as in Figure 3.

Lemma 2.2 (eliminating cusps). Suppose that in a neighborhood U of a point
p ∈ M the Stein factorization of a map f : M→ R2 is given by Figure 3(a). Then
f can be deformed in this neighborhood to a map f ′ so that the Stein factorization
of f ′ is as the diagram of Figure 3(b).

Proof. This statement is the elimination in [Levine 1965, pages 285–295] for
3-dimensional source manifolds. �

Recall that if f : M→ R2 is a stable map and S f ⊂ M denotes its singular set,
then f |S f is a generic immersion with cusps; i.e., if C f ⊂ M denotes the set of

(a) (b)

Figure 2. Moving cusps. A map can be deformed so that the
image of a cusp point goes to the other side of the image of an
indefinite fold arc.
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(a) (b)

Figure 3. Eliminating cusps.

t = 0

t = 1/3

t = 2/3

t = 1

Figure 4. The deformation of f to f ′ in a fiber of NL .



MAPS ON 3-MANIFOLDS GIVEN BY SURGERY 17

cusp points, then f |S f−C f is a generic immersion with finitely many double points
and f |C f is disjoint from f |S f−C f .

The following result will be the key ingredient in our subsequent arguments for
proving Theorem 1.2.

Lemma 2.3 (making wrinkles). Suppose that f : M→ R2 is a stable map and let
L ⊂ M denote an embedded closed 1-dimensional manifold such that L is disjoint
from the singular set S f , f |L is a generic immersion and f |L∪S f is a generic
immersion with cusps. Let NL be a small tubular neighborhood of L disjoint from
S f and fix an identification of NL with the normal bundle of L. Let s : L→ NL be
a non-zero section such that f (s(x)) 6= f (x) for any x ∈ L. Then f is homotopic
to a smooth stable map f ′ such that

(1) f = f ′ outside NL ,

(2) the singular set of f ′ is S f ∪ L ∪ s(L),

(3) f ′ has indefinite fold singularities along L ,

(4) f ′ has definite fold singularities along s(L),

(5) f ′|L = f |L ,

(6) f ′|s(L) is an immersion parallel to f |L and

(7) if for a double point y of f |L the two points in f −1(y) ∩ L lie in the same
connected component of the fiber f −1(y), then the double point y of f ′|L
correspond to a singularity of type (D).

Proof. We perform the homotopy inside NL fiberwise as shown by Figure 4 (see
previous page). Since NL is the trivial bundle, the homotopy of the fibers yields a
homotopy of the entire NL . �

Remark 2.4. If the submanifold L has boundary, we can still get something sim-
ilar. In this case the section s should be zero at the boundary points of L , and the
homotopy yields a stable map f ′ with cusps at ∂L .

3. Construction of the stable map on M

Proof of Theorem 1.2. We will prove the theorem by presenting an algorithm which
produces the map F on M with the desired properties. This algorithm will be given
in seven steps; the first six of these steps are concerned with maps on S3. Let us
start with a fold map f0 : S3

→ R2 with one unknotted circle C ⊂ S3 as singular
set such that f0|C is an embedding and f −1

0 (p) is a circle for each regular point
p∈ f0(S3). Then the Stein factorization of f0 is a disk together with its embedding
into R2. By cutting out the interior of a sufficiently small tubular neighborhood
NC of C from S3, we get a solid torus S3

− int NC whose boundary is mapped
into R2 by f0 as a circle fibration over a circle parallel to f0(C), and f0|S3−int NC
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is a trivial circle bundle S1
× D2

→ D2. Suppose the link L ⊂ S3 is disjoint
from NC ∪ {1} × D2. Then by identifying S3

− (NC ∪ {1} × D2) with R3 and
f0|S3−(NC∪{1}×D2) with the projection onto R2, we get a link diagram L = f0(L).
Now we start modifying this map f0. In Steps 1 through 6 we will deal with maps
on S3, and the goal will be to obtain a map which is suitable with respect to the
fixed surgery link L . In particular, we aim to find a map on S3 with the property
that its restriction to any component of L is an embedding into R2. We suppose
that the modifications through Step 1, . . . , Step 6 happen so that all the images of
the maps f1, . . . , f6 lie completely inside the disk determined by the (unchanged)
circle fi (C), i = 1, . . . , 6. This can be reached easily by choosing f0(C) to bound
an area “large enough” in R2 and supposing that the diameter of L is small.

Step 1. Our first goal is to deform f0 so that the resulting map f1 has fold singu-
larities along L . Apply Lemma 2.3 to the map f0 : S3

→ R2 and the embedded
1-dimensional manifold L ⊂ S3, and denote the resulting stable map by f1. It is
a fold map, its indefinite fold singular set is L and its definite fold singular set is
C ∪ L ′, where L ′ = s(L) is isotopic to L; for an example see Figure 5.

Since L ′ is isotopic to L , the integral surgery along L giving M can be equally
performed along L ′. Recall that doing surgery along L ′ simply means that we cut
out a tubular neighborhood of the definite fold curve L ′ (which is diffeomorphic
to L ′× D2), and glue it back by a diffeomorphism of its boundary L ′× S1. If the
image f1(L ′) was an embedding of circles, then it would be easy to construct the
claimed map F on the 3-manifold given by the integral surgery. Since this is not
the case in general, we need to further deform the map f1.

Figure 5. The image of the singular set of the map f1 : S3
→R2,

where L is the trefoil knot. The outer circle is f1(C), the inner
solid curve is f1(L ′) and the dashed curve is f1(L). The double
points of f1(L) correspond to singularities of type (D).
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Let B denote the interior of the bands (one for each component of L) bounded
by q f1(L) and q f1(L

′) in the Stein factorization W f1 . Then B is immersed into R2

by f̄1. The Stein factorizations of the maps f2, . . . , f6 in the next steps will be
built on B. Let B ′ denote the surface W f1 − cl B.

Step 2. Now, our goal is to deform f1 so that the Stein factorization of the resulting
map f2 has small “flappers” near q f2(L

′) at the points where f̄2(q f2(L
′)) is tangent

to the general position vector v. These “flappers” will help us to move the image
of L so that it will become an embedding into R2.

First, we use Lemma 2.3 together with Remark 2.4 as follows. Let T be the set
of points in q f1(L

′) such that for each p ∈ T the direction v is tangent to f1(L ′)
at f̄1(p). For each p ∈ T take a small embedded arc αp in a small neighborhood
of p in B such that f̄1|αp is an embedding parallel to f1(L). For each arc αp there
exists an embedded arc α̃p in S3 such that q f1 |α̃p is an embedding onto αp. See, for
example, the upper picture of Figure 6, where the small dashed arcs having cusp
endpoints represent the arcs f1(α̃p)= f̄1(αp) for all p ∈ T .

Apply Lemma 2.3 and Remark 2.4 to the map f1 : S3
→ R2 and the arcs {α̃p ⊂

S3
: p ∈ T } to obtain a map f ′1. The section s in Lemma 2.3 is chosen so that

if we project the f ′1-images of the arising new definite fold curves in R2 to Rv,
then for each curve there is only one critical point, which is a maximum. An
example for the resulting map f ′1 can be seen in the upper picture of Figure 6.
Note that the deformation yielded small “flappers” in W f ′1 attached to B along the
arcs {αp : p ∈ T }. Next, for each p ∈ T take small arcs βp in W f ′1 which intersect
generically the previous arcs {αp : p ∈ T }, lie in B and on the “flappers” and are
mapped into R2 almost parallel to v. See the new small dashed arcs in the lower
picture of Figure 6. Once again, there are small arcs {β̃p : p ∈ T } embedded in S3

mapped by f ′1 onto {βp : p ∈ T }, respectively.
The application of Lemma 2.3 and Remark 2.4 for these arcs provides us a map,

which we denote by f2. This map will have one additional flapper for every flapper
of f ′1. We choose the section s in Lemma 2.3 so that the f2-images of the arising
new definite fold curves lie inward2 from the arcs { f̄ ′1(βp) : p ∈ T }, respectively,
in the f̄2-image of B and the previous flappers. For an enlightening example, see
the lower picture of Figure 6. Note that after this step |T | new singular points of
type (D) appeared. Also note that for each p ∈ T we have four cusp singular points
in S3, three of which are mapped by q f2 into B. We denote the set of these three
cusps by C p. For each p ∈ T the f2-images of two of these three cusps in C p point
to the direction −v. We denote the set of these two cusps by Dp. Note that the
definite fold curves in the images of the two cusps in Dp are on opposite sides.

2At a point of { f̄ ′1(p) : p ∈ T } let us call the direction which is perpendicular to f ′1(L
′) and points

toward the direction where locally f ′1(L
′) lies “inward”.
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v

Figure 6. We obtain the upper picture by applying Lemma 2.3 and
Remark 2.4 to the small arcs {α̃p : p ∈ T } in S3 which are mapped
by f1 to the dashed arcs near the points of the diagram L where it is
tangent to v. We obtain the lower picture by applying Lemma 2.3
and Remark 2.4 to the new arcs added to the upper picture. The
solid arcs correspond to singularities of type (A) and the black
double points of the dashed arcs correspond to singularities of type
(D).
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Step 3. Now our goal is to obtain definite fold arcs connecting points of S3 where
f2 had cusps. Moreover these definite fold arcs will be mapped into R2 parallel to
the diagram L . (These curves will be translated in the next step so that later they
will lead to an embedding of L into R2.)

In order to reach this goal, we deform the map f2 : S3
→R2 further by eliminat-

ing half of the cusps as follows. We proceed for each component of L separately
and in the same way, thus in the following we can suppose that L is connected.
Take a cusp q0 ∈ S3 which is in Cx−Dx for an x ∈ T such that the entire f2(L ′) lies
to the right hand side of its tangent at f̄2(x). By going along the band B in W f2 in
the direction to which the f2-image of this cusp q0 points, we reach another cusp q1

in C p for some p ∈ T at the next v-tangency of f2(L ′). If this cusp does not belong
to Dp, then it is possible to apply Lemma 2.2 and eliminate these two cusps, since
they are in the position of Figure 3. Then we continue by taking the cusp in Dp

whose Stein factorization is folded inward. If the cusp q1 does belong to Dp, then
we choose that cusp from Dp which can be used to eliminate q0 (it is easy to see
that this is exactly the cusp in Dp whose Stein factorization is folded inward), we
eliminate them, then we continue by taking the cusp belonging to C p − Dp. This
procedure goes all along the band B, meets all p ∈ T and eliminates half of the
cusps. After finishing this process, we obtain a stable map, which we denote by
f3; see Figure 7 for an example.

Figure 7. Eliminating half the cusps in the lower part of Figure 6.
The black double points correspond to singularities of type (D).
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The cusp elimination results new definite fold curves whose f3-image is an
immersion, and which have double points near the crossings of the diagram L . In
the next step we will deform f3 so that the double points of these new curves will
be localized near the images of the remaining cusps.

Step 4. Now our goal is to deform f3 to a map f4 such that the definite fold arcs
obtained in the previous step will be mapped into R2 far from the diagram L .
(Informally, we will “lift” some of the arcs in the direction of v.) Moreover, the
immersion of these definite fold arcs into R2 will have double points only near
some cusps of f4. This brings us closer to the original goal to have a map which
embeds a link isotopic to L into the plane.

The cusp eliminations above affect only small tubular neighborhoods of curves
connecting cusps in S3. Denote by δ ⊂ S3 the new definite fold arcs which appear
in these tubular neighborhoods after the eliminations. Note that by the algorithm
above, the arcs δ are mapped into R2 so that by an elementary deformation they
can be moved “upward” in the direction of v, see Figure 7.

So we further deform f3 : S3
→R2 to get a stable map denoted by f4 as indicated

in Figure 8: as it is shown by the picture, the arcs are “lifted”. In fact, we deform
f̄3: we move the top of the “flappers” corresponding to the α-curves of Step 2
and the f̄3-image of the curves q f3(δ) in the direction of v and far from f3(L).
We proceed for each component of L separately and in the same way, thus in the
following we can suppose that L is connected. First we choose a point x ∈ T such
that the entire f3(L ′) lies to the right hand side from its tangent at f̄3(x). Then,
by walking along the band B ⊂ W f3 starting from x , we deform the flappers and
the curves f̄3(q f3(δ)) to be mapped into the plane as a “zigzag” far away from the
diagram L . More precisely, consider the coordinate system in R2 with origin x and
coordinate axes Rv⊥ and Rv, respectively, where v⊥ denotes the vector obtained
by rotating v clockwise by 90 degrees. By extending the f̄3-image of the flappers
in the direction of v deform the f̄3-image of the curves q f3(δ) so that by going
along B between the points pi , pi+1 ∈ T , where 1 ≤ i ≤ |T | − 1 and p1 = x ,
the corresponding component of the curve f3(δ) is mapped into a small tubular
neighborhood of a line with slope (−1)i+1 for i = 1, . . . , |T |−1. Finally, arrange
the last component of f3(δ) starting with slope−1 and ending at the first (extended)
flapper belonging to x , see Figure 8.

As a result the double points of the immersion of the deformed curves f4(δ) are
in a small neighborhood of the cusps mapped close to the tops of the flappers.

Step 5. In this step, we modify the stable map f4 so that the cusps of the resulting
map f5 will be easy to eliminate in the next step. Let l⊂R2 be a line perpendicular
to v located near f̄4(B), separating it from the other parts moved to the direction
of v in Step 4, as indicated in Figure 8.
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Figure 8. The Stein factorization of f4, i.e., the deformation of
f3 of Figure 7. (The straight line represents the line l used to cut
W f4 in Step 5.) The upper part of W f4 from the bold 1-complex is
denoted by A. (As usual, the circle f4(C) is omitted.)

Now, we cut the 2-complex W f4 − B ′ (recall that B ′ denotes W f1 − cl B; see
Step 1) along the f̄4-preimage of the line l, thus we obtain the decomposition

W f4 = A∪ f̄ −1
4 (l)∩(W f4−B ′) A′,

where A′ denotes the 2-dimensional CW complex containing q f4(L) and A denotes
the closure of W f4 − A′. Then q−1

f4
(A) is a 3-manifold with boundary. Let us

denote the 1-complex q f4(∂q−1
f4
(A)) by ∂A. In order to visualize ∂A in Figure 8,

we suppose that the cutting of W f4 along f̄ −1
4 (l)∩(W f4−B ′) is a little bit perturbed
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and thus the bold 1-complex in Figure 8 represents ∂A. Before proceeding further,
we need a better understanding of the q f4-preimages of the sets appearing in the
above decomposition. The preimage q−1

f4
(∂A) is clearly diffeomorphic to J × S1

for a link J ⊂ S3. The following statements show much more about q−1
f4
(∂A). It

is easy to see that the numbers of components of J and L are equal. However, we
have a stronger result:

Lemma 3.1. A longitudinal curve in q−1
f4
(∂A) is isotopic to L.

Proof. The 1-complex ∂A decomposes as a union of 1-cells: some of them (which
we depict as “small 1-cells” in Figure 8) are attached at one of their endpoints to
the union of the other 1-cells, we denote these small cells by σi for i = 1, . . . , |T |.
Others are attached by both of their endpoints. Let σ denote the 1-complex ∂A−⋃|T |

i=1 σi . Then the PL embedding σ ⊂W f4 is isotopic to the subcomplex ι of W f4

formed by the arcs of type (B) in the open bands B connecting the singular points
of type (D) in B. Furthermore, the subcomplex ι is isotopic to q f4(L

′). Take a
small closed regular neighborhood N of q f4(L

′). Then q−1
f4
(N ) is naturally a D2-

bundle over L ′. The boundary of N in W f4 is a 1-manifold isotopic to q f4(L
′), and

we will denote it by λ. Clearly q−1
f4
(λ) is diffeomorphic to L ′× S1. Note that any

section of q−1
f4
(λ) is isotopic to L ′.

The isotopy between λ and ι and the isotopy between ι and σ can be chosen
easily so that they give a PL embedding ε : S1

× [0, 1] → W f4 such that S1
× {0}

and S1
×{1} correspond to λ and σ , respectively. For j = 1, . . . , |T |, let U j denote

small regular neighborhoods of the singular points of type (D) located near the cusp
points in B in W f4 , such a U j and the restriction f̄4|U j can be seen in Figure 1(d).
Then the intersection

ε(S1
×[0, 1])∩

( |T |⋃
j=1

U j

)
consists of a union of disks, which will be denoted by

|T |⋃
j=1

D j .

First, observe that for each j = 1, . . . , |T | there exists a disk D̃ j embedded into
q−1

f4
(U j ) in S3 whose boundary ∂ D̃ j is mapped by q f4 homeomorphically onto the

boundary ∂D j ; i.e., ∂ D̃ j is a lifting of ∂D j . To see this, consider the 3-manifold
q−1

f4
(U j ) for each j = 1, . . . , |T |. By [Levine 1985] the manifold q−1

f4
(U j ) is

diffeomorphic to R × [0, 1], where R is a disk with three holes and it is mapped
by f4 into R2 as we can see in Figure 9(a).
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(a) (b)

Figure 9. In (a) we can see the manifold R × [0, 1] and how
it is mapped onto the regular neighborhood U j and into R2; cf.
Figure 1(d). R × {0} is mapped onto the left side of the rectan-
gle f̄4(U j ) as a proper Morse function with two indefinite critical
points. The two “figure eights” in R × {0} are the two singular
fibers. R× {1} is mapped similarly onto the right side of f̄4(U j ).
The middle fiber in R × [0, 1] is mapped to the singular point of
type (D). For a detailed analysis see [Levine 1985]. In (b) we can
see the boundary ∂ D̃ j in R×[0, 1] and its image in U j represented
by a bold 1-complex.

Each disk D j can be located in U j essentially in four ways, for example the
lower picture of Figure 9(b) shows the disk D j for the leftmost nonsimple singu-
larity crossing of type (D) in Figure 8. We get D j on the picture by cutting out the
two shaded areas from the 2-complex U j . It is easy to see in the upper picture of
Figure 9(b) how to put the disk D̃ j into R×[0, 1]. The other three possibilities for
the location of a disk D j in U j and the disk D̃ j in q−1

f4
(U j ) can be described in a

similar way.
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Now observe that ε(S1
×[0, 1])−

⋃|T |
j=1 D j can be lifted to S3 extending

⋃|T |
j=1 D̃ j

because of the following. First, the regular neighborhoods of the singular points of
type (C) in B (see Figure 1(c)) intersect ε(S1

×[0, 1]) in disks which can be lifted to
S3. Then the intersection of the small regular neighborhoods of the singular curves
of type (B) and ε(S1

×[0, 1]) can be lifted as well since there is no constraint for the
lift at the regular points of f4. Finally observe that the rest of ε(S1

×[0, 1]) inter-
sects W f4 only in areas of non-singular points which are attached to the boundary
of ε(S1

×[0, 1]), so the previous lifts extend over the entire ε(S1
×[0, 1]).

Hence we obtain an embedding ε̃ : S1
×[0, 1]→ S3 with S1

×{0} and S1
×{1}

corresponding to lifts of λ and σ , respectively. Thus we obtain an isotopy between
a longitude of q−1

f4
(∂A) and a lift of λ. The fact that any lift of λ is isotopic to L ′

finishes the proof. �

Lemma 3.2. The preimage q−1
f4
(A) is isotopic to a regular neighborhood of L.

Proof. It is enough to show that q−1
f4
(A) is diffeomorphic to L × D2 extending

naturally the L × S1 structure on its boundary since by Lemma 3.1 the union of
tori ∂q−1

f4
(A) contains a longitude isotopic to L . Moreover it is enough to show that

the q f4-preimage of the part of A homeomorphic to the CW complex in Figure 10
is diffeomorphic to [0, 1] × D2, where the q f4-preimage of the two vertical edges
on the right-hand side of the 2-complex of Figure 10 corresponds to {0, 1} × D2.
Clearly the q f4-preimage of the two vertical edges on the right-hand side is diffeo-
morphic to {0, 1}× D2 since q−1

f4
(x) is a circle for any x lying in the two vertical

edges except if x is one of the two top ends. If x is one of the two top ends, then
q−1

f4
(x) is one point since it is a definite fold singularity. The q f4-preimage of the

backward sheet in Figure 10 is diffeomorphic to [0, 1] × D2 minus I × D2 for an
interval I . The q f4-preimage of the forward sheet is diffeomorphic to I × D2. �

Corollary 3.3. Any longitudinal curve in q−1
f4
(∂A) is isotopic to L.

Figure 10
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Figure 11. The Stein factorization of

f5|q−1
f5
(W f5−A′) : L × D2

→ R2.

There are two P-pairs of cusps.

In order to obtain the map f5, we modify the map

f4|q−1
f4
(A) : L × D2

→ R2

outside a neighborhood of q−1
f4
(∂A), as shown by Figure 11: our goal is to have

the arrangement that if for a cusp singularity q1 ∈ S3 the point q f5(q1) is connected
in W f5− A′ to ∂A by a 1-cell γ mapped into R2 parallel to v and γ corresponding
to an indefinite fold curve, then a definite fold curve should connect q1 to another
cusp q2 with the same property for q f5(q2). Thus we obtain a map f5 such that
q−1

f5
(W f5− A′) is isotopic to a regular neighborhood of L by the same argument as

in Lemma 3.2. Also q−1
f5
(W f5 − A′) coincides with q−1

f4
(A) and f5 coincides with

f4 in a neighborhood of q−1
f5
(A′).

We arrange the cusps of f5 in q−1
f4
(A) to form pairs as follows. In W f5 sheets

are attached to B along arcs of type (B) (possibly containing points of type (C)
at some endpoints). Walking along the bands B and restricting ourselves to the
intersection of the sheets and W f5 − A′, we have that every sheet contains a pair
of cusps and every second sheet contains a singular arc of type (A) connecting its
pair of cusps; for example, see Figure 11.

A natural pairing is that two cusps form a pair if they are in the same sheet
and they are connected by a singular arc of type (A). We refer to this pairing as
Q-pairing. We also define another pairing P: two cusps form a P-pair if they are
in the same sheet and they are not connected by any singular arc of type (A).

Step 6. In this step, we eliminate the cusps of f5 contained in q−1
f5
(W f5 − A′).

These cusps are mapped by f5 in the direction of v far from L and arranged into
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P-pairs in the previous step. The restriction of the resulting map f6 : S3
→ R2 to

a link isotopic to L will be an embedding. (Hence after this step the construction
of the claimed map F on M will be easy.)

We have exactly |T |/2 P-pairs of cusps in q−1
f5
(W f5 − A′). Observe that for

each component of L one P-pair can be eliminated immediately: for example in
Figure 11 the pair on the “highest” sheet is in the sufficient position to eliminate.
In the following, we deal with the other P-pairs.

More concretely, we perform the deformations and the eliminations of the pairs
of cusps of f5 in q−1

f4
(A) as shown in Figure 12 as follows.

(a)

(b)

(c)

Figure 12. Moving and eliminating the cusps. We move and
eliminate the P-pair of cusps along the arrows. The dashed arcs
represent 1-complexes used to deform σ in the proof of
Lemma 3.4.
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First, by using Lemma 2.1 we move each pair of cusps having the position as in
Figure 12(a) to the position as in Figure 12(b) thus creating a singularity of type
(D). Then by using Lemma 2.2 we eliminate each pair of cusps, see Figures 12(b)
and 12(c).

The resulting map will be denoted by f6 (see Figure 13). Notice that f6 and
f5 coincide in a neighborhood of q−1

f5
(A′). The deformations above yield definite

fold curves K ⊂ S3, whose image under f6 is an embedding into R2 as indicated
in Figure 13 by the bold curve.

Lemma 3.4. The link K is isotopic to L.

Figure 13. The Stein factorization of the stable map f6 : S3
→R2.

(The circle f6(C) is omitted.)
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Proof. By Lemma 3.1 the link L is isotopic to a longitude of the union of tori
q−1

f4
(∂A). In Step 6 we modify f5 only inside q−1

f4
(A). The subcomplex σ of ∂A

used in the proof of Lemma 3.1 is PL-isotopic to a 1-dimensional PL submanifold
σ ′ of W f5− A′ such that σ ′ goes through the singular curves of type (A) appearing
in the Q-pairing at the end of Step 5 and goes through the top of W f5− A′, i.e., the
top of the 2-complex in Figure 11. To be more precise, in Figure 12(a) the part of
σ ′ connecting the two cusp endpoints of the singular arcs of type (A) is represented
by a bold dashed arc and denoted by σ ′′. During the moving of the pair of cusps as
depicted by the arrows in Figure 12(a), σ ′′ is deformed to the curve σ ′′′ represented
by a bold dashed arc in Figure 12(b). This deformation gives an isotopy between
some liftings to S3 of σ ′′ and σ ′′′. Since a part of σ ′′ is collinear to a singular
arc of type (A) as we can see in Figure 12(a), any lifting to S3 of σ ′′ is isotopic
to any other lifting. Hence further deforming σ ′′′ to σ ′′′′ represented by the bold
dashed curve in Figure 12(c) yields an isotopy between some liftings of σ ′′ and
σ ′′′′. Finally, changing again the lifting to S3 of σ ′′′′ if necessary, we eliminate the
pair of cusps as indicated in Figure 12(b) and deform σ ′′′′ to be identical to the
type (A) singular arc appearing at the elimination in Figure 12(c). All this process
gives an isotopy in S3 between K and a lifting of σ , hence an isotopy between K
and L . �

Step 7. As a final step, we perform the given surgeries along K with the appropriate
coefficients. Since f6|K is an embedding into R2 on each component of K , and
K consists of definite fold singular curves such that the local image of a small
neighborhood of the definite fold curve is situated “outside” of the image of the
definite fold curve, a map of M is particularly easy to construct: a small tubular
neighborhood NK of K , which is diffeomorphic to K × D2, is glued back to S3

−

int NK such that {pt.} × ∂D2 maps to a longitude in ∂(M − int NK ), hence NK

can be mapped into R2 as the projection π : K × D2
→ D2. This π extends over

M − int NK and the resulting map M→ R2 is stable. Let us denote it by F .
It is easy to see that F has the claimed properties:

The Stein factorization WF is homotopy equivalent to the bouquet
∨n(L)

i=1 S2. The
Stein factorization W f4 is clearly contractible. The CW-complexes W f5 and W f6

are still contractible since the corresponding steps do not change the homotopy
type. At the final surgery we attach a 2-disk to W f6 for each component of L .

The number of cusps of F is equal to tv(L). Each point in f1(L ′) at which f1(L ′) is
tangent to the chosen general position vector v (these are exactly the points of the
set f̄1(T )) corresponds to a cusp of F by the construction and there are no other
cusps. |T | = tv(L) hence we get the statement.

All the nonsimple singularities of F are of type (D). This follows from the fact that
singularities of type (E) never appear during the construction.
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The number of the nonsimple singularities of F is equal to cr(L)+ 3
2 tv(L)− n(L).

Each crossing of the diagram L gives a singularity of type (D). Also each point
in T gives a singularity of type (D) by the construction. Finally, the movement
illustrated in Figure 12(b) gives one singular point of type (D) for each pair of
points in T except one pair for each component of L .

The number of nonsimple singularities which are not connected by any singular
arc of type (B) to any cusp is equal to cr(L)+ 1

2 tv(L)− n(L).
In the previous argument, if we do not count the singularities of type (D) corre-

sponding to the v-tangencies of f1(L ′), then we get the statement.

The number of simple singularity crossings of F in R2 is no more than

8cr(L)+ 6`(L, v)tv(L)+ tv(L)2.

We can suppose that the number of simple singularity crossings of f4|q−1
f4
(A′) is at

most 8cr(L)+ 2tv(L)+ 6`(L, v)tv(L). The maps f4, f5, f6 and F coincide in a
neighborhood of q−1

f4
(A′) and also their images coincide in the half plane bounded

by the line l and lying in the direction −v (for the notations, see Step 5). The
simple singularity crossings of F in F(q−1

f4
(A)) come from the intersections of the

F̄-images of the “sheets” attached to the bands B ⊂WF (for the notation, see Step
2). For example, in Figure 13, two such sheets intersect on the right-hand side in
four simple singularity crossings. Hence we obtain an upper bound for the number
of simple singularity crossings of F in F(q−1

f4
(A)) if we suppose that all the sheets

intersect each other in eight crossings. This gives the upper bound

8
(

tv(L)
2
− 1+

tv(L)
2
− 2+ · · ·+ 1

)
= 4

tv(L)
2

(
tv(L)

2
− 1

)
= tv(L)2− 2tv(L).

Thus we obtain the upper bound

8cr(L)+2tv(L)+6`(L, v)tv(L)+tv(L)2−2tv(L)=8cr(L)+6`(L, v)tv(L)+tv(L)2

for all the simple singularity crossings of F .

The number of connected components of the singular set of F is no more than
n(L)+ 3

2 tv(L)+1. The curve C is a component and the links L and L ′ give singular
set components as well. Also the cusp elimination in Step 3 gives additional tv(L)
components. Steps 4 and 5 clearly do not increase more the number of singular set
components. In Step 6 the changings showed in Figure 12 increase the number of
components by at most 1

2 tv(L). Finally Step 7 decreases it by n(L).

The maximal number of the connected components of any fiber of F is no more
than tv(L)+3. The maximal number of the connected components of any fiber of
f1 is 3. This value is no more than 3+ tv(L) for f2, . . . , f5 and also for f6. When
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we perform the surgery in Step 7, 3+ tv(L) is still an upper bound hence we get
the statement.

The indefinite fold singular set of F. Finally the statement of (8) about the indefinite
fold singular set of F is obvious from the construction. This finishes the proof of
Theorem 1.2. �

Remark 3.5. Suppose we have two links in S3. If the projections of the two links
coincide, then the resulting stable maps on the two 3-manifolds in the construction
described above will have the same Stein factorizations. Therefore only the Stein
factorization itself is a very week invariant of the 3-manifold.3

Proof of Theorem 1.4. Let M be a closed orientable 3-manifold obtained by an
integral surgery along a link in S3. Theorem 1.2 gives a stable map F of M into
R2 without singularities of type (E). We can eliminate the cusps of F without intro-
ducing any singularities of type (E). Indeed, the map constructed by Theorem 1.2
has an even number of cusps, whose qF -image is situated in B ⊂ WF . Moreover
since the locations of the F-images of the cusps are at the v-tangencies of L , each
cusp c has a pair c′ which can be moved close to c (thus possibly creating new
singular points of type (D)) and can be used to eliminate these pairs in the sense
of Lemmas 2.1 and 2.2. �

Remark 3.6. By results from [Eliashberg and Mishachev 1997], every closed ori-
entable 3-manifold has a wrinkled map into R2 since any orientable 3-manifold is
parallelizable. This argument leads to another proof of Theorem 1.4. However, the
h-principle used in the proof of the results cited does not provide any construction
for the wrinkled map.

Next we give the proof of the estimate given in (1-1) in Section 1.

Lemma 3.7. `(L, v)≤ tv(L)− 1.

Proof. For any v-tangency p we have `(L, v, p)≤ tv(L)− 1 since by going along
the components of L in the diagram L , in order to pass through the intersections
of the half line emanating from p in the direction of v, for each intersection one
needs to pass through a v-tangency as well. �

4. Estimates for TB−

Recall that the Thurston–Bennequin number tb(L) of a Legendrian knot L can be
computed through the simple formula

tb(L)= w(L)− 1
2 #cusps(L).

3The paper [Motta et al. 1995] is closely related to this remark.
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Proof of Theorem 1.9. By Theorem 1.2(5) and Lemma 3.7 we have

s(F)≤ 8cr(L)+ 7tv(L)2− 6tv(L)

for the constructed stable map F . (Here, again, L denotes the generic projection
of the knot L we get from the front projection of the Legendrianization L of L
by rounding the cusps.) Since d(F)= s(F)+ ns(F), by Theorem 1.2 (3), (5) and
Lemma 3.7 we have

d(F)≤ 9cr(L)+ 7tv(L)2− 9
2 tv(L)− n(L).

If L has only negative crossings, then the Thurston–Bennequin number tb(L) is
equal to −cr(L)− 1

2 tv(L), where v is the vector in which the front projection has
no tangency.

Hence

28tb(L)2 = 28cr(L)2+ 28cr(L)tv(L)+ 7tv(L)2

and

28cr(L)2+ 28cr(L)tv(L)+ 7tv(L)2 ≥ 9cr(L)+ 7tv(L)2− 9
2 tv(L)− n(L).

Thus |tb(L)| ≥
√

d(F)/
√

28, implying (by the fact that tb(L) is negative for a
knot admitting a projection with only negative crossings)

(4-1) tb(L)≤−
√

d(F)
√

28
.

Also by Theorem 1.2 (4), we have

|tb(L)| = cr(L)+ 1
2 tv(L)≥ nsnc(F)+ 1,

which gives

(4-2) tb(L)≤−nsnc(F)− 1.

Finally note that d(F)≥ s(F) for any stable map F , and by taking the minimum
for all the stable maps in (4-1) and (4-2), we get the statement. �
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STRONG SOLUTIONS TO THE COMPRESSIBLE
LIQUID CRYSTAL SYSTEM

YU-MING CHU, XIAN-GAO LIU AND XIAO LIU

We prove the existence of local strong solutions of the compressible liquid
crystal system.

1. Introduction

We consider the following simplified system of Ericksen–Leslie equations:

ρt + div(ρu)= 0,(1.1)

ρut + ρu · ∇u+∇ p−µ1u+ λ
(

div(∇n⊗∇n)−∇ |∇n|2

2

)
= 0,(1.2)

∂n
∂t
+ u · ∇n− ν(1n+ |∇n|2n)= 0,(1.3)

with the following initial and boundary conditions:

(ρ, u, n)|t=0 = (ρ0, u0, n0), x ∈�,(1.4)

u(x, t)= u0(x)= 0, n(x, t)= n0(x), x ∈ ∂�,(1.5)

where u is the velocity field, n the macroscopic average of the nematic liquid crystal
orientation field, ρ0≥ 0, |n0| = 1, and pressure p= aργ with γ > 1, where γ is the
adiabatic constant (in the physically relevant case of a monoatomic gas, γ = 5

3 ).
This system is modeled after the theory of Oseen [1933] and Frank [1958]; see
the articles [Ericksen 1962; Forster et al. 1971; Leslie 1966; 1968] or the books
[Ericksen and Kinderlehrer 1987; Gennes and Prost 1993; Pasechnik et al. 2009;
Stephen 1970; Xie 1988].

The system (1.1)–(1.3) is much more complicated than the compressible Navier–
Stokes equations, because equation (1.3), like the situation with heat flow into a
sphere, makes the strongly coupling term div(∇n ⊗ ∇n) − ∇ |∇n|2

2 have a weak
convergence. So far, the existence of weak solutions to the system remains open,
though there are celebrated contributions by Lions [1998]; see also [Feireisl 2004;

This work was supported partly by NSFC grant 11071043, 11131005, and 11071069.
MSC2010: 76N10, 35Q35, 35Q30.
Keywords: strong solutions, compressible liquid crystals, local existence.
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Feireisl et al. 2001]. Liu and Qing [2011] proved the global existence of finite en-
ergy weak solutions to the case where the free energy is replaced by the Ginzburg–
Landau approximation energy,

min
n∈H1(�;R3)

∫
�

1
2 |∇n|2+ 1

4σ 2 (|n|
2
− 1)2 dx .

In the incompressible case, F. H. Lin and C. Liu, among others [Lin 1989; Lin
and Liu 1995; Lin and Liu 2001; Lin and Liu 2000; Lin and Liu 1996; Calderer
and Liu 2000], systematically studied the incompressible liquid crystal dynamics
system based on the Ericksen–Leslie model (that is, the Ginzburg–Landau approx-
imation case with ρ being a constant in system (1.1) makes the velocity field diver-
gence free) and proved the global existence of weak solutions, classical solutions,
and partial regularity. Liu and Zhang [2009] also studied the existence of weak
solutions to the incompressible liquid crystal system with the Ginzburg–Landau
approximation and ρ nonconstant.

It is well known that there exist no global solutions to the system (1.1)–(1.3)
even in the incompressible case. Surprisingly, we can prove the local existence
of a strong solution to the compressible liquid crystal system with initial density
ρ0 ≥ 0. We gained enlightenment from the corresponding results of the com-
pressible Navier–Stokes equations. There is a huge literature on the compressible
Navier–Stokes equations, under the crucial assumption that the initial density ρ0

is bounded below away from zero. The existence results were obtained by Nash,
Itaya, Tani, Matsumura, and Nishida, among others. For general nonnegative initial
density, Cho, Kim, and Choe [Choe and Kim 2003; Cho et al. 2004; Cho and Kim
2006] obtained the existence of a local strong solution to a compressible Navier–
Stokes equation.

We first have the energy law

dE
dt
+

∫
�

µ|∇u|2+ λν|1n+ |∇n|2n|2 = 0

with

E(t)=
∫
�

(
1
2ρu2

+
λ

2
|∇n|2+ a

γ−1
ργ
)
.

From the definition of velocity,

dx(X, t)
dt

= u(x(X, t), t),(1.6)

x(X, 0)= X.(1.7)

The continuity equation can be rewritten as

dρ(x(X, t), t)
dt

+ ρ div u = 0,
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that is,

(1.8) ρ(x, t)= ρ0 exp
(
−

∫ t

0
div u

)
.

We need the following regularity for ρ0, n0, and u0:

(1.9) ρ0 ∈W 1,6(�), u0 ∈ H 1
0 (�)∩ H 2(�), n0 ∈ H 3(�).

We also need some compatibility condition on the initial data: for some g ∈ L2,

µ1u0− λ div(∇n0⊗∇n0−
1
2 |∇n0|

2 I )− a∇ργ0 = ρ
1
2
0 g.(1.10)

The following is our main result.

Theorem 1.1. Assume� is a smooth bounded domain in R3 and (ρ0, n0, u0) satis-
fies regularity condition (1.9) and compatibility condition (1.10). Then there exist
a small time T ∗ > 0 and a unique strong solution (ρ, n, u) of the compressible
liquid crystal system (1.1)–(1.3) in (0, T ∗) × �, satisfying initial and boundary
conditions (1.4) and (1.5), such that

ρ ∈ C([0, T ∗);W 1,6), ρt ∈ C([0, T ∗); L6),

u ∈ C([0, T ∗); H 1
0 ∩ H 2)∩ L2(0, T ∗;W 2,6), ut ∈ L2(0, T ∗; H 1

0 ),

n ∈ C([0, T ∗); H 2)∩ L2(0, T ∗;W 2,6), nt ∈ C([0, T ∗); H 1
0 ),

√
ρut ∈ C([0, T ∗); L2).

2. Approximation solutions

We now consider the linearized equations as follows: for fixed smooth functions
v, d :�×[0, T ] → R3 with

dx(X, t)
dt

= v(x(X, t), t)

and x(X, 0)= X , and v(x, 0)= u0(x), d(x, 0)= n0(x),

ρt + div(ρv)= 0,(2.1)

(ρu)t + div(ρv⊗ v)+ a∇ργ = µ1u− λ div(∇n⊗∇n− 1
2 |∇n|2 I ),(2.2)

nt − γ1n = λ|∇d|2d − v · ∇d,(2.3)

with initial and boundary conditions

(ρ, u, n)|t=0 = (ρ0+ δ, u0, n0), x ∈�,(2.4)

u(x, t)= u0(x)= 0, n(x, t)= n0(x), x ∈ ∂�.(2.5)

Here δ > 0 is a constant, and ρ0 ≥ 0, |n0| = 1.
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We use the following notations: Suppose Banach spaces

A= L∞(0, T ; H 2(�))∩ L2(0, T ;W 2,6(�))∩W 1,1
2 ((0, T )×�),

B= L∞(0, T ;W 2,6(�))∩W 1,1
∞
((0, T )×�)∩W 2,1

2 ((0, T )×�)

with norm respectively

‖v‖A = ‖v‖L∞(0,T ;H2(�))+‖v‖L2(0,T ;W 2,6(�))+‖vt‖L2(0,T ;H1(�)),

‖d‖B = ‖dt‖L2(0,T ;H2(�))+‖dt‖L∞(0,T ;H1(�))+‖d‖L∞(0,T ;W 2,6(�)).

Lemma 2.1. For given v with ‖v‖A ≤ A, the unique solution ρ of (2.1) satisfies

‖ρ‖L∞(0,T ;W 1,6(�)) ≤ cc0(1+ T
1
2 A) exp(cT

1
2 A),(2.6)

‖ρt‖L∞(0,T ;L6(�)) ≤ cc0 A exp(cT
1
2 A).(2.7)

In particular,

‖p‖L∞(0,T ;W 1,6(�)) ≤ cc0(1+ T
1
2 A) exp(cT

1
2 A),(2.8)

‖pt‖L∞(0,T ;L6(�)) ≤ cc0 A exp(cT
1
2 A),(2.9)

where c is an absolute constant, perhaps dependent on �, λ, µ, γ , etc., and c0 is a
constant dependent on initial and boundary data.

Proof. Since

∇ρ =∇ρ0 exp
(
−

∫ t

0
div v

)
− ρ0

∫ t

0
∇div v exp

(
−

∫ t

0
div v

)
,

ρt =−ρ0 div v exp
(
−

∫ t

0
div v

)
,

we have, from the Minkowski inequality,

‖∇ρ‖L6(�) ≤ c‖ρ0‖W 1,6(�)

(
1+

∥∥∥∥∫ t

0
∇

2v

∥∥∥∥
L6(�)

)
exp

(∫ T

0
‖div v‖L∞(�)

)
≤ c‖ρ0‖W 1,6(�)

(
1+

∫ T

0
‖∇

2v‖L6(�)

)
exp

(∫ T

0
‖div v‖L∞(�)

)
≤ c‖ρ0‖W 1,6(�)(1+ T

1
2 ‖v‖X ) exp(cT

1
2 ‖v‖X )

≤ cc0(1+ T
1
2 A) exp(cT

1
2 A),

‖ρt‖L6(�) ≤ c‖ρ0‖L∞(�)‖∇v‖L6(�) exp
(∫ T

0
‖div v‖L∞(�)

)
≤ cc0 exp(cT

1
2 A)‖v‖H2(�) ≤ cc0 A exp(cT

1
2 A),

where X = L2(0, T ;W 2,6(�)). �
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Lemma 2.2. Suppose ‖v‖A ≤ A, ‖d‖B ≤ B. Then (2.3) with initial condition
n(x, 0) = n0(x) has a unique solution n and a constant K1, depending only on
n0 and u0, such that, for T = T (A, B) small enough,

(2.10) ‖n‖B = ‖nt‖L2(0,T ;H2(�))+‖nt‖L∞(0,T ;H1(�))+‖n‖L∞(0,T ;W 2,6(�)) ≤ K1.

Proof. The existence of a solution to (2.3) is standard. We just give the estimates
as follows. Differentiating (2.3) with respect to time t ,

nt t − ν1nt = ν(|∇d|2t d + |∇d|2dt)+ (vt · ∇)d − (v · ∇)dt .

Multiplying by 1nt , integrating over �, and using the Cauchy inequality, we get

(2.11) 1
2

d
dt

∫
�

|∇nt |
2
+ ν

∫
�

|1nt |
2

=−

∫
�

ν(|∇d|2t d + |∇d|2dt) ·1nt + (vt · ∇)d ·1nt − (v · ∇)dt ·1nt

≤

∫
�

2ν|∇d||∇dt ||d||1nt | + ν|∇d|2|dt ||1nt |

+

∫
�

|∇vt ||∇d||∇nt | + |vt ||∇
2d||∇nt | + |v||∇dt ||1nt |

=

5∑
i=1

Ii .

We have the following estimates for Ii :

I1 =

∫
�

2ν |∇d||∇dt ||d||1nt | ≤ c
∫
�

|∇d|2|∇dt |
2
|d|2+ ν

6
‖1nt‖

2
L2(�)

,

I2 =

∫
�

ν|∇d|2|dt ||1nt | ≤ c
∫
�

|∇d|4|dt |
2
+
ν

6
‖1nt‖

2
L2,

I3 =

∫
�

|∇vt ||∇d||∇nt | ≤ A−2 B−2
∫
�

|∇vt |
2
|∇d|2+ A2 B2

∫
�

|∇nt |
2,

I4 =

∫
�

|vt ||∇
2d||∇nt | ≤ A−2 B−2

∫
�

|vt |
2
|∇

2d|2+ A2 B2
∫
�

|∇nt |
2

≤ cA−2 B−2
‖∇vt‖

2
L2‖∇

2d‖L2‖∇
2d‖L6 + A2 B2

∫
�

|∇nt |
2,

I5 =

∫
�

|v||∇dt ||1nt | ≤
3
ν

∫
�

|v|2|∇dt |
2
+
ν

6
‖1nt‖

2
L2 .

Substituting all the estimates into (2.11), we get

d
dt

∫
�

|∇nt |
2
+ ν

∫
�

|1nt |
2
≤ c

∫
�

|∇d|2|∇dt |
2
||d|2+ c

∫
�

|∇d|4|dt |
2

+ cA−2 B−2
∫
�

|∇vt |
2
|∇d|2+ cA2 B2

∫
�

|∇nt |
2

+ c
∫
�

|v|2|∇dt |
2
+ cA−2 B−2

‖∇vt‖
2
L2‖∇

2d‖L2‖∇
2d‖L6,
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that is,∫
�

|∇nt |
2
+ ν

∫ T

0

∫
�

|1nt |
2

≤ cB6T + cA2 B2T + c+ cA2 B2
∫ T

0

∫
�

|∇nt |
2
+ c(n0, u0),

where

c(n0, u0)

= c
∫
�

|1∇n0|
2
+ |∇n0|

2
|∇

2n0|
2
+ |∇n0|

6
+ c

∫
�

|∇u0|
2
|∇n0|

2
+ |u0|

2
|∇

2n0|
2.

Using Gronwall’s inequality, we obtain∫
�

|∇nt |
2
≤ (cB6T + cA2 B2T + c0) exp(cA2 B2T )

and∫
�

|∇nt |
2
+ ν

∫ T

0

∫
�

|1nt |
2
≤ c(B6T + A2 B2T + c0)(1+ exp(cA2 B2T )).

Taking T = T (A, B) small, we get∫
�

|∇nt |
2
+ ν

∫ T

0

∫
�

|1nt |
2
≤ c.

The elliptic estimates can be deduced from (2.3):

‖n‖W 2,6(�) ≤ ‖nt‖L6 +‖v · ∇d‖L6 +‖|∇d|2d‖L6 +‖n0‖W 2,6

≤ ‖v · ∇d‖L6 +‖|∇d|2d‖L6 + c0.

We estimate each item:

‖v · ∇d‖L6

=

(∫
�

|v|6|∇d|6
) 1

6

≤

(∫
�

|v− u0|
6
|∇d|6

) 1
6

+‖u0‖L∞

(∫
�

|∇d|6
) 1

6

≤ cB
(∫

�

|∇v−∇u0|
2
) 1

2

+ c‖u0‖L∞

(∫
�

|∇d −∇n0|
6
) 1

6

+ c‖u0‖L∞‖∇n0‖L∞

≤ cB
(∫

�

∣∣∣∣∫ t

0
∇vt

∣∣∣∣2) 1
2

+ c0 B
2
3

(∫
�

∣∣∣∣∫ t

0
∇dt

∣∣∣∣2) 1
6

+ c0

≤ cBT
1
2 ‖∇vt‖L2(QT )+ c0T

1
3 B+ c0 ≤ cABT

1
2 + c0 BT

1
3 + c0
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and

‖|∇d|2d‖L6 =

(∫
�

||∇d|2d|6
) 1

6

≤

(∫
�

|∇d|12
|d − n0|

6
) 1

6

+ c0

(∫
�

|∇d|12
)

1
6

≤ cB2
(∫

�

|d − n0|
6
) 1

6

+ c0

(∫
�

|∇d −∇n0|
12
) 1

6

+ c0

≤ cB2
(∫

�

|∇d −∇n0|
2
) 1

2

+ c0 B
(∫

�

|∇d −∇n0|
6
) 1

6

+ c0

≤ cAB2T
1
2 + c0 B2T

1
3 + c0.

Taking T = T (A, B) small enough, we obtain the desired ‖n‖W 2,6 ≤ c0. �

For (2.2) we have following Lemma.

Lemma 2.3. Under the conditions of Lemma 2.2, suppose n satisfies (2.3) and ρ
(2.1). Then there exists a unique solution u satisfying (2.2), and there is a constant
K2, depending only on n0 and u0, such that, for T = T (A, B) small enough,

(2.12) ‖u‖A ≡ ‖u‖L∞(0,T ;H2(�))+‖u‖L2(0,T ;W 2,6(�))+‖ut‖L2(0,T ;H1(�)) ≤ K2.

Proof. Since
ρ ≥ δ exp

(
−

∫ T

0
|∇v|L∞((0,T )×�)

)
> 0,

the standard theory of parabolic equations implies the existence of the solution
to (2.2). Differentiating (2.2) with respect to time t , we get

(2.13) ρut t −µ1ut

=−λ div((∇d⊗∇d)t− 1
2 |∇d|2t I )−∇ pt−(ρv ·∇)vt−(ρtv ·∇)v−(ρvt ·∇)v−ρt ut .

Multiplying by ut , integrating by parts, and using the continuity of (2.1), we get

1
2

d
dt

∫
�

ρ|ut |
2
+µ

∫
�

|∇ut |
2

= λ

∫
�

((∇d ⊗∇d)t − 1
2 |∇d|2t I ) · ∇ut

−

∫
�

∇ pt · ut − (ρv · ∇)vt · ut − (ρtv · ∇)v · ut −

∫
�

(ρvt · ∇)v · ut + ρt |ut |
2

≤ 3λ
∫
�

|∇d||∇dt ||∇ut | +

∫
�

pt div(ut)+ ρ|v||∇vt ||ut |

+

∫
�

ρ|v||∇v|2|ut | + ρ|v|
2
|∇

2v||ut | + ρ|v||∇v||∇ut |

+

∫
�

ρ|vt ||∇v||ut | + 2ρ|v||∇ut ||ut |

=

8∑
i=1

Ii .
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For each Ii we have

I1=3λ
∫
�

|∇d||∇dt ||∇ut |≤c
∫
�

|∇d|2|∇dt |
2
+
µ

12

∫
�

|∇ut |
2
≤cB4

+
µ

12

∫
�

|∇ut |
2,

I2=

∫
�

pt div(ut)≤c
∫
�

|pt |
2
+
µ

12

∫
�

|∇ut |
2

≤c0exp
(∫ T

0
2‖∇v‖L∞(�)

)∫
�

|∇v|2+
µ

12

∫
�

|∇ut |
2

≤c0 A2exp(cAT
1
2 )+

µ

12

∫
�

|∇ut |
2,

I3=

∫
�

|ρ||v||∇vt ||ut |≤A4
∫
�

ρ|ut |
2
+ c0 A−2exp(cAT

1
2 )

∫
�

|∇vt |
2,

I4=

∫
�

|ρ||v||∇v|2|ut |≤A6
∫
�

ρ|ut |
2
+ c0exp(cAT

1
2 ),

I5=

∫
�

|ρ||v|2|∇2v||ut |≤A6
∫
�

ρ|ut |
2
+ c0exp(cAT

1
2 ),

I6=

∫
�

ρ|v||∇v||∇ut |≤c
∫
�

ρ2
|v|2|∇v|2+

µ

12

∫
�

|∇ut |
2

≤c0 A4exp(cAT
1
2 )+

µ

12

∫
�

|∇ut |
2,

I7=

∫
�

ρ|vt ||∇v||ut |≤A4
∫
�

ρ|ut |
2
+ A−4

∫
�

ρ|vt |
2
|∇v|2

≤A2
∫
�

ρ|ut |
2
+ c0 A−2exp(cAT

1
2 )

∫
�

|vt |
2,

I8=2
∫
�

ρ|v||∇ut ||ut |≤c
∫
�

ρ|ut |
2(ρ|v|2)+

µ

12

∫
�

|∇ut |
2

≤c0 A2exp(cAT
1
2 )

∫
�

ρ|ut |
2
+
µ

12

∫
�

|∇ut |
2.

From the above estimates, we get∫
�

ρ|ut |
2
+

∫ T

0

∫
�

|∇ut |
2

≤ cB4T + c0 A4T exp(cAT
1
2 )+ c0+ c0 A4 exp(cAT

1
2 )

∫ T

0

∫
�

ρ|ut |
2,

which implies that∫
�

ρ|ut |
2
+

∫ T

0

∫
�

|∇ut |
2
≤ (cB4T + c0 A4T exp(cAT

1
2 ))c0 A4T exp(cAT

1
2 ).
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Taking T = T (A, B) small enough, we deduce

(2.14)
∫
�

ρ|ut |
2
+

∫ T

0

∫
�

|∇ut |
2
≤ C(c0).

Finally, we estimate

‖u‖L∞(0,T ;H2(�)) and ‖u‖L2(0,T ;W 2,6(�)).

From (2.2), we get

‖u‖H2(�)

≤ c(‖∇ p‖L2(�)+‖ρut‖L2(�)+‖∇
2n∇n‖L2(�))+ c(‖(ρv · ∇)v‖L2(�)+ c0).

Now we have

‖∇ p‖L2(�) ≤ c0 exp(cAT
1
2 )+ c0 AT

1
2 exp(cAT

1
2 ),

‖ρut‖L2(�) ≤ c0 exp(cAT
1
2 )‖
√
ρut‖L2(�),

‖∇
2n∇n‖L2(�) ≤ ‖∇

2n‖L6(�)‖∇n‖
1
2
L2(�)
‖∇n‖

1
2
L6(�)
≤ K 2

1 ,

and

‖ρv · ∇v‖2L2(�)

≤ ‖ρ‖2L∞(�)

∫
�

|v|2|∇v|2

≤ c0 exp(cAT
1
2 )

(∫
�

|v− u0|
2
|∇v|2+‖u0‖

2
L∞

∫
�

|∇v−∇u0|
2
+ c0

)
≤ c0 exp(cAT

1
2 )

(∫
�

∣∣∣∣∫ t

0
vt

∣∣∣∣2|∇v|2+ c0

∫
�

∣∣∣∣∫ t

0
∇vt

∣∣∣∣2+ c0

)
≤ c0 exp(cAT

1
2 )(A4T + c0 A2T + c0).

Similarly, we have

‖∇ p‖L6(�) ≤ c0 exp(cAT
1
2 )+ c0 AT

1
2 exp(cAT

1
2 ),

‖ρut‖L2(0,T ;L6(�)) ≤ c0 exp(cAT
1
2 )‖∇ut‖L2(0,T ;L2(�))

≤ c0 exp(cAT
1
2 )C(c0),

‖∇
2n∇n‖L2(0,T ;L6(�)) ≤ ‖∇

2n‖L2(0,T ;L6(�))‖∇n‖L∞(�) ≤ K 2
1 ,



46 YU-MING CHU, XIAN-GAO LIU AND XIAO LIU

and

‖ρv · ∇v‖2L2(0,T ;L6(�))

≤ ‖ρ‖2L∞(�)

∫ T

0

(∫
�

|v|6|∇v|6
) 1

3

≤ c0 exp(cAT
1
2 )

∫ T

0
‖v‖2L∞(�)‖∇v‖

4
3
L∞(�)×

(∫
�

|∇v−∇u0|
2
+ 1

) 1
3

≤ c0 exp(cAT
1
2 )A2

∫ T

0
‖∇v‖

4
3
L∞(�)×

(∫
�

∣∣∣∣∫ t

0
∇vt

∣∣∣∣2+ 1
) 1

3

≤ c0 exp(cAT
1
2 )

(
T
∫ T

0

∫
�

|∇vt |
2
+ 1

) 1
3

×

(∫ T

0
‖v‖2W 2,6(�)

) 2
3

T
1
3

≤ c0 exp(cAT
1
2 )(T A2

+ 1)
1
3 A

4
3 T

1
3 .

Thus∫
�

ρ|ut |
2dx+µ

∫ T

0

∫
�

|∇ut |
2 dx dt+‖u‖L∞(0,T ;H2(�))+‖u‖L2(0,T ;W 2,6(�))≤C(c0).

This concludes the proof. �

If (nδ, uδ) denotes a unique solution of (2.2) and (2.3) with

ρ(x, 0)= ρ0+ δ

and initial and boundary conditions, then taking δ→ 0, we obtain a unique solu-
tion (n, u) of the linearized system (2.1)–(2.3) with ρ(x, 0) = ρ0 and initial and
boundary conditions such that ‖n‖B ≤ K1, ‖u‖A ≤ K2. So we can define a map

T :W→W, (d, v) 7→ (n, u),

where Banach space
W= (A⊗B)∩C=A⊗B

with

C= {(n, u) : ‖(n, u)‖C = ‖n‖L2(0,T ;H2(�))+‖u‖L2(0,T ;H1(�)) <∞}.

The following lemma tells us that the map T is contracted in the sense of weaker
norm for (d, v) ∈W.

Lemma 2.4. There is a constant 0< θ < 1 such that for any (d i , vi )∈W, i = 1, 2,

‖T(d1, v1)−T(d2, v2)‖C ≤ θ‖(d1
− d2, v1

− v2)‖C

for some small T > 0.



STRONG SOLUTIONS TO THE COMPRESSIBLE LIQUID CRYSTAL SYSTEM 47

Proof. Suppose ρi , ni , and ui are the solutions to (2.1)–(2.3) corresponding to
given (d i , vi ) ∈W. Define ρ = ρ2 − ρ1, d = d2

− d1, v = v2
− v1, n = n2

− n1,
u = u2

− u1, and

ρi = ρ0 exp
(
−

∫ t

0
divvi

)
,

i = 1, 2. Then

ρt + div(ρv2)=−div(ρ1v),(2.15)

nt − ν1n = ν|∇d2
|
2d2
− ν|∇d1

|
2d1
− v2
∇d2
+ v1
∇d1,(2.16)

ρ2ut −µ1u = (ρ1− ρ2)u1
t + ρ1v

1
∇v1
− ρ2v

2
∇v2
+∇ p1(2.17)

−∇ p2− λ∇ · (∇n2
⊗∇n2

−
1
2 |∇n2

|
2 I )

+ λ∇ · (∇n1
⊗∇n1

−
1
2 |∇n1

|
2 I ).

Multiplying (2.16) by n and integrating over �, we get

(2.18) 1
2

d
dt

∫
�

|n|2 dx + ν
∫
�

|∇n|2 dx

≤

∫
�

|∇d2
|
2d2
· n− |∇d1

|
2d1
· n− v∇d2

· n− v1
∇d · n

≤ η

∫
�

(|∇d|2+ |∇v|2)+ c(η, A, B)
∫
�

|n|2,

where c(η, A, B)(s) satisfies

(2.19)
∫ T

0
c(η, A, B)(s)ds ≤ K3

for small T =T (A, B, η), where K3 is a constant dependent on initial and boundary
data c0.

Differentiating (2.16) with respect to xi , multiplying by∇n, and integrating over
�, we deduce

(2.20) 1
2

d
dt

∫
�

|∇n|2 dx + ν
2

∫
�

|∇
2n|2 dx

≤ η

∫
�

(|∇v|2+ |∇d|2+ |∇2d|2)+ c(η, A, B)
∫
�

|∇n|2,

where c(η, A, B) satisfies (2.19), and we have used the following identities and
estimates:

∇d2
∇

2d2d2
−∇d1

∇
2d1d1

=∇d∇2d2d1
+∇d1

∇
2dd1
+∇d1

∇
2d1d,

|∇d2
|
2
∇d2
− |∇d1

|
2
∇d1
= |∇d2

|
2
∇d + (|∇d2

|
2
− |∇d1

|
2)∇d1,
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and∫
�

|∇n|2|∇2d2
|
2
≤

(∫
�

|∇
2d2
|
6
) 1

3
(∫

�

|∇n|3
) 2

3

≤ cB2
‖∇n‖L2(�)‖∇

2n‖L2(�) ≤
ν

2

∫
�

|∇
2n|2+ cB4

∫
�

|∇n|2.

Multiplying (2.15) by ρ and using the Minkowski inequality, we have

d
dt

∫
�

1
2 |ρ|

2
=

∫
�

−
1
2 |ρ|

2 div v2
−

∫
�

ρ(∇ρ1v+ ρ1 div v)

≤ c
∫
�

|ρ|2|∇v2
| + c‖ρ‖L2(�)‖∇ρ1‖L3(�)‖v‖L6(�)

+ c‖ρ‖L2(�)‖ρ1‖L∞(�)‖∇v‖L2(�)

≤ c‖v2
‖W 2,6(�)‖ρ‖

2
L2(�)
+ η‖∇v‖2L2(�)

+ c0η
−1 exp(cAT

1
2 )

(
1+

∥∥∥∥∫ t

0
∇

2v1
∥∥∥∥2

L3(�)

)
‖ρ‖2L2(�)

≤ η‖∇v‖2L2(�)
+ c‖v2

‖W 2,6(�)‖ρ‖
2
L2(�)

+ c0η
−1 exp(cAT

1
2 )(1+ T ‖∇2v1

‖
2
L2(0,T ;L6(�)

)‖ρ‖2L2(�)

≤ c0η
−1exp(cAT

1
2 )(1+ T A2

+‖v2
‖W 2,6(�))‖ρ‖

2
L2(�)
+ η‖∇v‖2L2(�)

,

that is,

(2.21) d
dt

∫
�

1
2 |ρ|

2
≤ η‖∇v‖2L2(�)

+ c(η, A, T )‖ρ‖2L2(�)
,

where c(η, A, T ) satisfies (2.19).
Multiplying (2.17) by u and integrating over �, we deduce

(2.22) 1
2

d
dt

∫
�

ρ2|u|2 dx +µ
∫
�

|∇u|2 dx

=

∫
�

−ρ2v
2u∇u+ (ρ1−ρ2)u1

t · u+ ρ1v
1
∇v1
· u− ρ2v

2
∇v2
· u+ (p2− p1)divu

+ λ(∇n2
⊗∇n2

−
1
2 |∇n2

|
2 I )∇u− λ(∇n1

⊗∇n1
−

1
2 |∇n1

|
2 I )∇u

=

∫
�

−ρ2v
2u∇u+ (ρ1− ρ2)(u1

t + v
1
∇v1) · u

− ρ2(v∇v
2
+ v1
∇v) · u+ (p1− p2)divu

+ λ(∇n2
⊗∇n2

−
1
2 |∇n2

|
2 I )∇u− λ(∇n1

⊗∇n1
−

1
2 |∇n1

|
2 I )∇u

≤ η

∫
�

|∇v|2+
2µ
3

∫
�

|∇u|2+ c(η, A, B)
∫
�

ρ2|u|2+ |ρ|2+ |∇n|2,
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where c(η, A, B) satisfying (2.19). Here we have used the key estimates∫
�

ρ2|v∇v
2
+ v1
∇v||u| ≤ ‖∇v2

‖L6(�)‖ρ2u‖L2(�)‖v‖L6(�)

+‖∇v‖L2(�)‖ρ2u‖L2(�)‖v
1
‖L∞(�)

≤ c0 exp(cAT
1
2 )‖
√
ρ2u‖L2(�)‖∇v

2
‖H2(�)‖∇v‖L2(�)

+ c0 exp(cAT
1
2 )‖
√
ρ2u‖L2(�)‖v

1
‖H2(�)‖∇v‖L2(�)

≤ η‖∇v‖2L2(�)
+ cη−1 A2 exp(cAT

1
2 )‖
√
ρ2u‖2L2(�)

,∫
�

|∇n||∇u||∇n2
| ≤ η

∫
�

|∇u|2+ cη−1
|∇n2
|
2
L∞(�)

∫
�

|∇n|2

≤
µ

3

∫
�

|∇u|2+ cB2
∫
�

|∇n|2,

and ∫
�

(ρ1− ρ2)(u1
t + v

1
∇v1) · u ≤ ‖ρ‖

L
3
2 (�)
‖u1

t + v
1
∇v1
‖L6(�)‖u‖L6(�)

≤ c‖ρ‖L2(�)‖u
1
t + v

1
∇v1
‖H1(�)‖∇u‖L2(�)

≤
µ

3
‖∇u‖2L2(�)

+ c(A, T )(t)‖ρ‖2L2(�)
,

where c(η, A, T )(t) satisfies (2.19).
Summing inequalities (2.18) and (2.20)–(2.22), we obtain

d
dt

∫
�

|ρ|2+ |n|2+ |∇n|2+ ρ2|u|2+
∫
�

|∇n|2+ |∇2n|2+ |∇u|2

≤ cη
∫
�

|∇v|2+ |∇d|2+ |∇2d|2+ c(η, A, B, T )
∫
�

|ρ|2+ |n|2+ |∇n|2+ ρ2|u|2,

which implies, by (2.19) and taking T = T (η, A, B)) small enough,∫
�

|ρ|2+ |n|2+ |∇n|2+ ρ2|u|2

≤ η exp
(∫ T

0
c(η, A, B)(s)ds

)∫ T

0

∫
�

|ρ|2+ |n|2+ |∇n|2+ ρ2|u|2

≤ cη
∫ T

0

∫
�

|ρ|2+ |n|2+ |∇n|2+ ρ2|u|2.

Thus, taking η small, we obtain

(2.23) ‖ρ‖L∞(0,T ;L2(�))+‖n‖L∞(0,T ;H1(�))+‖
√
ρ2u‖L∞(0,T ;L2(�)) ≤ c
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and ∫ T

0

∫
�

|∇n|2+ |∇2n|2+ |∇u|2 ≤ θ
∫ T

0

∫
�

|∇d|2+ |∇2d|2+ |∇v|2

with 0< θ < 1. Since n and u are zero on boundary, we finish the proof. �

3. Proof of Theorem 1.1

Proof. By the contractibility of T, we can easily obtain a unique solution (n, u)
of (1.3) and (1.2), and ρ is from u by formula (1.8), that is, ρ is a unique solution
of (1.1). Lemmas 2.1–2.3 and the lower semicontinuity of norms imply that the
solutions (ρ, n, u) satisfy the same estimates. Multiplying (1.3) by n, we get

|n|2t + (u · ∇)|n|
2
= ν1|n|2+ (|n|2− 1)|∇n|2,

that is,

(|n|2− 1)t + (u · ∇)(|n|2− 1)= ν1(|n|2− 1)+ (|n|2− 1)|∇n|2.

Define D = (|n|2− 1) exp(‖∇n‖2L∞(QT )
t), where QT =�×[0, T ]. Then

Dt + (u · ∇)D = ν1D+ (|∇n|2−‖∇n‖2L∞(QT )
)D

with D|∂� = 0. So from the maximum principle of parabolic equations,we deduce

D ≡ 0 in ((0, T )×�).

Thus we complete the proof of the theorem. �
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PRESENTATIONS FOR THE HIGHER-DIMENSIONAL
THOMPSON GROUPS nV

JOHANNA HENNIG AND FRANCESCO MATUCCI

M. G. Brin has introduced the higher-dimensional Thompson groups nV
that are generalizations to the Thompson group V of self-homeomorphisms
of the Cantor set and found a finite set of generators and relations in the
case n = 2. We show how to generalize his construction to obtain a finite
presentation for every positive integer n. As a corollary, we obtain another
proof that the groups nV are simple (first proved by Brin).

1. Introduction

The higher-dimensional groups nV were introduced by Brin in [2004; 2005] and
generalize Thompson’s group V . The group V is a group of self-homeomorphisms
of the Cantor set C that is simple and finitely presented — the standard introduction
to V is the paper by Cannon, Floyd and Parry [1996]. The groups nV generalize
the group V and act on powers of the Cantor set Cn . Brin shows in [2004] that
the groups V and 2V are not isomorphic and shows in [2005] that the group 2V is
finitely presented. Bleak and Lanoue [2010] have recently shown that two groups
mV and nV are isomorphic if and only if m = n.

In this paper we give a finite presentation for each of the higher-dimensional
Thompson groups nV . The argument extends to the ascending union ωV of the
groups nV and returns an infinite presentation of the same flavor. As a corollary,
we obtain another proof that the groups nV and ωV are simple. Our arguments
follow closely and generalize those of Brin in [2004; 2005] for the group 2V .

This work arose during a Research Experience for Undergraduates program at
Cornell University. The motivation for the project sprang from a commonly held
opinion that the bookkeeping required to generalize Brin’s presentations to the
groups nV would be overwhelming. One would expect from the similarity of the
groups’ constructions that all arguments for 2V would carry over to nV for all n.
Standing in the way of this are the cross relations. Thus our paper has two kinds

Partially supported by the NSF grant for Research Experiences for Undergraduates (REU).
MSC2010: 20F05, 20F65.
Keywords: Thompson groups, groups of piecewise-linear homeomorphisms, finiteness properties,

finite presentations.
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of arguments: those that verify the parts of [Brin 2005] that carry over with no
change to nV and those involving the cross relations that have to be modified to
hold in nV (see Lemmas 6 and 20 and Remark 13 below).

Following a suggestion of Collin Bleak the authors have also explored an al-
ternative generating set (see Section 8). An interesting project would be to find a
set of relators for this alternative generating set in order to use a known procedure
that significantly reduces the number of relations, and which has been successfully
implemented in a number of papers by Guralnick, Kantor, Kassabov and Lubotzky;
see for example [Guralnick et al. 2011].

After a careful reading of Brin’s original paper [2005], it became clear what was
needed to generalize his proof, and the current paper borrows heavily from Brin’s.
Brin was already aware that many of his arguments would probably extend (and he
points out in several places in [2004; 2005] where it is evident that they do). We
show how to deal with generators in higher dimensions and what steps are needed
to obtain the same type of normalized words that are built for 2V in [Brin 2005].

We also mention that Brin asks in [2005] whether or not the group 2V has
type F∞ (that is, it has a classifying space that is finite in each dimension). This
has recently been answered by Kochloukova, Martinez-Perez and Nucinkis [2010],
who have shown that the groups 2V and 3V have type F∞, therefore obtaining a
new proof that these groups are finitely presented.

2. The main ingredient and structure of this paper

Many arguments of Brin [2004; 2005] generalize verbatim from 2V to nV . The
key observation that allows us to restate many results without proof (or with little
additional effort) is the following: Many statements of Brin do not depend on
dimension 2, except those that need to make use of the “cross relation” (relation
(18) in Section 4 below) to rewrite a cut in dimension d followed by a cut in
dimension d ′ as one in dimension d ′ followed by one in dimension d .

As a result, proofs that need to make use of this new relation require a slight
generalization (for example, the normalization of words in the monoid across fully
divided dimensions) while those that do not can be obtained directly using Brin’s
original proof. In any case, since statements need to be adapted to our context we
sketch certain proofs to make it clear that they generalize directly. For example,
we will show why Brin’s proof that 2V is simple does not use the new relation (18)
and therefore it lifts immediately to higher dimensions.

3. The monoid 5n

In [2004, Section 4.5], Brin defines the monoid 5 and 2̂V and observes that one
can extend the definition for all n. Elements of5n are given by numbered patterns
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Figure 1. The generator si,d .

Figure 2. The generator σi .

in X , where X is the union of the set {S0, S1, . . . } of unit n-cubes. Fix n ∈ N and
fix an ordering on the dimensions d for 1 ≤ d ≤ n. The monoid 5n is generated
by the elements si,d and σi , where si,d denotes the element that cuts the rectangle
Si in half across the d-th dimension (see Figure 1) and σi is the transposition that
switches the rectangle labeled i with that labeled i + 1, as defined for 2V (see
Figure 2).

After each cut, the numbering shifts as before. The following relations hold
in 5n .

s j,d ′si,d = si,ds j+1,d ′ for i < j, 1≤ d, d ′ ≤ n,(M1)

σ 2
i = 1 for i ≥ 0,(M2)

σiσ j = σ jσi for |i − j | ≥ 2,(M3)

σiσi+1σi = σi+1σiσi+1 for i ≥ 0,(M4)

σ j si,d = si,dσ j+1 for i < j,(M5a)

σ j si,d = s j+1,dσ jσ j+1 for i = j,(M5b)

σ j si,d = s j,dσ j+1σ j for i = j + 1,(M5c)

σ j si,d = si,dσ j for i > j + 1,(M5d)

si,dsi+1,d ′si,d ′ = si,d ′si+1,dsi,dσi+1 for i ≥ 0, d 6= d ′.(M6)

Relations (M5b) and (M5c) are actually equivalent, because σi is its own inverse.

Remark 1. The proofs of [Brin 2005, Section 2] that use relations (M1)–(M5d) do
not depend on the dimension being 2. For this reason, they generalize immediately
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to the case of the monoid 5n and we do not prove them again. This includes every
result up to and including [Brin 2005, Lemma 2.9].

On the other hand, Proposition 2.11 in [Brin 2005] uses the cross relation (M6)
and it requires us to choose how we write elements to get some underlying pattern.
Brin achieves this type of normalization by writing elements so that vertical cuts
appear first, whenever possible. We generalize his argument by describing how to
order nodes in forests (which represent cuts in some dimension).

The following definition is given inductively on the subtrees.

Definition 2. Given a forest F , we say that a subtree T of some tree of F is fully
divided across some dimension d if the root of T is labeled d or if both its left and
right subtrees are fully divided across dimension d . We say a forest F is normalized
if every subtree T is such that if T is fully divided across different the dimensions
d1 < d2 < · · · < du , then the root of T is labeled with d1, the lowest among all
possible dimensions over which T is fully divided.

Given that a word w is a word in the generators {si,d , σi }, we define the length
`(w) of w to be the number of times an element of {si,d} appears in w. It can easily
be seen that the length of a word is preserved by relations (M1)–(M6).

We restate some results adapted to our case.

Lemma 3 [Brin 2005, Lemma 2.7]. If the numbered, labeled forest F comes from
a word in {si,d | d, i ∈ N}, then the leaves of F are numbered so that the leaves in
Fi have numbers lower than those in F j whenever i < j and the leaves in each tree
of F are numbered in increasing order under the natural left-right ordering of the
leaves.

Lemma 4 [Brin 2005, Lemma 2.8]. If two words in the generators

{si,d , σi | i ∈ N, 1≤ d ≤ n}

lead to the same numbered, labeled forest, then they are related by (M1)–(M5d).

Lemma 5 [Brin 2005, Lemma 2.9]. If F is a numbered, labeled forest with the
numbering as in Lemma 3, and if a linear order is given on the interior vertices
(and thus of the carets) of F that respects the ancestor relation, then there is a
unique word w in {si,d | d, i ∈ N} leading to F such that the order on the interior
vertices of F derived from the order on the entries in w is identical to the given
linear order on the interior vertices.

The next lemma and corollary are used to prove results analogous to [Brin 2005,
Lemma 2.10 and Proposition 2.11].

Lemma 6. Let w be a word in the set {si,d , σi } and suppose that the underlying
pattern P has a fully divided hypercube Si across dimension d. Thenw∼w′= si,da
for some word a ∈ 〈si,d , σi 〉.
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Proof. We use induction on g :=`(w). By using relations (M5a)–(M5d) as in [Brin
2005, Lemma 2.3] we can assume that w= pq , where p ∈ 〈si,d〉 and q ∈ 〈σi 〉. This
does not alter the length of w. If g= 3, then p= p1 p2 p3. If p1= si,d , we are done;
otherwise we have two cases: either p2 = si+1,d and p3 = si,d or p2 = si,d and
p3= si+2,d . Up to using relation (M1), we can assume that p2= si+1,d and p3= si,d

which is what we want to apply relation (M6) to p to get w ∼w′ = si,dsi+1,ksi,kq .
Now assume the thesis true for all words of length less than g. We consider the

word p and look at the labeled unnumbered tree Fi corresponding to Si with root
vertex u and children u0 and u1. Let Tr be the subtree of Fi with root vertex ur

for r = 0, 1. We choose an ordering of the vertices of Fi that respects the ancestor
relation and such that u corresponds to 1, u0 corresponds to 2, the other interior
nodes of T0 correspond to the numbers from 3 to j = #(interior nodes of T0) and
u2 corresponds to j + 1.

By Lemma 5, the word p is equivalent to

p ∼ si,k(si,m p0)(s f,l p1),

where si,m p0 is the subword corresponding to the subtree T0 and s f,l p1 is the
subword corresponding to the subtree T1 and with p0, p1 ∈ 〈si,d〉. We observe
that

`(si,m p0) < `(p)= g and `(s f,l p1) < `(p)= g

and that the underlying squares Si for si,m p0 and Si+1 for s f,l p1 are fully divided
across dimension d . We can thus apply the induction hypothesis and rewrite

si,m p0 ∼ si,d p̃0q̃0 and s f,l p2 ∼ s f,d p̃1q̃1.

We restrict our attention to the subword si,d p̃0q̃0s f,d . Using the relations (M5a)–
(M5d), we can move q̃0 to the right of s f,d and obtain

si,d p̃0q̃0s f,d ∼ si,d p̃0sg,d q̃

for some permutation word q̃ . Since the word p̃0 acts on the rectangle Si and sg,d

acts on the rectangle Si+1, we can apply Lemma 4 and 5 and put a new order on
the nodes so that the node corresponding to si,d is 1 and sg,d is 2. Thus we have

si,d p̃0sg,d q̃ ∼ si,dsi+2,d p̃q̃

for some p̃ word in the set {si,d}. Thus we have w∼w′′ = si,ksi,dsi+2,d p̃ q̃ and so,
by applying the cross relation (M6) to the first three letters of w′′, we get

w ∼ w′′ ∼ w′ = si,dsi,ksi+2,k p̃q̃ = si,da. �
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We have now proved [Brin 2005, Lemma 2.10], since in order for a tree in a
forest to be nonnormalized, one of the rectangles in the pattern corresponding to
that tree must be fully divided across two different dimensions.

Lemma 7 [Brin 2005]. If two different forests correspond to the same pattern in
X , then at least one of the two forests is not normalized.

Remark 8. Lemma 6 is used in our extension of [Brin 2005, Proposition 2.11]
so that we can push dimension d under the root. This is explained better in the
following corollary.

Corollary 9. Let w be a word in the generators {si,d , σi } such that its underlying
square Si is fully divided across dimensions d and `. Then

w ∼ w′ = si,dsi,`si+2,`a ∼ w′′ = si,`si,dsi+2,db

for some suitable words a and b in the generators {si,d , σi }.

Proof. This is achieved by a repeated application of Lemma 6. We apply it tow and
obtain w ∼ si,da1. By construction, the underlying squares Si and Si+1 of a1 are
fully divided across dimension `, so we can apply the previous lemma to a1 to get
a1∼ si,`a2 and finally we apply it again to a2∼ si+2,`a. Hencew∼w′= si,`si+2,`a.
To get w′′ we apply the cross relation (M6) to the subword si,`si,dsi+2,d . �

Proposition 10. A word w is related by (M1)–(M6) to a word corresponding to a
normalized, labeled forest.

Proof. We proceed by induction on the length of w. Let g be the length of w
and assume the result holds for all words of length less than g. As before, write
w = pq , where p = si0si1 · · · sin−1 (here, the i j refers to the cube that is being
cut; we omit the second index indicating dimension as it is unimportant for now).
Write w = si0w

′; since the order of the interior vertices of the forest for p given
by the order of the letters in p must respect the ancestor relation, we know that
the interior vertex corresponding to si0 must be a root of some tree T . As w′ is a
word of length less than g, we may apply our inductive hypothesis and assume that
w′ can be rewritten via relations (M1)–(M6) to obtain a corresponding normalized
forest. The pattern P for w is obtained from the pattern P ′ for w′ by applying the
pattern of P ′ in unit square Si to the rectangle numbered i in the pattern for si0 .
The forest F for w is obtained from the forest F ′ for w′ by attaching the i-th tree
of F ′ to the i-th leaf of the forest for si0 . Since F ′ is normalized, it is seen that
F has all interior vertices normalized except possibly for the root vertex of one
tree, T .

Let u be the root vertex of T with label k and with children u1 and u2. Let T1 and
T2 be the subtrees of T whose roots are u1 and u2, respectively. By hypothesis,
T1 and T2 are already normalized. If T is not normalized already, then T must
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be fully divided across the dimension k that u is labeled with, and some other
dimension less than k. Let d be the minimal dimension across which T is fully
divided. Since T1 and T2 are also fully divided across d , by Lemma 6, we may
apply relations (M1)–(M6) to the subwords of w corresponding to T1 and T2 until
u1 and u2 are each labeled d . Now by [Brin 2005, Lemma 2.9], we may assume
w = si0,ksi0,dsi0+2,dw

′′, where w′′ is the remainder of w. We apply relation (M6)
to obtain

w = si0,dsi0,ksi0+2,kσi0w
′′.

Now, we have normalized the vertex u, and we may now use the inductive hypoth-
esis to renormalize the trees T1 and T2. The result is a normalized forest. �

The proof of the next result follows the argument of [Brin 2005, Theorem 1],
using [Lemma 2.10] and Proposition 10 (to extend [Proposition 2.11]).

Theorem 11. The monoid 5n is presented by using the generators {si,d , σi } and
relations (M1)–(M6).

4. Relations in nV

4.1. Generators for nV. The following generators are defined as in [Brin 2004]
and analogous arguments show why they are a generating set for nV .

X i,d = (si+1
0,1 s1,d , si+2

0,1 ) for i ≥ 0, 1≤ d ≤ n,

Ci,d = (si
0,1s0,d , si+1

0,1 ) for i ≥ 0, 2≤ d ≤ n, (baker’s maps),

πi = (si+2
0,1 σ1, si+2

0,1 ) for i ≥ 0 (σi defined as above),

π i = (si+1
0,1 σ0, si+1

0,1 ) for i ≥ 0

4.2. Relations involving cuts and permutations. In the following relations (1)–
(7), the reader can assume that 1≤ d, d ′ ≤ n unless otherwise stated.

Xq,d Xm,d ′ = Xm,d ′Xq+1,d for m < q,(1)

πq Xm,d = Xm,dπq+1 for m < q,(2)

πq Xq,d = Xq+1,dπqπq+1 for q ≥ 0,(3)

πq Xm,d = Xm,dπq for m > q + 1,(4)

πq Xm,d = Xm.dπq+1 for m < q,(5)

πm Xm,1 = πmπm+1 for m ≥ 0,(6)

Xm,d Xm+1,d ′Xm,d ′ = Xm,d ′Xm+1,d Xm,dπm+1 for m ≥ 0, d 6= d ′.(7)
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4.3. Relations involving permutations only. We have

πqπm = πmπq for |m− q|> 2,(8)

πmπm+1πm = πm+1πmπm+1 for m ≥ 0,(9)

πqπm = πmπq for q ≥ m+ 2,(10)

πmπm+1πm = πm+1πmπm+1 for m ≥ 0,(11)

π2
m = 1 for m ≥ 0,(12)

π2
m = 1 for m ≥ 0.(13)

4.4. Relations involving baker’s maps. In the relations (14)–(18) the reader can
assume that 2≤ d ≤ n and 1≤ d ′ ≤ n unless otherwise stated.

πm Xm,d = Cm+1,dπmπm+1 for m ≥ 0,(14)

Cq,d Xm,d ′ = Xm,d ′Cq+1,d for m < q,(15)

Cm,d Xm,1 = Xm,dCm+2,dπm+1 for m ≥ 0,(16)

πqCm,d = Cm,dπq for m > q+1,(17)

Cm,d Xm,d ′Cm+2,d ′ = Cm,d ′Xm,dCm+2,dπm+1 for m ≥ 0, 1< d ′ < d ≤ n.(18)

Relations (1)–(17) are generalizations of those given in [Brin 2004] and their
proofs are completely analogous. The only new family of relations is (18), which
we prove using relation (M6) from the monoid:

Proof. We have

Cm,d Xm,d ′Cm+2,d ′ = (sm
0,1s0,d , sm+1

0,1 )(sm+1
0,1 s1,d ′, sm+2

0,1 )(sm+2
0,1 s0,d ′, sm+3

0,1 )

= (sm
0,1s0,ds1,d ′s0,d ′, sm+3

0,1 )

= (sm
01s0,d ′s1,ds0,dσ1, sm+3

0,1 )

= (sm
0,1s0,d ′, sm+1

0,1 )(sm+1
0,1 s1,d , sm+2

0,1 )(sm+2
0,1 s0,d , sm+3

0,1 )(sm+3
0,1 σ1, sm+3

0,1 )

= Cm,d ′Xm,dCm+2,dπm+1. �

Lemma 12 (subscript raising formulas). We have

Cr,d ∼ Cr+1,d Xr,dπr+1 X−1
r,1 and πr ∼ πrπr+1 X−1

r,1 ∼ Xr,1πr+1πr .

The first formula of Lemma 12 follows from relations (15) and (16), while the
second is a generalization of the one found in [Brin 2005].
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4.5. Secondary relations for nV. These are as follows.

X−1
q,d Xr,d ∼

{
Xd X−1

d if r 6= q,

1 if r = q for 1≤ d ≤ n,

X−1
q,d Xr,d ′ ∼

{
Xd ′X−1

d if r 6= q,

w(Xd ′)πw(X−1
d ) if r = q for 1≤ d, d ′ ≤ n, d 6= d ′,

C−1
q,d Xr,d ′ ∼

{
Xd ′C−1

d if r < q,

w(X1, π, X−1
d )Xd ′C−1

d if r ≥ q for 2≤ d ≤ n, 1≤ d ′ ≤ n,

X−1
r,d ′Cq,d ∼

{
Cd X−1

d ′ if r < q,

Cd X−1
d ′ w(Xd , π, X−1

1 ) if r ≥ q for 2≤ d ≤ n, 1≤ d ′ ≤ n,

πq Xr,d ∼ Xdw(π) for 1≤ d ≤ n,

πq Xr,1 ∼


X1π if r < q,

ππ if r = q,

w(X1)πw(π) if r > q,

πq Xr,d ∼


Xdπ if r < q,

Cdππ if r = q,

w(X1)Xdπw(π) if r > q for 2≤ d ≤ n,

πqCr,d ∼

{
Cdπ if r > q + 1,

Cdw(X−1
1 , π, Xd) if r ≤ q + 1 for 2≤ d ≤ n,

πqCr,d ∼


Xdππ if r = q + 1,

w(X1)Xdπw(π) if r > q + 1,

w(Xd)Cdππw(π, X−1
1 ) if r < q + 1 for 2≤ d ≤ n,

C−1
q,dCr,d ∼


w(X−1

1 , π, Xd) if q < r,

1 if q = r,

w(X1, π, X−1
d ) if q > r for 2≤ d ≤ n,

C−1
q,dCr,d ′ ∼


Xd ′Cd ′πC−1

d X−1
d w(Xd ′, π, X−1

1 ) if q > r,

Xd ′Cd ′πC−1
d X−1

d if q = r,

w(X1, π, X−1
d ′ )XdCdπC−1

d ′ X−1
d ′ if q < r for 1≤ d ′ < d ≤ n.

Proof. We only prove the last set of secondary relations as it is the only one that
does not immediately descend from the computations in [Brin 2005]. If q > r we
can apply the subscript raising formulas repeatedly for j times until r+ j = q and
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rewrite the product as

C−1
q,dCr,d ′ ∼ C−1

q,dCr+1,d ′Xr,d ′πr+1 X−1
r,1 ∼ · · · ∼ C−1

q,d ′Cr+ j,d ′w(Xd ′, π, X−1
1 ).

We argue similarly if q < r . We now have to study the product C−1
q,dCq,d ′ . Without

loss of generality we assume d ′ < d and apply relation (18):

C−1
q,dCq,d ′ = Xq,d ′Cq+2,d ′πq+1C−1

q+2,d X−1
q,d ,

which is what was claimed. Similar relations can be derived if d ′ > d . �

Remark 13. The last two secondary relations allow us to rewrite a word of type
w(X,C, π,C−1, X−1) in L M R form without increasing the number of times C
appears, and thereby to generalize the proof of [Brin 2005, Lemma 4.6]; see
Lemma 15 below. This observation also lets us generalize [Brin 2005, Lemma 4.7];
see Lemma 16 below. In fact, all our secondary relations are immediate general-
izations of those in [Brin 2005]; the last one does not introduce appearances of π
and therefore all the letters in the last secondary relations can be migrated to their
needed position by means of the previous secondary relations, without altering the
original argument of [Brin 2005, Lemma 4.7]. Therefore even in the case of nV
one is able to do the bookkeeping without risk of creating extra letters that cannot
be passed safely without recreating them, and hence we obtain an argument that
terminates.

5. Presentations for nV

We now show how the relations above enable us to put our group elements into a
normal form, starting with words in the generators of nV corresponding to elements
from n̂V .

Lemma 14. Letw be a word in {X i,d , πi , X−1
i,d |1≤d≤n, i ∈N}. Thenw∼ L M R,

where L and R−1 are words in {X i,d} and M is a word in {πi }.

Proof. There is a homomorphism from n̂V to nV given by si,d 7→ X i,d and σi 7→πi .
This follows from the correspondence between the relations for n̂V and nV as given
below:

(M1)→ (1),

(M2)→ (12),

(M3)→ (8),

(M4)→ (9),

(M5a)→ (2),

(M5b), (M5c)→ (3),

(M5d)→ (4),

(M6)→ (7).

Hence, any word w as given above is the image under this homomorphism of a
word w′ in n̂V . Since n̂V is the group of right fractions of the monoid 5n , we can
represent w′ as pq−1, where p and q are words in {si,d , σi | 1 ≤ d ≤ n, i ∈ N}.
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Now, as noted before in the proof of Lemma 6, we can assume p and q are of
the form ab, where a ∈ 〈si,d〉 and b ∈ 〈σi 〉. Hence, we have written w′ as lmr for
l, r−1

∈ 〈si,d〉 and m ∈ 〈σi 〉 since elements of 〈σi 〉 are their own inverse. Applying
the homomorphism to w′ puts w in the desired form. �

The next two results follow the original proofs of [Brin 2005, Lemmas 4.6
and 4.7] via Remark 13.

Lemma 15. Let w be of the form w(X,C, π, X−1,C−1). Then w ∼ L M R, where
L and R−1 are words of the form w(X,C) and M is of the form w(π). Further the
number of appearances of C in L will be no larger than the number of appearances
of C in w and the number of appearances of C−1 in R will be no larger than the
number of appearances of C−1 in w.

Lemma 16. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}.

Then w∼ L M R, where L and R−1 are words of the form w(X,C) and M is of the
form w(π, π).

Lemma 17. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}.

Then w ∼ L M R, where

• L = Ci0,d0Ci1,d1 . . .Cig,dg q with i0 < i1 < · · ·< ig for g ≥−1 and q is a word
in the set {X i,d | 1≤ d ≤ n, i ∈ N}

• R−1
= C j0,d ′0C j1,d ′1 . . .C jm ,d ′m q ′ with j0 < j1 < · · ·< jm for m ≥−1 and q ′ is

a word in the set {X i,d | 1≤ d ≤ n, i ∈ N}

• M is a word in the set {πi , π i | i ∈ N}

Proof. By using the secondary relations, we can assume that w ∼ L M R, where
L and R−1 are words in {X i,d ,Ci,d} and M is a word in {πi , π i } by analogous
arguments used in [Brin 2005, Lemmas 4.6 and 4.7]. We then improve L us-
ing the subscript raising formula for the Ci,d and relation (15) as in the proof of
[ibid., Lemma 4.8]. To adapt the quoted lemmas from [Brin 2005] we need to use
Remark 13 to make sure that appearances of C and π do not increase. �

We define the notions of primary and secondary tree and of trunk exactly the
same way that Brin does [2005]. The primary tree is the tree corresponding to
the word t in Lemma 18 and any extension to the left is a secondary tree for L .
The following extends [Brin 2005, Lemma 4.15] adapted to our case. The proof is
completely analogous.
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Lemma 18. Let

L = Ci0,d0Ci1,d1 · · ·Cig,dg X in+1,dn+1 · · · X il−1,dl−1,

where i0 < i1 < · · · < ig, where 2 ≤ dk ≤ n for k ∈ {0, . . . , g} and 1 ≤ dk ≤ n for
k ∈ {g+ 1, . . . , l − 1}. Let m equal the maximum of

{i j + g+ 2− j | g+ 1≤ j ≤ l − 1} ∪ {ig + 1}.

Then L can be represented as L = (t, sk
0,1), where t is a word in {si,d} and k is the

length of t , so that k =m+ l−g, and so that the tree T for t is the primary tree for
L and is described as follows. The tree T consists of a trunk 3 with a finite forest
F attached. The trunk 3 has m carets and m+ 1 leaves numbered 0 through m in
the right-left order. If the carets in 3 are numbered from 0 starting at the top, then
the label of the i-th caret is dk if i = ik for k in {0, 1, . . . g} and 1 otherwise.

The following two lemmas are used in proving Remark 13, which allows us to
assume the trees corresponding to our group elements are in normal form.

Lemma 19. Let

L = Ci0,d0Ci1,d1 · · ·Cig,dg u and L ′ = Ck0,d ′0Ck1,d ′1 · · ·Ckg,d ′g u′,

where i0 < i1 < · · · < ig, where k0 < k1 < · · · < kg, where u is a word in the set
{X i,d |1≤d≤n, i ∈N}, and where u′ is a word in the set {X i,d , πi |1≤d≤n, i ∈N}.
Assume that L is expressible as (t, s p

0,1) as an element of n̂V with t a word in {si,d}

and p the length of t . Let m be the number of carets of the trunk of the tree T
corresponding to t and assume that m ≥ kg + 1.

If L∼ L ′, then there is a word u′′ in {X i,d}, and there is a word z in {πi | i≤ p−2}
such that setting L1 = Ck0,d ′0Ck1,d ′1 · · ·Ckg,d ′g u′′ and L2 = L1z gives that L ∼ L2

and L1 is expressible as (t ′, s p
0,1) with t ′ a word in {si,d} of length p, so that the

tree T ′ for t ′ is normalized except possibly at interior vertices in the trunk of the
tree, and so that the trunk of T ′ has m carets.

Proof. The homomorphism n̂V → nV given by si,d 7→ X i,d and σi 7→ πi allows
us to write u′ ∼ u′′z′ with u′′ a word in {X i,d} and z′ a word in {πi | i ∈ N}

such that the forest F for u′′ is normalized. The rest of the proof goes through
as before, but we describe the slight modifications needed for our case. We write
L = (tsk

0,1, s p+k
0,1 ) = (t̂ s

r
1,0x, sq+r

1,0 ) = L2 as elements in n̂V , where x is a word in
{σi } and p+ k = q+ r . As before, we can conclude that the unnumbered patterns
for tsk

0,1 and t̂ sr
1,0 are identical.

In the tree for tsk
0,1, let the left edge vertices be a0, a1, . . . , ab reading from the

top, so that a0 is the root of the tree. Since we assume the trunk of the tree has m
carets, we know b=m+k and for m ≤ i < b, the label for ai is 1. Similarly, in the
tree for t̂ sr

1,0, let the left edge vertices be a′0, a′1, . . . , a′b reading from the top. Note
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that remark (∗) in the proof of [Brin 2005, Theorem 4.21] (which we are about to
restate) remains true in our general case, by giving a new definition: For each left
edge vertex ai , define the n-tuple (x i

1, . . . , x i
n), where x i

k equals the number of left
edge vertices above ai with label k. (Note we are using i to denote an index, not
an exponent). It follows that x i

1 + x i
2 + · · · + x i

n is the total number of left edge
vertices above ai . Then we can say,

(∗)
The rectangle corresponding to a left edge vertex ai

depends only on the n-tuple (x i
1, . . . , x i

n).

In other words, for the rectangle labeled 0 in any pattern, the order of the differ-
ent cuts does not matter. This is because the rectangle labeled 0 must contain the
origin and its size in each dimension k will be 2−x i

k . Hence, the analogous statement
for our case follows, and we conclude that the n-rectangle R corresponding to am

is identical to the n-rectangle R′ corresponding to a′m Since R is divided k times
across dimension 1, so is R′, and hence the tree below a′m must consist of an
extension to the left by k carets all labeled 1, and we can conclude that r ≥ k. The
rest of the proof follows exactly as before. �

Here, we define a notion of complexity to measure progress in the following
lemma and proposition towards normalizing trees. If T is a labeled tree, we let
a0, a1, . . . , am be the interior, left edge vertices of T reading from top to bottom
so that a0 is the root. Let b0b1 . . . bm be a word in {1, 2, . . . , n} where bi = k if ai is
labeled k for 0≤ i ≤m. We say b0b1 . . . bm is the complexity of T . We impose the
length-lex ordering on such words, that is, if w1 and w2 are two such words, then
we say w1<w2 if w1 is shorter than w2 or if w1= b1

0 . . . b
1
m and w2= b2

0 . . . b
2
m are

two such words of the same length, then w1 <w2 if when we take j ∈ {0, . . . ,m}
minimal where b1

j 6= b2
j , we have b1

j < b2
j .

Lemma 20. Let L = Ci0,d0Ci1,d1 · · ·Cig,dg u, where i0 < i1 < · · · < ig and u is a
word in the set {X i,d}. Assume that the primary tree T for L is normalized except
at one or more vertices in the trunk of T . Let m be the number of carets in the trunk
of T . Then L ∼ L ′ = Ck0,c0Ck1,c1 · · ·Ckg,cg u′, where k0 < k1 < · · · < kg and u′ is
a word in the set {X i,d , πs}, so that m ≥ kg + 1, and so that the complexity of the
primary tree T ′ of L ′ is strictly less than the complexity of T .

Proof. We want to use the relations to push a suitable instance of an Xu,v in the word
L as far as possible to the left to be able to apply a cross relation. This operation
normalizes a suitable vertex and decreases the complexity of the primary tree T .

Let 3 be the trunk of T . The interior vertices of 3 are the interior, left edge
vertices of T and let these be a0, a1, . . . , am−1. Let r be the highest value with
0 ≤ r < m for which ar is not normalized. This is the lowest nonnormalized
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interior vertex of 3, and since ar is not normalized it is labeled ` 6= 1 and must
correspond to some Ci j ,`. From Lemma 18, we have i j = r .

Since it is not normalized, ar must correspond to some hypercube Si j that is
fully divided across dimension ` and some other dimension d, with 1≤ d < `.

By rewriting L as (t, sk
0,1) (which we can do by Lemma 18) and applying

Corollary 9 to t , we can assume that the children of ar , v1 and v2, are both labeled d .
We divide our work in two cases, d=1 and d>1. We observe that the case d=1 is
entirely analogous to the proof of [Brin 2005, Theorem 4.22] while the case d > 1
is slightly different.

Case 1: d = 1. In this case, the left child v1, which is in the trunk 3, is labeled 1.
In the case that j < n we observe that i j+1 > r + 1 = i j + 1, since the interior
vertex of the trunk corresponding to Ci j+1,d j+1 is not labeled 1 (otherwise, ar = ai j

would not be the lowest nonnormalized interior vertex). Since the right child v2

is an interior vertex not on the trunk, there must be a letter Xq,1 corresponding to
it. By Lemma 5 we can assume that Xq,1 occurs as the first letter of u, that is,
u = Xq,1u′′. Hence

L = Ci0 · · ·Ci j−1Ci j ,`Ci j+1 · · ·Cig Xq,1u′′,

where we have omitted all the dimension subscripts of the baker’s maps Ci,d (ex-
cept for one map) since they are not important for the argument. The subword
Ci0 · · ·Ci j ,` · · ·Cig Xq,1 is a trunk with a single caret labeled 1 attached at the caret
i j of the trunk on its right child. By a careful observation of the right-left ordering
it is evident that q = i j . By using relation (15) repeatedly on L we can move
Xq,1 = X i j ,1 to the left and rewrite the word L as

Ci0 · · ·Ci j−1Ci j ,`X i j ,1Ci j+1+1 · · ·Cig+1u′′,

since i0 < i1 < · · · < ig and i j+1 > i j + 1. Combining relations (15) and (16) on
the product Ci j ,`X i j ,1, we rewrite L as

Ci0 · · ·Ci j−1Ci j+1,`X i j ,`πi j+1Ci j+1+1 · · ·Cig+1u′′.

Now we apply (17) to commute πi j+1 back to the right without affecting the indices
of the baker’s maps. This is possible since i j+1 > i j + 1 and therefore i j+1+ 1>
i j + 2. Now we apply (15) repeatedly to the word

Ci0 · · ·Ci j−1Ci j+1,`X i j ,`Ci j+1+1 · · ·Cig+1πi j+1u′′

to bring X i j ,` back to the right, decreasing the indices of the baker’s maps by 1

Ci0 · · ·Ci j−1Ci j+1,`Ci j+1 · · ·Cig X i j ,`πi j+1u′′.
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By setting u′ = X i j ,`πi j+1u′′ in the previous equation and relabeling the indices
with the ki , we obtain the word L ′ = Ck0,c0Ck1,c1 · · ·Ckg,cg u′ whose primary tree
T ′ is the same as T up until the vertex ar , which is now labeled d = 1 instead of `.
Thus, L ∼ L ′ = Ck0,c0Ck1,c1 · · ·Ckg,cg u′ and the complexity of the primary tree T ′

of L ′ is strictly less than the complexity of T .
The only thing we still need to prove in this case is that m ≥ kg + 1. However,

it has been observed above that i j = r <m−1 so i j +2≤m. This gives the result
in the case that j = n. If j < n, then kg = ig and m ≥ ig + 1 by Lemma 18.

Case 2: 1< d <`. We observe that ar corresponds to Ci j ,` and that v1 corresponds
to Cik ,d . By Lemma 18, we have r + 1 = ik , which implies ik = i j + 1 = i j+1. In
fact, if i j + 1 < i j+1, there would be a vertex labeled 1 on the trunk between the
vertices i j and i j+1 (and this is impossible since d > 1). Let X i j ,d correspond to
the right child v2. Arguing as in the case d = 1 we have

L = Ci0 · · ·Ci j−1Ci j ,`Ci j+1,dCi j+2 · · ·Cig Xq,du′′.

We apply relation (15) as before to move Xq,d = X i j ,d to the left while increasing
the subscript of each baker’s map by 1:

Ci0 · · ·Ci j−1Ci j ,`X i j ,dCi j+2,dCi j+2+1 · · ·Cig+1u′′.

By using the cross relation (18) on the underlined portion, we read it as

Ci0 · · ·Ci j−1Ci j ,d X i j ,`Ci j+2,`πi j+1Ci j+2+1 · · ·Cig+1u′′.

Since i j+2 > i j+1, then i j+2+ 1 > i j+1+ 1; hence πi j+1 and the baker’s maps to
its right commute, so the word becomes

Ci0 · · ·Ci j ,d X i j ,`Ci j+2,`Ci j+2+1 · · ·Cig+1πi j+1u′′.

We apply (15) repeatedly and move X i j ,` back to the right to obtain

L ∼ Ci0 · · ·Ci j ,dCi j+1,`Ci j+2 · · ·Cig X i j ,`πi j+1u′′,

where the product Ci j ,dCi j+2,` has been underlined to stress that the new trunk
has the vertices labeled d and `, which are now switched. Thus the complexity of
the tree has been lowered. In this second case, the new sequence k0 < · · · < kg

is exactly equal to the initial one i0 < · · · < ig. By the definition of m (given in
Lemma 18) applied on the initial word L , we have m≥ ig+1 and so, since kg = ig,
we are done. �

Remark 21. As observed in the proof above, the case d = 1 is equivalent to [Brin
2005, Theorem 4.22], though the proof therein leads to a condition that is equiva-
lent to lowering the complexity. When the index in some Ci j ,d goes up by 1, this
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corresponds to switching the vertices with labels d and 1 in the primary tree and
thus lowering the complexity by making more vertices normalized.

Proposition 22. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}.

Then w ∼ L M R as in Lemma 17 and when expressed as elements of n̂V we have

L = ts−p
0,1 , R−1

= ys−p
0,1 , M = s p

0,1us−p
0,1 ,

where t , y are words in {si,d | 1≤ d ≤ n, i ∈N}, u is a word in {σ j | 0≤ j ≤ p−1},
and the lengths of t and y are both p. Further, we may assume the trees for t and y
are normalized, and if u can be reduced to the trivial word using relations (2)–(4),
then M can be reduced to the trivial word using relations (13)–(17).

Proof. The proof of the first conclusion is exactly the same as that of [Brin 2010,
Lemma 4.19]. In order to assume the trees for t and y are normalized, we alternate
applying Lemmas 19 and 20. We have L expressed as (t, s p

0,1), where p is the
length of t and the number of carets in the trunk of the tree T for t is m. Setting
L = L ′ certainly gives that L ∼ L ′ and m ≥ kg + 1 by Lemma 18, so we have
satisfied the hypotheses of Lemma 19. Therefore, L ∼ L1z where L1 expressed as
(t ′, s p

0,1), where the trunk of the tree T ′ for t ′ has m carets. Since we set L = L ′,
we see that the trunks of T and T ′ are identical and the only way in which the two
trees differ is that T ′ is normalized off the trunk. Since z is a word in {πi }, z can
be absorbed into M without disrupting the assumptions on M , namely, M can still
be written in the form M = s p

0,1us−p
0,1 as above. We now replace L with L1 and

proceed to use Lemma 20.
Since the tree for L is now normalized off the trunk, we satisfy the hypotheses

of Lemma 20 and write L ∼ L ′, where the tree for L ′ has complexity lower than
the tree for L and m ≥ kg + 1. Hence, we can now apply Lemma 19 again and
obtain L ∼ L1z and let z be absorbed into M . We apply this process over and
over, decreasing the complexity of the tree associated to L each time. Since there
are only finitely many linearly ordered complexities, eventually this process will
terminate, at which point the tree for L will be normalized. We can apply the same
procedure to the inverse of L M R to normalize the tree for R. The last statement
regarding M follows immediately from [Brin 2005, Lemma 4.18]. �

Theorem 23. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}

that represents the trivial element of nV . Then w ∼ 1 using the relations in
(1)–(18). Hence, we have a presentation for nV .
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Proof. Using Proposition 22, we can assume

w ∼ L M R = (ts−p
0,1 )(s

p
0,1us−p

0,1 )(s
p
0,1 y−1),= tuy−1

where t and y are words in {si,d |1≤d≤n, i ∈N}, u is a word in {σ j |0≤ j ≤ p−1},
and the trees associated to t and y are normalized. By assumption, tuy−1

= (tu, y)
is the trivial element of n̂V and so tu and y represent the same numbered patterns
in5n . Furthermore, t and y must give the same unnumbered pattern, while u enacts
a permutation on the numbering. Since the forests for t and y are normalized and
give the same pattern, the forests are identical with the same labeling by Lemma 7.
The numbering on the leaves for both forests follows the left-right ordering; hence
t and y give the same numbered patterns, which implies that u enacts the trivial
permutation and M ∼ 1 by Proposition 22.

We now wish to show that L ∼ R−1. By Lemma 17, we have

L = Ci0,d0Ci1,d1 · · ·Cig,dg q and R−1
= C j0,d ′0C j1,d ′1 · · ·C jm ,d ′m q ′.

Since we know that the trunks of the trees corresponding to L and R−1 are
identical with the same labeling, the sequences (i0, i1, . . . , ig) and ( j0, j1, . . . , jm)
are identical and dk = d ′k for each k ∈ {0, 1, . . . , n = m}. Hence, the subwords
Ci0,d0Ci1,d1 · · ·Cig,dg and C j0,d ′0C j1,d ′1 · · ·C jm ,d ′m are the same and it remains to show
that q ∼ q ′. This follows from Lemma 4 and the homomorphism from n̂V to nV
as before. �

6. Finite presentations

6.1. Finite presentation for n̂V . We now give a finite presentation for n̂V , using
arguments analogous to those found in [Brin 2005] to show that the full set of
relations is the result of only finitely many of them.

Theorem 24. The group n̂V is presented by the 2n + 2 generators {si,d , σi | i ∈
{0, 1}, 1≤ d ≤ n} and the 5n2

+ 7n+ 6 relations given below:

s−1
1,1s1+k,d ′s1,1 = s2+k,d ′ for k = 1, 2,(M1)

s−1
i,d si+k,d ′si,d = si+k+1,d ′ for i = 0, 1, k = 1, 2, 2≤ d ≤ n,

σ 2
i = 1 for i = 0, 1,(M2)

σiσi+k = σi+kσi for i = 0, 1, k = 2, 3,(M3)

σiσi+1σi = σi+1σiσi+1 for i = 0, 1,(M4)

σk+1s1,1 = s1,1σk+2 for k = 1, 2,(M5a)

σi+ksi,d = si,dσi+k+1 for i = 0, 1, k = 1, 2, 2≤ d ≤ n,

σi si,d = si+1,dσiσi+1 for i = 0, 1,(M5b)/(M5c)
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σi si+k,d = si+k,dσi for i = 0, 1, k = 2, 3,(M5d)

si,dsi+1,d ′si,d ′ = si,d ′si+1,dsi,dσi+1 for i = 0, 1, d 6= d ′.(M6)

Proof. First, recall our generating set is {si,d , σi | i ∈ N, 1 ≤ d ≤ n}. When i < j ,
relations (M1) and (M5a) give s−1

i,1 x j si,1 = x j+1, where x j = s j,d (for some d)
or σ j . Hence, we can use

si,d = s1−i
0,1 s1,dsi−1

0,1 and σi = s1−i
0,1 σ1si−1

0,1

as definitions for i ≥ 2. Therefore, n̂V is generated by

{si,d , σi | i ∈ {0, 1}, 1≤ d ≤ n},

which gives a generating set of size 2n+ 2 for each n.
We treat relations (M1)–(M6) as they are treated in [Brin 2005]. Relations in-

volving only one parameter, such as (M2), (M4), and (M6), are obtained for i ≥ 2
by setting i = 1 and conjugating by powers of s0,1; therefore the only necessary
relations to include are those having i = 0 and i = 1. As before, (M2) and (M4)
follow from σ 2

0 = 1, σ 2
1 = 1, σ0σ1σ0 = σ1σ0σ1, and σ1σ2σ1 = σ2σ1σ2, or 4 rela-

tions for each n. Relation (M6) follows from 2 relations for each pair of distinct
dimensions, giving 2

(n
2

)
= n(n− 1) relations for each n.

Relation (M3) is treated the same way as in [Brin 2005] for each n. Hence,
for all i and j , (M3) follows from the 4 relations σ0σ2 = σ2σ0, σ0σ3 = σ3σ0,
σ1σ3 = σ3σ1, σ1σ4 = σ4σ1.

For relation (M1), which can be rewritten as s−1
i,d si+k,d ′si,d = si+k+1,d ′ for k > 0,

we have two cases: the case where d = 1 and the case where d 6= 1. If d = 1, then
the case i = 0 follows by definition, and by the same induction argument used in
[Brin 2005] implies that the relation for all i and k follows from the cases where
i = 1 and k = 1, 2; hence we need only 2 relations per dimension. If d 6= 1, we do
not get the case i = 0 by definition and we must include i = 0, 1 and k = 1, 2, that
is, 4 relations per each pair of dimensions. There are n−1 choices for d , as d 6= 1,
and n choices for d ′, so this case yields 4n(n− 1) relations. Hence, in total (M1)
can be obtained for all i and k by 2n+ 4n(n− 1)= 4n2

− 2n relations.
For relation (M5b), σi si,d = si+1,dσiσi+1, there is only a single parameter to deal

with; hence the relation for i ≥ 2 can be obtained from the cases where i = 0, 1
by conjugating by s0,1 as before. Relation (M5c) is actually equivalent to (M5b);
hence for each n we only need 2n relations for (M5b) and (M5c). We treat (M5a)
σi+ksi,d = si,dσi+k+1 for k > 0 the same way as for (M1), hence 2 relations are
required for d = 1 and 4 for d 6= 1 for a total of 4n − 2 relations. And lastly,
(M5d) σi si+k,d = si+k,dσi can be obtained in the same way as the second case of
(M1) where the relation for all i, k is obtained by i = 0, 1, k = 2, 3, that is, 4n
relations. �
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6.2. Finite presentation for nV.

Theorem 25. The group nV is presented by the 2n+ 4 generators

{X i,d , πi , π i | i ∈ {0, 1}, 1≤ d ≤ n},

the 5n2
+ 7n + 6 relations obtained from the homomorphism n̂V → nV , and the

additional 5n2
+ 3n + 4 relations given below, for a total of 10n2

+ 10n + 10
relations.

π k+1 X1,1 = X1,1π k+2 for k = 1, 2,(5)

πm+k Xm,d = Xm,dπm+k+1 for m = 0, 1, k = 1, 2,
2≤ d ≤ n,

πm+kπm = πmπm+k for m = 0, 1, k = 2, 3,(10)

πmπm+1πm = πm+1πmπm+1 for m = 0, 1(11)

π2
m = 1 for m = 0, 1,(13)

πm Xm,1 = πmπm+1 for m = 0, 1,(6)

πm Xm,d = Cm+1,dπmπm+1 for m = 0, 1, d 6= 1,(14)

Ck+1,d X1,1 = X1,1Ck+2,d for k = 1, 2,(15)

Cm+k,d Xm,d ′ = Xm,d ′Cm+k+1,d for m = 0, 1, k = 1, 2,
2≤ d, d ′ ≤ n,

Cm,d Xm,1 = Xm,dCm+2,dπm+1 for m = 0, 1, 2≤ d ≤ n,(16)

πmCm+k,d = Cm+k,dπm for m = 0, 1, k = 2, 3,(17)

Cm,d Xm,d ′Cm+2,d ′ = Cm,d ′Xm,dCm+2,dπm+1 for m = 0, 1,(18)
1< d ′ < d ≤ n,

Proof. We can use the relations in nV to write, for i ≥ 2 and 1≤ d ≤ n,

X i,d = X1−i
0,1 X1,d X i−1

0,1 , πi = X1−i
0,1 π1 X i−1

0,1 , π i = X1−i
0,1 π1 X i−1

0,1 .

We can also use the relations for nV as in [Brin 2004, Proposition 6.2] to write

Cm,d = (πm Xm,dπm+1πm)(Xm,dπm+1 X−1
m,1)

for m ≥ 0 and 2 ≤ d ≤ n, which we use as a definition. Hence, the Cm,d are not
needed to generate nV .

The homomorphism n̂V → nV given by si,d 7→ X i,d and σi 7→ πi implies that
the work done for the relations for n̂V carries over to relations (1)–(4), (7)–(9),
and (12) (see Lemma 14). Relations (10), (11), (13) and (6) are exactly the same
as those from 2V and can be treated as in [Brin 2005], contributing a total of 10
relations to our finite set.
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Relation (5) can be treated in a manner similar to (M1) from n̂V , where 2
relations are needed for dimension 1 and 4 for all others, contributing a total of
4(n − 1)+ 2 relations. Relations (14) and (16) include only one parameter and
hence can be obtained from the cases where i =0, 1 as before, contributing 2(n−1)
relations apiece. And (17) requires 4 relations for each d 6= 1, hence adding an
additional 4(n− 1) relations.

For relation (15), we have two cases: For d ′ = 1, all cases follow from when
i = 0, 1, giving us 2(n − 1) relations since 2 ≤ d ≤ n. For d ′ 6= 1, four relations
are required for each pair d, d ′ ∈ {2, . . . , n}, contributing 4(n−1)(n−1) relations.
Lastly, since (18) involves only one parameter in the first component, we only need
2 relations for each 1< d ′< d ≤ n, the number of pairs being (n−1)(n−2)/2. �

Remark 26. Since ωV is an ascending union of the nV , a word

w ∈ {X i,d , πi , π i | i ∈ {0, 1}, d ∈ N}

such that w=ωV 1 must be contained in some nV (for some n ∈N) and so we can
use the same ideas and the relations inside nV to transform w into the empty word.
Therefore, the following result is an immediate consequence of Theorem 25.

Corollary 27. The groupωV is generated by the set {X i,d , πi , π i | i ∈{0, 1}, d ∈N}

and satisfies the family of relations in Theorem 25 with the only exception that the
parameters d, d ′ ∈ N.

7. Simplicity of nV and ωV

Brin [2010] proved that the groups nV and ωV are simple by showing that the
baker’s map is a product of transpositions and following the outline of an existing
proof that V is simple.

We prove again Brin’s simplicity result verify that Brin’s original proof that 2V
is simple [2004, Theorem 7.2] generalizes using the generators and the relations
that have been found.

Theorem 28. The groups nV equal their commutator subgroups for n ≤ ω.

Proof. The goal is to show that the generators Xm,i , πm and πm are products
of commutators. We write f ' g to mean that f = g modulo the commutator
subgroup. The arguments below are independent of the dimension i .

From relation (1) we see that X−1
q,i X−1

0,1 Xq,i X0,1 = X−1
q,i Xq+1,i for q ≥ 1 and so

Xq+1,i ' Xq,i . Therefore Xq,i ' X1,i , for q ≥ 1. Using relation (2) and arguing
similarly, we see that πq ' π1 for q ≥ 1.

From relation (3) we see that π0 X0,iπ
−1
0 X−1

0,i = X1,iπ1 X−1
0,i so that X0,i ' X1,iπ1.

Also, by relation (3), X2,i ' X1,i , and the fact that π2 ' π1, we see π1 X1,i =

X2,iπ1π2 ' X1,iπ1π1 = X1,i . Therefore π1 ' 1 and so X0,i ' X1,i .
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Relation (9) and π1'1 give π2
0 'π0π1π0=π1π0π1'π0, which implies π0'1.

By relation (6) and the fact that π1'1 and π1'π0, we get π1 X1,1=π1π2'π1.
Hence X0,1 ' X1,1 ' 1.

Now, relation (6) and X0,1 ' 1 give that π0 ' π0 X0,1 = π1. Relation (11) and
π0 ' 1 lead to π1 ' π0π1π0 = π1π0π1 ' π

2
1. Therefore π0 ' π1 ' 1.

Finally, by relation (7) and X0,1 ' X1,1 ' 1' π1 we get

X1,i X0,i ' X0,1 X1,i X0,i = X0,i X1,1 X0,1π1 ' X0,i ,

which implies X0,i ' X1,i ' 1. We have thus proved that all the generators of nV
are in the commutator subgroup. The case ofωV is identical: Each generator lies in
some nV and can be written as a product of commutators within that subgroup. �

From [Brin 2004, Section 3.1] (which generalizes to nV and ωV as observed by
Brin [2005; 2010]) the commutator subgroup of nV and ωV are simple; therefore
Theorem 28 implies the following result.

Theorem 29. The groups nV are simple for n ≤ ω.

8. An alternative generating set

For any n∈N, we have (n−1)V×V ≤nV . It can be shown that another generating
set for nV is given by taking a generating set for (n − 1)V × V and adding an
involution that swaps two disjoint subcubes of [0, 1]n , one of which has the origin
as one of its vertices and the other of which contains the vertex (1, . . . , 1). This
second generating set has the advantage of taking the generators of (n− 1)V and
adding only the generators of V plus another one. This leads to a smaller generating
set, which was suggested to us by Collin Bleak. It seems feasible that a good set
of relations exist for this alternative generating set.
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RESONANT SOLUTIONS AND TURNING POINTS
IN AN ELLIPTIC PROBLEM

WITH OSCILLATORY BOUNDARY CONDITIONS

ALFONSO CASTRO AND ROSA PARDO

We consider the elliptic equation−1u+u=0 with nonlinear boundary con-
ditions ∂u/∂n = λu+ g(λ, x, u), where the nonlinear term g is oscillatory
and satisfies g(λ, x, s)/s→ 0 as |s| → 0. We provide sufficient conditions
on g for the existence of sequences of resonant solutions and turning points
accumulating to zero.

1. Introduction

This work complements the study initiated in [Arrieta et al. 2010] and [Castro and
Pardo 2011] on the positive solutions to the following boundary-value problem

(1-1)

{
−1u+ u = 0 in �,
∂u
∂n
= λu+ g(λ, x, u) on ∂�,

where � ⊂ RN is a bounded and sufficiently smooth domain, N ≥ 2, λ is a real
parameter, g(λ, x, s) = o(s) as s → 0 and g is oscillatory. A typical example of
such a g is

(1-2) g(x, s) := sα
(

sin
∣∣∣∣ s
81(x)

∣∣∣∣β +C
)

with α+β > 1, β < 0,

where 81 stands for the first eigenfunction of the Steklov eigenvalue problem

(1-3)

{
−18+8= 0 in �,
∂8

∂n
= σ8 on ∂�.
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Figure 1. Bifurcation diagram of subcritical and supercritical so-
lutions, containing infinitely many turning points and infinitely
many resonant solutions. In all cases, β =−0.35.

The first eigenvalue σ1 is simple and, due to Hopf’s lemma, we may assume its
eigenfunction 81 to be strictly positive in � and we take ‖81‖L∞(∂�) = 1.

The case α+β < 1, β > 0 was treated in [Arrieta et al. 2010; Castro and Pardo
2011]. Here we focus on the case α+β > 1, β < 0, inside of the complementary
range. The case with α < 1 corresponds to a bifurcation from infinity phenomenon;
see [Arrieta et al. 2007; 2009; 2010; Castro and Pardo 2011; Rabinowitz 1973]. In
contrast, the case with α > 1 corresponds to a bifurcation from zero phenomenon;
see [Arrieta et al. 2007; Crandall and Rabinowitz 1971; Rabinowitz 1971].

The oscillatory situation is in principle more complex than the monotone one,
since order techniques such as sub- and supersolutions are not applicable.

One novelty in problem (1-1) is that the parameter appears explicitly in the
boundary condition. With respect to this parameter, we perform an analysis of the
local bifurcation diagram of nonnegative solutions to (1-1), which turns out to be
different from the case α < 1 (see Figure 1 for α > 1 and Figure 2 for α < 1).

Throughout this paper we make the following assumptions:

(H1) g :R×∂�×R→R is a Carathéodory function (i.e. g= g(λ, x, s) is measur-
able in x ∈�, and continuous with respect to (λ, s)∈R×R). Moreover, there
exist G1 ∈ Lr (∂�) with r > N − 1 and continuous functions 3 : R→ R+,

and U : R→ R+, satisfying
|g(λ, x, s)| ≤3(λ)G1(x)U (s) for all (λ, x, s) ∈ R× ∂�×R,

lim sup
|s|→0

U (s)
|s|α

< +∞ for some α > 1.
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Figure 2. Bifurcation diagram in the case α = 0.5, β =−0.35.

(H2) The partial derivative gs(λ, · , · ) (where gs := ∂g/∂s) belongs to C(∂�×R);
moreover, gs( · , · , 0)= 0 and there exist F1 ∈ Lr (∂�), with r > N − 1 and
ρ > 1 such that

|g(λ, x, s)− sgs(λ, x, s)|
|s|ρ

≤ F1(x) as λ→ σ1,

for x ∈ ∂� and s ≤ ε small enough.

Throughout this paper, by solutions to (1-1) we mean elements u ∈ H 1(�) such
that

(1-4)
∫
�

(∇u · ∇v+ uv) dx

= λ

∫
∂�

uv dσ +
∫
∂�

g(λ, x, u)v dσ for all v ∈ H 1(�).

As proven in [Arrieta et al. 2007, Proposition 2.3], all such solutions are in the
Holder space Cβ(�) for some β > 0. Moreover, there exists a connected set of
positive solutions of (1-1) known as a branch bifurcating from zero; see [Arrieta
et al. 2007, Theorem 8.1]. We denote it by C+ ⊂ R× C(�), and recall that for
(λ, uλ) ∈ C+

u = s81+w, with w = o (|s|) and |σ1− λ| = o(1) as |s| → 0.

Definition 1.1. A solution (λ∗, u∗) of (1-1) in the branch of solutions C+ ⊂ R×

C(�) is called a turning point if there is a neighborhood W of (λ∗, u∗) in R×C(�)
such that, either W ∩C+ ⊂ [λ∗,∞)×C(�) or W ∩C+ ⊂ (−∞, λ∗]×C(�).

Our goal is to give conditions on the nonlinear oscillatory term g that guarantee
the existence of sequences accumulating to zero of subcritical solutions (i.e., for
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values of the parameter λ < σ1), supercritical solutions (i.e., for λ > σ1), resonant
solutions (i.e., for λ= σ1), and turning points.

Our main result, Theorem 1.3 below, is exemplified by the case in which g is
given by (1-2). In fact we have:

Theorem 1.2. Assume that g is given by (1-2) with β < 0. If

|C |< 1 and α+β > 1,

then in any neighborhood of the bifurcation point (σ1, 0) in R×C(�), the branch
C+ of positive solutions of (1-1) contains a sequence of subcritical solutions, a
sequence of supercritical solutions, a sequence of turning points, and a sequence
of resonant solutions.

The proof of this follows directly from the next theorem.

Theorem 1.3. Assume the nonlinearity g satisfies hypotheses (H1) and (H2). As-
sume also that

(1-5)
∣∣∣∣g(λ, x, s)− g(σ1, x, s)

|s|α

∣∣∣∣→ 0 as λ→ σ1, s→ 0

pointwise in x.
Let G : R×C(�)→ R be defined by

(1-6) G(λ, u) :=
∫
∂�

ug(λ, · , u)
|u|1+α

81+α
1 .

If there exist sequences {sn}, {s ′n} converging to 0+, such that

(1-7) lim
n→+∞

G(σ1, s ′n81) < 0< lim
n→+∞

G(σ1, sn81),

then:

(i) For sufficiently large n� 1, if (λ, u) is a solution of (1-1) with

P(u) :=

∫
∂�

u81∫
∂�
82

1
= sn,

then (λ, u) is subcritical. Similarly, if P(u) = s ′n it is supercritical. Con-
sequently, there exist two sequences of solutions of (1-1), {(λn, un)} and
{(λ′n, u′n)} converging to (σ1, 0) as n→∞, one of them subcritical, λn <σ1,
and the other supercritical, λ′n > σ1.

(ii) There is a sequence converging to zero of turning points {(λ∗n, u∗n)} such that

λ∗n→ σ1 and ‖u∗n‖L∞(∂�)→ 0 as n→∞.

In fact, we can always choose two subsequences of turning points, one of
them subcritical, λ∗2n+1 < σ1, and the other supercritical, λ∗2n > σ1.
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(iii) There is a sequence converging to zero of resonant solutions; i.e., there are
infinitely many solutions {(σ1, ũn)} of (1-1) with ‖ũn‖L∞(∂�)→ 0.

The behavior of positive solutions to (1-1) bifurcating from (σ1, 0) described in
Theorems 1.2 and 1.3 is similar to that of the solutions bifurcating from (σ1,∞)

for the sublinear problem; see [Arrieta et al. 2010] for details.
The complex nature of the nonlinearity in (1-2), makes an exhaustive analysis

of the global bifurcation diagram outside the scope of this work.
In [Korman 2008] the author considers in the case α = 1 β = 1. He assumes

either N = 1 or � to be a ball and the nonlinearity to be bounded by a constant
small enough. He obtains what he calls an oscillatory bifurcation. We refer the
reader to [García-Melián et al. 2009] for related problems with nonlinear boundary
conditions.

Organization of the paper. Section 2 contains the proof of our main result, giving
sufficient conditions for having subcritical, supercritical, and resonant solutions.
Section 3 presents two examples; explicit resonant solutions for the oscillatory
nonlinearity (1-2) and the one-dimensional case.

2. Subcritical, supercritical and resonant solutions

In this section we give sufficient conditions for the existence of a branch of so-
lutions to (1-1) bifurcating from zero which is neither subcritical (λ < σ1), nor
supercritical, (λ < σ1). From this, we conclude the existence of infinitely many
turning points, see Definition 1.1, and an infinite number of solutions for the res-
onant problem, i.e. for λ= σ1. This is achieved in Theorem 1.3

At this step, we analyze when the parameter may cross the first Steklov eigen-
value. To do that, we look at the asymptotic growth rate of the nonlinear term

(2-1) G0+ :=

∫
∂�

lim inf
(λ,s)→(σ1,0)

sg(λ, · , s)
|s|1+α

81+α
1

for α > 1. Changing lim inf to lim sup we define the number G0+ . If G0+ > 0 then
C+ is subcritical, and if G0+ < 0 then C+ is supercritical in a neighborhood of
(σ1, 0) See [Arrieta et al. 2009, Theorems 3.4 and 3.5] for the bifurcation from
infinity case. In this paper we consider nonlinearities for which

G0+ < 0< G0+ .

We shall argue as in [Arrieta et al. 2010] for the bifurcation from infinity case. To
determine whether a sequence of solutions (λn, un) is subcritical or supercritical,
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one must check the sign of

(2-2) lim inf
n→∞

G(λn, un) and lim sup
n→∞

G(λn, un),

where G is defined by (1-6). This is done in Lemma 2.3.
In Proposition 2.2, it is proved that when g is such that

|g(λ, x, s)| = O
(
|s|α

)
as |s| → 0 for some α > 1,

then the solutions in C± can be described as

un = sn81+wn, where
∫
∂�

wn81= 0 and wn = O(|sn|
α) as n→ 0.

We unveil the signs of the expressions in (2-2) by just looking at the signs of the
expressions in (2-2) at λn = σ1 and un = sn81 This is achieved in Lemma 2.4.

For this we first consider a family of linear Steklov problems with a variable
nonhomogeneous term at the boundary h depending on the parameter λ

(2-3)

{
−1u+ u = 0 in �,
∂u
∂n
= λu+ h(λ, x) on ∂�,

where h(λ, · ) ∈ Lr (∂�), r > N − 1 and λ ∈ (−∞, σ2).
We use the decomposition

Lr (∂�)= span[81]⊕ span[81]
⊥,

where

span[81]
⊥
:=

{
u ∈ Lr (∂�) :

∫
∂�

u81 = 0
}
.

For h(λ, · ) ∈ Lr (∂�), with r > N − 1, we write

(2-4) h(λ, · )= a1(λ)81+ h1(λ, · ),

with

a1(λ)=

∫
∂�

h(λ, · )81∫
∂�
82

1
,

∫
∂�

h1(λ, · )81 = 0.

For λ 6= σ1 the solution u = u(λ) of (2-3) has a unique decomposition

(2-5) u =
a1(λ)

σ1− λ
81+w, where

∫
∂�

w81 = 0,

and w = w(λ) ∈ span[81]
⊥ solves the problem

(2-6)

{
−1w+w = 0 in �,
∂w

∂n
= λw+ h1(λ, x) on ∂�.
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Note that in (2-6) w(λ) ∈ span[81]
⊥ is also well defined for λ= σ1. Moreover:

Lemma 2.1. For each compact set K ⊂ (−∞, σ2) ⊂ R there exists a constant
C = C(K ), independent of λ, such that

‖w(λ)‖L∞(∂�) ≤ C‖h1(λ, · )‖Lr (∂�) for any λ ∈ K ,

where w ∈ span[81]
⊥ is the solution of (2-6) and h1 ∈ span[81]

⊥ is defined in
(2-4).

Proof. See Lemma 3.1 of [Arrieta et al. 2010]. �

Now we turn our attention to the nonlinear problem (1-1). Recall that for solu-
tions (λ, u) close to the bifurcation point (σ1, 0) we have

(2-7) u = s81+w, where w ∈ span[81]
⊥

satisfies

(2-8) w = o(s) as s→ 0.

We define

(2-9) P(u) :=

∫
∂�

u( · )81∫
∂�
82

1
.

Next, we give sufficient conditions on the nonlinear term g in (1-1), for w =
O(|s|α) as s → 0; compare (2-8). We restrict ourselves below to the branch of
positive solutions; a completely analogous result holds for the branch of negative
solutions. The next result is essentially Proposition 3.2 in [Arrieta et al. 2010]
rewritten for s→ 0; we include the proof for completeness.

Proposition 2.2. Assume g satisfies hypotheses (H1) and (H2). There exists an
open set O ⊂ R× C(�) of the form O = {(λ, u) : |λ− σ1| < δ0, ‖u‖L∞(�) < s0},
for some δ0 and s0, satisfying these conditions:

(i) There exists a constant C1 independent of λ such that, if (λ, u) ∈C+∩O and
(λ, u) 6= (σ1, 0) then u = s81+w, where s > 0, w ∈ span[81]

⊥ and

‖w‖L∞(∂�) ≤ C1‖G1‖Lr (∂�) |s|α as |s| → 0.

(ii) There exists a constant S0 > 0 such that for all |s| ≤ S0 there exists (λ, u) in
C+ ∩O satisfying u = s81+w, with w ∈ span[81]

⊥.

(iii) Moreover, for any (λ, u) ∈ C+ ∩O, u = s81+w, with w ∈ span[81]
⊥,

|σ1− λ| ≤ C2|s|α−1 as |s| → 0,
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with C2 independent of λ; in fact,

C2 =
2‖G1‖L1(∂�)∫

∂�
82

1
.

Proof. From (2-7) and (2-8), we have 81 + w/s → 81 as s → 0 in L∞(∂�).
Together with (H1) and Lemma 2.1, this implies that ‖w‖L∞(∂�)≤C |s|α as s→ 0.
This proves part (i).

To prove part (ii) note that C+∩O is connected. Hence, using the decomposition
in (2-7), we have u = s81 + w with w ∈ span[81]

⊥. Since the projection P is
continuous, by (2-9), the set{

s ∈ R : (1-1) has a solution of the form u = s81+w and w ∈ [span[81]
⊥
]
}

contains an interval in R containing zero.
To prove part (iii) we observe that if (λ, u) is a solution of (1-1), u = s81+w,

with w ∈ span[81]
⊥, multiplying the equation by the first Steklov eigenfunction

81 > 0 and integrating by parts we obtain,

(σ1− λ)s
∫
∂�

82
1 =

∫
∂�

g(λ, x, s81+w)81.

Taking into account that

|g(λ, x, s81+w)|

|s|
=
|g(λ, x, s81+w)|

|s81+w|

∣∣∣81+
w

s

∣∣∣→ 0 as s→ 0

we get λ→ σ1 as s→ 0.
Moreover, from (H1), we obtain that

|g(λ, x, s81+w)| = |s|α
|g(λ, x, s81+w)|

|s81+w|α

∣∣∣81+
w

s

∣∣∣α
≤ C |s|α G1(x)

∣∣∣81+
w

s

∣∣∣α ,
and therefore

|σ1− λ| ≤ C
|s|α−1∫
∂�
82

1

∫
∂�

G1(x)
∣∣∣81+

w

s

∣∣∣α 81 ≤ C‖G1‖Lr (∂�)|s|α−1,

which ends the proof. �

Our next result is essentially Lemma 3.1 in [Arrieta et al. 2009] rewritten for
s→ 0. It allows us to estimate σ1− λn as λn converges σ1.

Lemma 2.3. Assume the nonlinearity g satisfies hypotheses (H1) and (H2). Let
(λn, un) be a sequence of solutions of (1-1) with λn → σ1 and ‖un‖L∞(∂�) → 0.
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If un > 0 then

(2-10)
G0+∫
∂�
82

1
≤

1∫
∂�
82

1
lim inf
n→∞

G(λn, un)

≤ lim inf
n→∞

σ1− λn

‖un‖
α−1
L∞(∂�)

≤ lim sup
n→∞

σ1− λn

‖un‖
α−1
L∞(∂�)

≤
1∫

∂�
82

1
lim sup

n→∞
G(λn, un)≤

G0+∫
∂�
82

1.

A similar statement is obtained for the case un < 0, just replacing G0+ by G0−

and G0+ by G0− .

Proof. We show that un > 0; the other case has a similar proof. Consider a family
of solutions un of (1-1) for λ = λn with λn → σ1 and 0 < un → 0. Multiplying
(1-1) by 81 and integrating by parts, we get

(2-11) (σ1− λn)

∫
∂�

un81 =

∫
∂�

g(λn, x, un)81.

But ∫
∂�

g(λn, x, un)81 = ‖un‖
α
L∞(∂�)

∫
∂�

g(λn, x, un)

uαn

(
un

‖un‖L∞(∂�)

)α
81.

Taking into account the definition of G(λ, u) in (1-6), we can write∫
∂�

g(λn, x, un)

uαn

(
un

‖un‖L∞(∂�)

)α
81

=

∫
∂�

g(λn, x, un)

uαn

[(
un

‖un‖L∞(∂�)

)α
−8α1

]
81+G(λn, un).

Moreover,∫
∂�

g(λn, x, un)

uαn

[(
un

‖un‖L∞(∂�)

)α
−8α1

]
81→ 0 as n→∞,

because un/‖un‖L∞(∂�)→81 uniformly in ∂�.
But, firstly from the above, secondly from Fatou’s lemma, and thirdly from

definition of G0+ ,

(2-12) lim inf
n→∞

∫
∂�

g(λn, x, un)

uαn

(
un

‖un‖L∞(∂�)

)α
81

≥ lim inf
n→∞

G(λn, un)≥

∫
∂�

lim inf
n→∞

g(λn, x, un)

uαn
81+α

1

≥ G0+ .
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Dividing both sides of (2-11) by ‖un‖
α
L∞(∂�) and passing to the limit we obtain

the first two inequalities in the chain (2-10). The third inequality in the chain is
trivial and the last two are obtained in a similar manner. �

Let {sn} and {s ′n} satisfy

(2-13) −∞ < lim
n→+∞

G(σ1, s ′n81) < 0 < lim
n→+∞

G(σ1, sn81) < ∞.

In order to prove Theorem 1.3, we show that the signs in (2-2) can be deduced
from those of (2-13). This is stated in the following result, which is a slight varia-
tion of [Arrieta et al. 2010, Lemma 3.3].

Lemma 2.4. Assume that g satisfies hypotheses (H1), (H2), and (1-5).
If (λn, sn)→(σ1, 0) and there exists a constant C such that ‖wn‖L∞(∂�)≤C |sn|

α

for all n→ 0, then

lim inf
n→+∞

G(λn, sn81+wn)≥ lim inf
n→+∞

G(σ1, sn81),

where G is given by (1-6). Similarly,

lim sup
n→+∞

G(λn, sn81+wn)≤ lim sup
n→+∞

G(σ1, sn81).

Proof. Throughout this proof, C denotes several constants depending only on
(�, g). Given ε > 0, assume that |(λn, sn)− (σ1, 0)|< ε.

By the mean value theorem we have

(2-14) g(λn, x, sn81+wn)− g(λn, x, sn81)

= wn

∫ 1

0
gs(λn, · , sn81+ τwn) dτ

≤ ‖wn‖L∞(∂�) sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�) .

Therefore

(2-15)
∫
∂�

∣∣∣g(λn, x, sn81+wn)− g(λn, x, sn81)

∣∣∣ 81 dx

≤ ‖wn‖L∞(∂�)

∫
∂�

sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�)

≤ |∂�|‖wn‖L∞(∂�) sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�) .

By hypotheses (H1) and (H2), for all x ∈ ∂�,

(2-16)
|gs(λn, x, s)|
|s|γ−1

≤ |s|ρ−γ F1(x)+C |s|α−γG1(x)max{3(λn), n ≥ 1} =: D1(x),
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for n large, and γ =min{ρ, α}> 1 Hence, D1 ∈ Lr (∂�) with r > N − 1 and

(2-17) sup
|s|≤1/n

|gs(λn, x, s)| ≤ D1(x)
(1

n

)γ−1
, with γ > 1.

Since ‖wn‖L∞(∂�) = O(|sn|
α), we obtain from (2-15) and (2-17)

(2-18)
∫
∂�

|g(λn, · , sn81+wn)− g(λn, · , sn81)|

|sn|
α

81

≤ C sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�)

≤ C sup
|s|≤1/n

‖gs(λn, · , s)‖L∞(∂�) ,

which tends to 0 as n→∞.
Therefore

lim inf
n→+∞

∫
∂�

sng(λn, · , sn81+wn)

|sn|
1+α 81

≥ lim
n→∞

∫
∂�

sng(λn, · , sn81+wn)− sng(λn, · , sn81)

|sn|
1+α 81

+ lim inf
n→+∞

∫
∂�

sng(λn, · , sn81)

|sn|
1+α 81

= lim inf
n→+∞

∫
∂�

sng(λn, · , sn81)

|sn|
1+α 81

= lim inf
n→+∞

∫
∂�

sng(σ1, · , sn81)

|sn|
1+α 81,

where we have used (2-18) and (1-5) respectively.
Now note that, multiplying and dividing by |81+wn/sn|

α the integrand of the
left hand side above can be written as

sng(λn, · , sn81+wn)

|sn|
1+α 81 =

(sn81+wn)g(λn, · , sn81+wn)

|sn81+wn|
1+α

∣∣∣∣81+
wn

sn

∣∣∣∣α81.

Then, (H2) and the fact that 81+wn/sn→81 in L∞(∂�) concludes the proof.
�

Now we prove the first main result in this paper. Roughly speaking, it states
that if there are a sequence of subcritical solutions and another of supercritical
solutions, since the solution set is connected, there are infinitely many turning
points and infinitely many resonant solutions. We prove the result for the positive
branch. The same conclusions can be attained for the connected branch of negative
solutions bifurcating from zero.
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Proof of Theorem 1.3. From Proposition 2.2(ii), consider any two sequences of
solutions of (1-1), such that (λn, un)→ (σ1, 0) and (λ′n, u′n)→ (σ1, 0) in C+ with

P(un)=

∫
∂�

un81∫
∂�
82

1
= sn and P(u′n)=

∫
∂�

u′n81∫
∂�
82

1
= s ′n.

Writing un = sn81+wn , with wn ∈ span[81]
⊥, from Proposition 2.2(i), we have

‖wn‖L∞(∂�) = O(|sn|
α). From Lemmata 2.3, and 2.4, hypotheses (1-5) and (1-7)

we get that

lim inf
n→∞

σ1− λn

‖un‖
α−1
L∞(∂�)

≥
1∫

∂�
82

1
lim inf
n→∞

∫
∂�

(sn81+wn)g(λn, · , sn81+wn)

|sn81+wn|
1+α 81+α

1

≥
1∫

∂�
82

1
lim inf
n→+∞

∫
∂�

sng(λn, · , sn81)

|sn|
1+α 81

=
1∫

∂�
82

1
lim inf
n→+∞

∫
∂�

sng(σ1, · , sn81)

|sn|
1+α 81 > 0,

and therefore λn < σ1.
Analogously, for (λ′n, u′n) we get λ′n > σ1. Hence (i) is proved.
To prove (ii), assume, by choosing subsequences if necessary, that sn> s ′n> sn+1

for all n≥0 and that 0< sn, s ′n ≤ S0 where S0 is the one from Proposition 2.2(ii). In
particular, by parts (i) and (ii) of Proposition 2.2, if (λ, u)∈C+ and P(u)= s < S0

then ‖u‖L∞(∂�) ≤ (1+C1‖G1‖Lr (∂�)|S0|
α−1)s. Taking S0 small enough we may

assume that ‖u‖L∞(∂�) ≤ 2s.
Let

(2-19) Kn = {(λ, u) ∈ C+ : P(u)= s and sn ≥ s ≥ sn+1}.

Let us see that, for each n ∈ N, Kn is a compact subset of R × C(�̄). Let
{(µk, vk)} be a sequence in Kn . Without loss of generality we may assume that
{µk} converges to µ∗. Since vk = tk81 +wk with wk = O(|tk |α) and sn ≥ tk =:
P(vk)≥sn+1, for all k, we have ‖vk‖C(∂�)≤ tk+‖wk‖C(∂�)≤C with C independent
of k. This together with Proposition 2.3 of [Arrieta et al. 2007] yields

(2-20) ‖vk‖C(�̄) ≤ C1(1+‖vk‖C(∂�))≤ C,

where, again, C is independent of k. Since the embedding Cγ (�̄)→ Cγ ′(�̄) is
compact for 0<γ ′<γ we may further assume that the sequence {vk} converges to
some u∗ ∈Cγ ′(�̄). This, hypothesis (H1) and the dominated convergence theorem
imply that {g(µk, · , vk)} converges to g(µ∗, · , u∗) in Lr (∂�). Therefore, since

(2-21)

{
−1vk + vk = 0 in �
∂vk
∂n
= µkvk + g(µk, x, vk) on ∂�,
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passing to the limit in the weak sense we have

(2-22)

{
−1u∗+ u∗ = 0 in �,
∂u∗

∂n
= µ∗u∗+ g(λ∗, x, u∗) on ∂�.

By the continuity of the projection operator we also have sn ≥ s∗ = P(u∗) =
limk→∞ P(vk)≥ sn+1. Hence (µ∗, u∗) ∈ Kn , which proves that Kn is compact.

Since sn > s ′n > sn+1 there exists (λ, u) ∈ Kn with λ > σ1. Hence, if we define

(2-23) λ∗n = sup{λ : (λ, u) ∈ Kn},

then λ∗n ≥ λ
′
n > σ1 see part (i). From the compactness of Kn there exists u∗n such

that (λ∗n, u∗n) ∈ Kn . From the definition of λ∗n if (λ, u) is a solution of (1-1) with
sn > P(un) > sn+1, then λ ≤ λ∗n which proves that (λ∗n, u∗n) is a (supercritical)
turning point.

With a completely symmetric argument, using the sets

K ′n = {(λ, u) ∈ C+ : P(u)= s and s ′n ≥ s ≥ s ′n+1}

and defining λ′∗n = inf{λ : (λ, u) ∈ K ′n}, we show the existence of u∗ such that
(λ′∗n , u′∗n ) ∈ K ′n is a (subcritical) turning point.

In order to prove the existence of resonant solutions, we now show that there
exists n0 ∈ N such that for each n ≥ n0 both sets Kn and K ′n contain resonant
solutions, that is, solutions of the form (σ1, u).

We use a reductio ad absurdum argument for the sets Kn . If this is not the
case, then there will exist a sequence of integers numbers n j → +∞ such that
Kn j does not contain any resonant solution. This implies that the compact sets
K+n j
= {(λ, u) ∈ Kn j : λ≥ σ1} can be written as

K+n j
= C+ ∩ {(λ, u) ∈ R×C(∂�) : λ > σ1, sn j > P(u) > sn j+1};

therefore K+n j
contains at least a connected component of C+. Moreover it is

nonempty since we know that there exists at least one solution (λ, u) with P(u)=
s ′n j
∈ (sn j , sn j+1) and therefore λ > σ1. The fact that we can construct a sequence

of connected components of C+ contradicts the fact that C+ is a connected near
(σ1, 0) ∈ R×C(�).

A completely symmetric argument can be applied to the sets K ′n . �

3. Two examples

3.1. Resonant solutions for the oscillatory nonlinearity (1-2). In [Arrieta et al.
2007, Theorem 8.1] it is proved that if α > 1, for any β ∈ R, and C ∈ R there is
an unbounded branch of positive solutions. Assume from now that β < 0.
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Taking |C | ≤ 1 it is not difficult to see that

uk(x) := [asin(−C)+ kπ ]1/β81(x), k ≥ 0,

defines a sequence of resonant solutions to (1-1) such that uk(x)→ 0 as k→∞.

3.2. A one-dimensional example. Now we consider the one-dimensional version
of (1-1), where most computations can be made explicit.

Let {σi } denote the sequence of Steklov eigenvalues of the problem (1-3). For
N>1 the Steklov eigenvalues form an increasing sequence of real numbers, {σi }

∞

i=1
while for N = 1 there are only two Steklov eigenvalues as we made explicit below.

Observe that Equation (1-1) in the one-dimensional domain �= (0, 1) reads
−uxx + u = 0 in (0, 1),

−ux(0)= λu+ g(λ, 0, u(0)),

ux(1)= λu+ g(λ, 1, u(1)).

The general solution of the differential equation is u(x)= aex
+be−x and there-

fore the nonlinear boundary conditions provide two nonlinear equations in terms
of two constants a and b. The function u = aex

+ be−x is a solution if (λ, a, b)
satisfy (

−(1+λ) (1−λ)
(1−λ)e −(1+λ)e−1

)(
a
b

)
=

(
g(λ, 0, a+b)

g(λ, 1, ae+be−1)

)
.

In this case we only have two Steklov eigenvalues,

σ1 =
e− 1
e+ 1

< σ2 =
1
σ1
=

e+ 1
e− 1

.

Restricting the analysis to symmetric solutions us(x)= s(ex
+e1−x), with s ∈R,

and choosing g(λ, x, s) = g(s), it is easy to prove that us(x) is a solution if and
only if λ satisfies

(3-1) λ(s)= σ1−
g(s(e+ 1))

s(e+ 1)
, s > 0.

Therefore, whenever g(u)=o(u) at zero, there is a branch of solutions (λ(s), us)

converging to (σ1, 0) as s→ 0.
Now fix g(s)= sα sin(sβ) for an arbitrary α > 1, β < 0. From the definition in

(2-1) we can write

G0+ :=

∫
∂�

lim inf
s→0+

sg(s)
|s|1+α

81+α
=

∫
∂�

lim inf
s→0+

sin(sβ) 81+α
=−

∫
∂�

81+α < 0,

G0+ :=

∫
∂�

lim sup
s→0+

sg(s)
|s|1+α

81+α
=

∫
∂�

lim sup
s→0+

sin(sβ) 81+α
=

∫
∂�

81+α > 0,
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and then G0+ < 0< G0+ .
Moreover, by looking in (3-1) at the values of s ∈ R such that λ(s) = σ1 it is

easy to check that (σ1, uk) is a solution for any k ∈ Z, where

uk(x) :=
(kπ)1/β

e+ 1
(ex
+ e1−x);

that is, there is a sequence of solutions of the resonant problem converging to zero,
as shown in Figure 3.

Moreover, computing in (3-1) the local maxima and minima of λ(s) it is not
difficult to check that (λ∗k , u∗k) is a sequence of turning points converging to zero,
where

λ∗k := σ1− t (α−1)/β
k sin(tk), u∗k(x) := t 1/β

k (ex
+ e1−x)

and where tk is such that

tan (tk)=−
β

α− 1
tk, tk ∈ [−π/2+ kπ, π/2+ kπ ]

with tk→∞ and t 1/β
k → 0 as k→∞ thanks to β < 0.

Let us observe that the bifurcation from zero phenomena occurs whenever α> 1
for any β and that whenever α+β < 1 the number of oscillations grows up faster
than the number of oscillations of multiples of the eigenfunction and cannot be
controlled; compare the two parts of Figure 3.
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Figure 3. Bifurcation diagram in the case α= 1.4, for two values
of β.
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RELATIVE MEASURE HOMOLOGY AND CONTINUOUS
BOUNDED COHOMOLOGY OF TOPOLOGICAL PAIRS

ROBERTO FRIGERIO AND CRISTINA PAGLIANTINI

Measure homology was introduced by Thurston in his notes about the ge-
ometry and topology of 3-manifolds, where it was exploited in the com-
putation of the simplicial volume of hyperbolic manifolds. Zastrow and
Hansen independently proved that there exists a canonical isomorphism
between measure homology and singular homology (on the category of CW-
complexes), and it was then shown by Löh that, in the absolute case, such
isomorphism is in fact an isometry with respect to the L1-seminorm on sin-
gular homology and the total variation seminorm on measure homology.
Löh’s result plays a fundamental rôle in the use of measure homology as a
tool for computing the simplicial volume of Riemannian manifolds.

This paper deals with an extension of Löh’s result to the relative case. We
prove that relative singular homology and relative measure homology are
isometrically isomorphic for a wide class of topological pairs. Our results
can be applied for instance in computing the simplicial volume of Riemann-
ian manifolds with boundary.

Our arguments are based on new results about continuous (bounded) co-
homology of topological pairs, which are probably of independent interest.

1. Introduction

Measure homology was introduced in [Thurston 1979], where it was exploited in
the proof that the simplicial volume of a closed hyperbolic n-manifold is equal to
its Riemannian volume divided by a constant only depending on n (this result is
attributed in [Thurston 1979] to Gromov). In order to rely on measure homology,
it is necessary to know that this theory “coincides” with the usual real singular
homology, at least for a large class of spaces. The proof that measure homology
and real singular homology of CW-pairs are isomorphic has appeared in [Hansen
1998; Zastrow 1998]. However, in order to exploit measure homology as a tool for
computing the simplicial volume, one has to show that these homology theories are
not only isomorphic, but also isometric (with respect to the seminorms introduced
below). In the absolute case, this result is achieved in [Löh 2006]. Our paper is

MSC2010: primary 55N10, 55N35; secondary 20J06, 55U15, 57N65.
Keywords: simplicial volume, singular homology, bounded cohomology of groups, CAT(0) spaces.
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devoted to extending Löh’s result to the context of relative homology of topological
pairs. As mentioned in [Fujiwara and Manning 2011, Appendix A] and [Löh 2007,
Remark 4.22], such an extension seems to raise difficulties that suggest that Löh’s
argument should not admit a straightforward translation into the relative context.
For a detailed account about the notion of measure homology and its applications
see, e.g., the introductions of [Zastrow 1998; Berlanga 2008].

In order to achieve our main results, we develop some aspects of the theory of
continuous bounded cohomology of topological pairs. More precisely, we compare
such theory with the usual bounded cohomology of pairs of groups and spaces.
Park [2003] provided the algebraic foundations to the theory of relative bounded
cohomology, extending Ivanov’s [1985] homological algebra approach to the rela-
tive case. However, Park endows the bounded cohomology of a pair of spaces with
a seminorm which is a priori different from the seminorm considered in this paper.
In fact, the most common definition of simplicial volume is based on a specific L1-
seminorm on singular homology, whose dual is just the L∞-seminorm on bounded
cohomology defined in [Gromov 1982, Section 4.1]. This seminorm does not co-
incide a priori with Park’s seminorm, so our results cannot be deduced from Park’s
arguments. More precisely, it is shown in [Park 2003, Theorem 4.6] that Gromov’s
and Park’s norms are bi-Lipschitz equivalent (see Theorem 6.1 below). In [Park
2003, page 206] it is stated that it remains unknown if this equivalence is actually an
isometry. In Section 6 we answer this question in the negative, providing examples
showing that Park’s and Gromov’s seminorms indeed do not coincide in general.

1A. Relative singular homology of pairs. Let X be a topological space and W ⊆
X a (possibly empty) subspace of X . For n ∈ N we denote by Cn(X) the module
of singular n-chains with real coefficients, i.e., the R-module freely generated by
the set Sn(X) of singular n-simplices with values in X . The natural inclusion of
W in X induces an inclusion of Cn(W ) into Cn(X), and we denote by Cn(X,W )

the quotient space Cn(X)/Cn(W ). The usual differential of the complex C∗(X)
defines a differential d∗ : C∗(X,W )→C∗−1(X,W ). The homology of the resulting
complex is the usual relative singular homology of the topological pair (X,W ), and
will be denoted by H∗(X,W ).

The real vector space Cn(X,W ) can be endowed with a natural L1-norm, as
follows. If α ∈ Cn(X,W ), then

‖α‖1 = inf
{ ∑
σ∈Sn(X)

|aσ | , where α =
[ ∑
σ∈Sn(X)

aσσ
]

in Cn(X)/Cn(W )

}
.

Such a norm descends to a seminorm on Hn(X,W ), which is defined as follows:
if [α] ∈ Hn(X,W ), then

‖[α]‖1 = inf{‖β‖1 | β ∈ Cn(X,W ), dnβ = 0, [β] = [α]}
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(this seminorm can be null on nonzero elements of Hn(X,W )). Of course, we
recover the absolute homology modules of X just by setting Hn(X)= Hn(X,∅).

1B. Relative measure homology of pairs. We now recall the definition of relative
measure homology of the pair (X,W ). We endow Sn(X) with the compact-open
topology and denote by Bn(X) the σ -algebra of Borel subsets of Sn(X). If µ is a
signed measure on Bn(X) (in this case we say for short that µ is a Borel measure
on Sn(X)), the total variation of µ is defined by the formula

‖µ‖m = sup
A∈Bn(X)

µ(A)− inf
B∈Bn(X)

µ(B) ∈ [0,+∞]

(the subscript m stands for measure). For every n ≥ 0, the measure chain module
Cn(X) is the real vector space of the Borel measures on Sn(X) having finite total
variation and admitting a compact determination set. The graded module C∗(X)
can be given the structure of a complex via the boundary operator

∂n : Cn(X) → Cn−1(X),
µ 7→

∑n
j=0(−1) jµ j ,

where µ j is the push-forward of µ under the map that takes a simplex σ ∈ Sn(X)
into the composition of σ with the usual inclusion of the standard (n−1)-simplex
onto the j-th face of σ .

Let now W be a (possibly empty) subspace of X . It is proved in [Zastrow 1998,
Proposition 1.10] that the σ -algebra Bn(W ) of Borel subsets of Sn(W ) coincides
with the set {A∩ Sn(W ) | A ∈ Bn(X)}. For every µ ∈ Cn(W ), the assignment

ν(A)= µ(A∩ Sn(W )), A ∈ Bn(X),

defines a Borel measure on Sn(X), which is called the extension of µ. If µ has
compact determination set and finite total variation then the same is true for ν, so
that we have a natural inclusion Cn(W ) ↪→Cn(X) (see [Zastrow 1998, Proposition
1.10 and Lemma 1.11] for full details). The image of Cn(W ) in Cn(X) will be sim-
ply denoted by Cn(W ), and coincides with the set of the elements of Cn(X) which
admit a compact determination set contained in Sn(W ). We denote by Cn(X,W )

the quotient Cn(X)/Cn(W ).
It is readily seen that ∂n(Cn(W ))⊆Cn−1(W ), so ∂n induces a boundary operator

Cn(X,W )→ Cn−1(X,W ), which will still be denoted by ∂n . The homology of
the complex (C∗(X,W ), ∂∗) is the relative measure homology of the pair (X,W ),
and it is denoted by H∗(X,W ).

Just as in the case of singular homology, we may endow Hn(X,W ) with a semi-
norm as follows. For every α ∈ Cn(X,W ) we set

‖α‖m = inf {‖µ‖m, where µ ∈ Cn(X), [µ] = α in Cn(X,W )= Cn(X)/Cn(W )} .
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Then, for every [α] ∈Hn(X,W ) we set

‖[α]‖mh = inf{‖β‖m | β ∈ Cn(X,W ), ∂nβ = 0, [β] = [α]}

(the subscript mh stands for measure homology). The absolute measure homology
module Hn(X) can be defined just by setting Hn(X)=Hn(X,∅).

1C. Relative singular homology versus relative measure homology. For every
σ ∈ Sn(X) let us denote by δσ the atomic measure supported by the singleton
{σ } ⊆ Sn(X). The chain map

ι∗ : C∗(X,W ) → C∗(X,W ),∑k
i=0 aiσi 7→

∑k
i=0 aiδσi

induces a map

Hn(ι∗) : Hn(X,W )→Hn(X,W ), n ∈ N,

which is obviously norm-nonincreasing for every n ∈ N.

Theorem 1.1 [Zastrow 1998; Hansen 1998]. Let (X,W ) be a CW-pair. For every
n ∈ N, the map

Hn(ι∗) : Hn(X,W )→Hn(X,W )

is an isomorphism.

Zastrow’s and Hansen’s proofs of Theorem 1.1 are based on the fact that rel-
ative measure homology satisfies the Eilenberg–Steenrod axioms for homology
(on suitable categories of topological pairs). Therefore, their approach avoids the
explicit construction of the inverse maps Hn(ι∗)

−1, n ∈N, and does not give much
information about the behavior of such inverse maps with respect to the seminorms
introduced above. In the case when W = ∅, the fact that Hn(ι∗) is indeed an
isometry was proved by Löh:

Theorem 1.2 [Löh 2006]. If X is any connected CW-complex, then for every n ∈N

the map
Hn(ι∗) : Hn(X)→Hn(X)

is an isometric isomorphism.

Löh’s proof of Theorem 1.2 exploits deep results about the bounded cohomology
of groups and topological spaces. In Section 3 and Section 4 we develop a suitable
relative version of such results, which we use on page 125 to prove this:

Theorem 1.3. Let (X,W ) be a CW-pair, and let us suppose that the following
conditions hold:

(1) X (whence W ) is countable, and both X and W are connected;



MEASURE HOMOLOGY AND BOUNDED COHOMOLOGY OF PAIRS 95

(2) the map π j (W )→ π j (X) induced by the inclusion W ↪→ X is injective for
j = 1, and it is an isomorphism for j ≥ 2.

Then, for every n ∈ N the isomorphism

Hn(ι∗) : Hn(X,W )→Hn(X,W )

is isometric.

In fact, we will deduce Theorem 1.3 from Theorem 1.7 below concerning the
relationships between continuous (bounded) cohomology and singular (bounded)
cohomology of topological pairs.

Definition 1.4. A CW-pair (X,W ) is good if it satisfies conditions (1) and (2) in
the statement of Theorem 1.3.

We conjecture that Theorem 1.3 holds even without the hypothesis that the pair
(X,W ) is good, so a brief comment about the places where this assumption comes
into play is in order. The fact that W is connected and π1-injective in X allows
us to exploit results regarding the bounded cohomology of a pair (G, A), where
G is a group and A is a subgroup of G. In order to deal with the case when W is
not assumed to be π1-injective, one could probably build on results regarding the
bounded cohomology of a pair (G, A), where A,G are groups and ϕ : A→ G is
a homomorphism of A into G. This case is treated in [Park 2003] by means of
a mapping cone construction. However, the mapping cone introduced there does
not admit a norm inducing Gromov’s seminorm in bounded cohomology, so Park’s
approach seems to be of no help to our purposes. Perhaps it is easier to drop from
the hypotheses of Theorem 1.3 the requirement that W be connected (provided that
we still assume that every component of W is π1-injective in X ). Several arguments
in our proofs make use of cone constructions which are based on the choice of a
basepoint in the universal coverings X̃ , W̃ of X , W . When W is connected (and
π1-injective in X ), the space W̃ is realized as a connected subset of X̃ , and this
allows us to define compatible cone constructions on X̃ and W̃ . It is not clear
how to replace these constructions when W is disconnected: one could probably
build on the theory of homology and cohomology of a group with respect to any
system of subgroups, as described for instance in [Bieri and Eckmann 1978] (see
also [Mineyev and Yaman 2007]), but several difficulties arise which we have not
been able to overcome. Finally, the assumption that πi (W ) is isomorphic to πi (X)
for every i ≥ 2 plays a fundamental rôle in our proof of Proposition 4.7 below.
One could get rid of this assumption by using a result stated without proof in [Park
2003, Lemma 4.2], but at the moment we are not able to provide a proof for Park’s
statement (see Remark 4.9 for a brief discussion of this issue).
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1D. Locally convex pairs. We are able to prove that measure homology is isomet-
ric to singular homology also for a large family of pairs of metric spaces, namely
for those pairs which support a relative straightening for simplices.

The straightening procedure for simplices was introduced in [Thurston 1979],
and establishes an isometric isomorphism between the usual singular homology of
a space and the homology of the complex of straight chains. Such a procedure
was originally defined on hyperbolic manifolds, and has then been extended to the
context of nonpositively curved Riemannian manifolds. In Section 2 we give the
precise definition of locally convex pair of metric spaces. Then, following some
ideas described in [Löh and Sauer 2009], for every locally convex pair (X,W )

we define a straightening procedure which induces a chain map between relative
measure chains and relative singular chains. It turns out that such a straightening
induces a well-defined norm-nonincreasing map Hn(X,W )→ Hn(X,W ). This
map provides the desired norm-nonincreasing inverse of Hn(ι∗), so that we can
prove (in Section 2D) the following:

Theorem 1.5. Let (X,W ) be a locally convex pair of metric spaces. Then the map

Hn(ι∗) : Hn(X,W )→Hn(X,W )

is an isometric isomorphism for every n ∈ N.

The class of locally convex pairs is indeed quite large, including for example
all the pairs (M, ∂M), where M is a nonpositively curved complete Riemannian
manifold with geodesic boundary ∂M .

Remark 1.6. Suppose that (X,W ) is a locally convex pair, and let K be a con-
nected component of W . An easy application of a metric version of Cartan–
Hadamard theorem (see [Bridson and Haefliger 1999, II.4.1]) shows that π1(K )
injects into π1(X), and πi (K )=πi (X)= 0 for every i ≥ 2. In particular, if (X,W )

is also a countable CW-pair and W is connected, then (X,W ) is good, and the
conclusion of Theorem 1.5 also descends from Theorem 1.3. Note however that
the request that W be connected could be quite restrictive in several applications
of our results. For example, it is well-known that the natural compactification of a
complete finite-volume hyperbolic manifold with geodesic boundary and/or cusps
is a manifold with boundary N admitting a locally CAT(0) (whence locally convex)
metric that turns the pair (N , ∂N ) into a locally convex pair (see [Bridson and
Haefliger 1999, pages 362–366], for example). We have discussed in [Frigerio and
Pagliantini 2010] some properties of the simplicial volume of such manifolds, and
in that context several interesting examples have in fact disconnected boundary. In
[Pagliantini 2012] it is shown how to apply Theorem 1.5 for getting shorter proofs
of the main results of [Frigerio and Pagliantini 2010].
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1E. (Continuous) relative bounded cohomology. As mentioned above, our proof
of Theorem 1.3 involves the study of the relative bounded cohomology of topo-
logical pairs. Introduced in [Gromov 1982], the relative bounded cohomology
of pairs (of groups or spaces) seems to be less clearly understood than absolute
bounded cohomology. Here below we define the continuous (bounded) coho-
mology of topological pairs, and we put on (continuous) bounded cohomology
Gromov’s L∞-seminorm which is “dual” (in a sense to be specified below) to the
seminorm on (measure) homology described above. Then, in Section 4 we com-
pare the continuous bounded cohomology of a good CW-pair to its usual singular
bounded cohomology (see Theorem 1.7 below). In Section 5 we show how this
result implies Theorem 1.3.

Let us now state more precisely our results. For every n ∈ N we denote by
Cn(X) and Cn(X,W ) the algebraic duals of Cn(X) and Cn(X,W ) (that is, the
respective modules of singular n-cochains with real coefficients). We will often
identify Cn(X,W ) with a submodule of Cn(X) via the canonical isomorphism

Cn(X,W )∼= { f ∈ Cn(X) | f |Cn(W ) = 0}.

If δ∗ : C∗(X,W ) → C∗+1(X,W ) is the usual differential, the homology of the
complex (C∗(X,W ), δ∗) is the relative singular cohomology of the pair (X,W ),
and it is denoted by H∗(X,W ).

We regard Sn(X) as a subset of Cn(X), so that for every cochain ϕ∈Cn(X,W )⊆

Cn(X) it makes sense to consider the restriction ϕ|Sn(X). In particular, we say that
ϕ is continuous if ϕ|Sn(X) is (recall that Sn(X) is endowed with the compact-open
topology). If we set

C∗c (X,W )= {ϕ ∈ C∗(X,W ) |ϕ is continuous},

then it is readily seen that δn(Cn
c (X,W )) ⊆ Cn+1

c (X,W ), so C∗c (X,W ) is a sub-
complex of C∗(X,W ), whose homology is denoted by H∗c (X,W ).

We now come to the definition of (continuous) bounded cohomology. We endow
Cn(X,W ) with the L∞-norm defined by

‖ f ‖∞ = sup
σ∈Sn(X)

| f (σ )| ∈ [0,∞], f ∈ Cn(X,W ),

and introduce the following submodules of C∗(X,W ):

C∗b (X,W )= { f ∈ C∗(X,W ) | ‖ f ‖∞ <∞},

C∗cb(X,W )= C∗b (X,W )∩C∗c (X,W ).

The coboundary map δn is bounded, so C∗b (X,W ) (resp. C∗cb(X,W )) is a sub-
complex of C∗(X,W ) (resp. of C∗c (X,W )). Its homology is denoted by H∗b (X,W )

(resp. H∗cb(X,W )), and it is called the bounded cohomology (resp. continuous
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bounded cohomology) of (X,W ). The L∞-norm on C∗(X,W ) descends (after
suitable restrictions) to a seminorm on each of the modules H∗(X,W ), H∗c (X,W ),
H∗b (X,W ), H∗cb(X,W ). These seminorms will still be denoted by ‖ · ‖∞. The
inclusion maps

ρ∗b : C
∗

cb(X,W ) ↪→ C∗b (X,W ), ρ∗ : C∗c (X,W ) ↪→ C∗(X,W )

induce maps

H∗(ρ∗b ) : H
∗

cb(X,W )→ H∗b (X,W ), H∗(ρ∗) : H∗c (X,W )→ H∗(X,W ),

that are a priori neither injective nor surjective.
We are now ready to state our main result about (continuous) bounded coho-

mology of pairs, which is proved in Section 4E:

Theorem 1.7. Let (X,W ) be a good CW-pair. Then the map

H n(ρ∗b ) : H
n
cb(X,W )→ H n

b (X,W )

admits a right inverse which is an isometric embedding (in particular, H n(ρ∗b ) is
surjective) for every n ∈ N.

In the absolute case, when W = ∅, Theorem 1.7 is proved in [Frigerio 2011,
Theorem 1.2]. In order to prove Theorem 1.7 we suitably develop the theory of
relative bounded cohomology of pairs of groups. In particular, our Theorem 4.1
implies the following result, which is maybe of independent interest (see Section 3
for the definition of H∗b (G, A), where G is a group and A is a subgroup of G):

Theorem 1.8. Let (X,W ) be a countable CW-pair. Also suppose that X,W are
connected, and that the map π1(W )→ π1(X) induced by the inclusion W ↪→ X is
injective. Then for every n ∈ N there exists a norm-nonincreasing isomorphism

H n
b (π1(X), π1(W ))→ H n

b (X,W ).

If in addition the pair (X,W ) is good, then this isomorphism is isometric.

In Section 4F we show how Theorem 1.7 and [Frigerio 2011, Theorem 1.1] can
be exploited to prove the following:

Theorem 1.9. Let (X,W ) be a locally finite good CW-pair. Then the map

H n(ρ∗) : H n
c (X,W )→ H n(X,W )

is an isometric isomorphism for every n ∈ N.



MEASURE HOMOLOGY AND BOUNDED COHOMOLOGY OF PAIRS 99

2. The case of locally convex pairs

The following definitions can be found for instance in [Bridson and Haefliger
1999]. Let (X, d) be a metric space (when d is fixed, we denote (X, d) simply
by X ). A geodesic segment in X is an isometric embedding of a bounded closed
interval into X . The metric d (or the metric space X = (X, d)) is geodesic if every
two points in X are joined by a geodesic segment (in particular, X is path-connected
and locally path connected). Moreover, d (or X = (X, d)) is globally convex if it
is geodesic and if any two geodesic segments c1 : [0, a] → X , c2 : [0, a] → X
such that c1(0) = c2(0) satisfy the condition d(c1(ta), c2(ta)) ≤ td(c1(a), c2(a))
for every t ∈ [0, 1] (and in this case, X is contractible, see Lemma 2.1 below). We
say that d (or X = (X, d)) is locally convex if every point in X has a neighborhood
in which the restriction of d is convex (in particular, it is geodesic). A subspace
Y ⊆ X is convex if every geodesic segment (in X ) joining any two points of Y is
entirely contained in Y (in particular, if X is geodesic, then Y is path-connected).

Suppose that X is geodesic, complete and locally convex. Then it is locally
contractible, hence it admits a universal covering p : X̃ → X . We endow X̃
with the length metric induced by p, that is, the unique length metric d̃ such
that p : (X̃ , d̃) → (X, d) is a local isometry (see [Bridson and Haefliger 1999,
Proposition I.3.25]). Since (X, d) is complete and geodesic, the same is true for
(X̃ , d̃). Moreover, the Cartan–Hadamard theorem for metric spaces (see [loc. cit.,
II.4.1]) implies that the space (X̃ , d̃) is globally convex.

Let W be any subset of X . We say that (X,W ) is a locally convex pair of metric
spaces (or simply a locally convex pair) if the following conditions hold:

(1) X is geodesic, complete and locally convex;

(2) W is closed in X and locally path-connected;

(3) every path-connected component of p−1(W )⊆ X̃ is convex in X̃ .

Throughout the whole section we denote by (X,W ) a locally convex pair of
metric spaces, we fix a universal covering p : X̃ → X (where X̃ is endowed with
the induced metric), and we denote by W̃ the subset p−1(W )⊆ X̃ (on the contrary,
in Section 4 we will denote by W̃ a fixed connected component of p−1(W )).

2A. Straight simplices. In order to properly define straight simplices we first need
the following result, which is an immediate consequence of the Cartan–Hadamard
theorem for metric spaces:

Lemma 2.1 [Bridson and Haefliger 1999, II.4.1]. For every pair of points p, q ∈ X̃
there exists a unique geodesic segment in X̃ joining p to q. Moreover, if αp,q :

[0, 1] → X̃ is a constant-speed parametrization of such a segment, then αp,q con-
tinuously depends (with respect to the compact-open topology) on p and q. In
particular, X̃ is contractible.
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For i ∈ N we denote by ei the point (0, 0, . . . , 1, . . . , 0, 0, . . .) ∈ RN where
the unique nonzero coefficient is at the i-th entry (entries are indexed by N, so
(1,0, . . .)= e0). We denote by 1p the standard p-simplex, that is, the convex hull
of e0, . . . , ep, and we observe that with these notations we have 1p ⊆1p+1.

Let k ∈ N, and let x0, . . . , xk be points in X̃ . We recall here the well-known
definition of straight simplex [x0, . . . , xk] ∈ Sk(X̃) with vertices x0, . . . , xk : if
k = 0, then [x0] is the 0-simplex with image x0; if straight simplices have been
defined for every h ≤ k, then [x0, . . . , xk+1] : 1k+1 → X̃ is determined by the
following condition: for every z ∈ 1k ⊆ 1k+1, the restriction of [x0, . . . , xk+1]

to the segment with endpoints z, ek+1 is a constant speed parametrization of the
geodesic joining [x0, . . . , xk](z) to xk+1 (the fact that [x0, . . . , xk+1] is well-defined
and continuous is an immediate consequence of Lemma 2.1).

2B. Nets. Let 0∼= π1(X) be the group of covering automorphisms of p : X̃→ X ,
and observe that, since p is a local isometry, every element of 0 is an isometry
of X̃ .

Definition 2.2. A net in X̃ is given by a subset 3̃⊆ X̃ and a locally finite collection
of Borel sets {B̃x}x∈3̃ such that the following conditions hold:

(1) X̃ =
⋃

x∈3̃ B̃x and B̃x ∩ B̃y =∅ for every x, y ∈ 3̃ with x 6= y.

(2) γ (3̃)= 3̃ for every γ ∈ 0 and γ (B̃x)= B̃γ (x) for every x ∈ 3̃, γ ∈ 0.

(3) If K̃ is a path-connected component of W̃ , then K̃ ⊆
⋃

x∈3̃∩K̃ B̃x .

Lemma 2.3. There exists a net.

Proof. For every q ∈ X let us denote by Uq an evenly covered open neighborhood
of q in X (with respect to the universal covering X̃ → X ). Since W is closed and
locally path-connected, we may also suppose that W∩Uq is path-connected. Being
metrizable, X is paracompact, so the open covering {Uq}q∈X admits a locally finite
open refinement {Vi }i∈I . Now fix a total ordering � on I in such a way that i � j
whenever Vi ∩W 6=∅ and V j ∩W =∅, and let us set

Bi = Vi \

(⋃
j≺i

V j

)
.

By construction, the family {Bi }i∈I is locally finite in X . Moreover, every Bi is the
intersection of an open set and a closed set, so it is a Borel subset of X . Therefore,
up to replacing I with the subset {i ∈ I | Bi 6= ∅}, the family {Bi }i∈I provides a
locally finite cover of X by nonempty Borel sets. For every i ∈ I let us choose
xi ∈ Bi in such a way that xi ∈W whenever Bi∩W 6=∅, and let us set3=

⋃
i∈I {xi }.

We also set Bxi = Bi for every i ∈ I .
We now define 3̃= p−1(3). For every i ∈ I we choose an element x̃i ∈ p−1(xi ),

and we take qi ∈ X in such a way that Bxi ⊆Uqi . Being evenly covered, Uqi lifts to
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the disjoint union p−1(Uqi )=
⋃
γ∈0 γ (Ũqi ), where Ũqi is the connected component

of p−1(Uqi ) containing x̃i .
We are now ready to define B̃x , where x is any element of 3̃. In fact, every x ∈ 3̃

uniquely determines an index i ∈ I and an element γ ∈ 0 such that x = γ (x̃i ), and
we can set B̃x = γ (Ũqi ∩ p−1(Bxi )). Of course B̃x is a Borel subset of X̃ .

It is now easy to check that the pair
(
3̃, {B̃x}x∈3̃

)
provides a net: the local

finiteness of the family {B̃x , x ∈ 3̃} readily descends from the fact p is a covering
and {Bx , x ∈3} is locally finite in X , and conditions (1) and (2) of Definition 2.2
are an obvious consequence of our choices. We now show that condition (3) also
holds. We fix x ∈ 3̃ such that W̃ ∩ B̃x 6=∅. By construction we have x ∈ W̃ , and
there exist γ ∈ 0 and i ∈ I such that B̃x ⊆ γ (Ũqi ). Our assumption that Uq ∩W is
path-connected implies that γ (Ũqi )∩ W̃ is also path-connected, so the set B̃x ∩ W̃
is entirely contained in the path-connected component of W̃ containing x , whence
the conclusion. �

2C. Straightening. We are now ready to define our straightening operator. Let(
3̃, {B̃x}x∈3̃

)
be a net. We denote by S3̃n (X̃)⊆ Sn(X̃) the set of straight n-simplices

in X̃ with vertices in 3̃. Then we let s̃trn : Cn(X̃)→ Cn(X̃) be the unique linear
map such that for σ̃ ∈ Sn(X̃)

s̃trn(σ̃ )= [x0, . . . , xn] ∈ S3̃n (X̃),

where xi ∈ 3̃ is such that σ̃ (ei ) ∈ B̃xi for i = 0, . . . , n.

Proposition 2.4. The map s̃tr∗ :C∗(X̃)→C∗(X̃) satisfies the following properties:

(1) dn+1 ◦ s̃trn+1 = s̃trn ◦ dn+1 for every n ∈ N.

(2) s̃trn(γ ◦ σ̃ )= γ ◦ s̃trn(σ̃ ) for every n ∈ N, γ ∈ 0, σ̃ ∈ Sn(X̃).

(3) s̃tr∗(C∗(W̃ ))⊆ C∗(W̃ ).

(4) The induced chain map C∗(X̃ , W̃ )→C∗(X̃ , W̃ ), which we will still denote by
s̃tr∗, is 0-equivariantly homotopic to the identity.

Proof. If x0, . . . , xn ∈ X̃ , then it is easily seen that for every i ≤ n the i-th
face of [x0, . . . , xn] is given by [x0, . . . , x̂i , . . . , xn]; moreover since isometries
preserve geodesics we have γ ◦ [x0, . . . , xn] = [γ (x0), . . . , γ (xn)] for every γ ∈
Isom(X̃). Together with property (2) in the definition of net, these facts readily
imply points (1) and (2) of the proposition.

If σ̃ ∈ Sn(W̃ ), then all the vertices of σ̃ lie in the same connected component
K̃ of W̃ . By property (3) in the definition of net, the vertices of s̃trn(σ̃ ) still lie in
K̃ . Since (X,W ) is a locally convex pair, the subset K̃ is convex in X̃ , so s̃trn(σ̃ )

belongs to Sn(W̃ ), whence (3).
Finally, for σ̃ ∈ Sn(X̃), let Fσ̃ : 1n × [0, 1] → X̃ be defined by Fσ̃ (x, t) =

βx(t), where βx : [0, 1]→ X̃ is the constant-speed parametrization of the geodesic
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segment joining σ̃ (x) with s̃tr(σ̃ )(x). We set Tn(σ̃ ) = (Fσ̃ )∗(c), where c is the
standard chain triangulating the prism 1n × [0, 1] by (n+ 1)-simplices. The fact
that dn+1Tn + Tn−1dn = Id− s̃trn is now easily checked, while the 0-equivariance
of T∗ is a consequence of property (2) of nets together with the fact that geodesics
are preserved by isometries. As above, the fact that Tn(Cn(W̃ )) ⊆ Cn+1(W̃ ) is a
consequence of the convexity of the components of W̃ . �

Let 3 = p(3̃), and let S3
∗
(X) be the subset of S∗(X) given by those singular

simplices which are obtained by composing a simplex in S3̃
∗
(X̃) with the covering

projection p. As a consequence of Proposition 2.4 we get the following:

Proposition 2.5. The map s̃tr∗ induces a chain map str∗ : C∗(X,W )→ C∗(X,W )

which is homotopic to the identity.

Remark 2.6. The maps s̃tr∗, str∗ obviously depend on the net chosen for their
construction. Such a dependence is however somewhat inessential in our arguments
below. Henceforth we understand that a net

(
3̃, {B̃x}x∈3̃

)
is fixed, and we denote

by s̃tr∗, str∗ the corresponding straightening operators.

We are now ready to construct a chain map θ∗ : C∗(X,W )→ C∗(X,W ) whose
induced map in homology will provide the desired norm-nonincreasing inverse of
H∗(ι∗).

Fix a simplex σ ∈ S3n (X). It is readily seen that the set str−1
n (σ ) is a Borel subset

of Sn(X). Therefore, for every measure µ ∈ Cn(X) it makes sense to set

cσ (µ)= µ(str−1
n (σ )) ∈ R.

Lemma 2.7. For every measure µ ∈ Cn(X), the set

{σ ∈ S3n (X) | cσ (µ) 6= 0}

is finite.

Proof. Since µ admits a compact determination set, it is sufficient to show that the
family {str−1

n (σ ), σ ∈ S3n (X)} is locally finite in Sn(X). So, let us take σ0 ∈ Sn(X),
and let σ̃0 ∈ Sn(X̃) be a lift of σ0 to X̃ . For every j = 0, . . . , n, let Zi be an
open neighborhood of σ̃0(ei ) that intersects only a finite number of B̃xi ’s, and let
�̃ ⊆ Sn(X̃) be the set of n-simplices whose i-th vertex belongs to Zi for every
i = 0, . . . , n. Then �̃ is an open neighborhood of σ̃0 in Sn(X̃).

Let pn : Sn(X̃)→ Sn(X) be the map taking every σ̃ ∈ Sn(X̃) into p ◦ σ̃ . It is
proved in [Frigerio 2011, Lemma A.4] (see also [Löh 2006]) that pn is a covering,
whence an open map, so � = pn(�̃) is an open neighborhood of σ0 in Sn(X).
Moreover, by construction the set strn(�) = strn(pn(�̃)) = pn(s̃trn(�̃)) is finite,
whence the conclusion. �
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By Lemma 2.7 we can define the map

θn : Cn(X)→ Cn(X), θn(µ)=
∑

σ∈S3n (X)

cσ (µ)σ.

Lemma 2.8. (1) θn ◦ ∂n+1 = dn+1 ◦ θn+1 for every n ∈ N.

(2) θn(Cn(W ))⊆ Cn(W ) for every n ∈ N.

(3) ‖θn(µ)‖1 ≤ ‖µ‖m for every µ ∈ Cn(X), n ∈ N.

Proof. Point (1) is a direct consequence of the fact that str∗ is a chain map.
Since strn(Cn(W ))⊆Cn(W ), if σ ∈ S3n (X)\Sn(W ), then str−1

n (σ )∩Sn(W )=∅.
Therefore, ifµ∈Cn(W )⊆Cn(X), then cσ (µ)=µ(str−1

n (σ ))=0, whence point (2).
Point (3) is a consequence of the fact that, if {Z j } j∈J is a finite collection of

pairwise disjoint Borel subsets of Sn(X), then
∑

j∈J |µ(Z j )| ≤ ‖µ‖m. �

2D. Concluding the proof of Theorem 1.5. As a consequence of Lemma 2.8, the
map θ∗ : C∗(X)→ C∗(X) induces norm-nonincreasing maps

θ∗ : C∗(X,W )→ C∗(X,W ), H∗(θ∗) :H∗(X,W )→ H∗(X,W ).

Since we have already seen that H∗(ι∗) : H∗(X,W )→ H∗(X,W ) is a norm-non-
increasing isomorphism, in order to prove that H∗(ι∗) is an isometry it is sufficient
to show that Hn(θ∗) ◦ Hn(ι∗) is the identity of Hn(X,W ) for every n ∈ N. How-
ever, we have from the very definitions that θn ◦ ιn = strn for every n ∈ N, so the
conclusion follows from Proposition 2.5.

3. Relative bounded cohomology of groups

Let us recall some basic definitions and results about the bounded cohomology of
groups. For full details we refer the reader to [Gromov 1982; Ivanov 1985; Monod
2001]. Henceforth, we denote by G a fixed group, which has to be thought as
endowed with the discrete topology.

Definition 3.1 [Ivanov 1985; Monod 2001]. A Banach G-module is a Banach
space V with a (left) action of G such that ‖g · v‖ ≤ ‖v‖ for every g ∈ G and
every v ∈ V . A G-morphism of Banach G-modules is a bounded G-equivariant
linear operator.

From now on we refer to a Banach G-module simply as a G-module.

3A. Relative injectivity. A bounded linear map ι : A → B of Banach spaces is
strongly injective if there is a bounded linear map σ : B → A with ‖σ‖ ≤ 1 and
σ ◦ ι = IdA (in particular, ι is injective). We emphasize that, even when A and B
are G-modules, the map σ is not required to be G-equivariant.
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Definition 3.2. A G-module E is relatively injective if for every strongly injective
G-morphism ι : A→ B of Banach G-modules and every G-morphism α : A→ E
there is a G-morphism β : B→ E satisfying β ◦ ι= α and ‖β‖ ≤ ‖α‖.

0 // A ι
//

α

��

B

β��

σ
uu

E

3B. Resolutions. A G-complex (or simply a complex) is a sequence of G-modules
E i and G-maps δi

: E i
→ E i+1 such that δi+1

◦ δi
= 0 for every i , where i runs

over N∪ {−1}:

0→ E−1 δ−1

−→ E0 δ0

−→ E1 δ1

−→ . . .
δn

−→ En+1 δn+1

−→ . . .

Such a sequence will often be denoted by (E∗, δ∗).
A G-chain map (or simply a chain map) between G-complexes (E∗, δ∗E) and

(F∗, δ∗F ) is a sequence of G-maps {αi
: E i
→ F i

| i ≥ −1} such that δi
F ◦ α

i
=

αi+1
◦δi

E for every i ≥−1. If α∗, β∗ are chain maps between (E∗, δ∗E) and (F∗, δ∗F )
which coincide in degree −1, a G-homotopy between α∗ and β∗ is a sequence of
G-maps {T i

: E i
→ F i−1

| i ≥ 0} such that δi−1
F ◦ T i

+ T i+1
◦ δi

E = α
i
− β i for

every i ≥ 0, and T 0
◦ δ−1

E = 0. We recall that, according to our definition of G-
maps, both chain maps between G-complexes and G-homotopies between such
chain maps have to be bounded in every degree.

A complex is exact if δ−1 is injective and ker δi+1
= Im δi for every i ≥−1. A G-

resolution (or simply a resolution) of a G-module E is an exact G-complex (E∗, δ∗)
with E−1

= E . A resolution (E∗, δ∗) is relatively injective if En is relatively
injective for every n ≥ 0.

A contracting homotopy for a resolution (E∗, δ∗) is a sequence of linear maps
ki
: E i
→ E i−1 such that ‖ki

‖ ≤ 1 for every i ∈ N, δi−1
◦ ki
+ ki+1

◦ δi
= IdE i if

i ≥ 0, and k0
◦ δ−1

= IdE .

0 // E−1
δ−1

// E0
δ0

//

k0
ss

E1
δ1

//

k1
tt . . .

k2
tt

δn−1
// En

δn
//

kn
tt . . .

kn+1
tt

Note however that it is not required that ki be G-equivariant. A resolution is
strong if it admits a contracting homotopy.

The following result can be proved by means of standard homological algebra
arguments (see [Ivanov 1985] and [Monod 2001, Lemmas 7.2.4 and 7.2.6]).

Proposition 3.3. Let α : E→ F be a G-map between G-modules, let (E∗, δ∗E) be
a strong resolution of E , and suppose (F∗, δ∗F ) is a G-complex such that F−1

= F
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and F i is relatively injective for every i ≥ 0. Then α extends to a chain map α∗,
and any two extensions of α to chain maps are G-homotopic.

3C. Absolute bounded cohomology of groups. If E is a G-module, we denote by
EG
⊆ E the submodule of G-invariant elements in E .

Let (E∗, δ∗) be a relatively injective strong resolution of the trivial G-module
R (such a resolution exists, see Section 3D). Since coboundary maps are G-maps,
they restrict to the G-invariant submodules of the E i ’s. Thus ((E∗)G, δ∗|) is a
subcomplex of (E∗, δ∗). A standard application of Proposition 3.3 now shows that
the isomorphism type of the homology of ((E∗)G, δ∗|) does not depend on the
chosen resolution (while the seminorm induced on such homology module by the
norms on the E i ’s could depend on it). What is more, there exists a canonical
isomorphism between the homology of any two such resolutions, which is induced
by any extension of the identity of R. For every n ≥ 0, we now define the n-
dimensional bounded cohomology module H n

b (G) of G as follows: if n ≥ 1, then
H n

b (G) is the n-th homology module of the complex ((E∗)G, δ∗|), while if n = 0
then H n

b (G)= ker δ0 ∼= R.

3D. The standard resolution. For every n ∈N, let Bn(G) be the space of bounded
real maps on Gn+1. We endow Bn(G) with the supremum norm and with the
diagonal action of G defined by (g · f )(g0, . . . , gn)= f (g−1g0, . . . , g−1gn), thus
defining on Bn(G) a structure of G-module. For n ≥ 0 we define δn

: Bn(G)→
Bn+1(G) by setting:

δn( f )(g0, g1, . . . , gn+1)=

n+1∑
i=0

(−1)i f (g0, . . . , ĝi , . . . , gn+1).

Moreover, we let B−1(G) = R be the trivial G-module, and we define δ−1
: R→

B0(G) by setting δ−1(t)(g)= t for every g ∈G. The complex (B∗(G), δ∗) admits
the following contracting homotopy:

(1) vn
: Bn(G)→ Bn−1(G), vn( f )(g0, . . . , gn−1)= f (e, g0, . . . , gn−1)

(for n = 0 we understand that v0( f )= f (e) ∈R= B−1(G) for every f ∈ B0(G)).
Therefore, the complex (B∗(G), δ∗) provides a strong resolution of the trivial G-
module R, and we will see in Proposition 3.5 below that such a resolution is also
relatively injective. In fact, the complex (B∗(G), δ∗) is usually known as the stan-
dard resolution of the trivial G-module R.

Remark 3.4. We briefly compare our notion of standard resolution with Ivanov’s
and Monod’s ones. In [Ivanov 1985], for every n ∈N the set Bn(G) is denoted by
B(Gn+1), and is turned into a Banach G-module by the action g · f (g0, . . . , gn)=
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f (g0, . . . , gn · g). Moreover, the sequence of modules B(Gn), n ∈ N, is equipped
with a structure of G-complex

0→ R
d−1
−→ B(G)

d0
−→ B(G2)

d1
−→ · · ·

dn
−→ B(Gn+2)

dn+1
−→ · · · ,

where d−1(t)(g)= t and

dn( f )(g0, . . . , gn+1)

= (−1)n+1 f (g1, . . . , gn+1)+

n∑
i=0

(−1)n−i f (g0, . . . , gi gi+1, . . . , gn+1)

for every n≥ 0 (here we are using Ivanov’s notation also for the differential). Now,
it is readily seen that Ivanov’s resolution is isomorphic to our standard resolution
via the isometric G-chain isomorphism ϕ∗ : B∗(G)→ B(G∗+1) defined by

ϕn( f )(g0, . . . , gn)= f (g−1
n , g−1

n g−1
n−1, . . . , g−1

n g−1
n−1 · · · g

−1
1 g−1

0 );

its inverse is given by

(ϕn)−1( f )(g0, . . . , gn)= f (g−1
n gn−1, g−1

n−1gn−2, . . . , g−1
1 g0, g−1

0 ).

We observe that our contracting homotopy (1) is conjugated by ϕ∗ into Ivanov’s
contracting homotopy [1985] for the complex (B(G∗), d∗).

Our notation is much closer to Monod’s one. In fact, in [Monod 2001] the more
general case of a topological group G is addressed, and the n-th module of the
standard G-resolution of R is inductively defined by setting

C0
b(G,R)= Cb(G,R), Cn

b (G,R)= Cb(G,Cn−1
b (G,R)),

where Cb(G, E) denotes the space of continuous bounded maps from G to the
Banach space E . However, as observed in [Monod 2001, Remarks 6.1.2 and 6.1.3],
the case when G is an abstract group may be recovered from the general case just
by equipping G with the discrete topology. In that case, our notion of standard
resolution coincides with Monod’s. (See also [Monod 2001, Remark 7.4.9].)

Proposition 3.5 [Ivanov 1985; Monod 2001]. The standard resolution of R as a
G-module is relatively injective and strong.

Proof. We have already shown that the standard resolution is strong. The fact that
it is also relatively injective is proved in [Monod 2001, Proposition 4.4.1] (see also
Remark 7.4.9 of the same reference). Alternatively, since our standard resolution is
isometrically isomorphic to Ivanov’s one (see Remark 3.4), the relative injectivity
of the standard resolution may be deduced from [Ivanov 1985, Lemma 3.2.2]. �

The seminorm induced on H∗b (G) by the standard resolution is called the canon-
ical seminorm. It is shown in [Ivanov 1985] that the canonical seminorm coincides
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with the infimum of all the seminorms induced on H∗b (G) by any relatively injective
strong resolution of the trivial G-module R (see also Proposition 3.10 below).

3E. Relative bounded cohomology of groups. Let A be a subgroup of G. Hence-
forth, whenever E is a G-module we understand that E is endowed also with the
natural structure of A-module induced by the inclusion of A in G.

Definition 3.6 [Park 2003, Definitions 3.1 and 3.5]. Let (U∗, δ∗U ) be a relatively
injective strong G-resolution of the trivial G-module R and (V ∗, δ∗V ) be a relatively
injective strong A-resolution of the trivial A-module R. By Proposition 3.3, the
identity of R may be extended to an A-chain map λ∗ : U∗ → V ∗. The pair of
resolutions (U∗, δ∗U ), (V

∗, δ∗V ), together with the chain map λ∗, provides a pair of
resolutions for (G, A;R). We say that such a pair is

(1) allowable, if the chain map λ∗ commutes with the contracting homotopies of
(U∗, δ∗U ) and (V ∗, δ∗V );

(2) proper, if the map λn restricts to a surjective map λ̂n
: (U n)G → (V n)A for

every n ∈ N.

We denote by ker(U n
→ V n) the kernel of λn . It is readily seen that the module

ker(U n
→ V n)G ⊆ (U n)G coincides with the kernel of λ̂n .

If the pair of resolutions (U∗, δ∗U ), (V
∗, δ∗V ) is proper, there exists an exact

sequence

0 // ker(U n
→ V n)G // (U n)G

λ̂n
// (V n)A // 0,

which induces the long exact sequence

· · · // H n−1
b (A) // H n(ker(U∗→ V ∗)G) // H n

b (G) // H n
b (A) // · · ·

As observed in [Park 2003], if the pair (U∗, δ∗U ), (V
∗, δ∗V ) is also allowable,

then the isomorphism type of H n(ker(U∗→ V ∗)G) does not depend on the chosen
proper allowable pair of resolutions (see also Proposition 3.10 below). Such a
module is called the n-th bounded cohomology group of the pair (G, A), and it is
denoted by H n

b (G, A).

3F. The standard pair of resolutions. The following result is proved in [Park
2003, Propositions 3.1 and 3.18], and shows that, just as in the absolute case,
there exists a canonical proper allowable pair of resolutions for (G, A;R). Strictly
speaking, Park’s notion of standard pair of resolutions is different from ours, since
it is based on Ivanov’s definition of standard resolution. However, the isomorphism
described in Remark 3.4 translates Park’s results into the following:
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Proposition 3.7. The standard resolutions B∗(G) and B∗(A) of the trivial G- and
A-module R, together with the obvious restriction map B∗(G)→ B∗(A), provide
a proper allowable pair of resolutions for (G, A;R).

The seminorm induced on H∗b (G, A;R) by this resolution is called the canonical
seminorm. In order to save some words, from now on we fix the following notation:

Bn(G, A)= ker(Bn(G)→ Bn(A)).

3G. Morphisms of pairs of resolutions. Let (U∗, δ∗U ), (V
∗, δ∗V ) and (E∗, δ∗E),

(F∗, δ∗F ) be pairs of resolutions for (G, A;R). A morphism between such pairs
is a pair of chain maps (α∗G, α

∗

A) such that:

(1) α∗G :U
∗
→ E∗ (resp. α∗A : V

∗
→ F∗) is a G-chain map (resp. an A-chain map)

extending the identity of R = U−1
= E−1 (resp. the identity of R = V−1

=

F−1);

(2) for every n ∈ N, the following diagram commutes

U n //

αn
G

��

V n

αn
A

��

En // Fn,

where the horizontal rows represent the A-morphisms involved in the defini-
tion of a pair of resolutions.

By condition (2), if (α∗G, α
∗

A) is a morphism of pairs of resolutions, then α∗G
restricts to a chain map

α∗G,A : ker(U∗→ V ∗)→ ker(E∗→ F∗),

which induces in turn a map

H∗(α∗G,A) : H
∗(ker(U∗→ V ∗)G)→ H∗(ker(E∗→ F∗)G).

Proposition 3.8. If the pairs of resolutions

(U∗, δ∗U ), (V
∗, δ∗V ) and (E∗, δ∗E), (F

∗, δ∗F )

are proper, the map H∗(α∗G,A) is an isomorphism.

Proof. Our hypothesis ensures that we have the commutative diagram

· · · H n−1((V ∗)A) //

Hn−1(α∗A)

��

H n(ker(U∗→V ∗)G) //

Hn(α∗G,A)

��

H n((U∗)G) //

Hn(α∗G)

��

H n((V ∗)A) · · ·

Hn(α∗A)

��

· · · H n−1((F∗)A) // H n(ker(E∗→F∗)G) // H n((E∗)G) // H n((F∗)A) · · ·
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The discussion carried out in Section 3C implies that the vertical arrows corre-
sponding to H∗(α∗G) and H∗(α∗A) are isomorphisms, so the conclusion follows
from the Five Lemma. �

Remark 3.9. At the moment we are not able to prove either that every two proper
allowable pairs of resolutions for (G, A;R) are related by a morphism of pairs of
resolutions, or that any two such morphisms induce the same map in cohomol-
ogy. In fact, whenever two proper allowable pairs of resolutions are given, using
Proposition 3.3 one can easily construct the needed chain maps α∗G and α∗A. How-
ever, some troubles arise in proving that such chain maps can be chosen so to fulfill
condition (2) in the above definition of morphism of pairs of resolutions. Despite
these difficulties, the results proved in Propositions 3.8 and 3.10 are sufficient to
our purposes.

Also observe that in the statement of Proposition 3.8 we do not require the
involved pairs of resolutions to be allowable. However, allowability plays a fun-
damental rôle in constructing a morphism of pairs of resolutions between any
generic proper allowable pair of resolutions and the standard pair of resolutions
(see Proposition 3.10 below), and in getting explicit bounds on the norm of such a
morphism.

The following result shows that, just as in the absolute case, the bounded co-
homology of (G, A) is computed by any proper allowable pair of resolutions for
(G, A;R). Moreover, the canonical seminorm coincides with the infimum of all
the seminorms induced on H∗b (G, A) by any such pair of resolutions.

Proposition 3.10. Let (U∗, δ∗U ), (V
∗, δ∗V ) be a proper allowable pair of resolutions

for (G, A;R). Then there exists a morphism (α∗G, α
∗

A) between this pair of reso-
lutions and the canonical pair of resolutions introduced in Section 3F. Moreover,
one may choose α∗G , α∗A in such a way that the induced map

H∗(α∗G,A) : H
∗(ker(U∗→ V ∗)G)→ H∗(B∗(G, A)G)∼= H∗b (G, A)

is a norm-nonincreasing isomorphism.

Proof. Let k∗G and k∗A be the contracting homotopies of (U∗, δ∗U ) and (V ∗, δ∗V ),
respectively. Define αn

G and αn
A by induction as follows:

(2)
αn

G( f )(g0, . . . , gn)= α
n−1
G (g0(kn

G g−1
0 ( f )))(g1, . . . , gn) ∈ R,

αn
A( f )(g0, . . . , gn)= α

n−1
A (g0(kn

Ag−1
0 ( f )))(g1, . . . , gn) ∈ R.

That α∗G is indeed a G-chain map and α∗A is an A-chain map is showed in the
proof of [Monod 2001, Theorem 7.3.1]. (Alternatively, one may easily check that
the maps α∗G and α∗A are related to the maps given in [Ivanov 1985, Theorem 3.6]



110 ROBERTO FRIGERIO AND CRISTINA PAGLIANTINI

via the isomorphism described in Remark 3.4.) Moreover, it is clear from the
definitions that α∗G and α∗A are norm-nonincreasing in every degree.

Since the chain map U∗→ V ∗ commutes with the contracting homotopies of
(U∗, δ∗U ) and (V ∗, δ∗V ), the following diagram commutes:

U n //

αn
G

��

V n

αn
A

��

Bn(G) // Bn(A).

This implies that (α∗G, α
∗

A) is a morphism of pairs of resolutions. Now the conclu-
sion follows from Proposition 3.8. �

4. Relative (continuous) bounded cohomology of spaces

Throughout the whole section we denote by (X,W ) a countable CW-pair. We also
make the following:

Standing assumption: Both X and W are connected, and the inclusion of W in
X induces an injective map on fundamental groups.

Being locally contractible, the space X admits a universal covering p : X̃→ X .
We denote by W̃ a fixed connected component of p−1(W ) ⊆ X̃ . We also choose
a basepoint b0 ∈ W̃ . This choice determines a canonical isomorphism between
π1(X, p(b0)) and the group G of the covering automorphisms of X̃ . We denote by
A ⊆ G the subgroup corresponding to i∗(π1(W, p(b0))) under this isomorphism,
where i : W → X is the inclusion. Observe that A coincides with the group of
automorphisms of X̃ that leave W̃ invariant. In particular, for every n ∈ N the
module Cn

b (X̃) (resp. Cn
b (W̃ )) admits a natural structure of G-module (resp. A-

module). Moreover, the covering projection p : X̃ → X defines a pull-back map
p∗ : C∗b (X,W ) → C∗b (X̃ , W̃ ) which induces in turn an isometric isomorphism
C∗b (X,W )→ C∗b (X̃ , W̃ )G . As a consequence, we get the natural identification

H∗b (X,W )∼= H∗(C∗b (X̃ , W̃ )G).

The straightening procedure described in Section 2 shows that, when (X,W )

is a locally convex pair of metric spaces, in order to compute the relative singular
homology of (X,W ) one may replace the singular complex C∗(X,W ) with the
subcomplex of straight chains. As a consequence, it is easily seen that in order
to compute the cohomology (resp. the bounded cohomology) of (X,W ) one may
replace the complex C∗(X̃ , W̃ )G (resp. C∗b (X̃ , W̃ )G) with the subcomplex of those
invariant cochains whose value on each simplex only depends on the vertices of
the simplex (recall that straight simplices in X̃ only depend on their vertices).
Following [Gromov 1982], we say that any such cochain is straight.
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Observe that the definition of straight cochain makes sense even when it is
not possible to properly define a straightening on singular chains. Let us briefly
describe some known results about straight cochains in the absolute case (when
W =∅). If X̃ is contractible, a classical result ensures that both straight cochains
and singular cochains compute the cohomology of G, so the cohomology of straight
cochains is isomorphic to the singular cohomology of X . An important result in
[Gromov 1982, Section 2.3] shows that the same is true for bounded cohomology,
even without the assumption that X̃ is contractible. More precisely, both bounded
straight cochains and bounded singular cochains compute the bounded cohomology
of G, and they both induce the canonical seminorm on H∗b (G), so the cohomology
of bounded straight cochains is isometrically isomorphic to the bounded cohomol-
ogy of X . Moreover by [Monod 2001, Theorem 7.4.5], the bounded cohomology
of G (whence of X ) is computed also by continuous bounded straight cochains.
Monod’s result plays a fundamental rôle in Löh’s description of the isometric iso-
morphism between measure homology and singular homology in the absolute case.

In this section we show that, in the case when W 6= ∅, continuous bounded
straight cochains compute the bounded cohomology of the pair (G, A), thus ex-
tending Monod’s result to the relative case (see Theorem 4.1).

Moreover, in the case when the pair (X,W ) is good we prove that also H∗b (X,W )

is isometrically isomorphic to H∗b (G, A), thus obtaining that the bounded cohomol-
ogy of (X,W ) is computed by continuous bounded straight cochains. Finally, in
Section 4E we show that this result easily implies our Theorem 1.7.

4A. Bounded cochains versus continuous bounded straight cochains. We next
give the precise definition of the complex of continuous bounded straight cochains.
For every n ∈ N we consider the following Banach spaces:

Cn
cbs(X̃)= { f : X̃n+1

→ R, f continuous and bounded},

Cn
cbs(W̃ )= { f : W̃ n+1

→ R, f continuous and bounded},

both endowed with the supremum norm. The diagonal G-action such that g ·
f (x0, . . . , xn) = f (g−1x0, . . . , g−1xn) for every g ∈ G endows Cn

cbs(X̃) with a
structure of G-module. The obvious coboundary maps δn

: Cn
cbs(X̃)→ Cn+1

cbs (X̃)
given by

δn( f )(x0, . . . , xn+1)=

n+1∑
i=0

(−1)i f (x0, . . . , x̂i , . . . , xn+1)

define on C∗cbs(X̃) a structure of G-complex. In the very same way one endows
C∗cbs(W̃ ) with a structure of A-complex. For every n ∈ N, the inclusion W̃ n+1 ↪→

X̃n+1 induces an obvious restriction Cn
cbs(X̃)→ Cn

cbs(W̃ ), whose kernel will be
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denoted by Cn
cbs(X̃ , W̃ ). Finally, for every n ∈ N we set

(3) H n
cbs(X,W )= H n(C∗cbs(X̃ , W̃ )G).

We will prove in Propositions 4.3 and 4.7 that both C∗b (X̃), C∗b (W̃ ) and C∗cbs(X̃),
C∗cbs(W̃ ) provide proper pairs of resolutions for (G, A;R). The pair of norm-
nonincreasing chain maps

(4)
η∗G : C

∗

cbs(X̃) → C∗b (X̃), ηn
G( f )(σ )= f (σ (e0), . . . , σ (en)),

η∗A : C
∗

cbs(W̃ )→ C∗b (W̃ ), ηn
A( f )(σ )= f (σ (e0), . . . , σ (en))

allows us to identify C∗cbs(X̃)with the subcomplex of C∗b (X̃) of continuous bounded
straight cochains on X̃ , and likewise with W̃ in place of X̃ . Moreover, it is readily
seen that the pair (η∗G, η

∗

A) is a morphism of resolutions. Therefore, Proposition 3.8
implies that the induced map in cohomology

H∗(η∗G,A) : H
∗

cbs(X,W )= H∗(C∗cbs(X̃ , W̃ )G)→ H∗(C∗b (X̃ , W̃ )G)= H∗b (X,W )

is an isomorphism. Moreover, the explicit description of η∗G,A shows that H∗(η∗G,A)
is norm-nonincreasing.

Under the assumption that the pair (X,W ) is good, the isomorphism H∗(η∗G,A)
is in fact an isometry. This fact is proved in the following subsections, and will
play a fundamental rôle in our proof of Theorem 1.7.

We now describe briefly the content of the following subsections. In Section 4B
we define a morphism of resolutions (β∗G, β

∗

A) between the standard pair of resolu-
tions and continuous bounded straight cochains via an ad hoc construction, and we
show that this morphism induces an isometric isomorphism in cohomology. Then,
under the assumption that (X,W ) is good, we prove in Proposition 4.7 that bounded
cochains provide a proper allowable pair of resolutions for (G, A;R), so we may
exploit Proposition 3.10 to construct a morphism of pairs of resolutions (α∗G, α

∗

A)

between bounded cochains and the standard pair of resolutions for (G, A;R). This
morphism induces a norm-nonincreasing isomorphism in cohomology, so in order
to prove that the isomorphism H∗(η∗G,A) is isometric we will be left to show that
the composition β∗G,A ◦ α

∗

G,A induces the inverse of H∗(η∗G,A) in cohomology; in
other words, that the following diagram commutes:

H∗b (G, A)
H∗(β∗G,A)

ww

H∗cbs(X,W )
H∗(η∗G,A)

// H∗b (X,W ).

H∗(α∗G,A)
ff

We can summarize the results just described in the following theorem, whose
proof is carried out in Subsections 4B, 4C, 4D.
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Theorem 4.1. For every n ∈ N the map

H n(β∗G,A) : H
n
b (G, A)→ H n

cbs(X,W )

is an isometric isomorphism, and the map

H n(η∗G,A) : H
n
cbs(X,W )→ H n

b (X,W )

is a norm-nonincreasing isomorphism. In particular, the composition

H n(η∗G,A) ◦ H n(β∗G,A)

is a norm-nonincreasing isomorphism between H n
b (G, A) and H n

b (X,W ). If ,
in addition, (X,W ) is good, then H n(η∗G,A) is an isometry, and H n

b (G, A) and
H n

b (X,W ) are isometrically isomorphic.

In fact, one may notice that the proof that H n(β∗G,A) is an isometric isomorphism
still works without the assumption that X and W are countable.

4B. Mapping standard resolutions into continuous bounded straight cochains.
We begin with a generalization of [Frigerio 2011, Lemma 5.1]:

Lemma 4.2. There exists a continuous map χ : X̃ → [0, 1] with the following
properties:

(1) For every x ∈ X̃ there exists a neighborhood Ux of x ∈ X̃ such that the set
{g ∈ G | supp(χ)∩ g(Ux) 6=∅} is finite.

(2) For every x ∈ X̃ , we have
∑

g∈G χ(g · x) = 1. (Note that the sum on the
left-hand side is finite by (1).)

(3) For everyw∈ W̃ and every g∈G\A, we have χ(g·w)=0, whence
∑

g∈A χ(g·
w)= 1.

(4) We have χ(b0)= 1, so χ(g · b0)= 0 for every g 6= 1.

Proof. Recall that p : X̃ → X is the universal covering of X . Using that W
is a subcomplex of X , one can easily construct an open covering U = {Ui }i∈I

of X such that every Ui is contractible (whence evenly covered with respect to
p : X̃→ X ) and Ui ∩W is path-connected for every i ∈ I (for example, if ε > 0 is
small enough and x ∈ X , the contractible ε-neighborhood Nε(x) of x constructed
in [Hatcher 2002, page 522] intersects any subcomplex of X in a contractible,
whence path-connected, subset). Now choose i0 ∈ I such that p(b0) ∈Ui0 , and set
J = {i ∈ I |Ui ∩W 6=∅} (so i0 ∈ J ).

For every Ui we choose an open subset Hi ⊆ X̃ in such a way that the following
conditions hold:

(a) p|Hi : Hi →Ui is a homeomorphism.

(b) p−1(Ui )=
⋃

g∈G g(Hi ) and g(Hi )∩ g′(Hi )=∅ for every g 6= g′.
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(c) b0 ∈ Hi0 .

(d) Hi ∩ W̃ 6=∅ for every i ∈ J .

We now set U ′i =Ui\{p(b0)} for every i 6= i0, U ′i0
=Ui0 , and U′={U ′i }i∈I . Let also

H ′i = Hi ∩ p−1(U ′i ). Since Ui ∩W is path-connected, condition (d) easily implies
that

Hi ∩ p−1(W )= Hi ∩ W̃ for every i ∈ I,

whence

(5) H ′i ∩ p−1(W )= H ′i ∩ W̃ for every i ∈ I.

Since every CW-complex is paracompact (see [Miyazaki 1952; Bourgin 1952],
for instance), we may now take a partition of unity {ϕi }i∈I adapted to U′, and let
ψi : X̃→ R be the map which coincides with ϕi ◦ p on H ′i and is null outside H ′i .
We finally set

χ =
∑
i∈I

ψi .

The fact that χ satisfies properties (1) and (2) of the statement is proved in [Frigerio
2011, Lemma 5.1]. Moreover, for every w ∈ W̃ and g ∈ G \ A we have g ·w ∈
p−1(W ) \ W̃ , so Equation (5) implies that g ·w does not belong to any H ′i . This
implies point (3). Finally, since p(b0) /∈ U ′i for every i 6= i0, we have necessarily
ϕi (p(b0))=0 for every i 6= i0, and ϕi0(p(b0))=1. By (c) this implies thatψi0(b0)=

1, whence χ(b0)= 1, as desired. �

Proposition 4.3. The pair (C∗cbs(X̃), δ
∗), (C∗cbs(W̃ ), δ∗) provides a proper allow-

able pair of resolutions for (G, A;R).

Proof. The fact that (C∗cbs(X̃), δ
∗) (resp. (C∗cbs(W̃ ), δ∗)) provides a relatively in-

jective resolution of R as a trivial G-module (resp. A-module) is proved in [Monod
2001, Theorem 7.4.5]. (To apply that result our CW-complexes X and W should
be locally compact, whence locally finite; but these conditions are used in Monod’s
proof only to ensure the existence of a suitable Bruhat function on X̃ and on W̃ ;
in our case of interest the fact that G and A are discrete allows us to explicitly
describe such a map; see Lemma 4.2.)

It is readily seen that these resolutions admit the contracting homotopies

(6)
tn
G( f )(x1, . . . , xn)= f (b0, x1, . . . , xn), f ∈ Cn

cbs(X̃), (x1, . . . , xn) ∈ X̃n,

tn
A( f )(w1, . . . ,wn)= f (b0,w1, . . . ,wn), f ∈ Cn

cbs(W̃ ), (w1, . . . ,wn) ∈ W̃ n.

This clearly implies that the A-chain map γ ∗ :C∗cbs(X̃)→C∗cbs(W̃ ) induced by the
inclusion W̃ ↪→ X̃ commutes with the contracting homotopies.
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In order to conclude we have to show that γ ∗ restricts to a surjective map

γ̂ ∗ : C∗cbs(X̃)
G
→ C∗cbs(W̃ )A.

Let f : W̃ n+1
→ R be an A-invariant bounded continuous map. The inclusion

W̃ n+1 ↪→ X̃n+1 induces a homeomorphismψ between W̃ n+1/A and a closed subset
K of X̃n+1/G (recall that W is a CW-subcomplex of X , so it is closed in X ).
Therefore, f defines a bounded continuous map f on K , and by Tietze’s theorem
we may extend f to a bounded continuous map g : X̃n+1/G→R. If g is obtained
by precomposing g with the projection X̃n+1

→ X̃n+1/G, then g ∈Cn
cbs(X̃)

G , and
γ̂ n(g)= f . We have thus shown that γ̂ ∗ is surjective, and this concludes the proof.

�

We are now ready to describe a morphism of pairs of resolutions (β∗G, β
∗

A) be-
tween the standard pair of resolutions for (G, A;R) and the complexes of straight
cochains. Let

βn
G : B

n(G)→ Cn
cbs(X̃), βn

A : B
n(A)→ Cn

cbs(W̃ )

be defined as follows:

βn
G( f )(x0, . . . , xn)=

∑
(g0,...,gn)∈Gn+1

χ(g−1
0 x0) · · ·χ(g−1

n xn) · f (g0, . . . , gn),

βn
A( f )(w0, . . . , wn)=

∑
(g0,...,gn)∈An+1

χ(g−1
0 w0) · · ·χ(g−1

n wn) · f (g0, . . . , gn).

Lemma 4.4. For every f ∈ Bn(G), (g0, . . . , gn) ∈ Gn+1 we have

βn
G( f )(g0b0, . . . , gnb0)= f (g0, . . . , gn).

Proof. By Lemma 4.2(4), for every (γ0, . . . , γn) ∈ Gn+1 we have

χ(γ−1
0 g0b0) · · ·χ(γ

−1
n gnb0) · f (γ0, . . . , γn)

=

{
f (g0, . . . , gn) if γi = gi for every i,
0 otherwise,

and this readily implies the conclusion. �

Proposition 4.5. The pair (β∗G, β
∗

A) provides a well-defined morphism of pairs of
resolutions. For every n ∈ N the induced map

H n(β∗G,A) : H
n
b (G, A)→ H n

cbs(X,W )

is an isometric isomorphism.
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Proof. We begin by showing that β∗G is a G-map. So, take f ∈ Bn(G), g ∈G, and
(x0, . . . , xn) ∈ X̃n+1. By definition we have

βn
G(g· f )(x0, . . . , xn)=

∑
(g0,...,gn)∈Gn+1

χ(g−1
0 x0) · · ·χ(g−1

n xn)·f (g−1g0, . . . , g−1gn),

(g·βn
G( f ))(x0, . . . , xn)=

∑
(g0,...,gn)∈Gn+1

χ(g−1
0 g−1x0) · · ·χ(g−1

n g−1xn)·f (g0, . . . , gn),

and an easy change of variables implies that βn
G is a G-map. A similar argu-

ment shows that βn
A is an A-map. We now check that β∗G is a chain map. By

Lemma 4.2(2), for every xi ∈ X̃ we have
∑

g∈G χ(g
−1xi )=1, so if (g0, . . . , gn+1)∈

Gn+2 and (x0, . . . , xn+1) ∈ X̃n+2 are fixed, then

χ(g−1
0 x0) · · ·

̂
χ(g−1

i xi ) · · ·χ(g−1
n+1xn+1)

=

∑
g∈G

χ(g−1
0 x0) · · ·χ(g−1xi ) · · ·χ(g−1

n+1xn+1)

and βn
G( f )(x0, . . . , x̂i , . . . , xn+1) is equal to∑

(g0,...,̂gi ,...,gn+1)∈Gn+1

χ(g−1
0 x0) · · ·

̂
χ(g−1

i xi ) · · ·χ(g−1
n+1xn+1) · f (g0, . . . , ĝi , . . . , gn+1),

which in turn equals∑
(g0,...,gi ,...,gn+1)∈Gn+2

χ(g−1
0 x0) · · ·χ(g−1

i xi ) · · ·χ(g−1
n+1xn+1) · f (g0, . . . , ĝi , . . . , gn+1).

From this equality it is easy to deduce that δn(βn
G( f )) = βn+1

G (δn( f )), and this
proves that β∗G is a chain map. Since χ has been chosen in such a way that
Lemma 4.2(3) holds, the same argument may be exploited to show that β∗A is also
a chain map.

Using again Lemma 4.2(3), it is easily checked that the restriction βn
G( f )|W̃ n+1

coincides with the map βn
A( f |An+1) for every f ∈ Bn(G). As a consequence, the

pair (β∗G, β
∗

A) is a morphism of pairs of resolutions, and Proposition 3.8 implies
that H∗(β∗G,A) is an isomorphism. Moreover, H n(β∗G,A) is obviously norm-non-
increasing for every n ∈ N.

Recall now that Proposition 3.10 provides a morphism of pairs of resolutions

ζ ∗G : C
∗

cbs(X̃)→ B∗(G), ζ ∗A : C
∗

cbs(W̃ )→ B∗(A),

which induces a norm-nonincreasing isomorphism

H∗(ζ ∗G,A) : H
∗

cbs(X,W )→ H∗b (G, A).
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In order to conclude it is sufficient to show that for every n ∈ N the composition
ζ n

G ◦β
n
G is the identity of Bn(G).

The proof of Proposition 3.10 implies that the map ζ n
G can be described by the

following inductive formula:

ζ n
G( f )(g0, . . . , gn)= ζ

n−1
G (g0(tn

G(g
−1
0 ( f ))))(g1, . . . , gn),

where t∗G is the contracting homotopy for the resolution C∗cbs(X̃) described in
Equation (6). As a consequence, an easy induction shows that ζ n

G( f )(g0, . . . , gn)=

f (g0b0, . . . , gnb0) for every f ∈ Cn
cbs(X̃), (g0, . . . , gn) ∈ Gn+1. By Lemma 4.4,

this implies that ζ n
G ◦β

n
G is the identity of Bn(G), whence the conclusion. �

4C. Ivanov’s contracting homotopy. In order to show that, under the hypothesis
that (X,W ) is good, bounded cochains provide a proper allowable pair of resolu-
tions for (G, A;R), we first recall Ivanov’s construction of a contracting homotopy
for the resolution C∗b (X̃).

It is shown in [Ivanov 1985] that one can construct an infinite tower of bundles

(7) . . .
pm

// Xm
pm−1

// Xm−1
pm−2

// · · · · · ·
p2

// X2
p1

// X1,

where X1 = X̃ , πi (Xm) = 0 for every i ≤ m, πi (Xm) = πi (X) for every i > m
and each map pm : Xm+1 → Xm is a principal Hm-bundle for some topological
connected abelian group Hm , which has the homotopy type of a K (πm+1(X),m).
Moreover, the induced chain maps p∗m : C

∗

b (Xm)→ C∗b (Xm+1) admit left inverse
chain maps A∗m : C

∗

b (Xm+1)→ C∗b (Xm) obtained by averaging cochains over the
preimages in Xm+1 of simplices in Xm , in such a way that the Am’s are norm-
nonincreasing.

Denote by Wm ⊆ Xm the preimage p−1
m−1(p

−1
m−2( . . . (p

−1
1 (W̃ ))))⊆ Xm (so Wm+1

is a principal Hm-bundle over Wm for every m ≥ 1). We denote simply by

pm :Wm+1→Wm

the restriction of pm to Wm+1. It follows from Ivanov’s construction that each A∗m
induces a norm-nonincreasing chain map C∗b (Wm+1)→ C∗b (Wm), which will still
be denoted by A∗m .

Lemma 4.6. Suppose that (X,W ) is good. Then πi (Wm)= 0 for every i ≤ m.

Proof. Of course, it is sufficient to prove that πi (Wm) ∼= πi (Xm) for every i ∈ N,
m ∈N. Let us prove this last statement by induction on m. Since the inclusion map
W ↪→ X is π1-injective we have π1(W1)=π1(X1)= 0. Therefore, since coverings
induce isomorphisms on homotopy groups of order at least two, the case m = 1
follows from the fact that the pair (X,W ) is good. The inductive step follows from
an easy application of the Five Lemma to the following commutative diagram,
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which descends in turn from the naturality of the homotopy exact sequences for
the bundles Xm+1→ Xm , Wm+1→Wm :

πi+1(Wm) //

��

πi (Hm) // πi (Wm+1) //

��

πi (Wm) //

��

πi−1(Hm)

πi+1(Xm) // πi (Hm) // πi (Xm+1) // πi (Xm) // πi−1(Hm). �

Now suppose that (X,W ) is good. We choose basepoints wm ∈ Wm in such a
way that pm(wm+1) = wm for every m ≥ 1, and w1 ∈ W1 = W̃ coincides with
the basepoint b0 fixed above. Since Xm is m-connected, for every n ≤ m it is
possible to construct a map Lm

n : Sn(Xm) → Sn+1(Xm) that associates to every
σ ∈ Sn(Xm) a cone of σ over wm (see [Ivanov 1985]). We stress that, since Wm is
also m-connected, if σ ∈ Sn(Wm)⊆ Sn(Xm), then Lm

n (σ ) can be chosen to belong
to Sn+1(Wm). The maps Lm

n , n ≤ m, induce a (partial) homotopy between the
identity and the null map of C∗(Xm), which in turn induces a (partial) contracting
homotopy {kn

m}n≤m for the (partial) complex {Cn
b (Xm)}n≤m . Since Lm

n (Sn(Wm))⊆

Sn+1(Wm), this contracting homotopy induces a (partial) contracting homotopy for
{Cn

b (Wm)}n≤m , which we still denote by k∗m . Moreover, it is possible to choose
these contracting homotopies in a compatible way, in the sense that the equality
An−1

m ◦ kn
m+1 ◦ pn

m = kn
m holds for every n ≤ m (see again [Ivanov 1985]). Thanks

to this compatibility condition, one can finally define the contracting homotopy

k∗G : C
∗

b (X̃)→ C∗−1
b (X̃),

via the formula

kn
G = An−1

1 ◦ · · · ◦ An−1
m−1 ◦ kn

m ◦ pn
m−1 ◦ · · · ◦ pn

2 ◦ pn
1 for any m ≥ n.

The very same formula defines a contracting homotopy for C∗b (W̃ ). By construc-
tion, the restriction map C∗b (X̃)→C∗b (W̃ ) commutes with these contracting homo-
topies, and it obviously restricts to a surjective map C∗b (X̃)

G
→ C∗b (W̃ )A. Since

Cn
b (X̃), Cn

b (W̃ ) are relatively injective for every n ≥ 0 (see [Ivanov 1985]), we
have finally proved the following:

Proposition 4.7. The pair (C∗b (X̃), δ
∗), (C∗b (W̃ ), δ∗) provides a proper pair of res-

olutions for (G, A;R). If in addition (X,W ) is good, then this pair of resolutions
is also allowable.

Corollary 4.8. For every n ∈ N, the map

H n(η∗G,A) : H
n
cbs(X,W )→ H n

b (X,W )

is a norm-nonincreasing isomorphism.
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Proof. By Proposition 4.7, bounded cochains provide a proper pair of resolutions
for (G, A;R), so Proposition 3.8 implies that H n(η∗G,A) is an isomorphism. That
it is norm-nonincreasing is a direct consequence of its explicit description. �

Remark 4.9. The fact that the pair of resolutions (C∗b (X̃), δ
∗), (C∗b (W̃ ), δ∗) is

allowable is stated in [Park 2003, Lemma 4.2] under the only assumption that
(X,W ) is a pair of connected CW-pairs. However, at the moment we are not able
to prove such a statement without the assumption that (X,W ) is good. For example,
let us suppose that X is simply connected and W is a point (so that πn(W ) injects
into πn(X) for every n ∈ N, and X1 = X̃ = X , W1 = W̃ = W ). Then for every
n ∈N there exists only one simplex in Sn(W ), namely the constant n-simplex σW

n .
Therefore, the only possible contracting homotopy for W is given by the map which
sends the cochain ϕ∈Cn

b (W ) to the cochain kn
A(ϕ) such that kn

A(ϕ)(σ
W
n−1)=ϕ(σ

W
n ).

On the other hand, it is not difficult to show that πi (Wm)=πi+1(X) for every i<m,
and πi (Wm)= 0 for every i ≥m. Therefore, if πi+1(X) 6= 0, then πi (Wm) 6= 0 for
every m > i . This readily implies that for m > i one cannot construct cone-like
operators Lm

j : C j (Xm)→ C j+1(Xm), j ≤ i , such that d j+1Lm
j + Lm

j−1d j = Id and
Lm

j (C j (Wm))⊆ C j+1(Wm) for every j ≤ i , so it is not clear how to show that the
pair of resolutions C∗b (X̃), C∗b (W̃ ) is allowable. This difficulty already arises for
the pair (S2, q), where q is any point of the 2-dimensional sphere S2.

Some troubles arise also in the case when the inclusion induces surjective (but
not bijective) maps between the homotopy groups of W and of X . For instance, if
X is the Euclidean 3-space and W = S2, then Xm = X for every m ∈N, so Wm =W
for every m ∈ N, and, if i is sufficiently high, the partial complex {C j (X,W )} j≤i

does not support a relative cone-like operator. Also observe that, if {W ′m, m ∈N}

is the tower of bundles constructed starting from W just as Xm is constructed
starting from X , then the only map W ′m→Wm = S2

⊆ R3
= Xm which commutes

with the projections of W ′m and Xm onto W1 = S2 and X1 = R3 is the projection
W ′m→W1 = S2. As a consequence, also in this case it is not clear why the pair of
resolutions C∗b (X̃), C∗b (W̃ ) should be allowable.

4D. Proof of Theorem 4.1. We now come back to the proof of Theorem 4.1. By
Proposition 4.5 and Corollary 4.8, we are only left to show that, under the assump-
tion that (X,W ) is good, the isomorphism

H n(η∗G) : H
n
cbs(X,W )→ Hb(X,W )

is isometric for every n ∈ N.
So, suppose that (X,W ) is good. By Proposition 4.7 bounded cochains provide

a proper allowable pair of resolutions for (G, A;R). Therefore, Proposition 3.10
provides a morphism of pairs of resolutions

α∗G : C
∗

b (X̃)→ B∗(G), α∗A : C
∗

b (W̃ )→ B∗(A),
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such that the induced map H∗(α∗G,A) is a norm-nonincreasing isomorphism.
We already know that all the maps in the diagram

H∗b (G, A)
H∗(β∗G,A)

ww

H∗cbs(X,W )
H∗(η∗G,A)

// H∗b (X,W ).

H∗(α∗G,A)
ff

are norm-nonincreasing isomorphisms, so in order to conclude it is sufficient to
show that the diagram commutes. This fact is obviously implied by the following
result, which concludes the proof of Theorem 4.1.

Proposition 4.10. Suppose that (X,W ) is good. Then, for every n ∈N the compo-
sition

αn
G,A ◦ η

n
G,A ◦β

n
G,A : B

n(G, A)→ Bn(G, A)

is equal to the identity of Bn(G, A).

Proof. Since the composition αn
G,A ◦ η

n
G,A ◦ β

n
G,A coincides with the restriction of

αn
G ◦η

n
G ◦β

n
G to Bn(G, A)⊆ Bn(G), it is sufficient to show that αn

G ◦η
n
G ◦β

n
G is the

identity of Bn(G).
Before going into the needed computations, let us stress that the definition

of α∗G involves the contracting homotopy for the resolution C∗b (X̃) described in
Section 4C. Being based on a non-explicit averaging procedure, this contracting
homotopy cannot be described by an explicit formula, and the same is true for the
chain map α∗G . However, the explicit description of the composition α∗G ◦ η

∗

G is
sufficient to our purposes.

In fact, we already know from Lemma 4.4 that

βn
G( f )(g0b0, . . . , gnb0)= f (g0, . . . , gn)

for every f ∈ Bn(G), (g0, . . . , gn) ∈ Gn+1. Therefore, in order to conclude it is
sufficient to prove that

(8) αn
G(η

n
G( f ))(g0, . . . , gn)= f (g0b0, . . . , gnb0)

for every f ∈ Cn
cbs(X̃). So, let t∗G and k∗G be the contracting homotopies for con-

tinuous bounded straight cochains and for bounded cochains, respectively; see (6)
and (7). We first show that for every n ∈ N we have

(9) kn
G ◦ η

n
G = η

n−1
G ◦ tn

G .

Fix f ∈ Cn
cbs(X̃) and σ ∈ Sn−1(X̃), and let us compute kn

G(η
n
G( f ))(σ ). With

notation as in Section 4C, we choose m ≥ n and set

fm = pn
m−1( . . . pn

1(η
n
G( f ))) ∈ Cn

b (Xm).



MEASURE HOMOLOGY AND BOUNDED COHOMOLOGY OF PAIRS 121

Then, if σm is any lift of σ in Xm , we have kn
m( fm)(σm) = fm(σ

′
m), where σ ′m ∈

Sn(Xm) has vertices wm, σm(e0), . . . , σm(en−1). It readily follows that

kn
m( fm)(σm)= f (b0, σ (e0), . . . , σ (en−1)).

We have thus shown that the cochain kn
m( fm) is constant on all the lifts of σ in

Xm . By definition, the value of kn
G(η

n
G( f ))(σ ) is obtained by suitably averaging

the values taken by kn
m( fm) on such lifts, so we finally get

kn
G(η

n
G( f ))(σ )= f (b0, σ (e0), . . . , σ (en−1)),

whence (9).
Recall now that the map α∗G is explicitly described (in terms of the contracting

homotopy k∗G) in Proposition 3.10; see (2). Therefore, (2) and (9) readily imply
that the composition αn

G ◦η
n
G can be described by the following inductive formula:

αn
G(η

n
G( f ))(g0, . . . , gn)= α

n−1
G (g0(η

n−1
G (tn

G(g
−1
0 ( f )))))(g1, . . . , gn).

An easy induction now implies (8), whence the conclusion. �

4E. Proof of Theorem 1.7. We next describe how Theorem 1.7 can be deduced
from Theorem 4.1. For every n ∈ N the module Cn

cb(X̃) (resp. Cn
cb(W̃ )) admits a

natural structure of G-module (resp. A-module). Moreover, it is proved in [Frige-
rio 2011, Lemma 6.1] that the isometric isomorphism C∗b (X,W )→ C∗b (X̃ , W̃ )G

induced by the covering projection p : X̃→ X restricts to an isometric isomorphism
C∗cb(X,W )→ C∗cb(X̃ , W̃ )G , which induces in turn a natural identification

(10) H∗cb(X,W )∼= H∗(C∗cb(X̃ , W̃ )G).

The G-chain map ν∗G : C
∗

cbs(X̃)→ C∗cb(X̃) defined by

νn
G( f )(σ )= f (σ (e0), . . . , σ (en)) for every n ∈ N, f ∈ Cn

cbs(X̃), σ ∈ Sn(X̃),

obviously restricts to a chain map ν∗G,A : C∗cbs(X̃ , W̃ )G → C∗cb(X̃ , W̃ )G . Under
the identifications described in (3) and (10), this chain map induces the norm-
nonincreasing map

H∗(ν∗G,A) : H
∗

cbs(X,W )→ H∗cb(X,W )

(we cannot realize H∗(ν∗G,A) as the map induced by a morphism of pairs of resolu-
tions just because we are not able to prove that the pair C∗cb(X̃), C∗cb(W̃ ) provides
a pair of resolutions for (G, A;R); see Remark 4.11 below).
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It readily follows from the definitions that the following diagram commutes:

H∗cbs(X,W )
H∗(η∗G,A)

//

H∗(ν∗G,A) ''

H∗b (X,W )

H∗cb(X,W )

H∗(ρ∗b )

88

where H∗(ρ∗b ) : H
∗

cb(X,W )→ H∗b (X,W ) is the map described in the Introduction.
Now suppose that (X,W ) is good. Then Theorem 4.1 implies that the map

H∗(η∗G,A) is an isometric isomorphism, so the map H∗(ν∗G,A) ◦ H∗(η∗G,A)
−1 pro-

vides a right inverse to H∗(ρ∗b ). Since H∗(ν∗G,A) is norm-nonincreasing, this map
is an isometric embedding, and this concludes the proof of Theorem 1.7.

Remark 4.11. Suppose that (X,W ) is good. If we were able to prove that the
complexes C∗cb(X̃), C∗cb(W̃ ) provide a proper pair of resolutions for (G, A;R),
then we could prove that H∗(ρ∗b ) : H∗cb(X,W )→ H∗b (X,W ) is an isometric iso-
morphism for every good pair (X,W ). However, it is not clear why Ivanov’s
contracting homotopies should take continuous cochains into continuous cochains,
thus restricting to contracting homotopies for C∗cb(X̃), C∗cb(W̃ ).

4F. (Unbounded) continuous cohomology of pairs. We conclude the section by
proving Theorem 1.9, which asserts that, when (X,W ) is a locally finite good
CW-pair, the map

H∗(ρ∗) : H∗c (X,W )→ H∗(X,W )

is an isometric isomorphism.
We first observe that, since W is closed in X , the subspace Sn(W ) is closed in

Sn(X) for every n ∈ N. Moreover, since X is locally finite, it is metrizable, and
this implies that Sn(X) is also metrizable. Therefore, by Tietze’s theorem, every
continuous cochain on W extends to a continuous cochain on X ; i.e., the restriction
map C∗c (X)→C∗c (W ) is surjective. As a consequence, both rows of the following
commutative diagram are exact:

H n+1
c (X) //

��

H n+1
c (W ) //

��

H n
c (X,W ) //

Hn(ρ∗)

��

H n
c (X) //

��

H n
c (W )

��

H n+1(X) // H n+1(W ) // H n(X,W ) // H n(X) // H n(W ).

We know from [Frigerio 2011, Theorem 1.1] that, in the absolute case, the vertical
arrows are isomorphisms, and the Five Lemma implies now that H n(ρ∗) is an
isomorphism. We are left to show that it is also an isometry.

The inclusions C∗b (X,W ) ↪→ C∗(X,W ), C∗cb(X,W ) ↪→ C∗c (X,W ) induce the
comparison maps c∗ : H∗b (X,W )→ H∗(X,W ), c∗c : H

∗

cb(X,W )→ H∗c (X,W ) and
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it follows from the very definitions that for every ϕ ∈ H n(X,W ), ϕc ∈ H n
c (X,W )

the following equalities hold:

‖ϕ‖∞ = inf{‖ψ‖∞ | ψ ∈ H n
b (X,W ), cn(ψ)= ϕ},

‖ϕc‖∞ = inf{‖ψc‖∞ | ψc ∈ H n
cb(X,W ), cn

c (ψc)= ϕc},

where we understand that inf ∅=+∞. Moreover, since H∗(ρ∗)◦c∗c = c∗◦H∗(ρ∗b ),
for every ϕc ∈ H∗c (X,W ) we have

‖H∗(ρ∗)(ϕc)‖∞ = inf{‖ψ‖∞ | ψ ∈ H∗b (X,W ), c∗(ψ)= H∗(ρ∗)(ϕc)}

= inf{‖ψc‖∞ | ψc ∈ H∗cb(X,W ), c∗(H∗(ρ∗b )(ψc))= H∗(ρ∗)(ϕc)}

= inf{‖ψc‖∞ | ψc ∈ H∗cb(X,W ), H∗(ρ∗)(c∗c (ψc))= H∗(ρ∗)(ϕc)}

= inf{‖ψc‖∞ | ψc ∈ H∗cb(X,W ), c∗c (ψc)= ϕc} = ‖ϕc‖∞,

where the second equality is due to Theorem 1.7 (recall that locally finite CW-pairs
are countable). The proof of Theorem 1.9 is now complete.

5. The duality principle

This section is mainly devoted to the proof of Theorem 1.3. As already mentioned
in the Introduction, once a suitable duality pairing between measure homology
and continuous bounded cohomology is established, Theorem 1.3 can be easily
deduced from Theorem 1.7.

5A. Duality between singular homology and bounded cohomology. Let us begin
by recalling the well-known duality between bounded cohomology and singular
homology. Let (X,W ) be any pair of topological spaces. By definition, Cn(X,W )

is the algebraic dual of Cn(X,W ), and it is readily seen that the L∞-norm on
Cn(X,W ) is dual to the L1-norm on Cn(X,W ). As a consequence, Cn

b (X,W ) co-
incides with the topological dual of Cn(X,W ). This does not imply that H n

b (X,W )

is the topological dual of Hn(X,W ), because taking duals of normed chain com-
plexes does not commute in general with homology (see [Löh 2008] for a detailed
discussion of this issue). However, if we denote by

〈 · , · 〉 : H n
b (X,W )× Hn(X,W )→ R

the Kronecker product induced by the pairing Cn
b (X,W )×Cn(X,W )→ R, then

an application of Hahn–Banach theorem (for details, see [Löh 2007, Theorem 3.8],
for instance) gives the following:

Proposition 5.1. For every α ∈ Hn(X,W ) we have

‖α‖1 = sup
{

1
‖ϕ‖∞

∣∣ϕ ∈ H n
b (X,W ), 〈ϕ, α〉 = 1

}
,
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where we understand that sup ∅= 0.

5B. Duality between measure homology and continuous bounded cohomology.
The topological dual of C∗(X,W ) does not admit an easy description, so in order
to compute seminorms in H∗(X,W ) via duality more work is needed. We first
observe that, if µ is any measure on Sn(X) with compact determination set and f
is any continuous function on Sn(X), it makes sense to integrate f with respect to
µ. Therefore, for every n ∈ N the bilinear pairing

〈 · , · 〉 : Cn
cb(X,W )×Cn(X,W )→ R, 〈 f, µ〉 =

∫
Sn(X)

f (σ ) dµ(σ)

is well-defined. It readily follows from the definitions that |〈 f, µ〉| ≤ ‖ f ‖∞ ·‖µ‖m
for every f ∈Cn

cb(X,W ), µ∈Cn(X,W ), so C∗cb(X,W ) lies in the topological dual
of C∗(X,W ). Moreover, for every i ∈N, f ∈C i

cb(X,W ) and µ ∈Ci+1(X,W ) we
have 〈δ f, µ〉 = 〈 f, ∂µ〉, so this pairing defines a Kronecker product

〈 · , · 〉 : H n
cb(X,W )×Hn(X,W )→ R

such that

(11) |〈ϕc, α〉| ≤ ‖ϕc‖∞ · ‖α‖mh for every ϕc ∈ H n
cb(X,W ), α ∈Hn(X,W ).

The following proposition is an immediate consequence of inequality (11), and
provides a sort of weak duality theorem for continuous bounded cohomology and
measure homology. The term “weak” refers to the fact that while Proposition 5.1
allows to compute seminorms in homology in terms of seminorms in bounded
cohomology, here only an inequality is established. However, this turns out to
be sufficient to our purposes. Moreover, once Theorem 1.3 is proved, one could
easily prove that (in the case of good CW-pairs) the inequality of Proposition 5.2
is in fact an equality, thus recovering a “full” duality between continuous bounded
cohomology and measure homology.

Proposition 5.2. For every α ∈Hn(X,W ) we have

‖α‖mh ≥ sup
{

1
‖ϕc‖∞

∣∣∣ ϕc ∈ H n
cb(X,W ), 〈ϕc, α〉 = 1

}
,

where we understand that sup ∅= 0.

To conclude the proof of Theorem 1.3, we need one more result, which follows
readily from the definitions and ensures that the Kronecker products introduced
above are compatible with each other:

Proposition 5.3. For every ϕc ∈ H n
cb(X,W ), α ∈ Hn(X,W ) we have

〈H n(ρ∗b )(ϕc), α〉 = 〈ϕc, Hn(ι∗)(α)〉.
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Proof of Theorem 1.3. Suppose that (X,W ) is a good CW-pair. We already know
that the map H∗(ι∗) : H∗(X,W )→ H∗(X,W ) is a norm-nonincreasing isomor-
phism, so we are left to show that ‖H∗(ι∗)(α)‖mh ≥‖α‖1 for every α ∈ H∗(X,W ).

However, for every α ∈ Hn(X,W ) we have

‖Hn(ι∗)(α)‖mh ≥ sup
{

1
‖ϕc‖∞

∣∣∣ ϕc ∈ H n
cb(X,W ), 〈ϕc, Hn(ι∗)(α)〉 = 1

}
= sup

{
1

‖ϕc‖∞

∣∣∣ ϕc ∈ H n
cb(X,W ), 〈H n(ρ∗b )(ϕc), α〉 = 1

}
= sup

{
1
‖ϕ‖∞

∣∣∣ ϕ ∈ H n
b (X,W ), 〈ϕ, α〉 = 1

}
= ‖α‖1,

where the inequality is due to Proposition 5.2, the first equality to Proposition 5.3,
the second equality to Theorem 1.7, and the last equality to Proposition 5.1. �

Remark 5.4. Let (X,W ) be any CW-pair. The arguments described in this section
show that if H∗(ρ∗b ) : H

∗

cb(X,W )→ Hb(X,W ) admits a norm-nonincreasing right
inverse, then the map H∗(ι∗) : H∗(X,W ) → H∗(X,W ) is an isometric isomor-
phism.

6. A comparison with Park’s seminorms

Park [2003] describes an algebraic foundation of relative bounded cohomology of
pairs, both in the case of a pair of groups (G, A) equipped with a homomorphism
A → G and in the case of a pair of path-connected topological spaces (X,W )

equipped with a continuous map W → X . However, recall from the Introduction
that the seminorms considered by Park are quite different from the ones considered
in this paper, which go back to [Gromov 1982]. In this section we investigate the
relationships between our seminorms and the seminorms introduced in [Park 2003],
proving in particular that there exist examples for which they are not isometric to
each other.

6A. Park’s mapping cone for homology. Let (X,W ) be a countable CW-pair,
where both X and W are connected, and let us suppose that the inclusion i :W ↪→ X
induces an injective map on the fundamental groups (several considerations here
below also hold without this last assumption, but this is not relevant to our pur-
poses). We also denote by i∗ :C∗(W )→C∗(X) the map induced by the inclusion i .
The homology mapping cone complex of (X,W ) is the complex

(C∗(W → X), d∗)= (C∗(X)⊕C∗−1(W ), d∗),
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where

dn : Cn(X) ⊕ Cn−1(W ) → Cn−1(X) ⊕ Cn−2(W )

(un , vn−1) 7→ (dnun + in−1(vn−1) , −dn−1vn−1),

and d∗ denotes the usual differential both of C∗(X) and of C∗(W ). The homology
of the mapping cone (C∗(W → X), d∗) is denoted by H∗(W → X). For every
ω ∈ [0,∞) one can endow C∗(W → X) with the L1-norm

‖(u, v)‖1(ω)= ‖u‖1+ (1+ω)‖v‖1,

which induces in turn a seminorm (still denoted by ‖ · ‖1(ω)) on H∗(W → X) (in
fact, in [Park 2004] the case ω =∞ is also considered, but this is not relevant to
our purposes).

As observed in [Park 2004], the chain map

(12) β∗ : C∗(W → X)→ C∗(X,W )= C∗(X)/C∗(W ), β∗(u, v)= [u]

induces an isomorphism

H∗(β∗) : H∗(W → X)→ H∗(X,W ).

The explicit description of β∗ implies that

‖H∗(β∗)(α)‖1 ≤ ‖α‖1(0)≤ ‖α‖1(ω)

for every α ∈ H∗(W → X), ω ∈ [0,∞).

6B. Park’s mapping cone for bounded cohomology. We define the mapping cone
for bounded cohomology as the (topological) dual of the mapping cone for ho-
mology. More precisely, we fix ω ∈ [0,∞), and endow C∗(W → X) with the
norm ‖ · ‖1(ω). It is readily seen that the topological dual of Cn(W → X) =
Cn(X)⊕Cn−1(W ) is isometrically isomorphic to the space

Cn
b (W → X)= Cn

b (X)⊕Cn−1
b (W )

endowed with the L∞-norm ‖ · ‖∞(ω) defined by

‖( f, g)‖∞(ω)=max{‖ f ‖∞, (1+ω)−1
‖g‖∞}.

In other words, the pairing

C∗b (W → X)×C∗(W → X)→ R, (( f, f ′), (a, a′)) 7→ f (a)− f ′(a′)

realizes C∗b (W→ X) as the topological dual of C∗(W→ X), and an easy computa-
tion shows that the norm ‖ ·‖∞(ω) just introduced on C∗b (W→ X) coincides with
the operator norm (with respect to the norm ‖·‖1(ω) fixed on C∗(W→ X)). There-
fore, if i∗ :C∗b (X)→C∗b (W ) is the cochain map induced by the inclusion, then the
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cohomology mapping cone complex of (X,W ) is the complex (C∗b (W → X), δ
∗
),

where δ
∗

is defined as the dual map of d∗, and admits therefore the following
explicit description (see [Park 2003] for the details):

δ
n
: Cn

b (X) ⊕ Cn−1
b (W ) → Cn+1

b (X) ⊕ Cn
b (W )

( fn , gn−1) 7→ (δn fn , −in( fn)− δ
n−1gn−1)

(here δ∗ denotes the usual differential both of C∗b (X) and of C∗b (W )). The coho-
mology of the complex (C∗b (W → X), δ

∗
) is denoted by H∗b (W → X). Just as

in the case of homology, the L∞-norm ‖ · ‖∞(ω) on Cn
b (W → X) descends to a

seminorm (still denoted by ‖ · ‖∞(ω)) on H∗b (W → X).
The chain map

β∗ : C∗b (X,W )→ C∗b (W → X), β∗( f )= ( f, 0)

is the dual of the chain map β∗ introduced in Equation (12) above, and induces an
isomorphism

H∗(β∗) : H∗b (X,W )→ H∗b (W → X)

such that
‖H∗(β∗)(ϕ)‖∞(ω)≤ ‖H∗(β∗)(ϕ)‖∞(0)≤ ‖ϕ‖∞

for every ϕ ∈ H∗b (X,W ), ω ∈ [0,∞). More precisely:

Theorem 6.1 [Park 2003, Theorem 4.6]. For every n∈N, the isomorphism H n(β∗)

is such that
1

n+ 2
‖ϕ‖∞ ≤ ‖H n(β∗)(ϕ)‖∞(0)≤ ‖ϕ‖∞ for every ϕ ∈ H n

b (X,W ).

It is asked in [Park 2003] whether H∗(β∗) is actually an isometry or not. We
show in Proposition 6.4 below that there exist examples for which H∗(β∗) is not
an isometry.

6C. Mapping cones and duality. In the previous subsection we have seen that, for
every ω ≥ 0, the normed space (C∗b (W → X), ‖ · ‖∞(ω)) coincides with the topo-
logical dual of the normed space (C∗(W→ X), ‖·‖1(ω)). We may therefore apply
the duality result proved in [Löh 2007, Theorem 3.14], and obtain the following:

Proposition 6.2. If the map

H∗(β∗) :
(
H∗b (X,W ), ‖ · ‖∞

)
→
(
H∗b (W → X), ‖ · ‖∞(ω)

)
is an isometric isomorphism, then

‖H∗(β∗)(α)‖1 = ‖α‖1(ω)

for every α ∈ H∗(X,W ).
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6D. An explicit example. Let M be a compact, connected, oriented manifold with
connected boundary, and suppose that the inclusion i : ∂M→ M induces an injec-
tive homomorphism i∗ : π1(∂M)→ π1(M).

We denote by [M, ∂M] the (real) fundamental class in Hn(M, ∂M) and we set

[∂M→ M] = Hn(β∗)
−1([M, ∂M]) ∈ Hn(∂M→ M).

The L1-seminorm ‖[M, ∂M]‖1 of the real fundamental class of M is usually known
as the simplicial volume of M , and it is denoted simply by ‖M‖. Similarly, the
L1-seminorm of the real fundamental class [∂M] ∈ Hn−1(∂M) is the simplicial
volume of ∂M , and it is denoted by ‖∂M‖.

Lemma 6.3. We have

‖[∂M→ M]‖1(ω)≥ ‖M‖+ (1+ω)‖∂M‖.

Proof. It is shown in [Park 2004] that, if α ∈ Ci (M) is such that diα ∈ Ci−1(∂M)
(so that α defines an element [α] ∈ Hi (M, ∂M)), then

Hi (β∗)
−1([α])= [(α,−diα)].

Therefore, if α ∈ Cn(M) is a representative of the fundamental class [M, ∂M] ∈
Hn(M, ∂M), then (α,−dnα) is a representative of [∂M → M] ∈ Hn(∂M → M).
If (α′, γ ) is any other representative of such a class, then by definition of mapping
cone there exist x ∈ Cn+1(M) and y ∈ Cn(∂M) such that:

α−α′ = dn+1x + in(y) and γ + dnα =−dn y.

These equalities readily imply that [α′] = [α] in Hn(M, ∂M) and [γ ] = [−dnα]

in Hn−1(∂M). As a consequence, since dnα is a representative of the fundamental
class of ∂M , we have ‖α′‖1≥‖[α′]‖1=‖M‖ and ‖γ ‖1≥‖[γ ]‖1=‖∂M‖, whence

‖(α′, γ )‖1(ω)≥ ‖M‖+ (1+ω)‖∂M‖.

The conclusion follows from the fact that (α′, γ ) is an arbitrary representative of
[∂M→ M]. �

Proposition 6.4. Let M be a compact connected oriented hyperbolic n-manifold
with connected geodesic boundary. Then, for every ω ∈ [0,∞) the isomorphism

H n(β∗) :
(
H n

b (M, ∂M), ‖ · ‖∞
)
→
(
H n

b (∂M→ M), ‖ · ‖∞(ω)
)

is not isometric.

Proof. It is well-known that the inclusion ∂M ↪→ M induces an injective map on
fundamental groups. Moreover, since ∂M is a closed oriented hyperbolic (n− 1)-
manifold, we also have ‖∂M‖>0. By Proposition 6.2, if H n(β∗)were an isometry
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we would have ‖[∂M → M]‖1(ω) = ‖[M, ∂M]‖1 = ‖M‖, and this contradicts
Lemma 6.3. �
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NORMAL ENVELOPING ALGEBRAS

ALEXANDRE N. GRISHKOV, MARINA RASSKAZOVA

AND SALVATORE SICILIANO

A full characterization is given of ordinary and restricted enveloping alge-
bras which are normal with respect to the principal involution.

1. Introduction

Let A be an algebra with involution ∗ over a field F. We recall that A is said to be
normal if xx∗= x∗x for every x ∈ A. Over the decades, normal algebras with invo-
lutions have been extensively investigated on their own; see, for example, [Beidar
et al. 1981; Bovdi et al. 1985; Bovdi 1990; 1997; Bovdi and Siciliano 2007; Brešar
and Vukman 1989; Herstein 1976; Knus et al. 1998; Lim 1977; 1979; Maxwell
1972]. Moreover, they have several applications in linear algebra and functional
analysis; see, for example, [Berberian 1959; Fuglede 1950; Maxwell 1972; Mosić
and Djordjević 2009; Putnam 1951; Yood 1974]. It is well-known that any nor-
mal algebra with involution satisfies the standard polynomial identity of degree 4
[Herstein 1976, Section 5]. Moreover, Maxwell [1972] determined the structure
of a normal simple algebra of matrices with entries in a field with involution. He
also proved that a division algebra D with involution is normal if and only if D
is either a field or a generalized quaternion algebra over its center. Furthermore, a
characterization of group algebras which are normal under the standard involution
was established by Bovdi, Gudivok, and Semirot [Bovdi et al. 1985]. Subsequently,
such a result has been extended to twisted group algebras [Bovdi 1990; 1997] and
to group algebras under a Novikov involution [Bovdi and Siciliano 2007].

On the other hand, it seems that the rather natural problems of characterizing
ordinary and restricted enveloping algebras which are normal under their canonical
involutions have not been settled yet. The present paper is just devoted to answering
these questions.

For an arbitrary Lie algebra L we denote by U (L) the universal enveloping
algebra of L . Moreover, if L is restricted with a p-map [p] over a field F of

The first author was supported by FAPESP and CNPq (Brazil) and grant RFFI-10.01.00383a
(Russia).
MSC2010: 16S30, 16W10, 17B50.
Keywords: restricted Lie algebra, enveloping algebra, normal ring, principal involution.
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characteristic p > 0, then we denote by u(L) the restricted enveloping algebra
of L . We consider U (L) and u(L) with the principal involution ∗, namely, the
unique F-antiautomorphism such that x∗ = −x for every x in L; see [Bourbaki
2007, Section 2] or [Dixmier 1974, Section 2]. Note that ∗ is just the antipode of
the F-Hopf algebras U (L) or u(L).

We use the symbols Z(L) and L ′ for the center of L and the derived subalgebra
of L , respectively. If S ⊆ L , we denote by 〈S〉F the F-vector space generated by
S. Also, if L is restricted, 〈S〉p denotes the restricted subalgebra generated by S,
and we put S[p] = {x [p] | x ∈ S}. In our first main result we completely settle the
restricted case:

Theorem 1.1. Let L be a restricted Lie algebra over a field F of characteristic
p > 0. Then u(L) is normal if and only if either L is abelian or p = 2, L is
nilpotent of class 2, and one of the following conditions holds:

(i) L contains an abelian restricted ideal I of codimension 1.

(ii) dimF L/Z(L)= 3.

(iii) dimF L ′ = 1 and
(
L ′
)[2]
= 0.

(iv) L = 〈x, x1, x2, x3〉p + Z(L) with

[x1, x2] = ξ [x, x3],

[x1, x3] = µ[x, x2],

[x2, x3] = λ[x, x1],

and
λ[x, x1]

[2]
+µ[x, x2]

[2]
+ ξ [x, x3]

[2]
= 0

for some λ,µ, ξ ∈ F.

Afterwards we apply Theorem 1.1 in order to solve the ordinary case:

Theorem 1.2. Let L be a Lie algebra over an arbitrary field F. Then U (L) is
normal if and only if either L is abelian or p= 2, L is nilpotent of class 2, and one
of the following conditions holds:

(i) L contains an abelian ideal of codimension 1.

(ii) dimF L/Z(L)= 3.

2. Proofs

For any associative algebra A, we shall consider the Lie bracket on A defined by
[a, b] := ab − ba ∈ A, a, b ∈ A. The symbol Z(A) will denote the center of
A. Moreover, for a subset S of a Lie algebra L we shall denote by CL(S) the
centralizer of S in L .
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It is easy to verify that a normal algebra with involution satisfies the ∗-polyno-
mial identity [x, y] = [x∗, y∗]. The converse is also true in characteristic different
from 2, but in general it fails without such an assumption [Lim 1977]. However,
for restricted Lie algebras we have the following:

Lemma 2.1. Let L be a restricted Lie algebra over a field F of characteristic 2
such that [x, y] = [x∗, y∗] for every x, y ∈ u(L). Then L is nilpotent of class at
most 2 and u(L) is normal.

Proof. For every a, b, c ∈ L , we have

0= [ab, c] + [(ab)∗, c∗] = [[a, b], c].

Hence L is nilpotent of class at most 2.
Let (ei )i∈I be an ordered F-basis of L . Then every element u of u(L) is an F-

linear combination of elements ei1 · · · eim , where m≥0 and the indices i1< · · ·< im

are in I . As L is nilpotent of class at most 2, for every z ∈ L we have z[2] ∈ Z(L),
and then

[ei1 · · · eim , (ei1 · · · eim )
∗
] = 0.

Moreover, by hypothesis we clearly have [x, y∗] = [x∗, y] for every x, y ∈ u(L).
We conclude that [u, u∗] = 0, so that u(L) is normal. �

Lemma 2.2. Let L be a restricted Lie algebra over a field F of characteristic p> 0
such that u(L) is normal. Then either L is abelian, or p = 2 and L is nilpotent of
class 2.

Proof. As u(L) satisfies the ∗-polynomial identity [x, y] = [x∗, y∗], if p = 2,
Lemma 2.1 assures that L is nilpotent of class at most 2. Now suppose p> 2. For
every x, y ∈ L , we have

0= [x2
+ y, (x2

+ y)∗] = −4x[x, y] + 2[x, [x, y]].

Since p > 2, in view of the Poincaré–Birkhoff–Witt (PBW) theorem for restricted
Lie algebras [Strade and Farnsteiner 1988, Section 2, Theorem 5.1], the previous
relation is possible only when [x, y] = 0, so that L is abelian. This yields the
claim. �

Let L be a restricted Lie algebra over a field of characteristic 2. For every
a, b, c, d ∈ L , we put

2(a, b, c, d) := [a, b][c, d] + [a, c][b, d] + [a, d][b, c] ∈ u(L).

The following result will be extremely useful in the sequel.
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Lemma 2.3. Let L be a restricted Lie algebra over a field F of characteristic
2, and suppose L to be nilpotent of class 2. Then u(L) is normal if and only if
2(a, b, c, d)= 0 for all a, b, c, d ∈ L.

Proof. If u(L) is normal, for all a, b, c, d ∈ L we have

2(a, b, c, d)= [a, bcd] + [a, dcb] = [a, bcd] + [a, (bcd)∗] = 0.

Conversely, assume that 2(a, b, c, d)= 0 for all a, b, c, d ∈ L . Let (e j ) j∈J be an
ordered F-basis of L containing an F-basis of Z(L). Since u(L) is a free u(Z(L))-
module, there exists a unique homomorphism of u(Z(L))-modules

φ : u(L)→ u(L),

which vanishes on 1 and L , and such that for every n > 1 and j1 < . . . < jn , one
has

φ(e j1 · · · e jn )=
∑

1≤h<k≤n

e j1 · · · ê jh · · · ê jk · · · e jn [e jh , e jk ],

where the symbol êih indicates that eih is to be omitted.
We claim that

Im(φ)⊆ Z(u(L)).

For this purpose it is enough to prove that [x, φ(e j1 · · · e jn )] = 0 for every x ∈ L ,
n > 1, and j1, . . . , jn ∈ J with j1 < . . . < jn . Indeed, by the hypothesis we have

[x, φ(e j1 · · · e jn )] =

[
x,

∑
1≤h<k≤n

e j1 · · · ê jh · · · ê jk · · · e jn [e jh , e jk ]

]

=

∑
1≤h<k≤n

∑
1≤s≤n
s 6=h,k

e j1 · · · ê jh · · · ê js · · · ê jk · · · e jn [e jh , e jk ][x, e js ]

=

∑
1≤h<k<s≤n

e j1 · · · ê jh · · · ê jk · · · ê js · · · e jn
(
[e jh , eik ][x, e js ]

+ [e jh , eis ][x, e jk ] + [e jk , eis ][x, e jh ]
)
= 0,

yielding the claim.
Now we shall prove that

a = a∗+φ(a)

for every a ∈ u(L). For this purpose it is enough to show that for all n ≥ 0 and
j1, . . . , jn ∈ J with j1 < . . . < jn , one has

e j1 · · · e jn = e jn · · · e j1 +φ(e j1 · · · e jn ).
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Let us proceed by induction on n. By the proved claim and the inductive assump-
tion, we have, for n > 0,

e j1 · · · e jn

= (e jn−1 · · · e j1)e jn +φ(e j1 · · · e jn−1)e jn

= e jn e jn−1 · · · e j1 + [e jn−1 · · · e j1, e jn ] +φ(e j1 · · · e jn−1)e jn

= e jn e jn−1 · · · e j1 + [e j1 · · · e jn−1, e jn ] + [φ(e j1 · · · e jn−1), e jn ] +φ(e j1 · · · e jn−1)e jn

= e jn · · · e j1 +φ(e j1 · · · e jn ),

completing the inductive step.
Finally, by applying the properties proved above, for all a, b ∈ u(L), we have

[a, b] = [a∗+φ(a), b∗+φ(b)] = [a∗, b∗].

Hence u(L) is normal by Lemma 2.1, as required. �

Remark 2.4. Since 2 is an alternating F-multilinear function, by Lemma 2.3 it
is clear that in order to conclude that u(L) is normal, it suffices to check that
2(a, b, c, d) = 0 for all pairwise distinct noncentral elements a, b, c, d in a fixed
F-basis of L .

We are now in position to prove Theorem 1.1:

Proof of Theorem 1.1. Assume that u(L) is normal and L is not abelian. Then, by
Lemma 2.3, we know that F has characteristic 2 and L is nilpotent of class 2. Let
us proceed with a case-by-case analysis.
Case 1. max{dimF[L , x] | x ∈ L}=1. Let x1 and y1 be two noncommuting element
of L and put z1 := [x1, y1]. By assumption we have [L , x1] = [L , y1] = F z1 and
L = F y1 ⊕ CL(x1). Now, if CL(x1) is abelian, L satisfies alternative (i) of the
statement. Suppose then that there exist x2, y2∈CL(x1) such that [x2, y2] := z2 6=0.
From Lemma 2.3 it follows that

(1) z1z2 =2(x1, y1, x2, y2)= 0.

Therefore the PBW theorem for restricted Lie algebras entails that z1 = λz2 for
some λ ∈ F, which shows that L ′ = F z1. Also, as λ 6= 0, by (1), we have z[2]1 = 0.
Thus

(
L ′
)[2]
= 0, and alternative (iii) of the statement holds.

Case 2. max{dimF[L , x] | x ∈ L} = 2. Let x, x1, x2 ∈ L such that z1 := [x, x1] and
z2 := [x, x2] are F-linearly independent. We clearly have L = 〈x1, x2〉F⊕CL(x).
Furthermore, by Lemma 2.3, we have, for all y1, y2 ∈ CL(x),

0=2(x, x1, y1, y2)= z1[y1, y2] and 0=2(x, x2, y1, y2)= z2[y1, y2].
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Since z1 and z2 are F-linearly independent, the PBW theorem forces [y1, y2] = 0.
Hence CL(x) is abelian. Again by Lemma 2.3, for every y ∈ CL(x), we have

(2) 0=2(x, x1, x2, y)= z1[x2, y] + z2[x1, y].

At this stage, a straightforward application of the PBW theorem yields

[x1, y] = λ11(y)z1+ λ12(y)z2 and [x2, y] = λ21(y)z1+ λ22(y)z2

for some λ11(y), λ12(y), λ21(y), λ22(y) ∈ F. From (2) it follows that

(λ11(y)+ λ22(y))z1z2 = λ21(y)z2
1+ λ12(y)z2

2 ∈ L ,

and, again by the PBW theorem, the preceding relation is possible only when
λ11(y) = λ22(y) := λ(y). With the notation just introduced, we consider the fol-
lowing subcases.

Subcase 2.1. For every u ∈CL(x), one has λ12(u)=λ21(u)=0. Let y ∈CL(x) and
put ȳ :=λ(y)x+y. Then we have [ȳ, x]=[ȳ, x1]=[ȳ, x2]=0. As CL(x) is abelian,
it follows that ȳ ∈ Z(L) and then CL(x) = F x ⊕ Z(L). Thus dimF L/Z(L) = 3,
and alternative (ii) of the statement holds.

Subcase 2.2. There exists u ∈ CL(x) such that λ12(u) 6= 0 and λ21(u) = 0. By
replacing u by λ−1

12 (u)u, we can suppose that λ12(u)= 1. Put y := λ(u)x+u. Then
we have

[x1, y] = z2 and [x2, y] = 0.

Let y1 ∈ CL(x). Since CL(x) is abelian, by Lemma 2.3 we have

(3) 0=2(x1, x2, y, y1)= z2[x2, y1] = z2(λ21(y1)z1+ λ(y1)z2).

Consequently, as z1 and z2 are F-linearly independent, the PBW theorem forces
λ21(y1)=0. Also, from relation (3) (applied for y1= x), we infer that z[2]2 =0. Now
put ȳ1 := λ(y1)x+λ12(y1)y+ y1. Then ȳ1 ∈ Z(L), and CL(x)= F x⊕F y⊕ Z(L).
We conclude that L = 〈x, x1, x2, y〉p + Z(L), and it is clear that L is a restricted
Lie algebra satisfying alternative (iv) of the statement.

Subcase 2.3. There exists u ∈ CL(x) such that λ12(u)= 0 and λ21(u) 6= 0. This is
analogous to Subcase 2.2.

Subcase 2.4. There exists u ∈ CL(x) such that λ12(u) 6= 0 and λ21(u) 6= 0. By
replacing u by λ−1

12 (u)u, we can suppose that λ12(u)= 1. Put y := λ(u)x+u. Then
we have

[x1, y] = z2 and [x2, y] = λ21(u)z1.

Moreover, Lemma 2.3 yields

0=2(x, x1, x2, y)= λ21(u)z2
1+ z2

2.
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Let y1 ∈CL(x) and put ȳ1 := λ(y1)x+ y1. As CL(x) is abelian, Lemma 2.3 yields

0=2(x1, x2, y, ȳ1)= z2[x2, ȳ1]+λ21(u)z1[x1, ȳ1]=(λ21(ȳ1)+λ21(u)λ12(ȳ1))z1z2,

so that λ21(ȳ1)=λ21(u)λ12(ȳ1). Put ŷ1 := ȳ1+λ12(ȳ1)y. Then we have [x1, ŷ1]=0.
Now, if for some y1 ∈CL(x) one has [x2, ŷ1] = λ21(ŷ1)z1 6= 0 then we can replace
y by ŷ1 and conclude by Subcase 2.3 that alternative (iv) holds. On the other hand,
if [x2, ŷ1] = 0 for every y1 ∈CL(x) then L = 〈x, x1, x2, y〉p+ Z(L), and it is clear
that, also in this case, L is a restricted Lie algebra satisfying alternative (iv).

Case 3. max{dimF[L , x] | x ∈ L} = 3. Let x, u1, u2, u3 ∈ L such that z1 := [x, u1],
z2 := [x, u2], and z3 := [x, u3] are F-linearly independent. We clearly have L =
〈u1, u2, u3〉F⊕CL(x), and one can show that CL(x) is abelian in the same way as
in Case 2. Moreover, in view of Lemma 2.3, we have

(4) 0=2(x, u1, u2, u3)= z1[u2, u3] + z2[u1, u3] + z3[u1, u2].

Thus, for every 1≤ i < j ≤ 3, by the PBW theorem, we see that

(5) [ui , u j ] =

3∑
k=1

α
(k)
i j zk,

where α(k)i j ∈F, k=1, 2, 3. By (4) and (5), another application of the PBW theorem
yields

α
(1)
12 = α

(3)
23 , α

(2)
12 = α

(3)
13 , α

(1)
13 = α

(2)
23 .

Put
x1 := u1+α

(2)
12 x, x2 := u2+α

(1)
12 x, x3 := u3+α

(1)
13 x,

and, moreover, α(1)23 := λ, α(2)13 := µ, and α(3)12 := ξ . Then we have

[x1, x2] = ξ z3, [x1, x3] = µz2, [x2, x3] = λz1.

From Lemma 2.3 it follows that

λz[2]1 +µz[2]2 + ξ z[2]3 =2(x, x1, x2, x3)= 0.

Now, let y ∈ CL(x). By Lemma 2.3 we obtain

2(x, x1, x2, y)= z1[x2, y] + z2[x1, y] = 0,

2(x, x1, x3, y)= z1[x3, y] + z3[x1, y] = 0,

2(x, x2, x3, y)= z2[x3, y] + z3[x2, y] = 0.

Consequently, by the PBW theorem there exists β ∈ F such that [xi , y] = βzi for
every i = 1, 2, 3. Put ȳ := y+ βx . Then ȳ ∈ Z(L) and CL(x) = F x ⊕ Z(L). We
conclude that L = 〈x, x1, x2, x3〉p + Z(L), and alternative (iv) is satisfied.
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Case 4. max{dimF[L , x] | x ∈ L}> 3. Let S := (ui )i∈I be a subset of L such that
the elements zi := [x, ui ], i ∈ I , are F-linearly independent, and [S, x] = [L , x].
We clearly have L = 〈S〉F ⊕ CL(x), and one can show that CL(x) is abelian by
proceeding in a similar way as in Case 2. Let i, j ∈ I , i 6= j . In view of Lemma 2.3,
for every k ∈ I\{i, j}, we have

0=2(x, ui , u j , uk)= zi [u j , uk] + z j [ui , uk] + zk[ui , u j ].

At this stage, by arguing as in the first case of Case 3, we have that [ui , u j ] ∈ F zk .
As |I |> 3, we conclude that [ui , u j ] = 0. Finally, let y ∈ CL(x). By Lemma 2.3,
for all pairwise distinct elements i , j , k of I , we have

2(x, ui , u j , y)= zi [u j , y] + z j [ui , y] = 0,

2(x, ui , uk, y)= zi [xk, y] + zk[ui , y] = 0.

Therefore, an application of the PBW theorem shows that there exists β ∈ F such
that [ui , y] = βzi for every i ∈ I . Put ȳ := y + βx . Then ȳ ∈ Z(L), so that
CL(x) = F x ⊕ Z(L). Therefore, as L [2] ⊆ Z(L), we conclude that Z(L)+ 〈S〉F
is an abelian restricted ideal of codimension 1 in L , and the proof of the necessity
part is finished.

Now let us prove sufficiency. The claim is trivial if L is abelian. Then assume
that the ground field has characteristic 2 and L is nilpotent of class 2. If L has an
abelian restricted ideal of codimension 1, it is clear that 2(a, b, c, d) = 0 for any
a, b, c, d ∈ L , and so, by Lemma 2.3, u(L) is normal. Also, if dimF L/Z(L) = 3
then u(L) is normal by Lemma 2.3 and Remark 2.4. Furthermore, the claim is
clear whenever L ′ = F z for some 0 6= z ∈ L with z[2] = 0. Finally suppose
that alternative (iv) holds. We can assume that x , x1, x2, and x3 are F-linearly
independent (otherwise alternative (i) or (ii) holds). Extend the set {x, x1, x2, x3}

by central elements in order to form an F-basis of L . We have

2(x, x1, x2, x3)= [x, x1][x2, x3] + [x, x2][x1, x3] + [x, x3][x1, x2]

= λ[x, x1]
[2]
+µ[x, x2]

[2]
+ ξ [x, x3]

[2]
= 0.

From Lemma 2.3 and Remark 2.4 it follows that u(L) is normal. �

Finally, we deal with ordinary universal enveloping algebras of arbitrary Lie
algebras. Indeed, we shall prove Theorem 1.2 as a consequence of Theorem 1.1.

Proof of Theorem 1.2. Suppose first that ground field F has characteristic zero.
If L is abelian then U (L) is obviously normal. On the other hand, if U (L) is
normal then it satisfies the standard polynomial identity of degree 4 [Herstein 1976,
Section 5]. Therefore, in view of a theorem of Latysěv [Bahturin 1987, Section 6.7,
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Theorem 25], L is necessarily abelian. Now suppose p > 0. Put

L̂ :=
∑
k≥0

L pk
⊆U (L),

where L pk
is the F-vector space spanned by the set {l pk

| l ∈ L}. Then L̂ is a
restricted Lie algebra with h[p] = h p for all h ∈ L̂ . Moreover, by [Strade 2004,
Section 1, Corollary 1.1.4], we have U (L)= u(L̂), and then Theorem 1.1 applies.
Suppose first that U (L) is normal. If p > 2, Theorem 1.1 forces L̂ (and so L) to
be abelian. Now assume that p = 2 and L is not abelian. Then L̂ satisfies one of
the alternatives (i)–(iv) in the statement of Theorem 1.1. If L̂ contains an abelian
restricted ideal of codimension 1 then L contains an abelian ideal of codimension 1.
Likewise, if dimF L̂/Z(L̂)= 3, dimF L/Z(L)= 3. Observe that, as u(L̂)=U (L)
is a domain, alternative (iii) in the statement of Theorem 1.1 cannot occur. Finally,
suppose that L̂ = 〈x, x1, x2, x3〉p + Z(L̂), where x , x1, x2, and x3 are elements of
L with [x1, x2] = ξ [x, x3], [x1, x3] = µ[x, x2], [x2, x3] = λ[x, x1], and

λ[x, x1]
[2]
+µ[x, x2]

[2]
+ ξ [x, x3]

[2]
= 0

for some λ,µ, ξ ∈ F. Now, if dimF L ′ = 3, the PBW theorem for ordinary en-
veloping algebras forces λ = µ = ξ = 0. Hence L contains an abelian ideal of
codimension 1. If dimF L ′ = 2, we can suppose without loss of generality that
[x, x1] and [x, x2] are F-linearly independent and [x, x3] = α[x, x1]+β[x, x2] for
suitable α, β ∈ F. Consequently, we have

α2ξ [x, x1]
2
+β2ξ [x, x2]

2
= ξ [x, x3]

2
= λ[x, x1]

2
+µ[x, x2]

2,

and the PBW theorem gets λ= α2ξ and µ= β2ξ . Put

y := αβξ x +αx1+βx2+ x3.

Then y ∈ Z(L̂) and L̂ = 〈x, x1, x2, y〉p + Z(L̂). It follows that dimF L̂/Z(L̂)= 3
and then dimF L/Z(L) = 3 as well. Finally, if dimF L ′ = 1 then it is easy to see
that L contains an abelian ideal of codimension 1, and the necessity part is proved.
Sufficiency easily follows from Theorem 1.1 and the fact that U (L)= u(L̂). �
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BOUNDED AND UNBOUNDED CAPILLARY SURFACES IN A
CUSP DOMAIN

YASUNORI AOKI AND DAVID SIEGEL

We study asymptotic behavior of the height of a static liquid surface in a
cusp domain as modelled by the Laplace–Young capillary surface equation.
We introduce a new form of an asymptotic expansion in terms of the func-
tions defining the boundary curves forming a cusp. We are able to address
the asymptotic behavior of the capillary surface in cusp domains not previ-
ously considered, such as an exponential cusp. In addition, we have shown
that the capillary surface in a cusp domain is bounded if the contact an-
gles of the boundary walls forming a cusp are supplementary angles, which
implies the continuity of the capillary surface at the cusp.

1. Introduction

Background. In everyday life, it is often safe to assume that the surface of water
at rest is almost flat; however, careful observation shows that the surface of water
in a container can exhibit complicated geometry near the interface where the water
meets the container. One of the most extreme examples is when the container has
a sharp (cusped) boundary. As seen in the photo, the static liquid surface (capillary
surface) rises very steeply near a cusp — formed in
the case illustrated here by the tangency between a
circular cylinder and a straight wall. This behavior
can be understood through a singular solution of the
Laplace–Young capillary surface equation.

As noted in [Finn 1986], the study of a singular
capillary surface can be traced back to Brook Taylor
in 1712. Later contributions to the study of singu-
lar capillary surfaces by Concus and Finn [1969] and
Miersemann [1993] spurred considerable interest in
the field; see, for example [King et al. 1999; Scholz
2001; 2004; Norbury et al. 2005; Aoki 2007]. In
particular, Scholz’s work on capillary surfaces in a

MSC2010: 35A20, 35C20, 35J60, 76B45.
Keywords: singularity, asymptotic analysis, nonlinear elliptic PDE.
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domain containing a cusp where the boundaries can be approximated by power
series (including fractional powers) led him to conclude that “[the capillary surface]
rises with the same order [as] the order of contact of the two arcs, which form the
cusp” [Scholz 2004]. Since this is a is very intuitive statement, our curiosity led
us to ask whether this statement holds for cases that Scholz did not consider in his
paper [2004].

In this paper we extend Scholz’s results in two directions. We first consider cusp
domains not limited to the power-law cusp. Instead of approximating the boundary
by power series, we directly use the distance between two arcs forming a cusp in
the asymptotic expansion. Although one may argue that most of the shapes used in
real life applications can be approximated by power series, our main focus was to
justify the above statement in a more direct and intuitive manner, by avoiding the
extra approximation step. The second direction of extension is to include cases in
which the contact angles of the boundary walls forming a cusp are supplementary
angles. Although all the known results suggest that a capillary surface in a domain
with a cusp is unbounded, we have shown that a capillary surface can be bounded,
and hence continuous, if the contact angles are supplementary angles.

Statement of the problems. Here we state the problems we are going to consider
in this paper. We first define a cusp domain. Without loss of generality, and for
simplicity of writing, we consider the following domain (see Figure 1):

(1-1) �= {(x, y) : x > 0, f2(x) < y < f1(x)},

where

(1-2)
f1(x), f2(x) ∈ C3(0,∞), f1(x) > f2(x) for x > 0,

lim
x→0+

f1(x)= lim
x→0+

f2(x) = 0, lim
x→0+

f ′1(x)= lim
x→0+

f ′2(x) = 0.

Figure 1. The cusped domain � and its boundary.
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Also we denote the boundaries as follows:

∂�1 = {(x, y) : x > 0, y = f1(x)}, ∂�2 = {(x, y) : x > 0, y = f2(x)}.

Although we base our dicussion on this infinite domain, all of the results presented
in this paper only depend locally on a domain sufficiently close to the cusp, so the
results hold for any domain that coincides with � in a neighborhood of the origin.

We now state the partial differential equation that interests us, the Laplace–
Young capillary surface equation. Let u(x, y) be the height of a capillary surface
in domain �. It satisfies the following boundary value problem (see [Finn 1986]
for a derivation):

∇ · T u = κu in �,(1-3)

Eν1 · T u = cos γ1 on ∂�1,(1-4)

Eν2 · T u = cos γ2 on ∂�2,(1-5)

where

(1-6) T u =
∇u√

1+ |∇u|2
,

κ is the capillarity constant, Eν1 and Eν2 are exterior unit normal vectors on the
boundaries ∂�1 and ∂�2, and γ1, γ2 are the contact angles. The capillarity constant
κ can be normalized by rescaling x , y, and u. In the sequel we let κ = 1.

Here we introduce the big theta notation to replace the statement “is of the same
order as”, to make this expression more precise. If f (x) = 2(g(x)), there exist
constants k1, k2 > 0 and x0 > 0 such that

k1|g(x)|< | f (x)|< k2|g(x)| for all x < x0.(1-7)

We note that2 is a more strict order relation than that of O , i.e., if f (x)=2(g(x))
then f (x)= O(g(x)); however the converse is not true.

We can now write our core research questions as follows:

• Suppose γ1+ γ2 6= π . Does u(x, y)=2
(

1
f1(x)− f2(x)

)
hold for any f1(x)

and f2(x) satisfying (1-2)?

• How does u(x, y) behave asymptotically as x→ 0+ when γ1+ γ2 = π?

Structure of the paper. As the title of this paper suggests, there are two main parts:
unbounded and bounded cases.

In Section 2 we consider unbounded capillary surfaces in cusp domains. We
first prove in Section 2A that capillary surfaces are unbounded if γ1 + γ2 6= π .
Then in Section 2B the formal asymptotic expansion is presented. Using the for-
mal asymptotic expansion, in Section 2C we prove the asymptotic behavior of the
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solution. In Section 2D we give examples of power-law and non-power-law cusps
with the intention of comparing our findings with the results in [Scholz 2004].

In Section 3 we consider bounded capillary surfaces in cusp domains. We first
prove in Section 3A that capillary surfaces are bounded if γ1 + γ2 = π and the
curvature of the boundaries is finite. In Section 3B we show that if a capillary
surface is bounded at the cusp, then it is continuous at the cusp. Section 4 contains
concluding remarks summarizing our findings and suggesting some future exten-
sions of our results. In addition, an Appendix we have included the Concus–Finn
comparison principle and its Corollary used in Sections 2C and 3A.

2. Unbounded capillary surfaces

In this section, we assume γ1+ γ2 6= π and aim to prove that

u(x, y)=2
(

1
f1(x)− f2(x)

)
as x→ 0+,

with as few restrictions on f1(x) and f2(x) as possible.

2A. Unboundedness of the capillary surface when γ1 + γ2 6= π . We show that
u(x, y) 6= O(1). This is intuitively obvious from the remarkable result of Concus
and Finn [1969], as a cusp can be considered as a corner with zero opening angle.

Lemma 2.1 (unboundedness of u(x, y) when γ1 + γ2 6= π ). Let u(x, y) be the
solution of the boundary value problem (1-3)–(1-5).

If cos γ1+ cos γ2 > 0, then u(x, y) cannot be bounded from above.
If cos γ1+ cos γ2 < 0, then u(x, y) cannot be bounded from below.

Proof. Similar to the proof in [Concus and Finn 1969], we work by contradiction.
First consider the case cos γ1+cos γ2>0, and assume there exists a constant M>0
such that u(x, y) < M in �. Integrate the PDE (1-3) in a subdomain �ε given by

�ε = {(x, y) : 0< x < ε, f2(x) < y < f1(x)}.

By applying the divergence theorem and the boundary conditions (1-4) and (1-5),
we obtain after some calculation the equation

(2-1)
∫ ε

x=0

∫ f1(x)

y= f2(x)
u dy dx

=

∫ ε

x=0

(
cos γ1

√
1+ f ′21 +cos γ2

√
1+ f ′22

)
dx+

∫ f1(ε)

y= f2(ε)

ux
√

1+u2
x+u2

y

∣∣∣∣
x=ε

dx .

The trick is to realize that the last term of (2-1) can be bounded from below, i.e.,
ux

√

1+ u2
x + u2

y

>−1,
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which implies ∫ f1(ε)

y= f2(ε)

ux
√

1+ u2
x + u2

y

∣∣∣∣
x=ε

dx >−( f1(ε)− f2(ε)).

We now apply the assumption u(x, y) < M and the preceding inequality to (2-1)
and obtain the inequality

εM max
0<x≤ε

( f1(x)− f2(x))+ ( f1(ε)− f2(ε))

>

∫ ε

x=0

(
cos γ1

√
1+ f ′21 + cos γ2

√
1+ f ′22

)
dx .

Dividing both sides by ε > 0 and taking the limit as ε approaches 0 gives

lim
ε→0+

M max
0<x≤ε

( f1(x)− f2(x))+ lim
ε→0+

f1(ε)− f2(ε)

ε

≥ lim
ε→0+

∫ ε
x=0

(
cos γ1

√

1+ f ′21 + cos γ2
√

1+ f ′22

)
dx

ε
.

Applying the definition of the derivative together with (1-2) then gives

f ′1(0)− f ′2(0)≥
(
cos γ1

√
1+ f ′1(0)

2
+ cos γ2

√
1+ f ′2(0)

2 ),
which implies 0≥ cos γ1+cos γ2. Hence we obtain a contradiction. The proof for
the case where cos γ1+ cos γ2 < 0 can be constructed similarly. �

Lemma 2.1 and Corollary A.1 together imply that u(x, y) is unbounded at the
cusp and bounded away from the cusp.

2B. Formal asymptotic expansion of the boundary value problem (1-3)–(1-5).
The main idea is to consider an asymptotic expansion of the form

(2-2) v(x, y)=
A

f1(x)− f2(x)
+ g(x, y)

f ′1(x)− f ′2(x)
f1(x)− f2(x)

+h(x, y)
( f ′1(x)− f ′2(x))

2

f1(x)− f2(x)
,

where g(x, y), h(x, y) ∈ O(1) as x → 0+. Recalling that limx→0+ f1(x) = 0 and
limx→0+ f2(x)= 0, we have the first term significantly larger than the second term
near the cusp. Also note that the leading order term is of the same order as the
reciprocal of the distance between two boundaries measured in Ey direction.

The aim of this subsection is to find g(x, y) and h(x, y) such that (2-2) satisfies
asymptotically the PDE (1-3) and the boundary conditions (1-4) and (1-5).

For simplicity of computation, we introduce coordinate variables s and t as
follows:

s := x, t :=
2y− ( f1(x)+ f2(x))

f1(x)− f2(x)
.
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We have chosen t so that y = f1(x) when t = 1, and y = f2(x) when t =−1.

Lemma 2.2 (first two terms of the formal asymptotic expansion). In (2-2), let
A = cos γ1+ cos γ2, and

g(s, t)=−

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2

)2

+C1

(where C1 is an arbitrary constant), and h(s, t)= 0. If f1(s) and f2(s) satisfy

(2-3)
f1(s)− f2(s)= o

(
f ′1(s)− f ′2(s)

)
,

f ′′1 (s)− f ′′2 (s)
f1(s)− f2(s)

= o
(

f ′1(s)− f ′2(s)
( f1(s)− f2(s))2

)
,

f ′′′1 (s)− f ′′′2 (s)
f ′1(s)− f ′2(s)

= o
(

1
( f1(s)− f2(s))2

)
,

as s→ 0+, then

(2-4)
Eν1 · T v|t=1 = cos γ1+ o(1), Eν2 · T v|t=−1 = cos γ2+ o(1),

∇ · T v− v = o
(

1
f1(s)− f2(s)

)
as s→ 0+.

A tedious but straightforward calculation will verify this lemma. Instead of
showing this calculation, we briefly explain here how the expressions for A, g, and
h in the statement of the lemma were deduced. We first let

v(s, t)=
A

f1(s)− f2(s)
+ g(t)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

.

(It is desirable — and, as it turns out, possible — to make the function g depend
only on t , so we will suppress the dependence of g on s; the same applies to the
function h.) After some lengthy calculations with assumptions (2-3) we obtain

Eν1 · T v|t=1=
2g′(1)√

A2+ 4g′2(1)
+o(1), Eν2 · T v|t=−1=−

2g′(−1)√
A2+ 4g′2(−1)

+o(1),

∇ · T v− v =
(

4g′′(t)A2

(A2+ 4g′2(t))3/2
− A

)
1

f1(s)− f2(s)
+ o

(
1

f1(s)− f2(s)

)
.

We now impose the desired equalities (2-4) and obtain a nonlinear ordinary differ-
ential equation of the first order in g′(t),

(2-5)
4g′′(t)A2

(A2+ 4g′2(t))3/2
= A for − 1< t < 1,
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with boundary conditions

(2-6)
2g′(1)√

A2+ 4g′2(1)
= cos γ1, −

2g′(−1)√
A2+ 4g′2(−1)

= cos γ2.

Though there are two boundary conditions for this first-order ODE, note that A is an
indeterminate constant. Both g′(t) and A are determined by first integrating (2-5)
udner the boundary conditions (2-6). One essential observation from this derivation
is that the coefficient A of the leading-order term was found together with that of the
second-order term, g(t). In fact this pattern continues; the constant on the second-
order term C1 will be determined (it vanishes) at the same time as the third-order
term of the formal asymptotic expansion is found.

Lemma 2.3 (first three terms of the formal asymptotic expansion). In (2-2), let
A = cos γ1+ cos γ2,

g(t)=−

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2

)2

,

and

h(t)=−
A
4

(
δt +

t2

2

)
+

1−α
2A

g(t)2+C2,

where C2 is an arbitrary constant. If f1(s) and f2(s) satisfy the conditions

f ′1(s) > f ′2(s) for s > 0,(2-7)

f1(s)− f2(s)= o
(

f ′1(s)− f ′2(s)
)
,(2-8)

f ′′1 (s)− f ′′2 (s)
f1(s)− f2(s)

= α
( f ′1(s)− f ′2(s))

2

( f1(s)− f2(s))2
+ o

(
( f ′1(s)− f ′2(s))

2

( f1(s)− f2(s))2

)
,(2-9)

f ′′′1 (s)− f ′′′2 (s)
f ′1(s)− f ′2(s)

= O
(
( f ′1(s)− f ′2(s))

2

( f1(s)− f2(s))2

)
,(2-10)

f ′1(s)+ f ′2(s)= δ( f ′1(s)− f ′2(s))+ o( f ′1(s)− f ′2(s)),(2-11)

f ′′1 (s)+ f ′′2 (s)= O( f ′′1 (s)− f ′′2 (s)),(2-12)

as s→ 0+, where α, δ ∈ R, then

Eν1 ·T v |t=1= cos γ1+o( f ′1(s)− f ′2(s)), Eν2 ·T v |t=−1= cos γ2+o( f ′1(s)− f ′2(s)),

∇ · T v− v = o
(

f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
as s→ 0+.
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Again, a long tedious calculation will prove this lemma. We followed similar
steps to determine h(t), although solving the differential equation for h(t) was not
nearly as straightforward as for g(t). The constant C1 was determined to be 0 when
h(t) was determined and a new unknown constant C2 appeared in the third-order
term.

Comparing assumptions (2-3) with assumptions (2-8)–(2-12), we can see that
the restrictions on f1 and f2 increase as the number of terms in the formal asymp-
totic expansion increases from two terms to three terms. Although these assump-
tions are not proven to be necessary conditions for these lemmas to hold, it is our
suspicion that as the number of the terms in the asymptotic expansion increases,
the restrictions on f1 and f2 do become more strict.

2C. Asymptotic behavior of the capillary surface. The main result of Section 2
is stated and proven in this subsection. We first show that the asymptotic growth
order of the solution is the same order as the reciprocal of the distance between
two arcs forming a cusp.

Theorem 2.1 (growth order of u(x, y)). Let u(x, y) be the solution of the bound-
ary value problem (1-3)–(1-5). If f1(s) and f2(s) satisfy the conditions (2-3) and
|cos γ1| 6= 1 and |cos γ2| 6= 1, then there exist positive constants s0, k1 and k2 such
that

(2-13) k2

(
1

f1(s)− f2(s)

)
< |u(s, t)|< k1

(
1

f1(s)− f2(s)

)
, for s < s0.

Proof. The main idea of our proof is to construct a supersolution and a subsolution
by modifying the formal asymptotic expansion given in Lemma 2.2. We prove
these modified equations are in fact supersolution and subsolution by applying the
Concus–Finn comparison principle (Theorem A.1). Let

v(s, t; K1, K2)=
A(K1)

f1(s)− f2(s)
+ g(t; K1)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

+ K2,

where

(2-14)

A(K1)= cos γ1+ cos γ2+ K1,

g(t; K1)=−
A

A− 1
3 K1

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2
−

K1

6
t
)2

;

here we choose K1 and K2 appropriately to construct the supersolution and the
subsolution. The trick of this proof is to realize that A and g(t), the first and
second terms of the formal asymptotic expansion, need to be modified to obtain a
supersolution and a subsolution. We first impose the following conditions on K1
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so that the quantities in (2-14) behave reasonably:

|K1|< |cos γ1+ cos γ2|,(2-15)

|K1|< 6(1− |cos γ1|),(2-16)

|K1|< 6(1− |cos γ2|).(2-17)

We restrict the choice of K1 so that the sign of A(K1) only depends on the sign of
cos γ1+cos γ2. Also, if K1 is chosen to satisfy (2-15)–(2-17), then g(t, K1) is real
and bounded. After some calculations assuming (2-3), we obtain

Eν1 · T v |t=1 = cos γ1+
1
3 K1+o(1), Eν2 · T v |t=−1 = cos γ2+

1
3 K1+o(1),(2-18)

∇ · T v− v =− 1
3 K1

1
f1(s)− f2(s)

− K2+ o
(

f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
,(2-19)

as s→0+. The essential observation in this step of the proof is that the expressions
in (2-18) do not depend on K2 including the “small o” terms. Similarly, (2-19) has
K2 dependence only at the second term and not in the “small o” term.

We now construct a function v+ that satisfies inequalities (A-1)–(A-4) in the
Appendix, and is therefore a supersolution. We denote the associated constants
by K+1 and K+2 ; i.e., v+ = v(s, t; K+1 , K+2 ). Firstly, K+1 are chosen to be a small
enough positive real number so as to satisfy (2-15)–(2-17). Then we choose a
constant s+0 > 0 so that for all s < s+0 the inequalities

Eν1 · T v+ |t=1− cos γ1 > 0, Eν2 · T v+ |t=−1− cos γ2 > 0,(2-20)

∇ · T v+− v++ K+2 < 0.(2-21)

are satisfied. Based on our previous observation we note that the choice of s+0 is
independent of K+2 . Let �+0 be the subdomain of � such that s < s+0 . By adding
a restriction on K+2 to be a positive real number, it follows from (2-21) that

∇ · T v+− v+ < 0 in �+0 .

Note that v+ now satisfies conditions (A-1)–(A-3) of the Concus–Finn comparison
principle (Theorem A.1). It remains to choose K+2 so as to satisfy condition (A-4).
According to Corollary A.1, u(s, t) is bounded at s = s+0 . Hence there exists K+2
such that

v+ > u on s = s+0 .

Thus by Theorem A.1 we have shown that there exists �+0 , K+1 , K+2 such that

v+(s, t; K+1 , K+2 ) > u(s, t) in �+0 .
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Similarly we can construct a subsolution v−(s, t; K−1 , K−2 ) such that

v−(s, t; K−1 , k−2 ) < u(s, t) in �−0 .

Hence in �+0 ∩�
−

0 we have v− < u < v+, i.e.,

A(K−1 )
f1(s)− f2(s)

+ g(t; K−1 )
f ′1(s)− f ′2(s)
f1(s)− f2(s)

+ K−2 < u

and

u <
A(K+1 )

f1(s)− f2(s)
+ g(t; K+1 )

f ′1(s)− f ′2(s)
f1(s)− f2(s)

+ K+2 .

Since K+1 and K−1 were chosen to satisfy (2-15), A(K+1 ) and A(K−1 ) have the same
sign. Without loss of generality assume A(K+1 ) > 0. Let

m1(s)= A(K+1 )+
(

max
−1<t<1

{
g(t; K+1 )( f ′1(s)− f ′2(s))

}
+ K+2 ( f1(s)− f2(s))

)
,

m2(s)= A(K−1 )+
(

min
−1<t<1

{
g(t; K−1 )( f ′1(s)− f ′2(s))

}
+ K−2 ( f1(s)− f2(s))

)
.

Since f ′1(s)− f ′2(s) and f1(s)− f2(s) are o(1) and continuous, there exists s0 > 0
so that m1(s),m2(s) > 0 for s < s0. By choosing

(2-22) k1 = max
0<s<s0

m1(s), k2 = min
0<s<s0

m2(s),

we obtain (2-13). �

Note that the proof holds for arbitrarily small |K±1 |. Hence it is natural to guess
that (cos γ1+cos γ2)/( f1(s)− f2(s)) is the correct leading-order term of the asymp-
totic expansion. We now show that the leading-order term of the formal asymptotic
expansion is in fact the first-order term of the asymptotic expansion of u(s, t).

Theorem 2.2 (leading-order behavior of u(x, y)). Let u(x, y) be the solution of
the boundary value problem (1-3)–(1-5). Assume that f1(s) and f2(s) satisfy the
conditions (2-8)–(2-12). Then

(2-23) u(s, t)=
cos γ1+ cos γ2

f1(s)− f2(s)
+ O

(
f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
as s→ 0+.

Proof. We let

v(s, t; K3, K4, K5)=
A

f1(s)− f2(s)
+ g(t, K3)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

+h(t; K4)
( f ′1(s)− f ′2(s))

2

f1(s)− f2(s)
+ K5,
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where

A = cos γ1+ cos γ2,

g(t; K3)=−

√
1−

(
cos γ1(t + 1)+ cos γ2(t − 1)

2

)2

+ K3,

h(t; K4)=−
A
4

(
δt + t2

2

)
+

1−α
2A

{
1−

(
cos γ1(t+1)+ cos γ2(t−1)

2

)2}
+

K4

2
t2.

Unlike the proof of Theorem 2.1, we can choose K3 and K4 as any real numbers.
After some calculations assuming (2-8)–(2-12), we obtain

Eν1 · T v |t=1 = cos γ1+ K4
( f ′1(s)− f ′2(s))(
A2+4(g′(t))2

)
3/2
+ o( f ′1(s)− f ′2(s)),(2-24)

Eν2 · T v |t=−1 = cos γ2+ K4
( f ′1(s)− f ′2(s))(
A2+4(g′(t))2

)
3/2
+ o( f ′1(s)− f ′2(s)),(2-25)

∇ · T v− v =
{(
−

12g′(t)t
A2+ 4(g′(t))2

+
4A2(

A2+ 4(g′(t))2
)

3/2

)
K4− K3

}
f ′1(s)− f ′2(s)
f1(s)− f2(s)

−K5+ o
(

f ′1(s)− f ′2(s)
f1(s)− f2(s)

)
,(2-26)

as s→ 0+.
We now construct a supersolution. Let v+ denote the supersolution, with asso-

ciate constants K+3 , K+4 , K+5 ; i.e., v+ = v(s, t; K+3 , K+4 , K+5 ). We first choose the
positive constant K+4 arbitrarily. Then we choose K+3 big enough so that{(
−

12g′(t)t
A2+ 4(g′(t))2

+
4A2(

A2+ 4(g′(t))2
)

3/2

)
K+4 − K+3

}
< 0 for − 1< t < 1.

We now choose s+2 > 0 so that

Eν1 · T v |t=1− cos γ1 > 0, Eν2 · T v |t=−1− cos γ2 > 0, ∇ · T v− v+ K+5 < 0

for 0< s< s+2 . Let�+2 be the subdomain of� such that s< s+2 . By Corollary A.1,
we know that u(s+2 , t) is bounded; hence there exists a large enough positive con-
stant K+5 so that

v+ > u on s = s+2 .

Thus by the Concus–Finn comparison principle (Theorem A.1) we have

v+ > u in �+2 .
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Similarly we can construct a subsolution v− by choosing suitable K−3 , K−4 , K−5
and s−2 . Thus we can bound the solution u(s, t) by v− and v+; i.e.,

v− < u < v+ in �+2 ∩�
−

2 ,

and (2-23) holds. �

From this section, we conclude that the height of a capillary surface near a cusp
is proportional to the reciprocal of the distance between the two arcs forming the
cusp, assuming these arcs satisfy (2-3).

2D. Examples of cusp domains. In the previous subsection, we have shown the
behavior of the capillary surface near a cusp under certain assumptions f1(x) and
f2(x) giving the shape of the boundaries. Those assumptions, expressed by (2-3)
or (2-8)–(2-12), are left in these forms in order to make the theorem as general
as possible. On the other hand, it is hard to grasp what kind of cusps are allowed
or not. In this subsection, we will show through examples when the theorem is
applicable and when it is not.

It is easy to show that if the difference between f1 and f2 can be written in the
following form, these functions satisfy (2-8)–(2-10):

(2-27) f1(x)− f2(x)= c xa0 exp
( ∞∑

i=1

ai xbi

)
,

where c > 0, a1 < 0, b1 < 0, bi+1 > bi . An alternative way to write this is

(2-28) f1(x)− f2(x)= exp
(∫ x

c

∑
∞

i=0 ãiζ
b̃i∑

∞

i=0 aiζ bi
dζ
)
,

where c> 0, b0− b̃0 ≥ 1, bi+1 > bi , a0 > 0 and ã0 > 0. As (2-8)–(2-10) are stricter
requirements for f1(x) and f2(x) than (2-3), if f1(x) − f2(x) can be written as
(2-27) or (2-28), then f1 and f2 satisfy (2-3).

Note that (2-11) and (2-12) can be interpreted as saying that some osculat-
ing cusps (cusps with boundaries tangent to second order) are not allowed, and
Equation (2-7) can be interpreted as saying that infinitely oscillating cusp bound-
aries are not allowed.

Example 1 (fractional power cusp). We now consider a cusp that can be analyzed
through the result of Scholz. Consider (2-28) and let b0 > 1, ãi = ai bi and b̃i =

bi − 1. Then we have

(2-29) f1(x)− f2(x)= c̃
∞∑

i=0

ai xbi .



BOUNDED AND UNBOUNDED CAPILLARY SURFACES IN A CUSP DOMAIN 155

ï!"#

ï#"$

$"$

&"#

ï&"#

ï'&"#

(

$"$!#$"$&# $"'$"$#$"$

ï'$"$

0.70.6

x

1.0

−0.5

0.90.80.3

−0.25

0.1 0.40.20.0

−0.75

0.5

−1.0

0.25

0.0

Figure 2. Left: fractional power cusp (Example 1). Right: expo-
nential cusp (Example 2). In both cases, p = 1 and q =−3.

To be more specific, we consider the cusp boundaries

(2-30) f1(x)= p (x5/2
+ x3), f2(x)= q (x5/2

+ x3),

with constants p > q (see Figure 2, left). According to Theorem 2.2, we obtain
the asymptotic expansion

u(x, y)=
cos γ1+ cos γ2

(p− q)(x5/2+ x3)
+ O(x−1)

=
cos γ1+ cos γ2

p− q

(
1

x5/2 −
1
x2 +

1
x3/2

)
+ O(x−1)

as x→0+. We note that this result is consistent with that of Scholz. It is noteworthy
that by finding the first order term of our asymptotic expansion we find the first
three terms of the asymptotic series solution in power series.

Example 2 (exponential cusp). We now consider cusps to which the results of
Scholz do not apply. Equation (2-27) implies that f1(x) and f2(x) can contain
exponential terms. We now consider a very sharp cusp, an “exponential cusp”,
where

f1(x)= p e−1/x2
, f2(x)= q e−1/x2

.

with constants p > q (see Figure 2, right). According to Theorem 2.2, we obtain
the asymptotic expansion

u(x, y)=
cos γ1+ cos γ2

p− q
e1/x2
+ O(x−3) as x→ 0+.

This example shows that our result has extended the result of Scholz on the leading
order behavior of a capillary surface in a cusp domain.
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Figure 3. Osculatory cusp (p = 3, q = 1).

Example 3 (osculatory cusp). We now consider a case where Theorem 2.2 cannot
be applied. Consider the cusp boundaries

(2-31) f1(x)= x2
+ px3, f2(x)= x2

+ qx3,

with constants p > q (see Figure 3).
These functions do not satisfy (2-11)–(2-12); hence Theorem 2.2 does not apply.

On the other hand, if |cos γ1| 6= 1 and |cos γ2| 6= 1, Theorem 2.1 applies, as this f1

and f2 satisfy (2-3). Hence even the case of the osculating cusp, we have shown
that the height of the capillary surface rises as the same order as the reciprocal of
the distance of two arcs forming a cusp, i.e.,

(2-32) u(x, y)=2
( 1

x3

)
.

As the two functions f1 and f2 forming a cusp only appear as ( f1(x)− f2(x)) or
( f ′1(x)− f ′2(x)) in the asymptotic expansion (2-2), it is not immediately obvious
as to why we cannot conduct the asymptotic analysis of this problem similarly to
the case where f1(x)= px3, f2(x)= qx3. However, the difference in asymptotic
order between f1(x)− f2(x) on the one hand and f1(x) or f2(x) on the other be-
comes crucial in calculating the asymptotic relations (2-24)–(2-26) of the boundary
conditions and the PDE. For example, for the calculation of (2-24), since

Eν1 =
(− f ′1(x), 1)
√

1+ ( f ′1(x))
2
,

the function f1(x) appears without subtracting f2(x). As a result, the asymptotic
relation (2-24) does not hold for the case of osculatory cusp. Thus for the osculatory
cusps, we cannot use the asymptotic expansion (2-2) to prove the leading order
behavior.
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3. Bounded capillary surfaces

In this section we assume γ1+ γ2 = π and prove that u(x, y) is bounded.

3A. Proof of the boundedness of the capillary surface when γ1 + γ2 = π .

Theorem 3.1 (boundedness of u(x, y) when γ1 + γ2 = π ). Let u(x, y) be the
solution of the boundary value problem (1-3)–(1-4) with γ1 = γ and γ2 = π − γ .
If the boundaries ∂�1 and ∂�2 have finite curvatures in the neighborhood of the
cusp, in other words, if there exists εo such that

(3-1) f1(x), f2(x) ∈ C2([0, εo]),

then u(x, y) is bounded.

Proof. It follows immediately from Corollary A.1 that u(x, y) is bounded in the
domain away from the origin. Hence our problem reduces to show that u(x, y) is
bounded in the neighborhood of the origin.

First we show that u(x, y) is bounded above at the origin by using the Concus–
Finn comparison principle (Theorem A.1). In order to apply Theorem A.1, we need
to construct a surface that satisfies (A-1)–(A-4). The most difficult part of this proof
is to construct a surface that satisfies both (A-2) and (A-3). Our unique idea is to
construct a surface that satisfies (1-4) exactly hence (A-2) and also satisfies (A-3).
Such surface can be constructed by a surface with contour lines parallel to the
boundary ∂�1. In other words by letting the height of the surface only depends on
the distance from the boundary ∂�1, we can easily construct a surface with exact
constant contact angle γ on this boundary. We choose a surface so that the height
and the mean curvature is bounded so that Inequalities (A-1) and (A-4) can easily
be satisfied by shifting this surface upwards.

We now translate the above statement to the precise language of mathematics.
Without loss of generality we assume 0 ≤ γ ≤ π/2. First we define a coordinate
system such that the one family of the coordinate curves is parallel curves of the
boundary ∂�1 and another family of the coordinate curves is lines perpendicular
to the boundary ∂�1. Let s and t be new coordinate variables defined implicitly as
the following (note that s here has different meaning from s used in Section 2):

(3-2) (x, y)= (s, f1(s))− t Eν1(s),

where Eν1(s) is the exterior unit normal vector of the boundary ∂�1 at (s, f1(s)).
More explicitly, the coordinate variables of Cartesian coordinate system x and y
can be written using the new coordinate variables s and t as follows:

(3-3) x = s+ t
f ′1(s)

√

1+ ( f ′1(s))
2
, y = f1(s)− t

1
√

1+ ( f ′1(s))
2
.
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Figure 4. Left: coordinate lines of the s-t coordinate system.
Right: the domain �0.

The variable t can be interpreted as the distance of the point from the boundary
∂�1. The coordinate curves are sketched in Figure 4, left.

The Jacobian of (3-3) is calculated to be

∂(x, y)
∂(s, t)

=
f ′1(s)

2
− 1

√

1+ ( f ′1(s))
2

(
1+ t

f ′′1 (s)
(1+ ( f ′1(s))

2)3/2

)
.

This gives that the point (x, y) in the Cartesian coordinate system can be specified
uniquely by the new coordinate variables (s, t) defined by (3-3) if both

(3-4) f ′1(s)
2
− 1 6= 0

and

(3-5) 1+ t
f ′′1 (s)

(1+ ( f ′1(s))
2)3/2

6= 0.

Since f1(s) ∈ C2([0, εo]) and lims→0+ f1(s) = 0, there exists 0 < s0 ≤ ε0 so that
(3-4) is satisfied for all s ∈ [0, s0]. Also due to the smoothness of f1(s), we can
find t0 > 0 such that (3-5) holds for all t ∈ [0, t0] in s ∈ [0, s0]. That is to say, the
coordinate system defined in (3-3) is valid in the domain

�d := {(s, f1(s))− t Eν1(s) ∈ R2
: 0≤ s ≤ s0, 0≤ t ≤ t0}.

Then we choose the subdomain

�0 :=�d ∩�ε0,

where�ε0 := {(x, y)∈R2
: 0< x <ε0, f2(x)< y< f1(x)}, as depicted in Figure 4,

right. Since �̄0 contains the cusp at the origin, finding an upper bound for the sur-
face u in domain �0 by using Theorem A.1 would prove that the capillary surface
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Figure 5. Cross section of a surface v+(s, t) on the line of con-
stant s: Choice of function g(t) for γ 6= 0 (left) and for γ = 0
(right).

is bounded above at the cusp. Using the parameters t and s, we now construct a
surface v+(s, t) in �0, with components (x, y, z), as follows:
(3-6)

x(s, t)= s+ t
f ′1(s)

√

1+( f ′1(s))
2
, y(s, t)= f1(s)− t

1
√

1+( f ′1(s))
2
, z(s, t)= g(t).

The choice of the height function g(t) depends on the contact angle γ . In our
opinion, the simplest choice such that the surface v+ satisfies (1-4) exactly and
also satisfies (A-3) is

(3-7) g(t)=

{
− cot γ t + K for γ 6= 0,

−

√

t2
0 − (t − t0)2+ K for γ = 0,

where K is a constant that we will specify later. The cross section of this surface
on a line of constant s is depicted in Figure 5, left.

The surface v+(s, t) can be sketched as in Figure 6. For example, if the curve
∂�1 is a part of a circle, then the surface v+(s, t) for the case γ 6= 0 becomes a
part of a cone, and for the case γ = 0 it becomes a part of a torus.

We now verify that the surface v+(s, t) satisfies (1-4) exactly and also satisfies
(A-3). We first consider the case γ 6= 0, as the vector T v+ can be interpreted as
a unit downwards vector of the surface v+, it follows immediately from Figure 5
(left) that T v+(s, t) can be written as

T v+ = cos γ Eν1− sin γ ẑ,
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Figure 6. Sketch of the surface v+(s, t) for γ 6= 0 (left) and for
γ = 0 (right).

where ẑ is a unit vector in z direction. Noting that the vector Eν1 is orthogonal to ẑ,
we obtain that (1-4) is satisfied exactly by the surface v+(s, t), i.e.,

Eν1 · T v+ = cos γ on ∂�1 ∩ ∂�0.

We now verify that the surface v+(s, t) satisfies Inequality (A-3). By noticing Eν2

and ẑ are orthogonal and both Eν1 and Eν2 are unit vectors, we obtain the inequality

Eν2 · T v+ = cos γ Eν1 · Eν2, >− cos γ,= cos(π − γ ).

Although the case of γ = 0 may look complicated, it follows immediately from
Figure 5 (right) that the angle between the unit downward normal vector of v+ and
Eν1 are parallel on the boundary, on ∂�1 ∩ ∂�0,

Eν1 · T v+ = 1= cos 0.

Also it follows immediately from the definition of the differential operator T that
|T v+| ≤ 1; see (1-6). By noting that Eν2 is a unit vector, i.e., |Eν2| = 1, we have

ν2 · T v+ >−1= cos(π − 0).

Hence the surface v+(s, t) defined by (3-6)–(3-7) satisfies Inequalities (A-2) and
(A-3). We now show that the surface v+(s, t) satisfies (A-1) by choosing large
enough constant K .

Since ∇ · T v+ is twice the mean curvature of the surface v+, it is given by the
well-known formula (see [Moon and Spencer 1970], for example)

∇ · T v+ = −2H(v+)=−
E N +GL − 2F M

EG− F2 ,
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where

E = (xs)
2
+ (ys)

2
+ (zs)

2, F = xs xt + ys yt + zszt , G = (xt)
2
+ (yt)

2
+ (zt)

2,

and

L =

∣∣∣∣∣∣
xss yss zss

xs ys zs

xt yt zt

∣∣∣∣∣∣
√

EG− F2
, M =

∣∣∣∣∣∣
xst yst zst

xs ys zs

xt yt zt

∣∣∣∣∣∣
√

EG− F2
, N =

∣∣∣∣∣∣
xt t yt t zt t

xs ys zs

xt yt zt

∣∣∣∣∣∣
√

EG− F2
.

After some calculation we obtain

∇ · T v+ =
g′′1 (t)

(1+ (g′(t))2)3/2

+
f ′′1 (s)

(1+ ( f ′1(s))
2)3/2

(
1+ t

f ′′1 (s)
(1+ ( f ′1(s))

2)3/2

) g′(t)√
1+ (g′(t))2

.

Recalling that we have chosen the domain �0 so that (3-5) holds in �0 and that
f ′′1 (s) ∈ C2([0, εo]), in order to show ∇ · T v+ is bounded, all we need to show
is that g′′1 (t)/(1+ (g

′(t))2)3/2 is bounded, that is to say, the curvature of the curve
g(t) is bounded. For the case of γ 6= 0, we have chosen g(t) to be a linear function,
so g′′(t) is zero. For the case of γ = 0, we have chosen g(t) to be the part of a
circle with radius t0, so g′′1 (t)/(1+ (g

′(t))2)3/2 = 1/t0. In either case, it follows
that ∇ · T v+ is bounded. We now consider the quantity ∇ · T v+− v+, which can
be written as

∇ · T v+− v+ =∇ · T v+− (g(t)+ K ).

It follows immediately from the choice of g(t) that it is bounded in the domain
�̄0 and also we have shown that twice the mean curvature ∇ ·T v+ is bounded and
does not depend on K . Hence there exists a constant K0 such that

∇ · T v+− v+ =∇ · T v+− (g(t)+ K )≤ 0 for all K ≥ K0.

Thus we have shown that the surface v+ satisfies the (A-1) when K > K0.
We now put the last piece of the puzzle in place by showing v+ satisfies (A-4) for

an appropriate choice of the constant K . Corollary A.1 implies that the capillary
surface u is bounded away from the cusp, hence it is bounded on

∂�0\(∂�1 ∪ ∂�2 ∪ {(0, 0)}).

Since g(t) is bounded in the domain �̄0, there exists a constant K1 ≥ K0 such that
g(t)+K1 > u on ∂�0\(∂�1∪∂�2∪{(0, 0)}). Thus the surface v+ satisfies (A-4)
when K = K1.
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We have shown that the surface v+(s, t) defined in (3-6)–(3-7) satisfies inequal-
ities (A-1)–(A-4), so by the Concus–Finn comparison principle we have

v+(s, t)≥ u(x, y) in �0.

Therefore the capillary surface at the cusp is bounded above when γ1+γ2=π and
each boundary (∂�1, ∂�2) has finite curvature near the cusp.

We can follow the similar steps for constructing the subsurface to show that this
capillary surface is bounded below. We first construct a coordinate system such that
one of the families of the coordinate curves is parallel curves of the boundary ∂�2

and another is perpendicular lines of the boundary ∂�2. Then choose a surface
v− so that the heigh only depends on the distance from ∂�2 which satisfies the
contact angle condition exactly on ∂�2 and also it satisfies Eν1 · T v−− cos γ ≤ 0.
By choosing v− to have the bounded height and the finite mean curvature, we can
shift this surface downwards enough to satisfy ∇ ·T v−−v− ≥ 0 in �0 and v− ≤ u
on ∂�0\(∂�1∪∂�2∪{(0, 0)}). Then using the Concus–Finn comparison principle,
we can prove that u(x, y) is bounded below.

Thus by showing that there exist bounded sub- and supersolutions of the Laplace–
Young capillary surface equation, we have proven that the capillary surface is
bounded if the contact angles of the boundaries are supplementary angles and
boundaries have finite curvatures near the cusp. �

3B. Proof of the continuity of the capillary surface when γ1 + γ2 = π .

Theorem 3.2. If the capillary surface satisfies the conditions in Theorem 3.1, it is
continuous at the cusp.

Proof. Having established the boundedness of the solution, we can use the methods
of [Lancaster and Siegel 1996] to establish a parametric description of the surface,
with parameter domain at first the unit disk. The above comparison surface is
needed in proving Case 5 (page 173) in that reference. Assuming the surface is
discontinuous at the corner implies that an arc of the unit circle corresponds to the
points on the surface above the corner point. A change of coordinates allows us to
use the half-unit disk as the parameter domain, where the boundary line segment
corresponds to the points on the surface above the corner point. Following the proof
of Step 3 (page 175) of [Lancaster and Siegel 1996], for two different heights, there
are level curves going through the corner point, and this leads to a contradiction
(last paragraph of page 175 of the same reference). �

4. Concluding remarks

We have shown that the validity of the statement “[the capillary surface] rises with
the same order like the order of contact of the two arcs, which form the cusp”
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[Scholz 2004] is not restricted to power-law cusps; it can be extended further. Our
proof directly uses the the functions f1(x) and f2(x) without approximating them
by series. This idea has given us an advantage in the sense that our leading order
term expression gives clearer intuitive understanding of the relationship between
the shape of the domain and the shape of the singular capillary surface. Also as
shown in an Example in Subsection 2.4.1, our leading order term gives first three
terms of the power series asymptotic expansion, owing to the fact we have avoided
approximating the boundary by the power series.

Even though we have extended the results beyond power-series cusps, our re-
sults still suffer from certain restrictions, including (2-8)–(2-12). Also a complete
asymptotic series solution maybe desirable in order to claim a complete under-
standing of the asymptotic behavior; however, this will require further assumptions
to the boundary functions f1 and f2. The authors suspect that functions f1 and f2

of a form similar to the right-hand side of (2-27) can be potential candidates for a
type of cusp for which a complete asymptotic series can be determined.

Also we have shown the previously unknown phenomenon of a bounded capil-
lary surface in a cusp domain is possible when the contact angles of the two walls
are supplementary (i.e., γ1+γ2= π ). Although our proof covers most of the cases
when the boundaries are smooth except at the cusp, the behavior of the capillary
surface is unknown when the curvature of the boundary is not finite at the cusp.
For example, it is unknown whether or not the capillary surface is bounded in a
cusp domain bounded by f1= x3/2 and f2=−x3/2 when the contact angles of the
two walls are supplementary.

The phenomenon that the capillary surface can be bounded or unbounded in a
cusp domain depending on the contact angle can be interesting physically, as it in-
dicates that a gradual change in the contact angle (e.g., by changing the temperature
of the liquid) can cause a dramatic change in the liquid surface from unbounded
to bounded. However, as the bounded capillary surface in a cusp domain only
appears when the contact angles are exactly supplementary, it is not unknown to
the authors how easily this phenomena can be observed through an experiment.

Thus we end this paper by remarking that the further exploration of singular cap-
illary surfaces through theoretical, experimental and possibly numerical analyses
is desired.

Appendix: The Concus–Finn comparison principle

In Sections 2C and 3A we have used the Concus–Finn comparison principle. We
present it here for readers unfamiliar with it; see [Finn 1986, pages 110–113;
1989] for detailed discussions and proofs. We use the following formulation of
the comparison principle:
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Theorem A.1 (supersolution). Let u(x, y) be a solution of the boundary value
problem (1-3)–(1-5) and let�0 be a subdomain of�, with boundary ∂�0. Suppose
a function v+(x, y) satisfies the inequalities

∇ · T v+− v+ ≤ 0 in �0,(A-1)

Eν1 · T v+− cos γ1 ≥ 0 on ∂�1 ∩ ∂�0,(A-2)

Eν2 · T v+− cos γ2 ≥ 0 on ∂�2 ∩ ∂�0,(A-3)

v+(x, y)≥ u(x, y) on ∂�0\(∂�1 ∪ ∂�2 ∪ {(0, 0)}).(A-4)

Then v+(x, y) is a supersolution of the boundary value problem (1-3)–(1-5), i.e.,

v+(x, y)≥ u(x, y) in �0.

A similar statement holds for subsolutions.

Also we make use of one of the corollaries of the comparison principle to con-
struct an upper bound for the solution; see [Concus and Finn 1974] or pages 113–
114 of [Finn 1986].

Corollary A.1 (bound by hemispheres). Let u(x, y) be a solution of the bound-
ary value problem (1-3)–(1-5) and Br0(x0, y0) a disk of radius r0 > 0 centered at
(x0, y0). If Br0(x0, y0)⊆�, then

−

( 1
r0
+ r0

)
≤ u(x, y) ≤ 1

r0
+ r0 in Br0(x0, y0).(A-5)

Recalling from (1-2) that the boundary is assumed to be of class C3 away from
the origin, it follows immediately from Corollary A.1 that u(x, y) can only be
unbounded at the origin (cusp).
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ON ORTHOGONAL POLYNOMIALS WITH RESPECT TO
CERTAIN DISCRETE SOBOLEV INNER PRODUCT

FRANCISCO MARCELLÁN, RAMADAN ZEJNULLAHU,
BUJAR FEJZULLAHU AND EDMUNDO HUERTAS

In this paper we deal with sequences of polynomials orthogonal with respect
to the discrete Sobolev inner product

〈 f, g〉S =
∫ ∞

0
ω(x) f (x)g(x) dx+M f (ξ)g(ξ)+ N f ′(ξ)g′(ξ),

where ω is a weight function, ξ ≤ 0, and M, N ≥ 0. The location of the
zeros of discrete Sobolev orthogonal polynomials is given in terms of the ze-
ros of standard polynomials orthogonal with respect to the weight function
ω. In particular, for ω(x) = xαe−x we obtain the asymptotics for discrete
Laguerre–Sobolev orthogonal polynomials.

1. Introduction

Polynomials orthogonal with respect to an inner product

(1) 〈 f, g〉 =
∫

E
ω(x) f (x)g(x) dx +M f (ξ)g(ξ)+ N f ′(ξ)g′(ξ),

where ξ is a real number and dµ is a positive Borel measure supported on an infinite
subset E of the real line have been considered by several authors (see, for instance,
[Alfaro et al. 1992; López et al. 1995; Marcellán and Ronveaux 1990; Marcellán
and Van Assche 1993] and the references therein). They are known in the literature
as Sobolev-type or discrete Sobolev orthogonal polynomials. Special attention
has been paid to their algebraic and analytic properties of these polynomials, in
particular, the distribution of their zeros taking into account the location of the
point ξ with respect to the set E .

When E is the interval [0,+∞) and ξ = 0, Meijer [1993a] analyzed some
analytic properties of the zeros of the so called discrete Sobolev orthogonal poly-
nomials (1). Some results of [Meijer 1993a] are direct generalizations of the re-
sults of [Koekoek and Meijer 1993], where the weight function is the Laguerre

MSC2010: primary 33C47; secondary 42C05.
Keywords: orthogonal polynomials, discrete Sobolev polynomials, Laguerre polynomials,

asymptotics.
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weight ω(x) = xαe−x . Koekoek and Meijer established properties of the discrete
Laguerre–Sobolev polynomials such as their representation as a hypergeometric
series, an holonomic second order linear differential equation associated with them,
properties of the zeros, and a higher-order recurrence relation that such polynomials
satisfy. The asymptotic properties of these discrete Laguerre–Sobolev polynomials
have been studied in [Álvarez-Nodarse and Moreno-Balcázar 2004; Marcellán and
Moreno-Balcázar 2006], while the analysis of convergence of the Fourier expan-
sions in terms of such polynomials was done in [Fejzullahu and Marcellán 2009].

In this paper we consider the discrete Sobolev polynomials {Ŝn}n≥0 orthogonal
with respect to (1) where E =[0,+∞) and ξ < 0. We show that these polynomials
can be expressed as

Ŝn(x)= P̂n(x)+ An,1(x − ξ)P̂
[2]
n−1(x)+ An,2(x − ξ)2 P̂ [4]n−2(x),

where {P̂n}n≥0 and {P̂ [k]n }n≥0, k ∈ N, are the sequences of monic polynomials or-
thogonal with respect to the weight functions ω( · ) and ( · −ξ)kω( · ), respectively.
Moreover, the behavior of the coefficients An,1 and An,2 is studied in more detail.
In particular, when ω is the Laguerre weight, we obtain some asymptotic properties
for the sequence of discrete Laguerre–Sobolev orthogonal polynomials.

The structure of the manuscript is as follows. In Section 2 we give some basic
background concerning polynomial perturbations of a measure as well as inter-
lacing properties for the zeros of the corresponding orthogonal polynomials. We
point our that the results presented therein are of independent interest in terms of
the core of our contribution. Indeed, they constitute an alternative approach in
the subject. In Section 3, a representation of monic polynomials orthogonal with
respect to the inner product (1) is given in terms of polynomial orthogonal with
respect to polynomial perturbations of the weight function. Some results about
their zeros are deduced. In Section 4 we focus our attention on the asymptotics
of discrete Laguerre–Sobolev orthogonal polynomials. More precisely, we obtain
outer relative asymptotics, a Mehler–Heine formula and the Plancherel–Rotach
outer asymptotics for such orthogonal polynomials.

Throughout this paper positive constants are denoted by c, c1, . . ., and they may
vary at every occurrence. The notation un ∼= vn means that the sequence {un/vn}n

converges to 1. We will denote by k(πn) the leading coefficient of any polynomial
πn and π̂n(x)= (k(πn))

−1 πn(x).

2. Auxiliary results

Let ω denote a weight function on (0,∞), i.e., ω(x)≥ 0 and all moments

cn =

∫
∞

0
ω(x)xn dx, n = 0, 1, . . .
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exist. Let {P̂n}n≥0 denote the sequence of monic polynomials orthogonal (SMOP,
in short) with respect to the standard inner product

〈 f, g〉 =
∫
∞

0
ω(x) f (x)g(x) dx .

In particular, from the moments we get an explicit expression of the SMOP.
Indeed, we get

P̂0(x)= 1

and

(2) P̂n(x)=
1

1n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 . . . cn

c1 c2 c3 . . . cn+1

c2 c3 c4 . . . cn+2

. . . . . . .

cn−1 cn cn+1 . . . c2n−1

1 x x2 . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1,

where

1n−1 =

∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 . . . cn−1

c1 c2 c3 . . . cn

c2 c3 c4 . . . cn+1

. . . . . . .

cn−1 cn cn+1 . . . c2n−2

∣∣∣∣∣∣∣∣∣∣
, n ≥ 1,

are the Gram determinants.
The n-th reproducing kernel for ω is

Kn(x, y)=
n∑

k=0

P̂k(x)P̂k(y)

‖P̂k‖
2
ω

.

Here, ‖P̂n‖
2
ω = 〈P̂n, P̂n〉. Because of the Christoffel–Darboux formula, it may also

be expressed as

Kn(x, y)=
1

‖P̂n‖
2
ω

P̂n+1(x)P̂n(y)− P̂n(x)P̂n+1(y)
x − y

.

The confluent formula reads as

(3) Kn(x, x)=
n∑

k=0

(P̂k(x))2

‖P̂k‖
2
ω

=
1

‖P̂n‖
2
ω

(
P̂ ′n+1(x)P̂n(x)− P̂ ′n(x)P̂n+1(x)

)
.

In the same way we can describe the SMOP {P̂ [k]n }n≥0, orthogonal with respect
to the inner product

〈 f, g〉k =
∫
∞

0
(x − ξ)kω(x) f (x)g(x) dx,
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where ξ ≤ 0. For n ≥ 1, they are given by the determinant (2) where ci is replaced
by dk

i , k ∈ N, where

(4) dk
n =

∫
∞

0
(x − ξ)kω(x)xn dx = dk−1

n+1 − ξdk−1
n , n = 0, 1, . . . ,

and cn = d0
n . In the sequel, we will set

‖P̂ [k]n ‖
2
ω,k =

∫
∞

0
(x − ξ)kω(x)

(
P̂ [k]n (x)

)2 dx .

Proposition 1. Let Dk
n−1 = det[ak

i j ]0≤i, j≤n−1, where ak
i j = dk

i+ j , k ∈ N. Then

(5) Dk
n−1 = (−1)n Dk−1

n−1 P̂ [k−1]
n (ξ),

with D0
n−1 =1n−1.

Proof. For n ≥ 1 and k ∈ N,

(6) P̂ [k−1]
n (x)=

1

D[k−1]
n−1

∣∣∣∣∣∣∣∣∣∣∣

dk−1
0 dk−1

1 . . . dk−1
n

dk−1
1 dk−1

2 . . . dk−1
n+1

. . . . . .

dk−1
n−1 dk−1

n . . . dk−1
2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
,

with P̂n = P̂ [0]n . The determinant in (6) becomes [Szegő 1975, Formula (2.2.9)]

P̂ [k−1]
n (x)=

(−1)n

Dk−1
n−1

∣∣∣∣∣∣∣∣
dk−1

1 − dk−1
0 x dk−1

2 − dk−1
1 x . . . dk−1

n − dk−1
n−1 x

dk−1
2 − dk−1

1 x dk−1
3 − dk−1

2 x . . . dk−1
n+1 − dk−1

n x
. . . . . .

dk−1
n − dk−1

n−1 x dk−1
n+1 − dk−1

n x . . . dk−1
2n−1− dk−1

2n−2x

∣∣∣∣∣∣∣∣ .
Now, by using (4), (5) follows. �

Next we will compute some integrals involving the polynomials P̂ [k]n .

Proposition 2. (i) The integral
∫
∞

0
(x − ξ)k−1ω(x)P̂ [k]n (x) dx is given by

‖P̂ [k−1]
n ‖

2
ω,k−1

P̂ [k−1]
n (ξ)

=


‖P̂n‖

2
ω

P̂n(ξ)
if k = 1,

(−1)k−1

P̂ [k−1]
n (ξ)

∏k−1
i=1

P̂ [i−1]
n+1 (ξ)

P̂ [i−1]
n (ξ)

‖P̂n‖
2
ω if k ≥ 2.



ORTHOGONAL POLYNOMIALS WITH RESPECT TO SOBOLEV INNER PRODUCT 171

(ii) The integral
∫
∞

0
(x − ξ)k−2ω(x)P̂ [k]n (x) dx is given by

(
P̂ [k−2]

n+1 (x)
)′

x=ξ‖P̂
[k−2]
n ‖

2
ω,k−2

P̂ [k−1]
n (ξ)P̂ [k−2]

n (ξ)

=



(
P̂n+1(x)

)′
x=ξ‖P̂n‖

2
ω

P̂n(ξ)P̂
[1]
n (ξ)

if k = 2,

(−1)k
(
P̂ [k−2]

n+1 (x)
)′

x=ξ

P̂ [k−1]
n (ξ)P̂ [k−2]

n (ξ)

∏k−2
i=1

P̂ [i−1]
n+1 (ξ)

P̂ [i−1]
n (ξ)

‖P̂n‖
2
ω if k ≥ 3.

Proof. (i) Using (4) recursively as well as properties of determinants, we have

Dk
n−1

∫
∞

0
(x − ξ)k−1ω(x)P̂ [k]n (x) dx =

∣∣∣∣∣∣∣∣∣∣∣

dk
0 dk

1 dk
2 . . . dk

n

dk
1 dk

2 dk
3 . . . dk

n+1
. . . . . . .

dk
n−1 dk

n dk
n+1 . . . dk

2n−1

dk−1
0 dk−1

1 dk−1
2 . . . dk−1

n

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

dk−1
1 dk−1

2 dk−1
3 . . . dk−1

n+1

dk−1
2 dk−1

3 dk−1
4 . . . dk−1

n+2
. . . . . . .

dk−1
n dk−1

n+1 dk−1
n+2 . . . dk−1

2n

dk−1
0 dk−1

1 dk−1
2 . . . dk−1

n

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n Dk−1

n .

On the other hand,

‖P̂ [k−1]
n ‖

2
ω,k−1 =

∫
∞

0
(x − ξ)k−1ω(x)xn P̂ [k−1]

n (x) dx =
Dk−1

n

Dk−1
n−1

,

and by using (5) we get

(7)
∫
∞

0
(x − ξ)k−1ω(x)P̂ [k]n (x) dx =

(−1)n Dk−1
n−1‖P̂

[k−1]
n ‖

2
ω,k−1

Dk
n−1

=
‖P̂ [k−1]

n ‖
2
ω,k−1

P̂ [k−1]
n (ξ)

.

On the other hand, we have from [Szegő 1975, Theorem 2.5]

(8) (x − ξ)P̂ [k]n (x)= P̂ [k−1]
n+1 (x)−

P̂ [k−1]
n+1 (ξ)

P̂ [k−1]
n (ξ)

P̂ [k−1]
n (x).
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Therefore,

‖P̂ [k]n ‖
2
ω,k =−

P̂ [k−1]
n+1 (ξ)

P̂ [k−1]
n (ξ)

‖P̂ [k−1]
n ‖

2
ω,k−1.

Using this relation recursively we obtain

(9) ‖P̂ [k]n ‖
2
ω,k = (−1)k

k∏
i=1

P̂ [i−1]
n+1 (ξ)

P̂ [i−1]
n (ξ)

‖P̂n‖
2
ω, k ≥ 2.

Combining (7) and (9), our statement follows.

(ii) We have

(10)
(
P̂ [k−2]

n+1 (x)
)′
=

1

Dk−2
n

∣∣∣∣∣∣∣∣∣∣∣

dk−2
0 dk−2

1 dk−2
2 . . . dk−2

n+1
dk−2

1 dk−2
2 dk−2

3 . . . dk−2
n+2

. . . . . . .

dk−2
n dk−2

n+1 dk−2
n+2 . . . dk−2

2n+1
0 1 2x . . . nxn−1

∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 0.

Now, adding to the last column the n-th and (n − 1)-th columns multiplied by
−2x and x2, respectively, and repeating this operation for each of the preceding
columns, we obtain

(11)
(
P̂ [k−2]

n+1 (x)
)′

=
1

Dk−2
n

∣∣∣∣∣∣∣∣∣∣∣∣

dk−2
0 dk−2

1 dk−2
2 −2xdk−2

1 +x2dk−2
0 . . . dk−2

n+1−2xdk−2
n +x2dk−2

n−1

dk−2
1 dk−2

2 dk−2
3 −2xdk−2

2 +x2dk−2
1 . . . dk−2

n+2−2xdk−2
n+1+x2dk−2

n

. . . . . . .

dk−2
n dk−2

n+1 dk−2
n+2−2xdk−2

n+1+x2dk−2
n . . . dk−2

2n+1−2xdk−2
2n +x2dk−2

2n−1

0 1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

Dk−2
n

∣∣∣∣∣∣∣∣∣∣∣∣

dk−2
2 −2xdk−2

1 +x2dk−2
0 dk−2

3 −2xdk−2
2 +x2dk−2

1 . . . dk−2
n+2−2xdk−2

n+1+x2dk−2
n

dk−2
3 −2xdk−2

2 +x2dk−2
1 dk−2

4 −2xdk−2
3 +x2dk−2

2 . . . dk−2
n+3−2xdk−2

n+2+x2dk−2
n+1

. . . . . .

dk−2
n+1−2xdk−2

n +x2dk−2
n−1 dk−2

n+2−2xdk−2
n+1+x2dk−2

n . . . dk−2
2n+1−2xdk−2

2n +x2dk−2
2n−1

dk−2
0 dk−2

1 . . . dk−2
n .

∣∣∣∣∣∣∣∣∣∣∣∣
.

On the other hand,

Dk
n−1

∫
∞

0
(x − ξ)k−2ω(x)P̂ [k]n (x) dx =

∣∣∣∣∣∣∣∣∣∣∣

dk
0 dk

1 . . . dk
n

dk
1 dk

2 . . . dk
n+1

. . . . . .

dk
n−1 dk

n . . . dk
2n−1

dk−2
0 dk−2

1 . . . dk−2
n

∣∣∣∣∣∣∣∣∣∣∣
,
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and by using (5), (9), and (11) we get∫
∞

0
(x − ξ)k−2ω(x)P̂ [k]n (x) dx

=

Dk−2
n

(
P̂ [k−2]

n+1 (x)
)′

x=ξ

Dk−2
n−1 P̂ [k−1]

n (ξ)P̂ [k−2]
n (ξ)

=

(
P̂ [k−2]

n+1 (x)
)′

x=ξ‖P̂
[k−2]
n ‖

2
ω,k−2

P̂ [k−1]
n (ξ)P̂ [k−2]

n (ξ)

=

(−1)k
(
P̂ [k−2]

n+1 (x)
)′

x=ξ

P̂ [k−1]
n (ξ)P̂ [k−2]

n (ξ)

k−2∏
i=1

P̂ [i−1]
n+1 (ξ)

P̂ [i−1]
n (ξ)

‖P̂n‖
2
ω. �

Denote by x [k]r,n , r = 1, 2, . . . , n, the zeros of P̂ [k]n (x) in increasing order.

Proposition 3. (i) The zeros of P̂ [k]n (x) interlace with both the zeros of P̂ [k−1]
n+1 (x)

and P̂ [k−1]
n (x), i.e.,

x [k−1]
r,n < x [k]r,n < x [k−1]

r+1,n+1, r = 1, 2, . . . , n.

(ii) Between two consecutive zeros of P̂ [k−2]
n+1 , k ≥ 2, there is exactly one zero of

P̂ [k]n .

(iii) sgn P̂ [k−2]
n (x [k]r,n−1)= (−1)n−r

=− sgn P̂ [k+2]
n−2 (x [k]r,n−1) for r = 1, 2, . . . , n−1.

Proof. (i) Here we will use the same argument as in [Chihara 1978, page 65] (see
also [Bracciali et al. 2002, Lemma 1]). It is well known that the zeros of P̂ [k−1]

n+1
interlace with the zeros of P̂ [k−1]

n , i.e.,

0< x [k−1]
1,n+1 < x [k−1]

1,n < x [k−1]
2,n+1 < · · ·< x [k−1]

n,n < x [k−1]
n+1,n+1 <∞.

From (5) P̂ [k−1]
n+1 (ξ)/P̂ [k−1]

n (ξ) < 0 and taking (8) into account we have

sgn P̂ [k]n (x [k−1]
r,n+1)= sgn P̂ [k−1]

n (x [k−1]
r,n+1)= (−1)n−r+1 for r = 1, 2, . . . , n+ 1,

sgn P̂ [k]n (x [k−1]
r,n )= sgn P̂ [k−1]

n+1 (x [k−1]
r,n )= (−1)n−r+1 for r = 1, 2, . . . , n.

Thus, there exist zeros x [k]r,n , r = 2, 3, . . . , n, of P̂ [k]n (x) satisfying

x [k−1]
r,n < x [k]r,n < x [k−1]

r+1,n+1, r = 1, 2, . . . , n.

(ii) By using (8) and the recurrence relation we obtain

(x − ξ)2 P̂ [k]n (x)= (d1,nx + d2,n)P̂
[k−2]
n+1 (x)+ d3,n P̂ [k−2]

n (x).

Since P̂ [k−2]
n+1 (ξ) 6= 0 we have d3,n 6= 0. Now, the rest of the proof can be done in a

similar way as in [Meijer 1993a, Lemma 6.1]; see also [Meijer 1993b, Lemma 4.1].
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(iii) From (ii) we have x [k−2]
r,n < x [k]r,n−1 < x [k−2]

r+1,n for r = 1, 2, . . . , n−1. Therefore,

sgn P̂ [k−2]
n (x [k]r,n−1)= (−1)n−r .

Again, according to (ii), x [k+2]
r−1,n−2 < x [k]r,n−1 < x [k+2]

r,n−2 for r = 1, 2, . . . , n−2, and
x [k+2]

n−2,n−2 < x [k]n−1,n−1. Therefore,

sgn P̂ [k+2]
n−2 (x [k]r,n−1)= (−1)n−r−1 and sgn P̂ [k+2]

n−2 (x [k]n−1,n−1)= 1.

As a conclusion,

sgn P̂ [k−2]
n (x [k]r,n−1)=− sgn P̂ [k+2]

n−2 (x [k]r,n−1), r = 1, 2, . . . , n− 1. �

3. Discrete Sobolev orthogonal polynomials

Connection formula. We consider the inner product

(12) 〈 f, g〉S =
∫
∞

0
ω(x) f (x)g(x) dx +M f (ξ)g(ξ)+ N f ′(ξ)g′(ξ),

where ξ ≤ 0, and M, N ≥ 0. Let {Ŝn}n≥0 denote the SMOP with respect to the
discrete Sobolev inner product (12)).

Theorem 1. Let M ≥ 0 and N ≥ 0. There are real constants An,1 and An,2 such
that

Ŝn(x)= P̂n(x)+ An,1(x − ξ)P̂
[2]
n−1(x)+ An,2(x − ξ)2 P̂ [4]n−2(x),

where

An,1 =
N I2,n(ξ)P̂ ′n(ξ)−M I3,n(ξ)P̂n(ξ)

I1,n(ξ)I3,n(ξ)− N I2,n(ξ)P̂
[2]
n−1(ξ)

,

An,2 =
M N P̂n(ξ)P̂

[2]
n−1(ξ)− N I1,n(ξ)P̂ ′n(ξ)

I1,n(ξ)I3,n(ξ)− N I2,n(ξ)P̂
[2]
n−1(ξ)

,

I1,n(ξ)=−
P̂n(ξ)

Kn−1(ξ, ξ)
,

I2,n(ξ)=
P̂n−1(ξ)P̂

[1]
n−1(ξ)P̂

[2]′
n−1(ξ)

P̂n−2(ξ)P̂
[1]
n−2(ξ)P̂

[2]
n−2(ξ)P̂

[3]
n−2(ξ)

‖P̂n−2‖
2
ω,

I3,n(ξ)=−
P̂n−1(ξ)P̂

[1]
n−1(ξ)P̂

[2]
n−1(ξ)

P̂n−2(ξ)P̂
[1]
n−2(ξ)P̂

[2]
n−2(ξ)P̂

[3]
n−2(ξ)

‖P̂n−2‖
2
ω.
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Proof. We will prove that

〈Ŝn, ( · − ξ)
k
〉S = 0 for k = 0, 1, . . . , n− 1.

For k ≥ 2 and n > k,

〈Ŝn, ( · − ξ)
k
〉S

=

∫
∞

0
ω(x)Ŝn(x)(x − ξ)k dx

=

∫
∞

0
ω(x)P̂n(x)(x − ξ)k dx + An,1

∫
∞

0
(x − ξ)2ω(x)P̂ [2]n−1(x)(x − ξ)

k−1 dx

+ An,2

∫
∞

0
(x − ξ)4ω(x)P̂ [4]n−2(x)(x − ξ)

k−2 dx

= 0,

Now consider k = 0 and n ≥ 1. We have

〈Ŝn, 1〉S =
∫
∞

0
ω(x)Ŝn(x) dx +M Ŝn(ξ)

= An,1

∫
∞

0
(x − ξ)ω(x)P̂ [2]n−1(x) dx + An,2

∫
∞

0
(x − ξ)2ω(x)P̂ [4]n−2(x) dx

+M P̂n(ξ).

On the other hand, by using Proposition 2(i),

(13) I1,n(ξ)=

∫
∞

0
(x − ξ)ω(x)P̂ [2]n−1(x) dx =−

P̂n(ξ)

P̂n−1(ξ)P̂
[1]
n−1(ξ)

‖P̂n−1‖
2
ω,

and taking derivatives in (8) and then substituting x = ξ we get

(14) P̂ [k]n−1(ξ)=
(
P̂ [k−1]

n (x)
),

x=ξ −
P̂ [k−1]

n (ξ)

P̂ [k−1]
n−1 (ξ)

(
P̂ [k−1]

n−1 (x)
),

x=ξ .

Combining (3), (13), and (14), we get

I1,n(ξ)=−
P̂n(ξ)

Kn−1(ξ, ξ)
.

Using Proposition 2(ii),

I2,n(ξ)=

∫
∞

0
(x − ξ)2ω(x)P̂ [4]n−2(x) dx =

(
P̂ [2]n−1(x)

)′
x=ξ‖P̂

[2]
n−2‖

2
ω,2

P̂ [2]n−2(ξ)P̂
[3]
n−2(ξ)

(15)

=

P̂n−1(ξ)P̂
[1]
n−1(ξ)

(
P̂ [2]n−1(x)

)′
x=ξ

P̂n−2(ξ)P̂
[1]
n−2(ξ)P̂

[2]
n−2(ξ)P̂

[3]
n−2(ξ)

‖P̂n−2‖
2
ω.
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Therefore,

〈Ŝn, 1〉S = An,1 I1,n(ξ)+ An,2 I2,n(ξ)+M P̂n(ξ).

In the same way, for k = 1 and n ≥ 2, we have

〈Ŝn, ( · − ξ)〉S =

∫
∞

0
ω(x)Ŝn(x)(x − ξ) dx + N Ŝ′n(ξ)

= An,2 I3,n(ξ)+ N An,1 P̂ [2]n−1(ξ)+ N P̂ ′n(ξ),

where

I3,n(ξ)=

∫
∞

0
(x − ξ)3ω(x)P̂ [4]n−2(x) dx =

‖P̂ [3]n−2‖
2
ω,3

P̂ [3]n (ξ)

=−
P̂n−1(ξ)P̂

[1]
n−1(ξ)P̂

[2]
n−1(ξ)

P̂n−2(ξ)P̂
[1]
n−2(ξ)P̂

[2]
n−2(ξ)P̂

[3]
n−2(ξ)

‖P̂n−2‖
2
ω.

Finally, using the expressions of An,1 and An,2, our statement follows. �

Next, we will study the behavior of the coefficients An,1 and An,2.

Proposition 4.

(i) I1,n(ξ)I3,n(ξ)− N I2,n(ξ)P̂
[2]
n−1(ξ)=−I2,n(ξ)P̂

[2]
n−1(ξ)(N +αnβn), where

0< αn =
I1,n(ξ)

P̂ [2]n−1(ξ)
< d1

0 and
d3

0

d2
0
<−

P̂ [2]′n−1(ξ)

P̂ [2]n−1(ξ)
=

I2,n(ξ)

I3,n(ξ)
=

1
βn
<−

n
ξ
.

(ii) N I2,n(ξ)P̂ ′n(ξ)−M I3,n(ξ)P̂n(ξ)= I2,n(ξ)P̂ ′n(ξ)(N +Mβnγn), where

d1
0

c0
<−

P̂ ′n(ξ)

P̂n(ξ)
=

1
γn
<−

n
ξ
.

(iii) M N P̂n(ξ)P̂
[2]
n−1(ξ)− N I1,n(ξ)P̂ ′n(ξ)= N P̂n(ξ)P̂

[2]
n−1(ξ)

(
M +

αn

γn

)
.

Proof. (i) From the Christoffel–Darboux formula for polynomials {P̂ [2]n }n≥0 we
have

(16) (x − ξ)
n∑

k=0

P̂ [2]k (x)P̂ [2]k (y)

‖P̂ [2]k ‖
2
ω,2

−

n∑
k=0

P̂ [2]k (x)

‖P̂ [2]k ‖
2
ω,2

(y− ξ)P̂ [2]k (y)

=
1

‖P̂ [2]n ‖
2
ω,2

(
P̂ [2]n+1(x)P̂

[2]
n (y)− P̂ [2]n (x)P̂ [2]n+1(y)

)
.
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If we multiply (16) by (y− ξ)ω(y) and integrate over (0,∞), evaluation at x = ξ
yields

−

n∑
k=0

P̂ [2]k (ξ)

‖P̂ [2]k ‖
2
ω,2

∫
∞

0
(y− ξ)2ω(y)P̂ [2]k (y) dy

=
1

‖P̂ [2]n ‖
2
ω,2

(
P̂ [2]n+1(ξ)I1,n+1(ξ)− P̂ [2]n (ξ)I1,n+2(ξ)

)
.

Since ∫
∞

0
(y− ξ)2ω(y)P̂ [2]k (y) dy = 0 for k = 1, 2, . . . , n

and P̂ [2]0 = 1, the left-hand side is negative. Therefore,

P̂ [2]n+1(ξ)I1,n+1(ξ)− P̂ [2]n (ξ)I1,n+2(ξ) < 0.

From (5) we have

sgn P̂ [2]n+1(ξ)= (−1)n+1 and sgn P̂ [2]n (ξ)= (−1)n.

Thus, P̂ [2]n+1(ξ)P̂
[2]
n (ξ) is negative and, as a consequence,

I1,n+2(ξ)

P̂ [2]n+1(ξ)
<

I1,n+1(ξ)

P̂ [2]n (ξ)
.

Using this relation recursively, we get

I1,n(ξ)

P̂ [2]n−1(ξ)
< I1,1(ξ)= d1

0 .

On the other hand, (5) and (13) imply that sgn I1,n(ξ)= (−1)n+1; therefore,

0<
I1,n(ξ)

P̂ [2]n−1(ξ)
< d1

0 .

From (16)

0<
n∑

k=0

(
P̂ [2]k (ξ)

)2

‖P̂ [2]k ‖
2
ω,2

=
1

‖P̂ [2]n ‖
2
ω,2

(
P̂ [2]′n+1(ξ)P̂

[2]
n (ξ)− P̂ [2]′n (ξ)P̂ [2]n+1(ξ)

)
.

Since P̂ [2]n+1(ξ)P̂
[2]
n (ξ) is negative this yields

P̂ [2]′n+1(ξ)

P̂ [2]n+1(ξ)
<

P̂ [2]′n (ξ)

P̂ [2]n (ξ)
.
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Using this relation recursively, we obtain

P̂ [2]′n+1(ξ)

P̂ [2]n+1(ξ)
<

P̂ [2]′1 (ξ)

P̂ [2]1 (ξ)
=−

d3
0

d2
0
.

Let 0< x [2]1,n < x [2]2,n < · · ·< x [2]n,n denote the zeros of P̂ [2]n . Then

−
P̂ [2]′n (ξ)

P̂ [2]n (ξ)
=

1

x [2]1,n − ξ
+

1

x [2]2,n − ξ
+ · · ·+

1

x [2]n,n − ξ
<−

n
ξ
.

Statements (ii) and (iii) can be proved in a similar way as (i). �

Proposition 5. Let M, N ≥ 0 and not both zero. Then

sgn An,1 =−1 and sgn An,2 =− sgn N .

Proof. From (5) and Proposition 4

sgn An,1 =− sgn
P̂ ′n(ξ)

P̂ [2]n−1(ξ)
= sgn

(
−

P̂ ′n(ξ)

P̂n(ξ)

)
sgn

P̂n(ξ)

P̂ [2]n−1(ξ)
=−1.

In a similar way,

sgn An,2 =− sgn N sgn
P̂n(ξ)

I2,n

= sgn N sgn
(
−

P̂ [2]n−1(ξ)

P̂ [2]′n−1(ξ)

)
sgn

P̂n(ξ)P̂n−2(ξ)P̂
[1]
n−2(ξ)P̂

[2]
n−2(ξ)P̂

[3]
n−2(ξ)

P̂n−1(ξ)P̂
[1]
n−1(ξ)P̂

[2]
n−1(ξ)

=− sgn N . �

The zeros. We now analyze the zeros of the polynomials Ŝn . The techniques are
the same as those used by Meijer [1993a; 1993b].

Theorem 2. The discrete Sobolev orthogonal polynomial Ŝn has n real simple
zeros and at most one of them is outside of [ξ,∞).

Proof. Since for N = 0, Ŝn is a standard orthogonal polynomial, in the sequel we
will consider the cases when N > 0 and M ≥ 0. Let ν1 < ν2 < · · · < νk be the
zeros of Ŝn(x) on (ξ,∞) with odd multiplicity. Let us introduce the polynomial

φ(x)= (x − ν1)(x − ν2) · · · (x − νk).

Notice that φ(ξ) and φ′(ξ) have opposite signs and φ(x)Ŝn(x) does not change
sign on [ξ,∞). If degφ ≤ n− 2, then

0= 〈φ, Ŝn〉S =

∫
∞

0
ω(x)φ(x)Ŝn(x) dx +Mφ(ξ)Ŝn(ξ)+ Nφ′(ξ)Ŝ′n(ξ)
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and

0= 〈( · − ξ)φ, Ŝn〉S =

∫
∞

0
ω(x)(x − ξ)φ(x)Ŝn(x) dx + Nφ(ξ)Ŝ′n(ξ).

This means that φ′(ξ)Ŝ′n(ξ) and φ(ξ)Ŝ′n(ξ) have the same sign, and therefore φ′(ξ)
and φ(ξ) have the same sign. This yields a contradiction.

As a conclusion, degφ = n− 1 or degφ = n, which proves our statement. �

Next, we prove that the zeros of Ŝn(x) interlace with the zeros of P̂ [2]n−1(x) if
Ŝn(x) has a zero outside [ξ,∞). Notice that, by Theorem 1, Ŝn(ξ) 6= 0.

Theorem 3. Denote by νr,n , r = 1, 2, . . . , n, the zeros of Ŝn(x) in increasing order.
Suppose that ν1,n < ξ . Then 2ξ − x [2]1,n−1 < ν1,n < ξ and

ξ < ν2,n < x [2]1,n−1 < · · ·< νn,n < x [2]n−1,n−1.

Proof. From Theorem 1 we have

Ŝn(x
[2]
r,n−1)= P̂n(x

[2]
r,n−1)+ An,2(x

[2]
r,n−1− ξ)

2 P̂ [4]n−2(x
[2]
r,n−1), r = 1, 2, . . . , n− 1.

Then from Proposition 3(iii) and Proposition 5 we get

sgn Ŝn(x
[2]
r,n−1)= (−1)n−r , r = 1, 2, . . . , n− 1,

On the other hand, from (5) and Theorem 1,

sgn Ŝn(ξ)= sgn P̂n(ξ)= (−1)n.

Therefore, every interval (ξ, x [2]1,n−1) and (x [2]r,n−1, x [2]r+1,n−1), for r = 1, . . . , n − 2,
contains an odd number of zeros of Ŝn(x). Since Ŝn has n real zeros and at most
one of them is outside of (ξ,∞), then

ξ < ν2,n < x [2]1,n−1 < · · ·< νn,n < x [2]n−1,n−1.

Now, we will prove that 2ξ − x [2]1,n−1 < ν1,n < ξ . Let

Ŝn(x)= (x − ν1,n)(x − ν2,n) · · · (x − νn,n).

By Theorem 1 and Proposition 4,

Ŝ′n(ξ)= P̂ ′n(ξ)+ An,1 P̂ [2]n−2(ξ)=
βn P̂n(ξ)(M +αn/γn)

N +αnβn
.

Therefore,
sgn Ŝ′n(ξ)= sgn P̂n(ξ)= sgn Ŝn(ξ)

and

0<
Ŝ′n(ξ)

Ŝn(ξ)
=

1
ξ − ν1,n

−
1

ν2,n − ξ
− · · ·−

1
νn,n − ξ

.



180 F. MARCELLÁN, R. ZEJNULLAHU, B. FEJZULLAHU AND E. HUERTAS

Hence 1
ξ−ν1,n

>
1

ν2,n−ξ
, which implies successively

x [2]1,n−1− ξ > ν2,n − ξ > ξ − ν1,n and 2ξ − x [2]1,n−1 < ν1,n.

Our statement follows. �

4. Discrete Laguerre–Sobolev orthogonal polynomials: asymptotics

Laguerre polynomials. For α ∈ R, the Laguerre polynomials are defined by

L(α)n (x)=
n∑

k=0

(
n+α
n− k

)
(−x)k

k!
.

For α>−1, the {L(α)n (x)}n≥0 are orthogonal on [0,+∞)with respect to the weight
function ω(x)= xαe−x [Szegő 1975, Chapter V]. Let {L(α,k)n }

∞

n=0, k ∈N, denote the
sequence of polynomials orthogonal with respect to the modified Laguerre weight
(x − ξ)kω(x), ξ < 0, normalized by the condition that L(α,k)n has the same leading
coefficient as the classical Laguerre orthogonal polynomial L(α)n = L(α,0)n . That is,
k(L(α,k)n )= (−1)n/n!.

We summarize some properties of the L(α,k)n (x), k ∈ N∪ {0}, to be used later.

Proposition 6 [Fejzullahu 2011]. (i) For α >−1,

‖L(α)n ‖
2
α =

∫
∞

0
(L(α)n (x))2xαe−x d(x)=

0(n+α+ 1)
0(n+ 1)

.

(ii) For every n ∈ N,
(L(α)n (x))′ =−L(α+1)

n−1 (x).

(iii) (Perron’s formula) Let α ∈ R. Then

L(α)n (x)= 2−1π−1/2ex/2(−x)−α/2−1/4nα/2−1/4e2
√
−nx(1+ O(n−1/2)

)
.

This relation holds for x in the complex plane cut along the positive real semi-
axis; both (−x)−α/2−1/4 and

√
−x must be taken real and positive if x < 0.

The bound of the remainder holds uniformly in every closed domain which
does not overlap the positive real semiaxis.

Moreover, we get the outer ratio asymptotics

lim
n→∞

n(l− j)/2 L(α+ j)
n+k (x)

L(α+l)
n+h (x)

= (−x)(l− j)/2, j, l ∈ R, h, k ∈ Z,

lim
n→∞

L(α,k)n (x)

nk/2L(α)n (x)
=

1
(
√
−x +

√
−ξ )k

,

uniformly on compact subsets of C \ [0,∞).
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(iv) (Mehler–Heine formula) Uniformly on compact subsets of C, we have

lim
n→∞

L(α)n (x/(n+ j))
nα

= x−α/2 Jα(2
√

x )

and

lim
n→∞

L(α,k)n (x/(n+ j))
nα+k/2 =

1
(
√
−ξ )k

x−α/2 Jα(2
√

x)

where j ∈ N∪ 0 and Jα is the Bessel function of the first kind.

(v) (Plancherel–Rotach type outer asymptotics for L(α,N )n ) Uniformly on compact
subsets of C \ [0, 4] and uniformly on j ∈ N∪ {0}, we have

lim
n→∞

L(α)n−1((n+ j)x)

L(α)n ((n+ j)x)
=−

1
φ((x − 2)/2)

and

lim
n→∞

L(α,N )n ((n+ j)x)

L(α)n ((n+ j)x)
=

(
φ((x − 2)/2)+ 1

x

)N

,

where φ is the conformal mapping of C \ [−1, 1] onto the exterior of the unit
circle given by

φ(x)= x +
√

x2− 1, x ∈ C \ [−1, 1],

with
√

x2− 1> 0 when x > 1.

Proposition 7. L(α,2) ′n (ξ)∼=
n
4ξ

L(α+1)
n (ξ).

Proof. Using integration by parts we have∫
∞

0

(
L(α,2)n (x)

)′L(α+1,3)
k (x)(x − ξ)3xα+1e−x dx

=

{
0 if k ≤ n− 3,
n(n− 1)‖L̂(α,2)n ‖

2
α,2 if k = n− 2.

Therefore, (
L(α,2)n (x)

)′
=−L(α+1,3)

n−1 (x)+ Hn L(α+1,3)
n−2 (x),

where

Hn =
n(n− 1)‖L̂(α,2)n ‖

2
α,2

‖L̂(α+1,3)
n−2 ‖

2
α+1,3

.
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Using (8) and Proposition 6(iii),

Hn =
(n+ 1)2(n+α)

(n− 1)3
L(α+1,2)

n−2 (ξ)

L(α+1,2)
n−1 (ξ)

2∏
i=1

L(α+1,i−1)
n−2 (ξ)

L(α+1,i−1)
n−1 (ξ)

L(α,i−1)
n+1 (ξ)

L(α,i−1)
n (ξ)

=
L(α+1,2)

n−2 (ξ)

L(α+1,2)
n−1 (ξ)

2∏
i=1

L(α+1,i−1)
n−2 (ξ)

L(α+1,i−1)
n−1 (ξ)

L(α,i−1)
n+1 (ξ)

L(α,i−1)
n (ξ)

+ O
(1

n

)
.

On the other hand, [Fejzullahu 2011, Proposition 2.2] gives

(17)
(
L(α,2)n (x)

)′
=−L(α,3)n−1 (x)+Gn L(α+1,3)

n−2 (x),

where

Gn = Hn −
n3

(n− 1)3

3∏
i=1

L(α+1,i−1)
n−2 (ξ)

L(α+1,i−1)
n−1 (ξ)

L(α,i−1)
n (ξ)

L(α,i−1)
n−1 (ξ)

=

3∏
i=1

L(α+1,i−1)
n−2 (ξ)

L(α+1,i−1)
n−1 (ξ)

(
L(α)n+1(ξ)L

(α,1)
n+1 (ξ)

L(α)n (ξ)L(α,1)n (ξ)
−

L(α)n (ξ)L(α,1)n (ξ)L(α,2)n (ξ)

L(α)n−1(ξ)L
(α,1)
n−1 (ξ)L

(α,2)
n−1 (ξ)

)
+O

(1
n

)
.

Again, from [Fejzullahu 2011, Proposition 2.2],

L(α)n+1(ξ)L
(α,1)
n+1 (ξ)

L(α)n (ξ)L(α,1)n (ξ)
=

L(α)n+1(ξ)L
(α−1,1)
n+1 (ξ)

L(α)n (ξ)L(α,1)n (ξ)
+

L(α−1)
n+2 (ξ)

L(α−1)
n+1 (ξ)

+ O
(1

n

)
,

L(α)n (ξ)L(α,1)n (ξ)L(α,2)n (ξ)

L(α)n−1(ξ)L
(α,1)
n−1 (ξ)L

(α,2)
n−1 (ξ)

=
L(α)n (ξ)L(α,1)n (ξ)L(α−1,2)

n (ξ)

L(α)n−1(ξ)L
(α,1)
n−1 (ξ)L

(α,2)
n−1 (ξ)

+
L(α−1)

n+1 (ξ)L(α−1,1)
n+1 (ξ)

L(α−1)
n (ξ)L(α−1,1)

n (ξ)
+ O

(1
n

)
,

and

L(α−1)
n+2 (ξ)

L(α−1)
n+1 (ξ)

−
L(α−1)

n+1 (ξ)L(α−1,1)
n+1 (ξ)

L(α−1)
n (ξ)L(α−1,1)

n (ξ)
=

L(α−2)
n+2 (ξ)

L(α−1)
n+1 (ξ)

+ 1

−
L(α−1)

n+1 (ξ)L(α−2,1)
n+1 (ξ)

L(α−1)
n (ξ)L(α−1,1)

n (ξ)
−

L(α−2)
n+2 (ξ)

L(α−2)
n+1 (ξ)

+ O
(1

n

)
=

L(α−2)
n+2 (ξ)

L(α−1)
n+1 (ξ)

−
L(α−1)

n+1 (ξ)L(α−2,1)
n+1 (ξ)

L(α−1)
n (ξ)L(α−1,1)

n (ξ)
−

L(α−3)
n+2 (ξ)

L(α−2)
n+1 (ξ)

+ O
(1

n

)
.

Therefore, by using Proposition 6(iii),
√

nGn ∼=−
√
−ξ .
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and taking into account (17) the result follows. �

Discrete Laguerre–Sobolev orthogonal polynomials. Let {Sn}n≥0 be the sequence
of polynomials orthogonal with respect to the discrete Sobolev inner product (12),
where ω(x) = xαe−x and ξ < 0, normalized by the condition that Sn has the
same leading coefficient as the classical Laguerre orthogonal polynomial L(α)n , i.e.,
k(Sn)= (−1)n/n!.

Theorem 4. Let M ≥ 0 and N ≥ 0. There are real constants Bn,0, Bn,1, and Bn,2

such that

(18) Sn(x)= Bn,0L(α)n (x)+ Bn,1(x − ξ)L
(α,2)
n−1 (x)+ Bn,2(x − ξ)2L(α,4)n−2 (x),

where Bn,0 =
1

1+An,1+An,2
, Bn,1 =−

An,1
n(1+An,1+An,2)

, and

Bn,2 =
An,2

n(n−1)(1+An,1+An,2)
.

Moreover:

(i) If M > 0 and N > 0, then

(19) Bn,0 ∼=
8ξnα

M
(
L(α)n (ξ)

)2 , Bn,1 ∼=−
32ξ
√
−ξnα−1/2

M
(
L(α)n (ξ)

)2 , Bn,2 ∼=
1
n2 .

(ii) If M = 0 and N > 0, then

Bn,0 ∼=
1

4
√
−ξn

, Bn,1 ∼=−
1
n
, Bn,2 ∼=

1
4n2
√
−ξn

.

(iii) If M > 0 and N = 0, then

Bn,0 ∼=

√
−ξ

Mn1/2−α
(
L(α)n−1(ξ)

)2 , Bn,1 ∼=−
1
n
, Bn,2 = 0.

Proof. From Theorem 1,

Sn(x)=
(−1)n Ŝn(x)

n! (1+ An,1+ An,2)

and, as a consequence,

Sn(x)= Bn,0L(α)n (x)+ Bn,1(x − ξ)L
(α,2)
n−1 (x)+ Bn,2(x − ξ)2L(α,4)n−2 (x),

where Bn,0, Bn,1, and Bn,2 are as in the statement of the theorem.
Now, from Proposition 4 we can obtain the behavior of the coefficients Bn,0,

Bn,1 and Bn,2 for n large enough. In order to estimate An,1 and An,2, first we
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compute αnβn , αn/γn , βnγn and I2,n(ξ). From (13) and Proposition 6, we can
write

αnβn =−
I1,n(ξ)

L̂(α,2)
′

n−1 (ξ)
=

L̂(α)n (ξ)

L̂(α)n−1(ξ)L̂
(α,1)
n−1 (ξ)L̂

(α,2)′
n−1 (ξ)

‖L̂(α)n−1‖
2
α

=−
0(n+α)
0(n)

nL(α)n (ξ)

L(α)n−1(ξ)L
(α,1)
n−1 (ξ)L

(α,2)′
n−1 (ξ)

∼=
8(−ξ)3/2nα−1/2

L(α)n (ξ)L(α+1)
n (ξ)

,

αn

γn
=−

I1,n(ξ)L̂
(α)′

n (ξ)

L̂(α)n (ξ)L̂(α,2)n−1 (ξ)
=

L̂(α)
′

n (ξ)

L̂(α)n−1(ξ)L̂
(α,1)
n−1 (ξ)L̂

(α,2)
n−1 (ξ)

‖L̂(α)n−1‖
2
α

=
0(n+α)
0(n)

nL(α+1)
n−1 (ξ)

L(α)n−1(ξ)L
(α,1)
n−1 (ξ)L

(α,2)
n−1 (ξ)

∼=
8(−ξ)3/2nα−1/2L(α+1)

n (ξ)(
L(α)n (ξ)

)3 ,

βnγn = αnβn
γn

αn

∼=

(
L(α)n (ξ)

L(α+1)
n (ξ)

)2
∼=−

ξ

n
,

I2,n(ξ)∼= (−1)n−1(n− 2)! nα+3 L(α)n−1(ξ)L
(α,1)
n−1 (ξ)L

(α,2)′
n−1 (ξ)

L(α)n−2(ξ)L
(α,1)
n−2 (ξ)L

(α,2)
n−2 (ξ)L

(α,3)
n−3 (ξ)

∼=
8ξ(−1)n−1(n− 2)! nα+2

L(α)n (ξ)
.

Next, we will analyze the following three situations.

(i) Let M > 0 and N > 0. Then,

An,1 ∼=−
L̂(α)

′

n (ξ)

L̂(α,2)n−1 (ξ)
=

nL(α)
′

n (ξ)

L(α,2)n−1 (ξ)
=−

nL(α+1)
n−1 (ξ)

L(α,2)n−1 (ξ)

∼=−4
√
−ξn

and

An,2 ∼=−
M L̂(α)n (ξ)

In,2(ξ)
∼=

M
(
L(α)n (ξ)

)2

8ξnα
.

Therefore,

Bn,0 ∼=
8ξnα

M
(
L(α)n (ξ)

)2 , Bn,1 ∼=
32ξ
√
−ξnα−1/2

M
(
L(α)n (ξ)

)2 , Bn,2 ∼=
1
n2 .

(ii) Let M = 0 and N > 0. Then,

An,1 ∼=−4
√
−ξn and An,2 =−

L̂(α)n (ξ)

In,2(ξ)

αn

γn

∼=−1.
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Therefore,

Bn,0 ∼=−
1

4
√
−ξn

, Bn,1 ∼=−
1
n
, Bn,2 ∼=

1
4n2
√
−ξn

.

(iii) Let M > 0 and N = 0. Then,

An,1 =
M L̂(α)n (ξ)

In,1(ξ)
=−

M L̂(α)n−1(ξ)L̂
(α,1)
n−1 (ξ)

‖L(α)n−1‖
2
α

∼=−
Mn1/2−α
√
−ξ

(
L(α)n−1(ξ)

)2
, An,2 = 0.

Therefore,

Bn,0 ∼=−

√
−ξ

Mn1/2−α
(
L(α)n−1(ξ)

)2 , Bn,1 ∼=−
1
n
, Bn,2 = 0. �

Next we deduce several asymptotic properties for discrete Laguerre–Sobolev
polynomials when M, N ≥ 0. (For M > 0 and N = 0, the same asymptotic results
for corresponding Laguerre-type polynomials has been deduced in [Dueñas et al.
2011] and [Fejzullahu and Zejnullahu 2010].)

Theorem 5. (i) (Outer relative asymptotics) Uniformly on compact subsets of
C \ [0,∞) we have:
• If M > 0 and N > 0, then

lim
n→∞

Sn(x)

L(α)n (x)
=

(√
−x −

√
−ξ

√
−x +

√
−ξ

)2

.

Notice that, according to the Hurwitz’s Theorem, the point ξ attracts two
negative zeros of Sn(x) for n large enough.

• If M = 0 and N > 0 or M > 0 and N = 0, then

lim
n→∞

Sn(x)

L(α)n (x)
=

√
−x −

√
−ξ

√
−x +

√
−ξ

.

Notice that, according to the Hurwitz’s Theorem, the point ξ attracts one
negative zero of Sn(x) for n large enough.

(ii) (Mehler–Heine formula)
• If M > 0 and N > 0

lim
n→∞

Sn(x/n)
nα

= x−α/2 Jα(2
√

x),

• If M = 0 and N > 0 or M > 0 and N = 0

lim
n→∞

Sn(x/n)
nα

=−x−α/2 Jα(2
√

x),

uniformly on compact subsets of C.
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(iii) (Plancherel–Rotach type outer asymptotics for Sn)
• If M ≥ 0 and N ≥ 0, then

lim
n→∞

Sn(nx)

L(α)n (nx)
= 1,

uniformly on compact subsets of C \ [0, 4].

Proof. We will prove the theorem when M > 0 and N > 0. The proofs of the other
cases can be done in a similar way.

(i) From (18)

Sn(x)

L(α)n (x)
= Bn,0+ nBn,1(x − ξ)

L(α,2)n−1 (x)

nL(α)n (x)
+ n2 Bn,2(x − ξ)2

L(α,4)n−2 (x)

n2L(α)n (x)
.

Now, Proposition 6(iii) and (19) yield

lim
n→∞

Sn(x)

L(α)n (x)
= (x − ξ)2 lim

n→∞

L(α,4)n−2 (x)

n2L(α)n (x)
=

(√
−x −

√
−ξ

√
−x +

√
−ξ

)2

.

(ii) Scaling the variable as x→ x/n in (18) then dividing by nα we get

Sn(x/n)
nα

= Bn,0
L(α)n (x/n)

nα
+ nBn,1(x/n− ξ)

L(α,2)n−1 (x/n)

nα+1 + n2 Bn,2(x/n− ξ)2
L(α,4)n−2 (x/n)

nα+2 .

Now, Proposition 6(iv) and (19) yield

lim
n→∞

Sn(x/n)
nα

= (−ξ)2 lim
n→∞

L(α,4)n−2 (x)

nα+2 = x−α/2 Jα(2
√

x).

(iii) Dividing (18) by Lαn (x) then scaling the variable as x→ nx we get

Sn(nx)

L(α)n (nx)
= Bn,0+ nBn,1

nx − ξ
n

L(α,2)n−1 (nx)

L(α)n−1(nx)

L(α)n−1(nx)

L(α)n (nx)

+ n2 Bn,2
(nx − ξ)2

n2

L(α,4)n−2 (nx)

L(α)n−2(nx)

L(α)n−2(nx)

L(α)n (nx)
.

From Proposition 6(v) and (19)

lim
n→∞

Sn(nx)

L(α)n (nx)
= x2

(
φ((x − 2)/2)+ 1

x

)4 1

(φ((x − 2)/2))2
.

Now, using the fact that (φ(z)+1)2= 2(z+1)φ(z) if |z|> 1, we get our result. �
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GREEN VERSUS LEMPERT FUNCTIONS:
A MINIMAL EXAMPLE

PASCAL THOMAS

The Lempert function for a set of poles in a domain of Cn at a point z is
obtained by taking a certain infimum over all analytic disks going through
the poles and the point z; it majorizes the corresponding multipole pluri-
complex Green function. Coman proved that both coincide in the case of
sets of two poles in the unit ball. We give an example of a set of three poles
in the unit ball where this equality fails.

1. Introduction

Let � be a domain in Cn , and a j ∈ �, j = 1, . . . , N . The pluricomplex Green
function with logarithmic singularities at S := {a1, . . . , aN } is defined by

GS(z) := sup{u ∈ PSH(�,R−) : u(z)≤ log |z− a j | +C j , j = 1, . . . , N },

where PSH(�,R−) stands for the set of all negative plurisubharmonic functions
in �. When � is hyperconvex, this solves the Monge–Ampère equation with right
hand side equal to

∑N
i=1 δa j .

Pluricomplex Green functions have been studied by many authors at different
levels of generality. See [Demailly 1987; Zahariuta 1984; Lempert 1981; Lelong
1989; Lárusson and Sigurdsson 1998].

A deep result due to Poletsky [1993], and see also [Lárusson and Sigurdsson
1998; Edigarian 1997], is that the Green function may be computed from analytic
disks:

(1-1) GS(z)

= inf
{ ∑
α:ϕ(α)∈S

log|α| : such that there exists ϕ ∈ O(D, �) with ϕ(0)= z
}
.

MSC2010: 32U35, 32F45.
Keywords: pluricomplex Green function, Lempert function, analytic disks, Schwarz Lemma.
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However, it is tempting to pick only one α j ∈ ϕ
−1(a j ) in the range 1≤ j ≤ N ,

which motivated the Coman’s definition of the Lempert function [2000]:

(1-2) `S(z) := inf
{ N∑

j=1

log|ζ j | : ϕ(0)= z, ϕ(ζ j )= a j , j = 1, . . . , N

for some ϕ ∈ O(D, �)
}
,

where D is the unit disc in C.
One easily sees that `S(z) ≥ GS(z) without recourse to (1-1); the fact that

equality holds when N =1 and� is convex is part of Lempert’s celebrated theorem
[1981], which was, in fact, the starting point for many of the notions defined above;
see also [Edigarian 1995]. Coman [2000] proved that equality holds when N = 2
and �=B2, the unit ball of C2. The goal of this note is to present an example that
shows that this is as far as it can go.

Theorem 1.1. There exists a set of 3 points S ⊂ B2 such that `S(z) > GS(z) for
some z ∈ B2.

Other examples in the same vein have been found in [Carlehed and Wiegerinck
2003; Thomas and Trao 2003; Nikolov and Zwonek 2005]. The interesting features
of this one are that it involves no multiplicities and is minimal in the ball. Examples
with an arbitrary number of points can be deduced from it. Let z0 ∈ B2 satisfy
`S(z0)−GS(z0) =: ε0 > 0. Consider S′ := S ∪ {a4, . . . , aN } with all the a j close
enough to the boundary so that `S′(z0)≥ `S(z0)−ε0/2 (the Schwarz lemma shows
that |ζ j |→ 1 when ϕ(ζ j )= a j and |a j |→ 1). Then `S′(z0) >GS(z0)≥GS′(z0), as
was to be shown. (I thank Nikolai Nikolov for sharing this observation with me).

Moreover, the corresponding Green function can be recovered, up to a bounded
error, by using an analytic disk with just one more preimage than the number of
points: One of the points has exactly two preimages and each of the other two
points, only one; see [Magnússon et al. 2012, §6.8.2, Lemma 6.16].

More specifically, the theorem will follow from a precise calculation in the
bidisk D2. Let Sε = {(0, 0), (ρ(ε), 0), (0, ε)} ⊂ D2, where limε→0 ρ(ε)/ε = 0.

Proposition 1.2. There exists C1 > 0 such that for any δ ∈ (0, 1/4) there exists
ε0 = ε0(z, δ) > 0 and r0 = r0(δ) > 0 such that

GSε(z)≤ 2 log|z2| +C1,(1-3)

`Sε(z)≥ (2− δ) log|z2|.(1-4)

for any ε with |ε|< ε0 and any z = (z1, z2) ∈ D2 such that

(1-5) 1
2 |z2|

3/2
≤ |z1| ≤ |z2|

3/2 and ‖z‖< r0.

Proof of Theorem 1.1. If U and V are domains, and S⊂U ⊂V , then the definitions
of the Green and Lempert functions imply that GU

S (z)≥GV
S (z) and `U

S (z)≥ `
V
S (z).
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For |ε| small enough, Sε ⊂ B2. When |z1| = |z2|
3/2, so that z verifies (1-5), the

inclusion B2
⊂ D2 implies

`B2

Sε (z)≥ `
D2

Sε (z)≥ (2− δ) log |z2|.

Using the fact that D2/
√

2 ⊂ B2 and the invariance of the Green function under
biholomorphic mappings, we have

GB2

Sε (z)≤ GD2/
√

2
Sε (z)= GD2

√
2Sε
(
√

2z)≤ 2 log|z2| + log 2+C1.

The last inequality follows from the fact that
√

2z still verifies (1-5), and
√

2Sε has
the same form as Sε, so we can apply (1-3).

Comparing the last two estimates, we see that GB2

Sε (z) < `B2

Sε (z) for |z2| small
enough and |ε|< ε0. �

Open questions

This example is minimal in the ball, in terms of number of poles; what is the
situation for the bidisk? Are the Green and Lempert functions equal when one
takes two poles, not lying on a line parallel to the coordinate axes? Do they at least
have the same order of singularity as one pole tends to the other?

What is the precise order of the singularity of the limit as ε→ 0 of the Lempert
function in this case? Looking at the available analytic disks that give the correct
order of the singularity of the limit of the Green function, one finds 3

2 log|z2|, so
one would hope that the proposition can still be proved at least for δ < 1/2.

Do the analytic disks from [Magnússon et al. 2012] yield the Green function
itself, without any bounded error term?

More generally, when one is given a finite number of points in a given bounded
(hyperconvex) domain, is there a bound on the number of preimages required to
attain the Green function in the Poletsky formula? For instance, is 4 the largest
possible number of preimages required when looking at 3 points in the ball?

2. Upper estimate for the Green function

Proof of (1-3) of Proposition 1.2. The upper bound (1-3) follows from [Magnússon
et al. 2012, §6.8.2, Lemma 6.16]. For the reader’s convenience, and since that paper
is not generally available, we repeat the proof here in the case that concerns us.

We now construct an analytic disk passing twice through one of the poles. Our
disk will be a perturbation of the Neil parabola ζ 7→ (ζ 3, ζ 2).

We write s(ε)= ρ(ε)/ε = o(1).
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Choose complex numbers λ and µ such that

λ2
:=

z1

z2(z2− ε)

( z1

z2− ε
+ s(ε)

)
and µ2

:= ε+

(s(ε)
2λ

)2
.

Let

9λ,µ(ζ ) :=

((
λζ − 1

2 s(ε)
)
(ζ 2
−µ2), ζ 2

−

(s(ε)
2λ

)2)
.

Then by construction 9λ,µ(µ)=9λ,µ(−µ)= (0, ε),

9λ,µ

(s(ε)
2λ

)
= (0, 0) and 9λ,µ

(
−

s(ε)
2λ

)
= (εs(ε), 0),

so we have a disk passing through all three poles of Gε. Furthermore, choosing

ζz :=
1
λ

( z1

z2− ε
+

s(ε)
2

)
,

we have 9λ,µ(ζz)= z. Notice that

ζ 2
z =

z2(z2− ε)

z1

( z1

z2− ε
+

s(ε)
2

)2( z1

z2− ε
+ s(ε)

)−1
,

so for any η > 0 there exists ε0(δ, η) > 0 such that for |ε|< ε0(δ, η)

(2-1)
∣∣|ζz| − |z2|

1/2∣∣≤ η
for any z such that δ ≤ 1

2 |z2|
3/2
≤ |z1| ≤ |z2|

3/2
≤ 1. In particular, by choosing η

small enough we ensure that ζz ∈ D. We need a more general fact.

Claim. Let η > 0, and δ > 0. Then there exists ε1 = ε1(δ, η) > 0 such that
for any ε with |ε| ≤ ε1, we have 9λ,µ(D(0, 1 − η)) ⊂ D2 for any z such that
δ ≤ 1

2 |z2|
3/2
≤ |z1| ≤ |z2|

3/2
≤ 1.

Proof. For |ε| ≤ δ2/3/2, we have |z2|/2≤ |z2− ε| ≤ 2|z2|, so

|λ|2 ≥

∣∣∣ z1

2z2
2

∣∣∣(∣∣∣ z1

2z2

∣∣∣− |s(ε)|)≥ ∣∣∣ z2
1

8z3
2

∣∣∣≥ 1
32

for ε small enough. So when |ζ | ≤ 1− η,

|9λ,µ,2(ζ )| ≤ (1− η)2+ 256|s(ε)|2 < 1

for ε small enough.
In a similar way, given η′, for ε small enough depending on δ and η′, we have
|z2| ≤ (1+ η′)|z2− ε|, so

|λ|2 ≤ (1+ η′)2
∣∣∣ z1

z2
2

∣∣∣(∣∣∣ z1

z2

∣∣∣+ |s(ε)|
(1+ η′)

)
≤ (1+ η′)3

∣∣∣ z2
1

z3
2

∣∣∣≤ (1+ η′)3
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for ε small enough. Choose η′ so that (1+ η′)3 = (1+ η). When |ζ | ≤ 1− η,

|9λ,µ,1(ζ )| ≤
(
(1+ η)(1− η)+ 1

2 |s(ε)|
)(
(1− η)2+ |ε| + 642

|s(ε)|2
)
< 1

for ε small enough. �

So now the function v(ζ ) := Gε(9λ,µ((1− η)ζ )) is negative and subharmonic
on D. Furthermore, it has logarithmic poles at the points

±
µ

1− η
and ±

s(ε)
2λ(1− η)

;

in the cases when µ = 0 or s(ε) = 0, we get a double logarithmic pole at the
corresponding point.

Denote by dG(ζ, ξ) := |(ζ − ξ)/(1− ζ ξ̄ )| the invariant (pseudohyperbolic) dis-
tance between points of the unit disk. Then

Gε(z)= v(ζz)≤ log dG

(
ζz,

µ

1− η

)
+ log dG

(
ζz,−

µ

1− η

)
+ log dG

(
ζz,

s(ε)
2λ(1− η)

)
+ log dG

(
ζz,−

s(ε)
2λ(1− η)

)
.

By (2-1), choosing m(δ, η) accordingly, we have Gε(z) ≤ 4 log|z2|
1/2
+ O(η) for

|ε| ≤ m. �

3. Lower estimate for the Lempert function

Proof of (1-4) of Proposition 1.2. The proof will follow the methods and notations
of [Thomas 2007]. We will make repeated use of the involutive automorphisms
of the unit disk given by φa(ζ ) := (a− ζ )/(1− āζ ) for a ∈ D, which exchange 0
and a. Notice that the invariant (pseudohyperbolic) distance verifies

dG(a, b) := |φa(b)| = |φb(a)|.

Write ρ(ε)= εs(ε) with limε→0 s(ε)= 0.
We will assume that the conclusion fails. That is, for any δ ∈ (0, 1/4), there

exist arbitrarily small values of |z2| =max(|z1|, |z2|), and |ε| such that

(3-1) `Sε(z) < (2− δ) log |z2|.

After applying, for each analytic disk, an automorphism of the disk that exchanges
the preimage of (0, 0) and 0, the assumption implies that there exists a holomorphic
map ϕ from D to D2 and points ζ j ∈ D, depending on z and ε, satisfying the
conditions

(3-2)
ϕ(0)= (0, 0), ϕ(ζ1)= (εs(ε), 0),

ϕ(ζ0)= (z1, z2), ϕ(ζ2)= (0, ε),
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with

(3-3) log|ζ0| + log|φζ0(ζ1)| + log|φζ0(ζ2)| ≤ (2− δ) log|z2|.

The interpolation conditions in (3-2) are equivalent to the existence of holomor-
phic functions h1 and h2 from D to itself such that

ϕ(ζ )= (ζφζ2(ζ )h1(ζ ), ζφζ1(ζ )h2(ζ )),

such that furthermore

h1(ζ1)=
εs(ε)

ζ1φζ2(ζ1)
=: w1,(3-4)

h1(ζ0)=
z1

ζ0φζ2(ζ0)
=: w2,(3-5)

h2(ζ2)=
ε

ζ2φζ1(ζ2)
=: w4,(3-6)

h2(ζ0)=
z2

ζ0φζ1(ζ0)
=: w3.(3-7)

By the invariant Schwarz lemma, the existence of a holomorphic function h1

mapping D to itself and satisfying (3-4) and (3-5) is equivalent to

(3-8) |w1|< 1, |w2|< 1 and dG(w1, w2) < dG(ζ1, ζ0)= |φζ1(ζ0)|.

In the same way, the existence of h2 is equivalent to

(3-9) |w3|< 1, |w4|< 1 and dG(w3, w4) < dG(ζ2, ζ0)= |φζ2(ζ0)|.

As in [Thomas 2007], we start by remarking that (3-3) can be rewritten as

(3-10) − log|w2| − log|w3| = log
∣∣∣ζ0φζ1(ζ0)

z2

∣∣∣+ log
∣∣∣ζ0φζ0(ζ2)

z1

∣∣∣
≤ log|ζ0| + (2− δ) log|z2| − log|z1| − log|z2|

≤ log|ζ0| −
( 1

2 + δ
)

log|z2| + log 2,

by (1-5). We can rewrite this in a more symmetric fashion:

(3-11) log 1
|w2|
+ log 1

|w3|
+ log 1

|ζ0|
≤
(1

2 + δ
)

log 1
|z2|
+ log 2.

Since all terms are positive by (3-8) and (3-9), each of the terms on the left hand
side is bounded by the right hand side.

We will proceed as follows: We have used the contradiction hypothesis (3-3) to
prove that |ζ0| and |w3| are relatively big. We will prove that |φζ2(ζ0)| has to be
relatively small, which by (3-9) forces |w4| to be roughly as large as |w3|. This
then allows us to bound |φζ1(ζ2)| by a quantity that becomes as small as desired
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when ε can be made small, and hence allows us to bound |φζ1(ζ0)| by the triangle
inequality.

The final contradiction will concern w2 = z1/(ζ0φζ2(ζ0)). On the one hand,
(3-11) guarantees that it is not too small; but an explicit computation of the quotient
w1/w4 shows that w1 must be small, and by (3-8) and the estimate on |φζ1(ζ0)|,
|w2| is small as well.

We provide the details. From (3-11),

(3-12) log|w3| ≥
( 1

2 + δ
)

log|z2| − log 2.

From (3-5) and (3-10),

(3-13) log|φζ2(ζ0)| = log|z1/ζ0| − log|w2|

≤ log|z1/ζ0| + log|ζ0| −
( 1

2 + δ
)

log|z2| + log 2

≤ (1− δ) log|z2| + log 2.

Since δ < 1/4, (3-13) and (3-12) imply that |φζ2(ζ0)| <
1
2 |w3| for |z2| ≤ r1(δ), so

by (3-9) and the triangle inequality for dG ,

(3-14) |w4| ≥
1
2 |w3|.

We now prove that both ζ1 and ζ2 must be close to ζ0 and even closer to each
other. First, since (3-11) implies that log|ζ0| ≥ (

1
2 + δ) log |z2| − log 2, by (3-13),

|φζ2(ζ0)| ≤
1
2 |ζ0| for |z2| ≤ r2(δ). By the triangle inequality for dG ,

(3-15) 1
2 |ζ0| ≤ |ζ2| ≤

3
2 |ζ0|.

On the other hand, from (3-11),

log|w3| + log|ζ0| ≥ (
1
2 + δ) log|z2| − log 2, that is, |w3ζ0| ≥

1
2 |z2|

δ+1/2.

Therefore, applying (3-14) and (3-15),

(3-16) |φζ1(ζ2)| =

∣∣∣ ε

ζ2w4

∣∣∣≤ 4
∣∣∣ ε

ζ0w3

∣∣∣≤ 8|ε||z2|
−δ−1/2.

In particular, for

(3-17) |ε|< 1
8 |z2|

3/2,

this implies |φζ1(ζ2)|< |z2|
1−δ, and by the triangle inequality,

(3-18) |φζ1(ζ0)|< |φζ2(ζ0)| + |φζ1(ζ2)|< 3|z2|
1−δ.

We now establish the two (contradictory) estimates for w2. On the one hand,
(3-11) implies that

(3-19) log |w2| ≥
( 1

2 + δ
)

log|z2| − log 2, that is, |w2| ≥
1
2 |z2|

δ+1/2.
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On the other hand, ∣∣∣w1

w4

∣∣∣= ∣∣∣ εs(ε)
ζ1φζ2(ζ1)

ζ2φζ1(ζ2)

ε

∣∣∣= ∣∣∣s(ε)ζ2

ζ1

∣∣∣.
By the triangle inequality for dG , when (3-17) holds, the lower bound in (3-15)
and the corollary to (3-16) imply

|ζ1| ≥ |ζ2| − |φζ1(ζ2)| ≥
1
2 |ζ0| − |z2|

1−δ
≥

1
4 |ζ0|

for |z2| small enough, because of (3-11) again. So finally, using the upper bound in
(3-15), |w1/w4| ≤ 6|s(ε)|. We choose ε0 <

1
8 |z2|

3/2 so that for any ε with |ε| ≤ ε0,

(3-20) |s(ε)|< |z2|
1−δ.

The triangle inequality for dG and (3-18) imply that when |ε| ≤ ε0,

|w2| ≤ |w1| + |φζ1(ζ0)| ≤ 6|s(ε)| + 3|z2|
1−δ
≤ 9|z2|

1−δ.

Finally, if we choose |z2| ≤ r0(δ), with

r0(δ)≤min(r1(δ), r2(δ)) and 9r0(δ)
1−δ < 1

2r0(δ)
1/2+δ,

we see that for any ε with |ε| ≤ ε0, this last bound contradicts (3-19). �
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DIFFERENTIAL HARNACK INEQUALITIES
FOR NONLINEAR HEAT EQUATIONS WITH POTENTIALS

UNDER THE RICCI FLOW

JIA-YONG WU

We prove several differential Harnack inequalities for positive solutions to
nonlinear backward heat equations with different potentials coupled with
the Ricci flow. We also derive an interpolated Harnack inequality for the
nonlinear heat equation under the ε-Ricci flow on a closed surface. These
new Harnack inequalities extend the previous differential Harnack inequal-
ities for linear heat equations with potentials under the Ricci flow.

1. Introduction and main results

Background. The study of differential Harnack estimates for parabolic equations
originated with the work of P. Li and S.-T. Yau [1986], who first proved a gradient
estimate for the heat equation via the maximum principle (though a precursory
form of their estimate appeared in [Aronson and Bénilan 1979]). Using their
gradient estimate, the same authors derived a classical Harnack inequality by inte-
grating the gradient estimate along space-time paths. This result was generalized
to Harnack inequalities for some nonlinear heat-type equations in [Yau 1994] and
for some non-self-adjoint evolution equations in [Yau 1995]. Recently, J. Li and
X. Xu [2011] gave sharper local estimates than previous results for the heat equa-
tion on Riemannian manifolds with Ricci curvature bounded below. Surprisingly,
R. Hamilton employed similar techniques to obtain Harnack inequalities for the
Ricci flow [Hamilton 1993a], and the mean curvature flow [Hamilton 1995]. In
dimension two, a differential Harnack estimate for the positive scalar curvature
was proved in [Hamilton 1988], and then extended by B. Chow [1991a] when the
scalar curvature changes sign. Similar techniques were used to obtain the Har-
nack inequalities for the Gauss curvature flow [Chow 1991b] and the Yamabe flow
[Chow 1992]. H.-D. Cao [1992] proved a Harnack inequality for the Kähler–Ricci

This work is partially supported by the NSFC (No.11101267) and the Science and Technology Pro-
gram of Shanghai Maritime University (No. 20120061).
MSC2010: 53C44.
Keywords: Harnack inequality, interpolated Harnack inequality, nonlinear heat equation, nonlinear

backward heat equation, Ricci flow.
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flow. B. Andrews [1994] derived several Harnack inequalities for general curvature
flows of hypersurfaces. Chow and Hamilton [1997] gave extensions of the Li–Yau
Harnack inequality, which they called constrained and linear Harnack inequalities.
For more detailed discussion, we refer the interested reader to [Chow et al. 2006,
Chapter 10].

Hamilton [1993b] also generalized the Li–Yau Harnack inequality to a matrix
Harnack form on a class of Riemannian manifolds with nonnegative sectional cur-
vature. This result was extended to the constrained matrix Harnack inequalities in
[Chow and Hamilton 1997]. H.-D. Cao and L. Ni [2005] proved a matrix Harnack
estimate for the heat equation on Kähler manifolds. Chow and Ni [2007] proved
a matrix Harnack estimate for Kähler–Ricci flow using interpolation techniques
from [Chow 1998].

In another direction, differential Harnack inequalities for (backward) heat-type
equations coupled with the Ricci flow have become an important object, which
can be traced back to [Hamilton 1988]. This subject was further explored by
Chow [1998], Chow and Hamilton [1997], Chow and D. Knopf [2002], and H.-B.
Cheng [2006], among others. Perhaps the most spectacular result is G. Perelman’s
[2002] differential Harnack inequality for the fundamental solution to the back-
ward heat equation coupled with the Ricci flow without any curvature assumption.
Perelman’s Harnack inequality has many important applications (it is essential in
proving pseudolocality theorems), and it has been extended by X. Cao [2008] and
independently by S.-L. Kuang and Qi S. Zhang [2008]. Those authors proved a
differential Harnack inequality for all positive solutions to the backward heat equa-
tion under the Ricci flow on closed manifolds with nonnegative scalar curvature.
X. Cao and Qi S. Zhang [2011a] have established Gaussian upper and lower bounds
for the fundamental solution to the backward heat equation under the Ricci flow.

On the subject of differential Harnack inequalities for the linear heat equation
coupled with the Ricci flow, there have been many important contributions; see,
for example, [Bailesteanu et al. 2010; Cao and Hamilton 2009; Chau et al. 2011;
Chow et al. 2010; Guenther 2002; Liu 2009; Wu and Zheng 2010; Zhang 2006].

In recent years there has been increasing interest in the study of the nonlinear
heat-type equations coupled with the Ricci flow. A nice example of a nonlinear
heat equation, introduced by L. Ma [2006], is

(1-1)
∂

∂t
f =1 f − a f ln f − b f,

where a and b are real constants. Ma first proved a local gradient estimate for
positive solutions to the corresponding elliptic equation

(1-2) 1 f − a f ln f − b f = 0
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on a complete manifold with a fixed metric. Indeed, F. R. K. Chung and S.-T. Yau
[1996] observed that equation (1-2) is linked with the gross logarithmic Sobolev
inequality. They also established a logarithmic Harnack inequality for this equation
when a < 0. Y. Yang [2008] derived local gradient estimates for positive solutions
to (1-1) on a complete manifold with a fixed metric; see also [Chen and Chen
2009; Huang and Ma 2010; Wu 2010a; 2010b]. Yang’s result has been generalized
by L. Ma [2010a; 2010b], who obtained Hamilton and new Li–Yau type gradient
estimates for the nonlinear heat equation (1-1), and also by S.-Y. Hsu [2011], who
proved local gradient estimates for the nonlinear heat equation (1-1) under the Ricci
flow, similar to the gradient estimates of [Yang 2008] for the fixed metric case.

We remind the reader that equations (1-1) and (1-2) often appear in geometric
evolution equations, and are also closely related to the gradient Ricci solitons.
See, for example, [Cao and Zhang 2011b; Ma 2006] for nice explanations on this
subject.

Very recently, X. Cao and Z. Zhang [2011b] used the argument from [Cao and
Hamilton 2009] to prove an interesting differential Harnack inequality for positive
solutions to the forward nonlinear heat equation

(1-3)
∂

∂t
f =1 f − f ln f + R f

coupled with the Ricci flow equation

(1-4)
∂

∂t
gi j =−2Ri j

on a closed manifold. Here 1, R and Ri j are the Laplacian, scalar curvature and
Ricci curvature of the metric g(t) moving under the Ricci flow.

Main results. In this paper, we will be concerned with general time-dependent
nonlinear backward heat equations of the type (1-1) with different potentials on
closed manifolds under the Ricci flow.

Before studying nonlinear backward heat equations, we first study the nonlinear
forward heat equation (1-3) with the metric evolving under the Ricci flow. Suppose
(M, g(t)), t ∈ [0, T ), is a solution to the ε-Ricci flow (ε ≥ 0)

(1-5)
∂

∂t
gi j =−εRgi j

on a closed surface. Let f be a positive solution to the nonlinear forward heat
equation with potential εR, that is,

(1-6)
∂

∂t
f =1 f − f ln f + εR f.
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In this case, we can derive a new differential interpolated Harnack inequality, which
is originated with B. Chow [1998].

Theorem 1.1. Let (M, g(t)), t ∈ [0, T ), be a solution to the ε-Ricci flow (1-5) on
a closed surface with R > 0. Let f be a positive solution to the nonlinear heat
equation (1-6), u =−ln f and Hε =1u− εR. Then, for all time t ∈ (0, T ),

Hε ≤
1
t
,

that is,
∂

∂t
ln f − |∇ ln f |2+ ln f +

1
t
=1 ln f + εR+

1
t
≥ 0.

In Theorem 1.1, if we take ε= 0, we can get the following differential Harnack
inequality for the nonlinear heat equation on closed surfaces with a fixed metric:

Corollary 1.2. If f : M × [0, T )→ R, is a positive solution to the nonlinear heat
equation

∂

∂t
f =1 f − f ln f

on a closed surface (M, g) with R > 0, then, for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2+ ln f +

1
t
=1 ln f +

1
t
≥ 0.

If we take ε = 1 in Theorem 1.1, we get:

Corollary 1.3. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
surface with R > 0. If f is a positive solution to the nonlinear heat equation (1-3),
then for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2+ ln f +

1
t
=1 ln f + R+

1
t
≥ 0.

Remark 1.4. X. Cao and Z. Zhang [2011b] have proved a differential Harnack
inequality for Equation (1-3) under the Ricci flow on manifolds of any dimension.
However, on a closed surface, the result of Corollary 1.3 is better than theirs.

Remark 1.5. Interestingly, Theorem 1.1 is a nonlinear interpolated Harnack in-
equality which links Corollary 1.2 to Corollary 1.3.

Secondly, we now consider differential Harnack inequalities for positive solu-
tions to the nonlinear backward heat equation with potential 2R, that is,

(1-7)
∂

∂t
f =−1 f + f ln f + 2R f

under the Ricci flow. X. Cao and Z. Zhang [2011b] made nice explanations that
the nonlinear forward heat equation (1-3) is closely related to expanding gradient
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Ricci solitons. Analogously to the argument of Cao and Zhang, our consideration
of the Equation (1-7) is motivated by shrinking gradient Ricci solitons proposed in
[Hamilton 1993a]. Recall that a shrinking gradient Ricci soliton (M, g) is defined
by the form (see [Chow et al. 2006])

(1-8) Ri j +∇i∇ jw = cgi j ,

where w is some Ricci soliton potential and c is a positive constant. Taking the
trace of both sides of (1-8) yields

(1-9) R+1w = const.

Using the contracted Bianchi identity, we can easily deduce that

(1-10) R− 2cw+ |∇w|2 =−const.

From (1-9) and (1-10), we get

(1-11) 2|∇w|2 =−1w+ |∇w|2+ 2cw− 2R.

Recall that the Ricci flow solution for a complete gradient Ricci soliton [Chow
et al. 2006, Theorem 4.1] is the pullback of g under ϕ(t), up to a scale factor c(t):

g(t)= c(t) ·ϕ(t)∗g,

where c(t) :=−2ct+1> 0 and ϕ(t) is the 1-parameter family of diffeomorphisms
generated by

1
c(t)
∇gw.

Then the corresponding Ricci soliton potential ϕ(t)∗w satisfies

∂

∂t
ϕ(t)∗w =

∣∣∇ϕ(t)∗w∣∣2 .
Note that along the Ricci flow, (1-11) becomes

2|∇ϕ(t)∗w|2 =−1ϕ(t)∗w+ |∇ϕ(t)∗w|2+
2c

c(t)
·ϕ(t)∗w− 2R.

Hence the evolution equation for the Ricci soliton potential ϕ(t)∗w is

2
∂ϕ(t)∗w
∂t

=−1ϕ(t)∗w+ |∇ϕ(t)∗w|2+
2c

c(t)
·ϕ(t)∗w− 2R.

If we let ϕ(t)∗w =−ln f̃ , this equation becomes

(1-12) 2
∂ f̃
∂t
=−1 f̃ + 2R f̃ +

2c
c(t)
· f̃ ln f̃ .



204 JIA-YONG WU

Notice that (1-7) and (1-12) are closely related and only differ by the time scaling
and their last terms.

For the nonlinear backward heat equation (1-7) under the Ricci flow, we have:

Theorem 1.6. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n. Let f be a positive solution to the nonlinear backward
heat equation (1-7), u =−ln f , τ = T − t and

(1-13) H = 21u− |∇u|2+ 2R− 2
n
τ
.

Then, for all time t ∈ [0, T ),

H ≤
n
2
.

Remark 1.7. We can easily see that H ≤ n/2 is equivalent to

|∇ f |2

f 2 − 2
(

fτ
f
+ ln f + R

)
≤ 2

n
τ
+

n
2
.

In [Yang 2008] (see also [Wu 2010b]), the classical Li–Yau gradient estimate for
positive solutions to the nonlinear heat equation (1-1) is

|∇ f |2

f 2 − 2
(

ft

f
+ a ln f + b

)
≤ 2

n
t
+ na

on manifolds with a fixed metric satisfying nonnegative Ricci curvature. Hence
our Harnack inequality is similar to the classical Li–Yau gradient estimate for the
nonlinear heat equation (1-1).

If we assume instead that our solution to the Ricci flow is defined for t ∈ [0, T )
(where T <∞ is the blow-up time) and is of type I, meaning that

(1-14) |Rm| ≤
d0

T − t

for some constant d0, then we can show this:

Theorem 1.8. Let (M, g(t)), t ∈ [0, T ) (where T <∞ is the blow-up time) be a
solution to the Ricci flow on a closed manifold of dimension n, and assume that g
is of type I, that is, it satisfies (1-14), for some constant d0. Let f be a positive
solution to the nonlinear backward heat equation (1-7), u =−ln f , τ = T − t and

H = 21u− |∇u|2+ 2R− d
n
τ
,

where d = d(d0, n)≥ 2 is some constant such that H(τ ) < 0 for small τ . Then, for
all time t ∈ [0, T ),

H ≤
n
2
.
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Thirdly, we consider the nonlinear backward heat equation

(1-15)
∂

∂t
f =−1 f + f ln f + R f

under the Ricci flow. This equation is very similar to (1-7) and only differs by
the last potential. We also find that (1-15) can be regarded as the extension of the
linear backward heat equation considered in [Cao 2008, Theorem 1.3] and [Kuang
and Zhang 2008, Theorem 2.1]. In fact, we only have the additional term f ln f
in the linear backward heat equation. For this system, we prove:

Theorem 1.9. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n with nonnegative scalar curvature. Let f be a positive
solution to the nonlinear backward heat equation (1-15), u=−ln f , τ = T − t and

(1-16) H = 21u− |∇u|2+ R− 2
n
τ
.

Then, for all time t ∈ [0, T ),

H ≤
n
4
.

By modifying the Harnack quantity of Theorem 1.9, we can deduce the follow-
ing differential Harnack inequality without assuming the nonnegativity of R:

Theorem 1.10. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n. Let f be a positive solution to the nonlinear backward
heat equation (1-15), v =−ln f − 1

2 n ln(4πτ), τ = T − t , and

P = 21v− |∇v|2+ R− 3
n
τ
.

Then, for all time t ∈ [T/2, T ),

P ≤
n
4
.

Remark 1.11. Theorems 1.6–1.10 extend to the nonlinear case Theorems 1.1–1.3
and 3.6 of [Cao 2008] and Theorem 2.1 of [Kuang and Zhang 2008].

The proof of all our theorems nearly follows from the arguments of X. Cao
[2008], X. Cao and R. Hamilton [2009], X. Cao and Z. Zhang [2011b], and S.-L.
Kuang and Qi S. Zhang [Kuang and Zhang 2008], where computations of evolu-
tion equations and the maximum principle for parabolic equations are employed.
The major differences are that one of our results gives an interpolation Harnack
inequality for a nonlinear forward heat equation along the ε-Ricci flow on a closed
surface, and the others provide differential Harnack estimates for various nonlinear
backward heat equations under the Ricci flow.
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One interesting feature of this paper is that our differential Harnack inequalities
are not only like the Perelman’s Harnack inequalities, but also similar to the clas-
sical Li–Yau Harnack inequalities for the corresponding nonlinear heat equation
(see Remark 1.7 above). Another feature is that our Harnack quantities of non-
linear backward heat equations are nearly the same as those of linear backward
heat equations considered by X. Cao [2008], and S.-L. Kuang and Qi S. Zhang
[2008]. Due to the fact that Ricci soliton potentials are linked with some nonlinear
backward heat equations, we expect that our differential Harnack inequalities will
be useful in understanding the Ricci solitons.

The rest of this paper is organized as follows: In Section 2, we will prove a new
differential interpolated Harnack inequality on a surface, that is, Theorem 1.1. In
Section 3, we firstly derive differential Harnack inequalities for positive solutions
to the nonlinear backward heat equation with potential 2R under the Ricci flow
(Theorems 1.6 and 1.8). Then a classical integral version of the Harnack inequality
will be proved (Theorem 3.2). In the latter part of this section, we will establish
Harnack inequalities for another nonlinear backward heat equation with potential
R under the Ricci flow (Theorem 1.9) as well as its classical Harnack version
(Theorem 3.4). By modifying the Harnack quantity of Theorem 1.9, we can prove
another differential Harnack inequalities without the nonnegative assumption of
scalar curvature (Theorem 1.10). Finally, in Section 4, we will prove gradient
estimates for positive and bounded solutions to the nonlinear (including backward)
heat equation without potentials under the Ricci flow, that is, Theorems 4.1 and 4.3.

2. Nonlinear heat equation with potentials

In this section, we will prove a differential interpolated Harnack inequality for
positive solutions to nonlinear forward heat equations with potentials coupled with
the ε-Ricci flow on a closed surface.

Let f be a positive solution to the nonlinear forward heat equation (1-6). By
the maximum principle, we conclude that the solution will remain positive along
the Ricci flow when scalar curvature is positive. If we let

u =−ln f,

then u satisfies the equation

∂

∂t
u =1u− |∇u|2− εR− u.

Proof of Theorem 1.1. The proof involves a direct computation and the parabolic
maximum principle. Let f and u be defined as above. Under the ε-Ricci flow (1-5)
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on a closed surface, we have that

∂R
∂t
= ε(1R+ R2) and ∂

∂t
(1)= εR1,

where the Laplacian 1 is acting on functions. Define the Harnack quantity

(2-1) Hε =1u− εR.

Using the evolution equations above, we first compute that

∂

∂t
Hε =1

(
∂

∂t
u
)
+

(
∂

∂t
1
)

u− ε ∂R
∂t

=1(1u− |∇u|2− εR− u)+ εR1u− ε ∂R
∂t

=1Hε −1|∇u|2−1u+ εRHε + ε2 R2
− ε

∂R
∂t

Since
1|∇u|2 = 2|∇∇u|2+ 2∇1u · ∇u+ R|∇u|2

on a two-dimensional surface, we then have

∂

∂t
Hε =1Hε − 2|∇∇u|2− 2∇1u · ∇u− R|∇u|2+ εRHε + ε2 R2

− ε
∂R
∂t
−1u

=1Hε − 2|∇∇u|2− 2∇Hε · ∇u

− 2ε∇R · ∇u− R|∇u|2+ εRHε + ε2 R2
− ε

∂R
∂t
−1u

=1Hε − 2
∣∣∣∇i∇ j u−

ε

2
Rgi j

∣∣∣2− 2εR1u− 2∇Hε · ∇u

− 2ε∇R · ∇u− R|∇u|2+ εRHε + 2ε2 R2
− ε

∂R
∂t
−1u.

Since 1u = Hε + εR by (2-1), these equalities become

∂

∂t
Hε =1Hε − 2

∣∣∣∇i∇ j u−
ε

2
Rgi j

∣∣∣2− εRHε − 2∇Hε · ∇u

− 2ε∇R · ∇u− R|∇u|2− ε ∂R
∂t
−1u.

Rearranging terms yields

(2-2) ∂

∂t
Hε =1Hε − 2

∣∣∣∇i∇ j u−
ε

2
Rgi j

∣∣∣2− 2∇Hε · ∇u− εRHε

− R |∇u+ ε∇ ln R|2− εR
(
∂ ln R
∂t
− ε|∇ ln R|2

)
−1u

≤1Hε − H 2
ε − 2∇Hε · ∇u− (εR+ 1)Hε +

ε

t
R− εR.

The reason for this last inequality is that the trace Harnack inequality for the ε-
Ricci flow on a closed surface proved in [Chow 1998] (see also [Wu and Zheng
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2010, Lemma 2.1]) states that

∂ ln R
∂t
− ε|∇ ln R|2 = ε(1 ln R+ R)≥−1

t
,

since g(t) has positive scalar curvature. Besides this, we also used (2-1) and the
elementary inequality∣∣∣∇i∇ j u−

ε

2
Rgi j

∣∣∣2 ≥ 1
2
(1u− εR)2 = 1

2
H 2
ε .

Adding −1/t to Hε in (2-2) yields

(2-3) ∂

∂t

(
Hε −

1
t

)
≤1

(
Hε −

1
t

)
− 2∇

(
Hε −

1
t

)
· ∇u

−

(
Hε +

1
t

) (
Hε −

1
t

)
− (εR+ 1)

(
Hε −

1
t

)
−

1
t
− εR.

Clearly, for t small enough we have Hε − 1/t < 0. Since R > 0, applying the
maximum principle to the evolution formula (2-3) we conclude that Hε− 1/t ≤ 0
for all time t , and the proof of this theorem is completed. �

We remark that Theorem 1.1 can be regarded as a nonlinear version of an inter-
polated Harnack inequality proved by B. Chow:

Theorem 2.1 [Chow 1998]. Let (M, g(t)) be a solution to the ε-Ricci flow (1-5)
on a closed surface with R > 0. If f is a positive solution to

∂

∂t
f =1 f + εR f,

then
∂

∂t
ln f − |∇ ln f |2+

1
t
=1 ln f + εR+

1
t
≥ 0.

3. Nonlinear backward heat equation with potentials

We next study several differential Harnack inequalities for positive solutions to the
nonlinear backward heat equation under the Ricci flow, proving Theorems 1.6, 1.8,
1.9, and 1.10 from the Introduction. The first two of these theorems deal with the
case where the potential equals 2R, and the last two with the potential R. The
proofs are largely based on the maximum principle.

Potential 2R. Theorems 1.6 and 1.8 deal with differential Harnack inequalities for
positive solutions to the equation

∂

∂t
f =−1 f + f ln f + 2R f

under the Ricci flow. We follow the trick used to prove Theorem 1.1 in [Cao and
Zhang 2011b] to simplify a tedious calculation of the evolution equations. Also,
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the evolution equation of u in this case is very similar to what is considered in [Cao
2008]. So we can borrow Cao’s computation for the very general setting there to
simplify our calculation. The only difference is that we have extra terms coming
from the time derivative ∂u/∂τ .

Proof of Theorem 1.6. As before, it is easy to compute that u satisfies

(3-1)
∂

∂τ
u =1u− |∇u|2+ 2R− u.

Recall from (1-13) that H = 21u − |∇u|2 + 2R − 2n/τ . Adapting [Cao 2008,
(2.4)] and using (3-1) as well as the elementary inequality∣∣∣∇i∇ j u− Ri j −

1
τ

gi j

∣∣∣2 ≥ 1
n

(
1u− R− n

τ

)2
,

we can write

∂

∂τ
H =1H − 2∇H · ∇u− 2

τ
H − 2

τ
|∇u|2− 2|Rc|2− 2

∣∣∣∇i∇ j u+ Ri j −
1
τ

gi j

∣∣∣2
− 2(1u− |∇u|2)

≤1H − 2∇H · ∇u− 2
τ

H − 2
τ
|∇u|2− 2

n
R2
−

2
n

(
1u+ R− n

τ

)2

− 2(1u− |∇u|2),

By the definition of H , we have

−2(1u− |∇u|2)=−2H + 2
(
1u+ R−

n
τ

)
+ 2R−

2n
τ
.

Plugging this into the preceding inequality yields

∂

∂τ
H ≤1H − 2∇H · ∇u−

(2
τ
+ 2

)
H − 2

τ
|∇u|2− 2

n
R2

−
2
n

(
1u+ R− n

τ
−

n
2

)2
+

n
2
+ 2R− 2n

τ

=1H − 2∇H · ∇u−
(2
τ
+ 2

)
H − 2

τ
|∇u|2

−
2
n

(
1u+ R− n

τ
−

n
2

)2
−

2
n

(
R− n

2

)2
−

2n
τ
+ n.

Adding −n/2 to H , we then get

(3-2) ∂

∂τ

(
H − n

2

)
≤1

(
H − n

2

)
− 2∇

(
H − n

2

)
· ∇u−

(2
τ
+ 2

) (
H − n

2

)
−

2
τ
|∇u|2− 2

n

(
1u+ R− n

τ
−

n
2

)2
−

2
n

(
R− n

2

)2
−

3n
τ
.

If τ is small enough, H − n/2 < 0. Then applying the maximum principle to the
evolution equation (3-2) yields H − n/2≤ 0 for all τ , hence for all t ∈ [0, T ). �
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An easy modification of the preceding proof, using (1-14) to ensure that we can
apply the maximum principle as τ→ 0, verifies Theorem 1.8. We omit the details.

Remark 3.1. Theorem 1.6 is also true on a complete noncompact Riemannian
manifolds, as long as we can apply the maximum principle.

From Theorem 1.6, we can derive a classical Harnack inequality by integrating
along a space-time path.

Theorem 3.2. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n. Let f be a positive solution to the nonlinear backward
heat equation (1-7). Assume that (x1, t1) and (x2, t2), 0 ≤ t1 < t2 < T , are two
points in M × [0, T ). Then we have

et2 ln f (x2, t2)− et1 ln f (x1, t1)≤
1
2

∫ t2

t1
eT−t

(
|γ̇ |2+ 2R+

n
2
+

2n
T − t

)
dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

Proof. This is similar to Theorem 2.3 in [Cao 2008]; we include the proof for
completeness. Consider the solutions to

∂

∂τ
u =1u− |∇u|2+ 2R− u.

Combining this with

H −
n
2
= 21u− |∇u|2+ 2R− 2

n
τ
−

n
2
≤ 0,

we have

2
∂

∂τ
u+ |∇u|2− 2R− 2

n
τ
+ 2u−

n
2
≤ 0.

If γ (x, t) is a space-time path joining (x2, τ2) and (x1, τ1), with τ1 > τ2 > 0, we
have along γ

du
dτ
=
∂u
∂τ
+∇u · γ ≤−1

2
|∇u|2+ R+ n

τ
− u+ n

4
+∇u · γ

≤
1
2

(
|γ̇ |2+ 2R+ n

2

)
+

n
τ
− u,

where in the last step we used the inequality −1
2 |∇u|2 + ∇u · γ − 1

2 |γ̇ |
2
≤ 0.

Rearranging terms yields

d
dτ
(eτ · u)≤

eτ

2

(
|γ̇ |2+ 2R+

n
2
+

2n
τ

)
.
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Integrating this inequality we obtain

eτ1 · u(x1, τ1)− eτ2 · u(x2, τ2)≤
1
2

∫ τ1

τ2

eτ
(
|γ̇ |2+ 2R+

n
2
+

2n
τ

)
dτ,

which can be rewritten as

et1 · u(x1, t1)− et2 · u(x2, t2)≤
1
2

∫ t2

t1
eT−t

(
|γ̇ |2+ 2R+

n
2
+

2n
T − t

)
dt.

Note that u =−ln f . Hence the desired classical Harnack inequality follows. �

Potential R. We now turn to the equation with potential R:

∂

∂t
f =−1 f + f ln f + R f.

Here we need to assume that the initial metric g(0) has nonnegative scalar curva-
ture. It is well known that this property is preserved by the Ricci flow.

Proof of Theorem 1.9. This time u satisfies

∂

∂τ
u =1u− |∇u|2+ R− u.

Adapting [Cao 2008, (3.2)], we can write

(3-3) ∂

∂τ
H =1H − 2∇H · ∇u− 2

τ
H − 2

τ
|∇u|2− 2 R

τ

− 2
∣∣∣∇i∇ j u+ Ri j −

1
τ

gi j

∣∣∣2− 2(1u− |∇u|2).

Since H is now given by (1-16), we have

−2(1u− |∇u|2)=−2H + 2
(
1u+ R−

n
τ

)
−

2n
τ
.

Plugging this into (3-3), we obtain

∂

∂τ
H ≤1H − 2∇H · ∇u−

(2
τ
+ 2

)
H − 2

τ
|∇u|2− 2 R

τ

−
2
n

(
1u+ R− n

τ

)2
+ 2

(
1u+ R− n

τ

)
−

2n
τ

=1H − 2∇H · ∇u−
(2
τ
+ 2

)
H − 2

τ
|∇u|2− 2 R

τ

−
2
n

(
1u+ R− n

τ
−

n
2

)2
−

2n
τ
+

n
2
.

Adding −n/4 to H yields

(3-4) ∂

∂τ

(
H − n

4

)
≤1

(
H − n

4

)
− 2∇

(
H − n

4

)
· ∇u−

(2
τ
+ 2

) (
H − n

4

)
−

2
τ
|∇u|2− 2 R

τ
−

2
n

(
1u+ R− n

τ
−

n
2

)2
−

5n
2τ
.
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Since R ≥ 0, it is easy to see that H − n/4< 0 for τ small enough. Applying the
maximum principle to the evolution formula (3-4), we have H −n/4≤ 0 for all τ ,
hence for all t . This finishes the proof of Theorem 1.9. �

We easily derive counterparts to Theorem 1.8 and Theorem 3.2:

Theorem 3.3. Let (M, g(t)), t ∈ [0, T ) (where T <∞ is the blow-up time) be a
solution to the Ricci flow on a closed manifold of dimension n with nonnegative
scalar curvature, and assume that g is of type I, that is, it satisfies (1-14), for some
constant d0. Let f be a positive solution to the nonlinear backward heat equation
(1-15), u =−ln f , τ = T − t and

H = 21u− |∇u|2+ R− d
n
τ
,

where d = d(d0, n)≥ 1 is some constant such that H(τ ) < 0 for small τ . Then, for
all time t ∈ [0, T ),

H ≤
n
4
.

Theorem 3.4. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n with nonnegative scalar curvature. Let f be a positive
solution to the nonlinear backward heat equation (1-15). Assume that (x1, t1) and
(x2, t2), with 0≤ t1 < t2 < T , are two points in M ×[0, T ). Then

et2 ln f (x2, t2)− et1 ln f (x1, t1)≤
1
2

∫ t2

t1
eT−t

(
|γ̇ |2+ R+

n
4
+

2n
T − t

)
dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

In the rest of this section, we will finish the proof of Theorem 1.10. The in-
teresting feature of Theorem 1.10 is that the differential Harnack inequalities hold
without any assumption on the scalar curvature R.

Proof of Theorem 1.10. We first compute that v satisfies

(3-5)
∂

∂τ
v =1v− |∇v|2+ R−

n
2τ
−

(
v+

n
2

ln(4πτ)
)
.

If we let
P̃ := 21v− |∇v|2+ R− 2

n
τ
,

then by adapting [Cao 2008, (3.7)], we have

∂

∂τ
P̃ =1P̃ − 2∇ P̃ · ∇v− 2

τ
P̃ − 2

τ
|∇v|2− 2 R

τ

− 2
∣∣∣∇i∇ jv+ Ri j −

1
τ

gi j

∣∣∣2− 2(1v− |∇v|2).
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Since P = P̃ − n/τ , we have

(3-6) ∂

∂τ
P =1P − 2∇P · ∇v− 2

τ
P − 2

τ
|∇v|2− 2 R

τ
−

n
τ 2

− 2
∣∣∣∇i∇ jv+ Ri j −

1
τ

gi j

∣∣∣2− 2(1v− |∇v|2).

According to the definition of P , we have

−2a(1v− |∇v|2)=−2P + 2
(
1v+ R−

n
τ

)
−

4n
τ
.

Substituting this into (3-6), we get

∂

∂τ
P ≤1P − 2∇P · ∇v−

(2
τ
+ 2

)
P − 2

τ
|∇v|2− 2 R

τ
−

n
τ 2(3-7)

−
2
n

(
1v+ R− n

τ

)2
+ 2

(
1v+ R− n

τ

)
−

4n
τ

=1P − 2∇P · ∇v−
(2
τ
+ 2

)
P − 2

τ
|∇v|2−

2
τ

(
R+ n

2τ

)
−

2
n

(
1v+ R− n

τ
−

n
2

)2
−

4n
τ
+

n
2
.

Note that the evolution of scalar curvature under the Ricci flow is
∂R
∂t
=1R+ 2|Rc|2 ≥1R+ 2

n
R2.

Applying the maximum principle to this inequality yields R ≥ −n/(2t). Since
t ≥ T/2, we have 1/t ≤ 1/τ . Hence

R ≥− n
2t
≥−

n
2τ
,

that is,
R+ n

2τ
≥ 0.

Combining this with (3-7), we have

∂

∂τ
P ≤1P − 2∇P · ∇v−

(2
τ
+ 2

)
P − 4n

τ
+

n
2
.

Adding −n/4 to P , we get

(3-8) ∂

∂τ

(
P − n

4

)
≤1

(
P − n

4

)
−2∇

(
P − n

4

)
·∇v−

(2
τ
+ 2

) (
P − n

4

)
−

9n
2τ
.

It is easy to see that P − n/4 < 0 for τ small enough. Applying the maximum
principle to the evolution formula (3-8) yields

P −
n
4
≤ 0

for all time t ≥ T/2. Hence the theorem is proved. �
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Remark 3.5. Motivated by Theorems 3.3 and 3.4, we can prove similar theorems
by the standard argument from Theorem 1.10. We omit them in the interests of
brevity.

4. Gradient estimates for nonlinear (backward) heat equations

In this section, on one hand we consider the positive solution f (x, t) < 1 to the
nonlinear heat equation without any potential

(4-1)
∂

∂t
f =1 f − f ln f,

with the metric evolved by the Ricci flow (1-4) on a closed manifold M . This
equation has been considered by S.-Y. Hsu [2011] and L. Ma [2010a]. If we let
u =−ln f , then

(4-2)
∂

∂t
u =1u− |∇u|2− u

and u > 0. Note that 0 < f < 1 is preserved as time t evolves. In fact the initial
assumption says that

− ln sup
M

f (x, 0)≤ u(x, 0)≤− ln inf
M

f (x, 0).

Applying the maximum principle to (4-2), we have

−e−t ln sup
M

f (x, 0)≤ u(x, t)≤−e−t ln inf
M

f (x, 0)

and hence
0< u(x, t)≤− ln inf

M
f (x, 0)

for all x ∈ M and t ∈ [0, T ). Since u =−ln f , this implies

0< inf
M

f (x, 0)≤ f (x, t) < 1

for all x ∈ M and t ∈ [0, T ).
Following the arguments of [Cao and Hamilton 2009], we let

H = |∇u|2−
u
t
.

Comparing with the equation (5.3) in the same reference, we have

(4-3) ∂

∂t
H =1H − 2∇H · ∇u− 1

t
H − 2|∇∇u|2− 2|∇u|2+ u

t

=1H − 2∇H · ∇u−
(1

t
+ 1

)
H − 2|∇∇u|2− |∇u|2.
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Notice that if t small enough, then H < 0. Then applying the maximum principle
to (4-3), we obtain:

Theorem 4.1. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
manifold. Let f < 1 be a positive solution to the nonlinear heat equation (4-1),
u =−ln f and

H = |∇u|2−
u
t
.

Then, for all time t ∈ (0, T ),
H ≤ 0.

Remark 4.2. Theorem 4.1 can be regarded as a nonlinear version of [Cao and
Hamilton 2009, Theorem 5.1]. Recently, L. Ma [2010a, Theorem 3] has proved
the same estimate as in Theorem 4.1 on a closed manifold with nonnegative Ricci
curvature under a static metric. However, in our case, we do not need any curvature
assumption.

On the other hand, we can also consider the positive solution f (x, t) < 1 to the
nonlinear backward heat equation without any potential

(4-4)
∂

∂t
f =−1 f + f ln f,

with the metric evolved by the Ricci flow (1-4). Let u =−ln f . Then we have

∂

∂τ
u =1u− |∇u|2− u

and u > 0. Using the maximum principle, one can see that 0 < f < 1 is also
preserved under the Ricci flow. In fact from the initial assumption

0< inf
M

f (x, T )≤ f (x, T )≤ sup
M

f (x, T ) < 1,

one can also show that

0< inf
M

f (x, T )≤ f (x, τ ) < 1

for all x ∈ M and τ ∈ (0, T ] in the same way as the above arguments.
Following the arguments of [Cao 2008], let

H = |∇u|2−
u
τ
.

Comparing with the equation (5.3) in [Cao 2008], we have

(4-5) ∂

∂τ
H =1H − 2∇H · ∇u− 1

τ
H − 2|∇∇u|2− 4Ri j ui u j − 2|∇u|2+ u

τ

=1H − 2∇H · ∇u−
(1
τ
+ 1

)
H − 2|∇∇u|2− 4Ri j ui u j − |∇u|2.
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If we assume Ri j (g(t))≥−K , where 0≤ K ≤ 1
4 , then

−4Ri j ui u j − |∇u|2 ≤ (4K − 1)|∇u|2 ≤ 0.

Hence if τ small enough, then H < 0. Then applying the maximum principle to
(4-5), we have a nonlinear version of [Cao 2008, Theorem 5.1].

Theorem 4.3. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with the Ricci curvature satisfying Ri j (g(t)) ≥ −K , where 0 ≤ K ≤ 1

4 .
Let f < 1 be a positive solution to the nonlinear backward heat equation (4-4),
u =−ln f , τ = T − t and

H = |∇u|2−
u
τ
.

Then, for all time t ∈ [0, T ),
H ≤ 0.
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ON OVERTWISTED, RIGHT-VEERING OPEN BOOKS

PAOLO LISCA

We exhibit infinitely many overtwisted, right-veering, non-destabilizable
open books, thus providing infinitely many counterexamples to a conjecture
of Honda, Kazez and Matić. The page of all our open books is a four-holed
sphere and the underlying 3-manifolds are lens spaces.

1. Introduction

The purpose of this note is to construct infinitely many counterexamples to a con-
jecture of Honda, Kazez and Matić from [Honda et al. 2009]. For the basic notions
of contact topology not recalled below we refer the reader to [Etnyre 2003; Geiges
2008].

Let S be a compact, oriented surface with boundary and Map(S, ∂S) the group of
orientation-preserving diffeomorphisms of S that restrict to ∂S as the identity, up to
isotopies fixing ∂S pointwise. An open book (also known as an abstract open book)
is a pair (S,8) where S is a surface as above and 8 ∈Map(S, ∂S). Giroux [2002]
introduced a fundamental operation of stabilization (S,8) → (S′,8′) on open
books, and proved the existence of a 1-1 correspondence between the set of open
books modulo stabilization and the set of contact 3-manifolds modulo isomorphism
(see, for example, [Etnyre 2006] for details). Honda, Kazez and Matić [Honda
et al. 2007] showed that a contact 3-manifold is tight if and only if it corresponds
to an equivalence class of open books (S,8) all of whose monodromies 8 are
right-veering (in the sense of [Honda et al. 2007, Section 2]). In [Goodman 2005;
Honda et al. 2007] it is also showed that every open book can be made right-veering
after a sequence of stabilizations. Honda, Kazez and Matić [Honda et al. 2009]
proved that when S is a holed torus, the contact structure corresponding to (S,8)
is tight if and only if 8 is right-veering, and conjectured that a non-destabilizable
right-veering open book corresponds to a tight contact 3-manifold. The Honda–
Kazez–Matić conjecture was recently disproved by Lekili [2011], who produced a
counterexample (S,8) with S equal to a four-holed sphere and whose underlying
3-manifold is the Poincaré homology sphere.

MSC2010: primary 57R17; secondary 53D10.
Keywords: contact surgery, destabilizable diffeomorphisms, Giroux’s correspondence, open books,

overtwisted contact structures, right-veering diffeomorphisms.
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We shall now describe our examples. Denote by δγ ∈Map(S, ∂S) the class of a
positive Dehn twist along a simple closed curve γ ⊂ S.

Theorem 1.1. Let S be an oriented four-holed sphere, and a, b, c, d, e the simple
closed curves on S shown in Figure 1.

a b

c d

e

Figure 1. The four-holed sphere S.

Let h, k ≥ 1 be integers. Define 8h,k := δ
h
a δbδcδdδ

−k−1
e ∈Map(S, ∂S). Then

• the underlying 3-manifold Y(S,8h,k) is the lens space

L((h+ 1)(2k− 1)+ 2, (h+ 1)k+ 1);

• the associated contact structure ξ(S,8h,k) is overtwisted;

• 8h,k is right-veering;

• (S,8h,k) is not destabilizable.

Warning: in the above statement we adopt the convention that the lens space
L(p, q) is the oriented 3-manifold obtained by performing a rational surgery along
an unknot in S3 with coefficient −p/q .

We prove Theorem 1.1 in Section 2. The proof can be outlined as follows.
In Proposition 2.1 we use elementary arguments to determine a contact surgery
presentation for the contact 3-manifold (Y(S,8h,k), ξ(S,8h,k)), and in Corollary 2.2 we
apply Proposition 2.1 and a few Kirby calculus moves to identify the underlying 3-
manifold Y(S,8h,k). In Proposition 2.3 we appeal to calculations from [Lekili 2011]
to deduce that the contact Ozsváth–Szabó invariant of ξ(S,8h,k) vanishes, and we
conclude from the fact that Y(S,8h,k) is a lens space that ξ(S,8h,k) must be overtwisted.
That8h,k is right-veering in Lemma 2.4 follows directly from [Arıkan and Durusoy
2012, Theorem 4.3], but it can also be deduced by imitating the proof of [Lekili
2011, Theorem 1.2], that is, by applying [Honda et al. 2007, Corollary 3.4]. Finally,
we use results from [Arıkan 2008; Lekili 2011] to conclude that (S,8h,k) is not
destabilizable.
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2. Proof of Theorem 1.1

Recall that every contact structure has a contact surgery presentation. We refer the
reader to [Ding and Geiges 2004] for this fact and the basic properties of contact
surgeries, and to [Lisca and Stipsicz 2004] for the use of the “front notation” in
contact surgery presentations, in particular for the meaning of Figure 2 below.

Proposition 2.1. For h, k≥1, the contact structure ξ(S,8h,k) has the contact surgery
presentation given by Figure 2.

1
k+1

−
1
h

Figure 2. Contact surgery presentation for ξ(S,8h,k), h, k ≥ 1.

Proof. Figure 3 (a) represents an open book (A, f ), where A is an annulus and f
is a positive Dehn twist along the core of A. The associated contact 3-manifold is
the standard contact 3-sphere (S3, ξst), the annulus A can be viewed as the page
of an open book decomposition of S3, and the curve κ in the picture can be made
Legendrian via an isotopy of the contact structure, in such a way that the contact
framing on κ coincides with the framing induced on it by the page (see [Etnyre
2006, Figure 11]). The knot κ is the unique Legendrian unknot in (S3, ξst) having
Thurston–Bennequin invariant tb(κ)=−1 and rotation number rot(κ)= 0. A suit-
able choice of orientation for κ uniquely specifies its negative oriented Legendrian
stabilization κ−, which satisfies tb(κ−) = −2 and rot(κ−) = −1. As shown in
[Etnyre 2006], κ− can be realized as sitting on the page of a Giroux stabilization
(A′, f ′) of (A, f ). This is illustrated in Figure 3 (b), assuming the orientation
on κ was taken to be “counterclockwise” in Figure 3 (a). Finally, Figure 3 (c)
shows an open book (S, f ′′) obtained by Giroux stabilizing (A′, f ′) and containing
both κ− and (κ−)− in S (κ− was also given the “counterclockwise” orientation in
Figure 3 (b)). Clearly (S, f ′′) still corresponds to (S3, ξst), and it is well-known
that κ−, (κ−)− are the two Legendrian knots illustrated in Figure 2 (when oriented
“clockwise” in that picture). By definition, 8h,k is obtained by precomposing f ′′

with k + 1 negative Dehn twists along parallel copies of κ− and h positive Dehn
twists along parallel copies of (κ−)−. Moreover, if m 6= 0 is an integer, 1

m -contact
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surgery along any Legendrian knot λ is equivalent to m
|m| -contact surgeries along

|m| Legendrian push-offs of λ [Ding and Geiges 2004]. Since page and contact
framings coincide, and by [Etnyre 2006, Theorem 5.7] positive (negative, respec-
tively) Dehn twists correspond to −1-contact surgeries (+1-contact surgeries, re-
spectively), it is easy to check that the resulting contact structure is given by the
contact surgery presentation of Figure 2. �

   (a) (b) (c)

+ κ

+

+

κ−

+

+

+

κ−

(κ−)−

Figure 3. Determination of the contact surgery presentation.

Corollary 2.2. For h, k ≥ 1, the oriented 3-manifold underlying the open book
(S,8h,k) is the lens space L((h+ 1)(2k− 1)+ 2, (h+ 1)k+ 1).

Proof. Using the fact that the two Legendrian unknots illustrated in Figure 2 have
Thurston–Bennequin invariants −2 and −3, it is easy to check that the topological
surgery underlying Figure 2 is given by the first (upper left) picture of Figure 4.
Two +1-blowups and two inverse slam-dunks give the second picture, while the

−2

−2+ 1
k+1 −3− 1

h −k− 1 0

1

1
−1

h

−2−k− 1−1
h

−2−k− 1−2−2−2

h︷ ︸︸ ︷

Figure 4. Determination of the underlying 3-manifold.
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third picture is obtained from the second one by sliding the−1-framed knot over the
0-framed knot and then applying two +1-blow-downs. The last picture is obtained
simply converting the h-framed unknot in the third picture into the string of −2-
framed unknots via a sequence of −1-blowups and a final +1-blowdown. The last
picture shows that the underlying 3-manifold Y(S,8h,k) is obtained by performing a
rational surgery on an unknot in S3 with coefficient −p/q , where

p
q
= 2−

1

k+ 1−
1

2−
1

. . .
−

1
2

=
(h+ 1)(2k− 1)+ 2

(h+ 1)k+ 1
.

Therefore, according to our conventions Y(S,8h,k) can be identified with the lens
space L((h+ 1)(2k− 1)+ 2, (h+ 1)k+ 1). �

Proposition 2.3. For h, k ≥ 1, the contact structure ξ(S,8h,k) is overtwisted.

Proof. By [Giroux 2000; Honda 2000] a contact structure on a lens space is
either overtwisted or Stein fillable. Moreover, Stein fillable contact structures
have nonzero contact Ozsváth–Szabó invariant [Ozsváth and Szabó 2005]. Fi-
nally, [Lekili 2011, Theorem 1.3] immediately implies that the contact invariant of
(S,8h,k) vanishes, therefore ξ(S,8h,k) must be overtwisted. �

Lemma 2.4. For h, k ≥ 1, the diffeomorphism class

8h,k = δ
h
a δbδcδdδ

−k−1
e ∈Map(S, ∂S)

is right-veering.

Proof. The lemma follows immediately from the statement of Theorem 4.3 in
[Arıkan and Durusoy 2012]. Alternatively, one can imitate the proof of Theo-
rem 1.2 of [Lekili 2011]. Indeed, applying Corollary 3.4 from [Honda et al. 2007]
to the monodromy 81= δ

−k−1
e and a properly embedded arc γcd ⊂ S disjoint from

the curve e and connecting the components ∂c and ∂d of ∂S parallel to the curves
c and d shows that 82 = δdδ

−k−1
e is right-veering with respect to ∂d . Another

application of the corollary to 82 and γcd shows that 83 = δcδdδ
−k−1
e is right-

veering with respect to ∂c. Moreover, since δc is right-veering with respect to ∂c

and the composition of right-veering diffeomorphisms is still right-veering [Honda
et al. 2007], 83 is right-veering with respect to ∂d as well. Appying the corollary
in the same way to 83 and an arc connecting the components of ∂S parallel to the
curves a and b yields the statement of the lemma. �
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Proof of Theorem 1.1. Corollary 2.2, Proposition 2.3 and Lemma 2.4 establish the
first three portions of the statement. Thus we only need to show that (S,8h,k) is
not destabilizable for every h, k ≥ 1. If (S,8h,k) were destabilizable, it would
be a stabilization of an open book (S′,8′), where S′ is a three-holed sphere and
8′ = τ

a1
1 τ

a2
2 τ

a3
3 , where ai ∈ Z and τi is a positive Dehn twist along a simple closed

curve parallel to the i-th boundary components of S′, i = 1, 2, 3. By [Arıkan
2008, Theorem 1.2], ξ(S,8h,k) is tight if and only if ai ≥ 0, i = 1, 2, 3. Therefore,
by Proposition 2.3 at least one of these exponents must be strictly negative. But
the proof of Theorem 1.2 of [Lekili 2011] shows that when one of the ai ’s is
negative, any stabilization of (S′,8′) to an open book with page a four-holed sphere
is not right-veering. This would contradict Lemma 2.4, therefore we conclude that
(S,8h,k) cannot be destabilizable. �

Note added in proof: after the submission of the present paper the author was
informed of unpublished work of A. Wand containing, in particular, a different
proof of Proposition 2.3.
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WEAKLY KRULL DOMAINS AND THE COMPOSITE
NUMERICAL SEMIGROUP RING D+ E[0∗]

JUNG WOOK LIM

Let D ⊆ E be an extension of integral domains, 0 a numerical semigroup
with 0 ( N0, 0∗ = 0 \ {0} and R = D+ E[0∗]. In this paper, we completely
characterize when R is a weakly Krull domain, an AWFD or a GWFD. We
also prove that R is never a WFD.

Introduction

We first review some preliminaries. Let D be an integral domain with quotient field
q f (D) and let F(D) denote the set of nonzero fractional ideals of D. Recall that the
v-operation on D is a star-operation on F(D) defined by I 7→ Iv := (I−1)−1, where
I−1
= {x ∈ q f (D) | x I ⊆ D}. The t-operation on D is a star-operation defined by

I 7→ It :=
⋃
{Jv | J ⊆ I with J ∈ F(D) finitely generated}. An I ∈ F(D) is said to

be a v-ideal if Iv = I , and a t-ideal if It = I . A v-ideal I is said to be of finite type
if I = Jv for some finitely generated fractional ideal J of D. A t-ideal M of D is
called a maximal t-ideal if M is maximal among proper integral t-ideals of D. It
is well known that maximal t-ideals are prime ideals. Let t-Max(D) be the set of
maximal t-ideals of D. Then t-Max(D) 6=∅ if D is not a field. An I ∈F(D) is said
to be t-invertible if (I I−1)t = D; equivalently, I I−1 * M for each M ∈ t-Max(D).
Let T (D) be the abelian group of t-invertible fractional t-ideals of D under the t-
multiplication I ∗ J = (I J )t , and let Inv(D) and Prin(D) be the subgroups of T (D)
consisting respectively of invertible fractional ideals of D and nonzero principal
fractional ideals of D. Then it is clear that Prin(D)⊆ Inv(D)⊆ T (D). The t-class
group of D is an abelian group Cl(D) = T (D)/Prin(D) and the Picard group
Pic(D)= Inv(D)/Prin(D) is a subgroup of Cl(D). The local t-class group G(D)
of D is defined by G(D)= Cl(D)/Pic(D).

Let X1(D) stand for the set of height-one prime ideals of D. We say that D is a
weakly Krull domain if D=

⋂
P∈X1(D) DP and this intersection has finite character,

i.e., each nonzero element d ∈ D is a unit in DP for all but a finite number of P’s in
X1(D); D is a weakly factorial domain (WFD) if every nonzero nonunit element
of D is a product of primary elements; D is an almost weakly factorial domain

MSC2010: primary 13A15, 13G05; secondary 13A02, 13B25, 13F05.
Keywords: numerical semigroup, D+ E[0∗], weakly Krull domain.
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(AWFD) if for each nonzero nonunit element d ∈ D, there exists a positive integer
n = n(d) such that dn is a product of primary elements; and D is a generalized
weakly factorial domain (GWFD) if each nonzero prime ideal of D contains a
primary element. (Recall that a nonzero nonunit d ∈ D is called a primary element
of D if (d) is a primary ideal of D.) It is well known that

WFD⇒ AWFD⇒ GWFD⇒ weakly Krull domain

and a weakly Krull domain has t-dimension one. (The t-dimension of D, abbrevi-
ated t-dim(D), is the supremum of lengths of chains of prime t-ideals of D. Hence
t-dim(D)=1 if and only if each maximal t-ideal of D has height-one.) Also, it was
shown in [Anderson and Zafrullah 1990, Theorem] that a weakly Krull domain D
is a WFD if and only if Cl(D)= 0, and in [Anderson et al. 1992, Theorem 3.4] that
a weakly Krull domain D is an AWFD if and only if Cl(D) is torsion. We note that
t-dim(D[0]) = t-dim(D[X ]) for any numerical semigroup 0 [Chang et al. 2012,
Theorem 1.5].

Let N0 (resp., Z) be the set of nonnegative integers (resp., integers). A semigroup
0 is called a numerical semigroup if 0 is a subset of N0 containing 0 and generates
Z as a group. It is known that if 0 is a numerical semigroup, then 0 is finitely
generated and N0 \ 0 is a finite set. Hence there exists the largest nonnegative
integer which is not contained in 0. This number is called the Frobenius number
of 0 and is denoted by F(0).

Throughout this article, D⊆ E denotes an extension of integral domains, q f (D)
(resp., q f (E)) is the quotient field of D (resp., E), D means the integral closure
of D, X is an indeterminate over E , 0 is a numerical semigroup with 0 ( N0

and D[0] is the numerical semigroup ring of 0 over D. Note that each element
f ∈D[0] is uniquely expressible in the form f =a1 Xα1+· · ·+ak Xαk , where ai ∈D
and αi ∈0 with α1 < · · ·<αk . Let 0∗=0\{0}, R= D+E[0∗], T = D+X E[X ]
and Tn = D + Xn E[X ] for integers n ≥ 2, i.e., R = { f ∈ E[0] | f (0) ∈ D},
T = { f ∈ E[X ] | f (0) ∈ D} and Tn = R when 0 = {0} ∪ {m ∈ N0 | m ≥ n}. Then
D[0] ⊆ R ⊆ E[0] and TF(0)+1 ⊆ R ( T ⊆ E[X ]. For an f ∈ q f (D)[0], c( f )
means the fractional ideal of D generated by the coefficients of f . If I is an ideal
of D[0], then c(I ) denotes the ideal of D generated by the coefficients of all the
polynomials in I .

In multiplicative ideal theory, the D+ E[0∗] construction has been extensively
studied by several authors for its interest in constructing examples with prescribed
properties. As a special kind of pullbacks, this has become so important that in
recent years there have been many papers devoted to ring- and ideal-theoretic prop-
erties in this construction.

Anderson et al. [2003a; 2006] (see also [Anderson and Chang 2007]) studied
when the domains D[X2, X3

], D + X E[X ] and D + X2 E[X ] are weakly Krull
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domains, WFDs, AWFDs or GWFDs. In fact, they showed that D[X2, X3
] is a

weakly Krull domain if and only if D is a weakly Krull UMT-domain [Anderson
et al. 2003a, Proposition 2.7]; if char(D) 6= 0, then D[X2, X3

] is an AWFD if
and only if D[X2, X3

] is a GWFD [Anderson and Chang 2007, Corollary 2.11];
D+X E[X ] is a weakly Krull domain if and only if D+X2 E[X ] is a weakly Krull
domain [Anderson et al. 2006, Theorem 4.3]; and D+ X E[X ] is an AWFD if and
only if D+ X E[X ] is a GWFD [Anderson and Chang 2007, Corollary 2.10]. The
main purpose of this paper is to determine how certain properties of D, E and 0
influence those of R, and vice versa. This also extends the results for the domains
D[X2, X3

], D+ X E[X ] and D+ X2 E[X ] to any composite numerical semigroup
ring D+ E[0∗].

In Section 1, we investigate weakly Krull domains, AWFDs and GWFDs in
the context of numerical semigroup rings D[0] which coincide with the domains
R = D + E[0∗] when D = E . We prove that D[0] is a weakly Krull domain if
and only if D is a weakly Krull UMT-domain, and that if char(D) 6= 0, then D[0]
is an AWFD if and only if D[0] is a GWFD, if and only if D is an almost weakly
factorial quasi-AGCD-domain, if and only if D is a generalized weakly factorial
quasi-AGCD-domain.

In Section 2, we study when the domain R = D + E[0∗] is a weakly Krull
domain, an AWFD or a GWFD, where D ( E . We show that R is a weakly Krull
domain if and only if T = D + X E[X ] is a weakly Krull domain, and that if
char(E) 6= 0, then R is an AWFD if and only if R is a GWFD, if and only if T is
an AWFD, if and only if R is a GWFD. We also prove that R is never a WFD.

1. Weakly Krull domains as numerical semigroup rings

In this section, we characterize when the numerical semigroup ring D[0] is a
weakly Krull domain, an AWFD or a GWFD.

The first two lemmas are well known for the general semigroup rings, but we
include their proofs for the convenience of the reader.

Lemma 1.1 [El Baghdadi et al. 2002, Lemma 2.3]. Let D be an integral domain
and 0 be a numerical semigroup. The following statements hold for an I ∈ F(D):

(1) (ID[0])−1
= I−1 D[0].

(2) (ID[0])v = IvD[0].

(3) (ID[0])t = It D[0].

Proof. (1) Since (ID[0])(I−1 D[0])⊆ D[0], I−1 D[0] ⊆ (ID[0])−1. Conversely,
let f ∈ (ID[0])−1. Then f ID[0] ⊆ D[0] and hence c( f )I ⊆ D. Hence c( f ) ⊆
I−1, and therefore f ∈ c( f )D[0] ⊆ I−1 D[0]. Thus the equality holds.

(2) By (1), (ID[0])v = ((ID[0])−1)−1
= (I−1 D[0])−1

= IvD[0].
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(3) Let f1, . . . , fn be nonzero elements of ID[0]. Then we have

(( f1, . . . , fn)D[0])v ⊆ ((c( f1), . . . , c( fn))D[0])v
= (c( f1), . . . , c( fn))vD[0]

⊆ It D[0]

by (2), i.e., (ID[0])t ⊆ It D[0]. For the reverse inclusion, let J be a nonzero
finitely generated subideal of I . Then JvD[0] = (J D[0])v ⊆ (ID[0])t by (2).
Hence It D[0] ⊆ (ID[0])t . Thus we have the desired equality. �

Lemma 1.2 [Anderson and Chang 2005, Corollary 2.3]. Let D be an integral do-
main, 0 be a numerical semigroup and let Q be a maximal t-ideal of D[0] such
that Q ∩ D 6= (0). Then Q = (Q ∩ D)D[0]. In particular, Q ∩ D is a maximal
t-ideal of D.

Proof. The containment (Q∩D)D[0] ⊆ Q is obvious. For the converse, it suffices
to show that c(Q)⊆ Q. Suppose to the contrary that c(Q)* Q. Then

Q ( c(Q)D[0].

Since Q is a maximal t-ideal of D[0], (c(Q)D[0])t = D[0]. Therefore c(Q)t = D
by Lemma 1.1(3), and hence c( f )v = D for some f ∈ Q. Let 0 6= d ∈ Q ∩ D and
choose 0 6= g ∈ (d, f )−1. Then gd ∈ D[0] and hence g ∈ q f (D)[0]. Also, we
have f g ∈ D[0]. Hence it follows from [Gilmer 1992, Theorem 28.1] that

c(g)⊆ c(g)v = (c( f )m+1c(g))v = (c( f m)c( f g))v = c( f g)v ⊆ D,

where m is the degree of g. So g∈c(g)D[0]⊆D[0], which implies that (d, f )−1
=

D[0]. This contradicts the fact that Q is a maximal t-ideal of D[0]. Therefore
c(Q) ⊆ Q, and thus Q ⊆ (Q ∩ D)D[0]. The second assertion is an immediate
consequence of Lemma 1.1(3). �

An integral domain B is said to be a UMT-domain if every upper to zero (a
nonzero prime ideal of B[X ]which contracts to zero in B) Q of B[X ] is a maximal
t-ideal (equivalently, is t-invertible). Now, we give the numerical semigroup ring
version of [Anderson et al. 1993, Proposition 4.11].

Theorem 1.3. Let D be an integral domain and 0 be a numerical semigroup with
0 ( N0. Then the following assertions are equivalent.

(1) D[0] is a weakly Krull domain.

(2) D[X ] is a weakly Krull domain.

(3) D is a weakly Krull UMT-domain.
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Proof. (1)⇒ (3) Assume D[0] is a weakly Krull domain. Then t-dim(D[0])= 1
[Anderson et al. 1992, Lemma 2.1]. Let P be a prime t-ideal of D. Then P D[0]
is a prime t-ideal of D[0] by Lemma 1.1(3); so htD(P)=htD[0](P D[0])= 1; so
t-dim(D)= 1. Since t-dim(D[0])= 1, we have t-dim(D[X ])= 1 by [Chang et al.
2012, Theorem 1.5]. Therefore every upper to zero in D[X ] is a maximal t-ideal,
and thus D is a UMT-domain. Note that

D =
⋂

P∈X1(D)
DP

by [Kang 1989, Proposition 2.9]. To show that this intersection has finite character,
let d ∈ D \ {0}. Since D[0] is a weakly Krull domain, d belongs to only finitely
many height-one prime ideals of D[0], and hence there exists only a finite number
of height-one prime ideals of D containing d . Thus D is a weakly Krull domain.

(3)⇒ (1) Assume that D is a weakly Krull UMT-domain and let Q be a maximal
t-ideal of D[0] with Q∩D 6= (0). By Lemma 1.2, Q = (Q∩D)D[0] and Q∩D
is a maximal t-ideal of D. Since t-dim(D) = 1 [Anderson et al. 1992, Lemma
2.1], htD(Q ∩ D) = 1; so htD[0]Q ≤ 2 (cf. [Kaplansky 1970, Theorem 37]). If
htD[0]Q = 2, then there exists a nonzero prime ideal P ( Q which contracts to
zero in D. Note that P = M ∩ D[0] for some prime ideal M of D[X ] [Chang
et al. 2012, Proposition 1.1]. Since M ∩ D = (0) and D is a UMT-domain, M is
a maximal t-ideal of D[X ]. Hence P is a maximal t-ideal of D[0] [Chang et al.
2012, Theorem 1.4]. This contradicts the choice of P . Thus t-dim(D[0]) = 1.
By [Kang 1989, Proposition 2.9], we have D[0] =

⋂
Q∈X1(D[0]) D[0]Q . We claim

that this intersection has finite character. Let f ∈ D[0] \ {0} and set

S= {Q ∈ X1(D[0]) | f ∈ Q},

S1 = {Q ∈ S | Q ∩ D ∈ X1(D)}, and

S2 = {Q ∈ S | Q ∩ D = (0)}.

Then S = S1 ∪S2. If S1 is an infinite set, then c( f ) belongs to infinitely many
height-one prime ideals of D by Lemma 1.2. This is absurd, because D is a weakly
Krull domain. Hence S1 is a finite set. Note that q f (D)[0] is a one-dimensional
Noetherian domain; so q f (D)[0] is a weakly Krull domain. Hence S2 is also a
finite set. Therefore S is a finite set. Thus D[0] is a weakly Krull domain.

(2)⇔ (3) See [Anderson et al. 1993, Proposition 4.11]. �

Recall that if D ⊆ E is an extension of integral domains, then E is said to be a
root extension of D if for each z ∈ E , there is a positive integer n = n(z) such that
zn
∈ D. A domain B is called an almost Prüfer v-multiplication domain (APvMD)

(resp., almost GCD-domain (AGCD-domain)) if for each 0 6= a, b ∈ B, there exists
a positive integer n = n(a, b) such that (an, bn)v is t-invertible (resp., principal).
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It is known that B is a weakly Krull PvMD if and only if B[X ] is weakly Krull
and B is integrally closed [Anderson et al. 1993, Corollary 4.13]. We weaken the
hypothesis and obtain the following result.

Corollary 1.4. Let D be an integral domain and 0 be a numerical semigroup.

(1) D is a weakly Krull APvMD if and only if D[0] is a weakly Krull domain and
D ⊆ D is a root extension.

(2) D is an almost weakly factorial AGCD-domain if and only if D[0] is a weakly
Krull domain, Cl(D) is torsion and D ⊆ D is a root extension.

Proof. (1) By [Li 2012, Theorem 3.8], a domain B is an APvMD if and only if
B is a UMT-domain and B ⊆ B is a root extension. Thus the result follows from
Theorem 1.3.

(2) By [Li 2012, Theorem 3.1], a domain B is an AGCD-domain if and only if B
is an APvMD and Cl(B) is torsion. Also, by [Anderson et al. 1992, Theorem 3.4],
B is an AWFD if and only if B is a weakly Krull domain and Cl(B) is torsion.
Thus the result is an immediate consequence of Theorem 1.3 and (1). �

Let S be a saturated multiplicative subset of a domain B and let N (S)={0 6= b∈
B | (b, s)v = B for all s ∈ S} be the m-complement of S. We say that S is an almost
splitting set if for each 0 6= b ∈ B, there exists a positive integer n = n(b) such
that bn

= st for some s ∈ S and t ∈ N (S). Following [Anderson and Chang 2007],
B is called a quasi-AGCD-domain if B \ {0} is an almost splitting set in B[X ]. It
was shown that if B is integrally closed, then the notion of quasi-AGCD-domains
coincides with that of AGCD-domains [Chang 2005, Proposition 2.6]. The next
corollary characterizes when the numerical semigroup ring D[0] is an AWFD or
a GWFD.

Corollary 1.5. Let D be an integral domain with char(D) 6= 0 and 0 be a numer-
ical semigroup with 0 ( N0. Then the following conditions are equivalent.

(1) D[0] is an AWFD.

(2) D[0] is a GWFD.

(3) D[X ] is an AWFD.

(4) D[X ] is a GWFD.

(5) D is an almost weakly factorial quasi-AGCD-domain.

(6) D is a generalized weakly factorial quasi-AGCD-domain.

(7) D is a weakly Krull quasi-AGCD-domain.

Proof. Let char(D)= p.

(1)⇒ (2) This is well known.
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(1) ⇔ (3) By [Anderson et al. 1992, Theorem 3.4], an integral domain B is an
AWFD if and only if B is a weakly Krull domain and Cl(B) is torsion, and by
Theorem 1.3, D[0] is a weakly Krull domain if and only if D[X ] is a weakly Krull
domain. By [Chang et al. 2012, Lemma 2.7], Pic(q f (D)[0]) is torsion if and only
if char(D) 6= 0. Since Cl(D[0]) = Cl(D[X ]) ⊕ Pic(q f (D)[0]) [Anderson and
Chang 2004, Theorem 5], Cl(D[0]) is torsion if and only if Cl(D[X ]) is torsion
and char(D) 6= 0. Thus this equivalence follows from these facts.

(4)⇒ (2) By [Anderson et al. 2003b, Theorem 2.2], a domain B is a GWFD if and
only if t-dim(B)= 1 and for each P ∈ X1(B), P =

√
bB for some b ∈ B. Assume

that D[X ] is a GWFD and let P ∈ X1(D[0]). Since t-dim(D[0])= t-dim(D[X ])=
1 [Chang et al. 2012, Theorem 1.5], it suffices to show that P =

√
f D[0] for some

f ∈ D[0]. If P ∩ D 6= (0), then P = (P ∩ D)D[0] by Lemma 1.2. Since D[X ]
is a GWFD, (P ∩ D)D[X ] =

√
d D[X ] for some d ∈ P ∩ D. It is easy to see that

P =
√

d D[0]. Next, suppose that P ∩ D = (0). Then there exists a prime t-ideal
Q of D[X ] such that P = Q∩D[0] [Chang et al. 2012, Theorem 1.5]. Since D[X ]
is a GWFD, Q =

√
f D[X ] for some f ∈ D[X ]. Also, since char(D) = p > 0,

there exists a positive integer n such that f pn
∈ D[0]. An easy calculation shows

that P =
√

f pn D[0]. Thus D[0] is a GWFD.

(2)⇒ (4) This direction is an easy modification of the proof of (4)⇒ (2).

(2)⇒ (5) See [Anderson and Chang 2007, Corollary 2.9].

(5)⇒ (6)⇒ (7) These implications are obvious.

(7) ⇒ (1) Assume that D is a weakly Krull quasi-AGCD-domain. Then D is
a UMT-domain and Cl(D[X ]) is torsion [Anderson and Chang 2007, Theorem
2.4]. Hence D[0] is a weakly Krull domain by Theorem 1.3. Also, it follows
from [Anderson and Chang 2004, Theorem 5; Chang et al. 2012, Lemma 2.7]
that Cl(D[0]) is torsion. Thus D[0] is an AWFD [Anderson et al. 1992,Theorem
3.4]. �

We end this section by noting that D[0] is never a WFD. We also show that
D[0] need not be an AWFD if char(D)= 0.

Remark 1.6. (1) Let B be an integral domain with quotient field K . In [Gilmer
and Martin 1990, Theorem 7], Gilmer and Martin showed that if B is a seminormal
domain and B+Xn B[X ] ⊆ B[0], then Pic(B[0])= Pic(B)⊕(Wn/L), where L ⊆
Wn are the subgroups of the group U (B[X ]/Xn B[X ]) of units of B[X ]/Xn B[X ]
defined by Wn = {1+ X f + Xn B[X ] | f ∈ B[X ]} and L = {1+ X f + Xn B[X ] |
1 + X f ∈ B[0]}. Note that Cl(B[0]) = Cl(B[X ])⊕ Pic(K [0]) [Anderson and
Chang 2004, Theorem 5] and that B is a WFD if and only if B is a weakly Krull
domain and Cl(B) = 0 [Anderson and Zafrullah 1990, Theorem]. If D[0] is a
WFD, then Cl(D[0]) = 0, and hence Pic(q f (D)[0]) = 0. Therefore Wn = L;
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so 1+ X + Xnq f (D)[X ] ∈ L , which implies that 1 ∈ 0. Thus, if 0 is a proper
numerical semigroup, then D[0] is never a WFD.

(2) If D[0] is an AWFD, then Cl(D[0]) is torsion [Anderson et al. 1992, Theorem
3.4]; so Pic(q f (D)[0]) is torsion [Anderson and Chang 2004, Theorem 5]. Hence
char(D) 6= 0 [Chang et al. 2012, Lemma 2.7]. This shows that the condition that
char(D) 6= 0 is essential in Corollary 1.5.

(3) It is known that a generalized unique factorization domain (GUFD) is a weakly
factorial GCD-domain [Anderson et al. 1995, Theorem 7], and hence integrally
closed. (See [Anderson et al. 1995] for the definition and some characterizations
of a GUFD.) Thus, if 0 is a numerical semigroup with 0 ( N0, then D[0] is not
a GUFD by (1). In fact, D[0] is not integrally closed; so D[0] is never a GUFD.

2. Weakly Krull domains and the ring D+ E[0∗] when D ( E

For a domain A, Spec(A) stands for the set of prime ideals of A. Assume that
D ( E is an extension of integral domains, 0 is a numerical semigroup with 0(N0

and let R = D + E[0∗], T = D + X E[X ], Tn = D + Xn E[X ] and 1n = {0} ∪
{m ∈N0 |m ≥ n} for integers n ≥ 2. Note that D[0]( R ( T and Tn ( T . In this
section, we characterize when the domains R and Tn are weakly Krull domains,
AWFDs or GWFDs. To do this, we need two lemmas.

Lemma 2.1. Let R = D+ E[0∗] and T = D+ X E[X ]. If Q is a prime ideal of
R, then there exists a unique prime ideal of T lying over Q. Thus the natural map
φ : Spec(T )→ Spec(R), given by P 7→ P ∩ R, is an order-preserving bijection. In
particular, htT (X E[X ])=htR(E[0∗]).

Proof. Let Q be a prime ideal of R. Since T is an integral extension of R, there
exists a prime ideal P of T such that Q = P ∩ R [Kaplansky 1970, Theorem 44].
Note that E[0∗] ⊆ Q if and only if X E[X ] ⊆ P . If E[0∗] ⊆ Q, then P is the
unique prime ideal of T lying over Q because R/X E[X ] ∼= D ∼= R/E[0∗]. If
E[0∗]* Q, then X F(0)+1 f 6∈ Q for some f ∈ E[X ]; so

g =
X F(0)+1 f g
X F(0)+1 f

∈ RQ

for any g ∈ T . Hence TQ RQ∩T = RQ . Thus Q RQ ∩ T is the unique prime ideal of
T lying over Q. �

Let n be an integer ≥ 2. Then it is clear that if 0 = 1n , then R = Tn . Hence
Lemma 2.1 also shows that htT (X E[X ])=htTn (X

n E[X ]).

Remark 2.2. Let 0 = {α1, . . . , αn}∪1F(0)+1 with 1<α1 < · · ·<αn < F(0)+1
and R = D+ E[0∗].
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(1) Let g ∈ (R : E[0∗]). Then gE[0∗] ⊆ R; hence for each α ∈0∗, gXα
= aα+ fα

for some aα ∈D and fα ∈ E[0∗]. Therefore gXα+F(0)
= (aα+ fα)X F(0)

∈ R, which
means that aα=0. Hence gXα

= fα ∈ E[0∗], and so g∈
⋂
α∈0∗{

1
Xα f | f ∈ E[0∗]}.

The reverse containment is obvious. Thus we have

(R : E[0∗])=
⋂
α∈0∗

{ 1
Xα

f | f ∈ E[0∗]
}
.

(2) It is clear that E[0] ( (R : E[0∗]) because X F(0)
∈ (R : E[0∗]) \ E[0]. Let

g ∈ (R : E[0∗]). Then X F(0)+1g ∈ R; so we can write

X F(0)+1g =
n∑

i=0
gi Xαi + X F(0)+1h

for some gi ∈ E and h ∈ E[X ]. (For the sake of convenience, set α0 = 0.). Fix a
k ∈ {1, . . . , n}. Then we have X2F(0)−αk+1g =

∑k−1
i=0 gi X F(0)+αi−αk + gk X F(0)

+

X F(0)+1
(∑n

i=k+1 gi Xαi−αk−1
+h
)
∈ R; so gk=0 for all k=1, . . . , n. Also, we have

X F(0)+2g = g0 X + X F(0)+2h ∈ R; so g0 = 0. Therefore X F(0)+1g = X F(0)+1h,
and hence g = h ∈ E[X ]. Thus E[0] ( (R : E[0∗]) ⊆ E[X ]. In particular, if
0 =1F(0)+1, then E[X ] ⊆ (R : E[0∗]); so (R : E[0∗])= E[X ].

(3) Lemma 4.2 of [Anderson et al. 2006] cannot be extended to any proper numer-
ical semigroup, i.e., it may happen that (R : E[0∗])( E[X ] for some 0 ( N0. For
instance, if 0 = {2} ∪14, then X ∈ E[X ] \ (R : E[0∗]).

Lemma 2.3. The following statements hold for R = D+ E[0∗].

(1) E[0∗] is a prime t-ideal of R.

(2) E[0∗] is a maximal t-ideal of R if and only if q f (D)∩ E = D.

Proof. (1) Let 0={α1, . . . , αk}∪1F(0)+1 such that 0<α1< · · ·<αk < F(0)+1.
Since R/E[0∗] ∼= D, E[0∗] is a prime ideal of R. It suffices to show that E[0∗]
is a v-ideal of R, because each v-ideal is a t-ideal.

Case 1. {α1, . . . , αk} is empty. In this case, (R : E[0∗])= E[X ] by Remark 2.2(2);
so we need to show that (R : E[X ])= E[0∗]. It is clear that E[0∗] ⊆ (R : E[X ]).
For the converse, let f ∈ (R : E[X ]). Then f E[X ] ⊆ R. Since 1 ∈ E[X ], f ∈ R.
Also, since X ∈ E[X ], f (0)= 0; so f ∈ E[0∗].

Case 2. {α1, . . . , αk} is nonempty. Deny the conclusion, and then there exists a
polynomial g = g0+

∑k
i=1 gαi Xαi +

∑l
i=F(0)+1 gi X i

∈ (E[0∗])v \ E[0∗]. Hence
g(R : E[0∗])⊆ R. Let f ∈ (R : E[0∗]). Then f ∈ E[X ] by Remark 2.2(2); so we
can write f =

∑m
i=0 fi X i . Note that

f g = f0g0+ g0

α1−1∑
i=1

fi X i
+ ( f0gα1 + fα1 g0)Xα1 + Xα1+1h1
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for some h1 ∈ E[X ]. Since f g ∈ R and g0 6= 0, f1 = · · · = fα1−1 = 0; so f =
f0+

∑m
i=α1

fi X i . Note that 2α1 ∈ 0
∗; so 2α1 ≥ F(0)+ 1 or 2α1 = αp for some

p ∈ {2, . . . , k}. If 2α1 ≥ F(0)+ 1, then we have

f g= f0g0+( f0gα1+ fα1 g0)Xα1+g0

α2−1∑
i=α1+1

fi X i
+( f0gα2+ fα2 g0)Xα2+Xα2+1h2

for some h2 ∈ E[X ]. Again, since f g ∈ R, fα1+1 = · · · = fα2−1 = 0. By repeating
this process, we have fi = 0 for all i ∈ N0 \ 0, and hence f ∈ R. Therefore
(R : E[0∗]) = R. However, this is impossible because X F(0)

∈ (R : E[0∗]) \ R.
If 2α1 = αp for some p ∈ {2, . . . , k}, a simple modification of the proof of the
previous case leads to the same conclusion because 2αl ≥ F(0)+1 for some l ≤ k.

In either case, E[0∗] is a v-ideal, and thus E[0∗] is a t-ideal of R.

(2) This appears in [Lim 2012, Lemma 1.2]. �

Now, we are ready to give a necessary and sufficient condition for the domain
R to be a weakly Krull domain.

Theorem 2.4. Let R = D + E[0∗], T = D + X E[X ], Tn = D + Xn E[X ] and
1n = {0}∪ {m ∈N0 |m ≥ n} for integers n ≥ 2. Then the following statements are
equivalent.

(1) R is a weakly Krull domain.

(2) T is a weakly Krull domain.

(3) Tn is a weakly Krull domain.

(4) Xn E[X ] is a height-one maximal t-ideal of Tn and E[1n] is a weakly Krull
domain.

(5) ED\{0} is a field, q f (D)∩ E = D and E[X ] is a weakly Krull domain.

Proof. (2)⇒ (1) Let T be a weakly Krull domain. Let 0={α1, . . . , αk}∪1F(0)+1

be such that 0 < α1 < · · · < αk < F(0)+ 1. Then T =
⋂

P∈X1(T ) TP and this
intersection has finite character. Note that X E[X ] is a height-one prime ideal of T
[Anderson et al. 2006, Theorem 3.4]; so E[0∗] is a height-one prime ideal of R by
Lemma 2.1. We claim that R=

⋂
P∩R∈X1(R) RP∩R , where P ranges over all height-

one prime ideals of T . Suppose to the contrary that there exists an element f in⋂
P∩R∈X1(R) RP∩R \ R. Note that f ∈ T , and hence we can write f =

∑m
i=0 fi X i .

Then there exists a polynomial g ∈ R \ E[0∗] such that f g ∈ R. Since g(0) 6= 0,
the same argument as in the proof of Lemma 2.3(1) shows that f ∈ R, which
contradicts the choice of f . Thus the equality holds. Since T =

⋂
P∈X1(T ) TP has

finite character, it is clear that the intersection R =
⋂

P∩R∈X1(R) RP∩R also has
finite character. Thus R is a weakly Krull domain.

(2)⇒ (3) This implication was already shown in the proof of (2)⇒ (1).
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(3)⇒ (4) Assume that Tn is a weakly Krull domain. Then t-dim(Tn)=1 [Anderson
et al. 1992, Lemma 2.1]; so Xn E[X ] is a maximal t-ideal of Tn by Lemma 2.3(1).

Let S = {Xm
| m ∈1n}. Then E[1n]S = E[X, X−1

] = (Tn)S is a weakly Krull
domain [Anderson et al. 1993, Proposition 4.7]. Note that X E[X ] is a height-one
prime ideal of E[X ]; so Xn E[X ] is a height-one prime ideal of E[1n] [Chang
et al. 2012, Proposition 1.1]; so E[1n]Xn E[X ] is a one-dimensional quasi-local
domain. Hence E[1n]Xn E[X ] is a weakly Krull domain. We claim that E[1n] =

E[1n]S ∩ E[1n]Xn E[X ]. Let f = f0 +
∑k1

i=n fi X i and h = h0 +
∑k2

i=n hi X i be
nonzero elements of E[1n] with h(0) 6= 0 and let g =

∑k3
i=0 gi X i

∈ E[X ] \ {0}
with g(0) 6= 0 satisfying g

Xm =
f
h ∈ E[1n]S ∩ E[1n]Xn E[X ] for some nonnegative

integer m. Then Xm f = gh; so m = 0. By comparing coefficients of f and gh, it
is easy to see that gi = 0 for all i = 1, . . . , n−1. Hence g

Xm ∈ E[1n]. The reverse
inclusion is clear. Thus E[1n] is a weakly Krull domain.

(4) ⇒ (5) By [Zafrullah 2003, Lemma 2.6], htT (X E[X ]) =dim(ED\{0}[X ]). By
(4), htTn (X

n E[X ])= 1; so the comment before Remark 2.2 establishes that

dim(ED\{0}[X ])= 1.

Thus ED\{0} is a field. Also, since Xn E[X ] is a maximal t-ideal of Tn , q f (D)∩E=
D by Lemma 2.3(2). Finally, it follows directly from Theorem 1.3 that E[X ] is a
weakly Krull domain.

(5)⇒ (2) [Anderson et al. 2006, Theorem 3.4].

(1) ⇒ (2) In the proof of (2) ⇔ (4), the integer n ≥ 2 was arbitrary; so it suf-
fices to show that X F(0)+1 E[X ] is a height-one maximal t-ideal of TF(0)+1 and
E[1F(0)+1] is a weakly Krull domain. Assume that R is a weakly Krull domain.
Since t-dim(R) = 1 [Anderson et al. 1992, Lemma 2.1], E[0∗] is a height-one
maximal t-ideal of R by Lemma 2.3(1); so X F(0)+1 E[X ] is a height-one maximal
t-ideal of T1F(0)+1 by Lemma 2.1 and the remark before Remark 2.2. Let S1 =

{Xα
| α ∈1F(0)+1} and S2 = {Xα

| α ∈ 0}. Then E[1F(0)+1]S1 = RS2 is a weakly
Krull domain [Anderson et al. 1993, Proposition 4.7]. Also, E[1F(0)+1]X F(0)+1 E[X ]
is a weakly Krull domain because it is one-dimensional quasi-local. Note that
E[1F(0)+1] = E[1F(0)+1]S1 ∩E[1F(0)+1]X F(0)+1 E[X ] as in the proof of (3)⇒ (4).
Thus E[1F(0)+1] is a weakly Krull domain. �

Corollary 2.5. Let R = D + E[0∗], T = D + X E[X ], Tn = D + Xn E[X ] and
1n = {0}∪ {m ∈N0 |m ≥ n} for integers n ≥ 2. If char(E) 6= 0, then the following
statements are equivalent.

(1) R is an AWFD.

(2) R is a GWFD.

(3) T is an AWFD.
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(4) T is a GWFD.

(5) Tn is an AWFD.

(6) Tn is a GWFD.

(7) Xn E[X ] is a maximal t-ideal of Tn , E[1n] is an AWFD and for each 0 6=e∈E ,
there exist an integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

(8) Xn E[X ] is a maximal t-ideal of Tn , E[1n] is a GWFD and for each 0 6= e∈ E ,
there exist an integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

(9) q f (D) ∩ E = D, E[X ] is an AWFD and for each 0 6= e ∈ E , there exist an
integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

(10) q f (D) ∩ E = D, E[X ] is a GWFD and for each 0 6= e ∈ E , there exist an
integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

Proof. (1)⇒ (2) and (5)⇒ (6) Their definitions lead to these implications.

(3)⇔ (9) [Anderson et al. 2006, Theorem 3.5].

(4)⇔ (10) [Anderson and Chang 2007, Corollary 2.10].

(7)⇔ (8) and (9)⇔ (10) See Corollary 1.5.

(7)⇔ (9) This equivalence follows from Corollary 1.5 and Lemma 2.3(2).

(3)⇒ (1) Assume that T is an AWFD. Then T is a weakly Krull domain [Anderson
et al. 1992, Theorem 3.4]. Hence E[X ] is a weakly Krull domain by Theorem 2.4.
Let S = {Xm

| m ∈ N0}. Since X is a prime element of E[X ], Cl(E[X ])= Cl(TS)

is torsion [Anderson et al. 1993, Corollary 4.9]; so E[X ] is an AWFD [Anderson
et al. 1992, Theorem 3.4]. Let f ∈ R \ {0}. Then there exists an integer m ≥ 1
such that f m

= X l f1 · · · fr for some nonnegative positive integer l and primary
elements f1, . . . , fr of E[X ]with nonzero constant terms. Also, since char(E) 6=0,
there exists an integer k ≥ F(0)+ 1 such that f k

i ∈ E[0] for all i = 1, . . . , r ; so
f mk
= X lk f k

1 · · · f k
r ∈ E[0]. Fix an i ∈ {1, . . . , r}, and we claim that

√

f k
i E[0] is

a prime ideal of E[0] [Anderson et al. 2003b, Lemma 2.1]. Note that
√

fi E[X ] =
√

f k
i E[X ]. If

√

f k
i E[X ]= X E[X ], then an easy calculation using a similar method

as in the proof of (2) ⇒ (1) in Theorem 2.4 shows that
√

f k
i E[0] = E[0∗] is a

prime ideal. Assume that
√

f k
i E[X ] 6= X E[X ]. Since fi (0) 6= 0, f k

i E[X, X−1
] is

a primary ideal of E[X, X−1
]; so f k

i E[X, X−1
] ∩ E[0] is primary in E[0]. It is

easy to see that
√

f k
i E[X, X−1

] ∩ E[0] =
√

f k
i E[0]. Hence

√

f k
i E[0] is a prime

ideal. Therefore we may assume that f1, . . . , fr are primary elements of E[0]
with nonzero constant terms and write f m

= X l f1 · · · fr as above. Note that for
each i = 1, . . . , r , there exist a unit ui of E and an integer ai ≥ F(0)+1 such that
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ui fi (0)ai ∈ D as in the proof of (3)⇔ (9); so ui f ai
i ∈ R. Let

a = a1 · · · ar , âi =
a
ai
, and u = uâ1

1 · · · u
âr
r .

Then u f am
= Xal(u1 f a1

1 )
â1 · · · (ur f ar

r )
âr and

√

(ui f ai
i )

âi E[0]=
√

fi E[0] for each
i = 1, . . . , r . Since t-dim(E[0]) = 1, (ui f ai

i )
âi E[0] is a primary ideal of E[0]

[Anderson et al. 2003b, Lemma 2.1] for each 1≤ i ≤ r .

Claim. For each 1≤ i ≤ r , (ui f ai
i )

âi R is a primary ideal of R.

Proof. Note that (ui f ai
i )

âi ∈ R and fix an i ∈ {1, . . . , r}. We also note that t-
dim(R) = 1 because R is a weakly Krull domain by Theorem 2.4. Hence, by
[Anderson et al. 2003b, Lemma 2.1], it suffices to show that

√

(ui f ai
i )

âi R is a prime
ideal of R. If

√

(ui f ai
i )

âi E[0] = E[0∗], then it is easy to see that
√

(ui f ai
i )

âi R =
E[0∗] is a prime ideal of R. Assume that

√

(ui f ai
i )

âi E[0] 6= E[0∗]. Then
(ui fi (0)ai )âi 6= 0. Now, we show that (ui f ai

i )
âi E[X, X−1

] ∩ R = (ui f ai
i )

âi R. Let
h ∈ (ui f ai

i )
âi E[X, X−1

] ∩ R. Note that we have

(ui f ai
i )

âi E[X, X−1
] ∩ R ⊆ (ui f ai

i )
âi E[X, X−1

] ∩ E[0]

= (ui f ai
i )

âi E[0]

by adapting the proof of (2)⇒ (1) in Theorem 2.4. So, we can write h= (ui f ai
i )

âi g
for some g ∈ E[0]. Then

g(0)=
(ui fi (0)ai )âi

h(0)
∈ q f (D)∩ E = D

by Theorem 2.4; so g ∈ R. Therefore h ∈ (ui f ai
i )

âi R, and hence

(ui f ai
i )

âi E[X, X−1
] ∩ R ⊆ (ui f ai

i )
âi R.

The reverse inclusion is clear, and hence (ui f ai
i )

âi E[X, X−1
] ∩ R = (ui f ai

i )
âi R.

Since (ui f ai
i )

âi E[0] is a primary ideal of E[0], (ui f ai
i )

âi E[X, X−1
] is a primary

ideal of E[X, X−1
]. Therefore

√

(ui f ai
i )

âi R=
√

(ui f ai
i )

âi E[X, X−1
]∩R is a prime

ideal of R, and thus (ui f ai
i )

âi R is a primary ideal of R. The claim is proved. �

If l = 0, then u f (0)am
= (u1 f1(0)a1)â1 · · · (ur fr (0)ar )âr ∈ D; so u is a unit of

D because u is a unit of E . If l ≥ 1, then f am
= u−1 Xal(u1 f a1

1 )
â1 · · · (ur f ar

r )
âr .

Since u−1 Xal E[0] is a primary ideal of E[0], u−1 Xal R is a primary ideal of R
by imitating the previous proof. Hence f am is a product of primary elements of
R, and thus R is an AWFD.

(2)⇒ (8) Assume that R is a GWFD and fix an integer n≥ 2. Then R is a weakly
Krull domain [Anderson et al. 2003b, Corollary 2.3]; so Xn E[X ] is a height-one
maximal t-ideal of Tn by Theorem 2.4.
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Next, we claim that E[1n] is a GWFD. Let S1 = {Xm
| m ∈ 1n} and S2 =

{Xm
|m ∈0}. Then E[1n]S1 = E[X, X−1

] = RS2 is a GWFD. Let Q be a nonzero
prime ideal of E[1n]. If Q ∩ S1 6= ∅, then Q contains a primary element Xn of
E[1n]. If Q∩ S1 =∅, then QE[1n]S1 is a prime ideal of E[1n]S1 ; so QE[1n]S1

contains a primary element f ∈ E[X, X−1
]. Note that X is a unit of E[X, X−1

]

and f k
∈ E[1n] for some integer k ≥ 1 because char(E) 6= 0; so we may assume

that f ∈ E[1n] with f (0) 6= 0. Then

f E[1n] ⊆ f E[1n]S1 ∩ E[1n] ⊆ QE[1n]S1 ∩ E[1n] = Q;

so Q contains a primary element f . Hence E[1n] is a GWFD.
In order to check the final condition, let e ∈ E \ {0}. If e is a unit of E , then we

have nothing to prove. So, we assume that e is not a unit of E and let h = e+ X ∈
E[X ]. Since c(h)v = E , hE[X ] = hq f (E)[X ] ∩ E[X ] [Anderson and Chang
2007, Lemma 2.1(1)]; so hE[X ] is a height-one prime ideal. Let P = hE[X ]∩ R.
Since e is not a unit of E , X F(0)+1

6∈ P; so Xα
6∈ P for all α ∈ 0. Therefore

hE[X, X−1
]= P RS2 ( RS2 , and hence htR(P)=1. Since R is a GWFD, P=

√
gR

for some primary element g ∈ R [Anderson et al. 2003b, Theorem 2.2]. Suppose
to the contrary that g(0) = 0. Since ED\{0} is a field by Theorem 2.4, 1

e =
e′
d

for some 0 6= d ∈ D and e′ ∈ E ; so e′h = d + e′X ∈ T . Since char(E) 6= 0,
(e′h)k ∈ hE[X ] ∩ R = P for some integer k ≥ 1. Hence (e′h)kl

∈ gR for some
integer l ≥ 1. However, this is impossible because e 6= 0. Therefore g(0) 6= 0. It is
clear that gRS2 is a primary ideal of RS2 , gRS2 ∩ E[X ] = gE[X ], P RS2 =

√
gRS2

and P RS2 ∩ E[X ] = hE[X ]. Hence gE[X ] is a hE[X ]-primary ideal. Therefore
g = uhm for some u ∈ q f (E) and some integer m ≥ 1; so uem

= g(0) ∈ D. Thus
u is a unit of E .

(3)⇒ (5) and (6)⇒ (8) These implications can be obtained by applying 0=1n

to the proofs of (3)⇒ (1) and (2)⇒ (8), respectively. �

We are closing this paper by showing that R = D+ E[0∗] is never a WFD and
the assumption “char(E)= 0” is essential in Corollary 2.5.

Remark 2.6. Assume that R= D+E[0∗] is a WFD or an AWFD. Let h= 1+X ∈
E[X ], P = hE[X ] ∩ R and let M be a maximal t-ideal of R. If M = E[0∗], then
P RM = RM because 1+ (−1)F(0)X F(0)+1

∈ P \E[0∗]. Assume that M 6= E[0∗].
Since c(h)v= E , hq f (E)[X ]∩E[X ]=hE[X ] [Anderson and Chang 2007, Lemma
2.1(1)]. Let S={Xm

|m ∈0}. Then P E[X, X−1
]= hE[X, X−1

]; so P RM = h RM

is principal. Hence P is t-locally principal, and thus P is t-invertible [Anderson
et al. 1992, Lemma 2.2].

(1) If R is a WFD, then P = gR for some g ∈ R with g(0) 6= 0 [Anderson and
Zafrullah 1990, Theorem]. Note that hE[X, X−1

] = gE[X, X−1
]; so g = uh for

some unit u of E . Hence uh ∈ R, which is impossible. Thus R is not a WFD.
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(2) Assume that R is an AWFD. Then Pm
= gR for some integer m ≥ 1 and g ∈ R

with g(0) 6= 0 [Anderson et al. 1992, Theorem 3.4]. We note that

hm E[X, X−1
] = gE[X, X−1

];

so uhm
= g for some unit u of E . Hence uhm

∈ R. However, this can not happen
if char(E)= 0. Thus R is never an AWFD whenever char(E)= 0.
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ARITHMETICITY OF
COMPLEX HYPERBOLIC TRIANGLE GROUPS

MATTHEW STOVER

Complex hyperbolic triangle groups, originally studied by Mostow in build-
ing the first nonarithmetic lattices in PU(2, 1), are a natural generalization
of the classical triangle groups. A theorem of Takeuchi states that there are
only finitely many Fuchsian triangle groups that determine an arithmetic
lattice in PSL2(R), so triangle groups are generically nonarithmetic. We
prove similar finiteness theorems for complex hyperbolic triangle groups
that determine an arithmetic lattice in PU(2, 1).

1. Introduction

In a seminal paper [1980], Mostow constructed lattices in PU(2, 1) generated by
three complex reflections. He not only gave a new geometric method for building
lattices acting on the complex hyperbolic plane, but gave the first examples of
nonarithmetic lattices in PU(2, 1). Complex reflection groups are a generaliza-
tion of groups generated by reflections through hyperplanes in constant curvature
spaces, and Mostow’s groups are a natural extension to the complex hyperbolic
plane of the classical triangle groups. They are often called complex hyperbolic
triangle groups. We introduce these groups in Section 2. See also [Goldman and
Parker 1992; Schwartz 2002], which, along with [Mostow 1980], inspired much
of the recent surge of activity surrounding these groups.

Around the same time, Takeuchi [1977] classified the Fuchsian triangle groups
that determine arithmetic lattices in PSL2(R). In particular, he proved that there
are finitely many and gave a complete list. Since there are infinitely many triangle
groups acting on the hyperbolic plane discretely with finite covolume, triangle
groups are generically nonarithmetic. The purpose of this paper is to give anal-
ogous finiteness results for complex hyperbolic triangle groups that determine an
arithmetic lattice in PU(2, 1).

A particular difficulty with complex hyperbolic triangle groups is that the com-
plex triangle is not uniquely determined by its angles. One must also consider the

Partially supported by NSF RTG grant DMS 0602191.
MSC2010: 11F06, 20H10, 22E40.
Keywords: complex hyperbolic geometry, arithmetic lattices, complex hyperbolic triangle groups.
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so-called angular invariant ψ ∈ [0, 2π). See Section 2. In particular, there is a
1-dimensional deformation space of complex triangles with fixed triple of angles.
The typical assumption is that ψ is a rational multiple of π , in which case the
angular invariant is called rational. We call it irrational otherwise.

When a complex hyperbolic triangle group is also an arithmetic lattice, we will
call it an arithmetic complex hyperbolic triangle group. Note that this immedi-
ately implies discreteness. Our first result is for nonuniform arithmetic complex
hyperbolic triangle groups. We prove the following in Section 6.

Theorem 1.1. There are finitely many nonuniform arithmetic complex hyperbolic
triangle groups with rational angular invariant. If 0 is a nonuniform arithmetic
complex hyperbolic triangle group with irrational angular invariant ψ , then eiψ is
contained in a biquadratic extension of Q.

We emphasize that complex reflection groups are allowed to have generators
of arbitrary finite order. A usual assumption is that all generators have the same
order, a restriction that we avoid. See Theorem 6.1 for a more precise formulation
of Theorem 1.1. Proving that a candidate is indeed a lattice is remarkably difficult,
as evidenced in [Mostow 1980; Deraux et al. 2011], so we do not give a definitive
list. One consequence of the proof (see Theorem 1.5(1) below) is the following.

Corollary 1.2. Suppose that 0 is a nonuniform lattice in U(2, 1). If 0 contains a
complex reflection of order 5 or at least 7, then 0 is nonarithmetic.

In the cocompact setting, the arithmetic is much more complicated. Arithmetic
subgroups of U(2, 1) come in two types, defined in Section 3, often called first
and second. In Section 4 we prove the following auxiliary result, generalizing a
well-known fact for hyperbolic reflection groups.

Theorem 1.3. Let 0 < U(2, 1) be a lattice containing a complex reflection. Then
0 contains a Fuchsian subgroup stabilizing the wall of the reflection in H2

C
.

We also give a generalization to higher-dimensional complex reflection groups.
Theorem 1.3 leads to the following, which we also prove in Section 4.

Theorem 1.4. Let 0 < U(2, 1) be a lattice, and suppose that 0 is commensurable
with a lattice3 containing a complex reflection. Then 0 is either arithmetic of first
type or nonarithmetic.

In particular, when considering a complex reflection group as a candidate for a
nonarithmetic lattice, one must only show that it is not of the first type. Fortunately,
this is the case where the arithmetic is simplest to understand.

The effect of the angular invariant is a particular sticking point in generalizing
Takeuchi’s methods. In Section 5, the technical heart of the paper, we study the
interdependence between the geometric invariants of the triangle and the arithmetic
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of the lattice. We collect the most useful of these facts as the following. See §§2-3
for our notation.

Theorem 1.5. Suppose that 0 is an arithmetic complex hyperbolic triangle group.
Suppose that for j = 1, 2, 3 the generators have reflection factors η j , the complex
angles of the triangle are θ j , and that the angular invariant is ψ . Let E be the
totally imaginary quadratic extension of the totally real field F that defines 0 as
an arithmetic lattice. Then:

(1) η j ∈ E for all j ;

(2) cos2 θ j ∈ F for all j ;

(3) e2iψ
∈ E and cos2 ψ ∈ F ;

(4) If θ j ≤ π/3 for all j , then

cos2 ψ ∈Q
(
cos2 θ1, cos2 θ2, cos2 θ3, cos θ1 cos θ2 cos θ3

)
;

(5) E ⊆Q
(
cos2 θ1, cos2 θ2, cos2 θ3, eiψ cos θ1 cos θ2 cos θ3

)
;

(6) If ψ is rational, then E is a subfield of a cyclotomic field.

In Section 6, we use the results from Section 5 to prove finiteness results for
cocompact arithmetic complex hyperbolic triangle groups with rational angular
invariant. We also give restrictions for irrational angular invariants, though it is
unknown whether such a lattice exists. When the complex triangle is a right trian-
gle, we prove the following.

Theorem 1.6. Suppose that 0 is an arithmetic complex hyperbolic triangle group
for which the associated complex triangle is a right triangle. Then the angles of the
triangle are the angles of an arithmetic Fuchsian triangle group. There are finitely
many such 0 with rational angular invariant.

Finally, we consider equilateral triangles at the end of Section 6. This is the
case which has received the most attention, in particular from Mostow [1980] and,
in the ideal case, by Goldman and Parker [1992] and Schwartz [2002]. See also
[Deraux 2006]. Here we cannot explicitly bound orders of generators, angles,
or angular invariants because our proof relies on asymptotic number theory for
which we do not know precise constants. Nevertheless, we obtain finiteness in the
situation that has received the greatest amount of attention since Mostow’s original
paper. See [Parker 2008; Parker and Paupert 2009; Paupert 2010; Deraux et al.
2011] and references therein for more recent examples of lattices and restrictions
on discreteness.

Theorem 1.7. There are finitely many arithmetic complex hyperbolic equilateral
triangle groups with rational angular invariant.
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2. Complex hyperbolic triangle groups

We assume some basic knowledge of complex hyperbolic geometry, e.g., the first
three chapters of [Goldman 1999]. Let V be a three-dimensional complex vector
space, equipped with a hermitian form h of signature (2, 1). Complex hyperbolic
space H2

C
is the space of h-negative lines in V . The metric on H2

C
is defined via h

as in [Goldman 1999, Chapter 3], and the action of U(2, 1) on H2
C

by isometries
descends from its action on V and factors through projection onto PU(2, 1). Its
ideal boundary ∂H2

C
is the space of h-isotropic lines, and we set H2

C =H2
C
∪ ∂H2

C
.

A complex reflection is a diagonalizable linear map R : V → V with one eigen-
value of multiplicity 2 (or, more generally, multiplicity n− 1 when dim(V ) = n).
We assume that R has finite order, so the third eigenvalue is a root of unity η.
We call η the reflection factor of R. Decompose V = V1 ⊕ Vη into the 1- and
η-eigenspaces, and choose vη ∈ V so that Vη = SpanC{vη}. We begin with an
elementary lemma that will be of use later, keeping in mind that every complex
reflection has 1 as an eigenvalue.

Lemma 2.1. Let A∈GLn(C) be a diagonalizable linear transformation. Let E⊆C

be a subfield, and suppose that En has a basis consisting of eigenvectors for A.
Furthermore, suppose that A has at least one eigenvalue in E and that there exists
x ∈ C× so that x A ∈ GLn(E). Then all eigenvalues of A are in E.

Proof. Let v1, . . . , vn ∈ En be a basis of eigenvectors for A, and let λ j be the
eigenvalue associated with v j , 1 ≤ j ≤ n. Without loss of generality, λ1 ∈ E .
Then x A also has eigenvectors v1, . . . , vn , and x Av j = xλ jv j ∈ En for all j , since
x A ∈ GLn(E). Then xλ j ∈ E , 1 ≤ j ≤ n. Since λ1 ∈ E , it follows that x ∈ E ,
which implies that λ j ∈ E for all j . �

Assume that R ∈ U(2, 1). Then the fixed point set of R acting on H2
C

is the
subset of h-negative lines in V1. This is a totally geodesic holomorphic embedding
of the hyperbolic plane if and only if Vη is an h-positive line. These subspaces
are called complex hyperbolic lines. Following [Goldman 1999, §3.1], we call vη
a polar vector for R.

When Vη is h-negative, the fixed set of R on H2
C

is a point, and R is sometimes
called a reflection through that point. The complex reflections in this paper will
always be through complex hyperbolic lines. That is, the η-eigenspace will always
be an h-positive line.

Let W be the complex hyperbolic line in H2
C

fixed by R. We call this the wall
of R. If vη is a polar vector, then R is the linear transformation

(1) z 7→ z+ (η− 1)
h(z, vη)
h(vη, vη)

vη.
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We refrain from normalizing the polar vector to have h-norm one, since we will
often choose a polar vector with coordinates in a subfield E of C, and E3

⊂ V
might not contain an h-norm one representative for the given line of polar vectors.

Now, consider three complex reflections R1, R2, R3 ∈ U(2, 1) with respective
distinct walls W1,W2,W3 in H2

C
. If v j is a polar vector for R j , then W j and W j+1

(with cyclic indices) meet in H2
C

if and only if

(2) h(W j ,W j+1)=
|h(v j , v j+1)|

2

h(v j , v j )h(v j+1, v j+1)
< 1.

The two walls meet at a point z j stabilized by the subgroup of U(2, 1) generated
by R j and R j+1. The complex angle θ j between W j and W j+1, the minimum angle
between the two walls, satisfies cos2 θ j = h(W j ,W j+1).

The walls W j and W j+1 meet at a point p j in ∂H2
C

if and only if

(3)
|h(v j , v j+1)|

2

h(v j , v j )h(v j+1, v j+1)
= 1,

so we say that the complex angle is zero. The group generated by R j and R j+1

fixes p j , so it is contained in a parabolic subgroup of U(2, 1). See [Goldman 1999,
§3.3.2].

Let {R j } be reflections through walls {W j }, j = 1, 2, 3. When the pairwise

intersections of the walls are nontrivial in H2
C, they determine a complex triangle in

H2
C

, possibly with ideal vertices. The subgroup4(R1, R2, R3) of U(2, 1) generated
by the R j s is called a complex hyperbolic triangle group.

A complex hyperbolic triangle group is sometimes defined as one with order two
generators, and groups with higher order generators are called generalized triangle
groups. We avoid this distinction and do not make the usual assumption that all
generators have the same order.

Unlike Fuchsian triangle groups, the complex angles {θ1, θ2, θ3} do not suffice to
determine 4(R1, R2, R3) up to Isom(H2

C
)-equivalence. We also need to consider

Cartan’s angular invariant

(4) ψ = arg
(
h(v1, v2)h(v2, v3)h(v3, v1)

)
.

A complex triangle is uniquely determined up to complex hyperbolic isometry by
the complex angles between the walls and the angular invariant. See [Brehm 1990]
and [Pratoussevitch 2005, Proposition 1]. Up to the action of complex conjugation
on H2

C
, we can assume ψ ∈ [0, π].

We call the angular invariant rational if ψ = sπ/t for some (relatively prime)
s, t ∈ Z. In other words, the angular invariant is rational if and only if eiψ is a root
of unity.
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Let 4(R1, R2, R3) be a complex hyperbolic triangle group in U(2, 1) with re-
flection factors η j , complex angles θ j , polar vectors v j , j = 1, 2, 3, and angular
invariant ψ . Suppose that {v1, v2, v3} is a basis for V . Then 4(R1, R2, R3) pre-
serves the hermitian form

(5) h4(R1,R2,R3) =

 1 eiψ cos θ1 eiψ cos θ3

e−iψ cos θ1 1 eiψ cos θ2

e−iψ cos θ3 e−iψ cos θ2 1

 .
We denote this by h4 when the generators are clear.

3. Arithmetic subgroups of U(2, 1)

Let F be a totally real number field, E a totally imaginary quadratic extension, and
D a central simple E-algebra of degree d. Let τ :D→D be an involution, that is,
an antiautomorphism of order two. Then τ is of second kind if τ |E is the Galois
involution of E/F . There are two cases of interest.

(1) If D= E (i.e., d = 1), then τ is the Galois involution.

(2) If d = 3, then D is a cubic division algebra with center E .

See [Knus et al. 1998] for more on algebras with involution.
For d as above, let r = 3/d . A form h : Dr

→ D is called hermitian or τ -
hermitian if it satisfies the usual definition of a hermitian form with τ in place of
complex conjugation. If d = 1, then h is a hermitian form on E3 as usual. If d = 3,
then there exists an element x ∈ D∗ such that τ(x) = x and h(y1, y2) = τ(y1)xy2

for all y1, y2 ∈ D.
This determines an algebraic group G, the group of elements in GLr (D) pre-

serving h. For every embedding ι : F→ R, we obtain an embedding of G into the
real Lie group U(ι(h)). Let G be the associated projective unitary group.

If O is a order in Dr , then the subgroup 0O of GLr (O) preserving h embeds as a
discrete subgroup of

G(R)=
∏
ι:F→R

U(ι(h)).

If 0O is the image of 0O in G, then 0O is a discrete subgroup of the associated
product of projective unitary groups.

The projection of 0O onto any factor of G(R) is discrete if and only if the kernel
of the projection of G(R) onto that factor is compact. Therefore, we obtain a
discrete subgroup of U(2, 1) if and only if U(ι(h)) is noncompact for exactly one
real embedding of F .

Then 0O is a lattice in PU(2, 1) by the well-known theorem of Borel and Harish-
Chandra. An arithmetic lattice in PU(2, 1) is any lattice 0 < PU(2, 1) which is
commensurable with 0O for some G as above and an order O in D.
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Since arithmeticity only requires commensurability with 0O, studying an arbi-
trary 0 in the commensurability class of 0O requires great care. The image of any
element γ ∈0 in PU(2, 1) does, however, have a representative in GL3(E), that is,
there exists x ∈ C× so xγ ∈ GL3(E). This follows from the fact, due to Vinberg
[1971], that 0 is F-defined over the adjoint form G, i.e.,

Q(Tr Ad0)= F.

This important fact also follows from [Platonov and Rapinchuk 1994, Proposition
4.2].

4. Proofs of Theorems 1.3 and 1.4

We require some elementary results from the theory of discrete subgroups of Lie
groups. The primary reference is [Raghunathan 1972]. Let G be a second count-
able, locally compact group and 0 < G a lattice. Recall that G/0 carries a finite
G-invariant measure and 0 is uniform in G if G/0 is compact. For a subgroup
H < G, we let ZG(H) denote the centralizer of H in G. We need the following
two results.

Lemma 4.1 [Raghunathan 1972, Lemma 1.14]. Let G be a second countable lo-
cally compact group, 0 < G a lattice, 1 ⊂ 0 a finite subset, and ZG(1) the
centralizer of 1 in G. Then, ZG(1)0 is closed in G.

Theorem 4.2 [Raghunathan 1972, Theorem 1.13]. Let G be a second countable
locally compact group, 0 < G be a uniform lattice, and H < G be a closed sub-
group. Then H0 is closed in G if and only if H ∩0 is a lattice in H.

Proof of Theorem 1.3. Assume that 0 is a cocompact arithmetic lattice in U(2, 1)
containing a complex reflection and that 1 is the subgroup of 0 generated by this
reflection. The centralizer of1 in U(2, 1) is isomorphic to the extension of U(1, 1)
by the center of U(2, 1), and is the stabilizer in U(2, 1) of the wall of the reflection
that generates 1. It follows from Lemma 4.1 and Theorem 4.2 that 0 ∩U(1, 1)
is a lattice. Since any sublattice of an arithmetic lattice is arithmetic, 0 contains a
totally geodesic arithmetic Fuchsian subgroup. �

Proof of Theorem 1.4. A totally geodesic arithmetic Fuchsian group comes from a
subalgebra of Dr , with notation as in Section 3. When 0 is of second type, D is
a cubic division algebra. The totally geodesic Fuchsian group would correspond
to a quaternion subalgebra of D, which is impossible. When 0 is of first type,
this quaternion subalgebra corresponds to rank 2 subspaces of E3 on which h has
signature (1, 1). Therefore, 0 contains complex reflections if and only if 0 is of
first type. �
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Remark. One can also prove Theorem 1.4 using the structure of unit groups of
division algebras.

We now briefly describe how these results generalize to reflections acting on
higher-dimensional complex hyperbolic spaces. If 0 < U(n, 1) is a lattice, an
element R ∈ 0 is a codimension s reflection if it stabilizes a totally geodesic em-
bedded Hn−s

C
and acts by an element of the unitary group of the normal bundle

to the wall. If 0 is arithmetic, the associated algebraic group is constructed via a
hermitian form on Dr , where D is a division algebra of degree d with involution
of the second kind over a totally imaginary field E , and where rd = n+ 1.

Theorem 4.3. Suppose 0 < U(n, 1) is a cocompact arithmetic lattice with asso-
ciated algebraic group coming from a hermitian form on Dr , where D is a central
simple algebra with involution of the second kind. If 0 contains a codimension s
reflection, then 0 contains a cocompact lattice in U(n− s, 1). Also, n− s+1= `d
for some 1< `≤ r and the associated algebraic subgroup comes from a hermitian
form on D`.

Corollary 4.4. Let 0 < U(n, 1) be an arithmetic lattice generated by complex
reflections through totally geodesic walls isometric to Hn−1

C
. Then 0 is of so-called

first type, i.e., the associated algebraic group is the automorphism group of a her-
mitian form on En+1, where E is some totally imaginary quadratic extension of a
totally real field.

5. Arithmetic data for complex hyperbolic triangle groups

In this section, we relate the geometric invariants of a complex triangle to the
arithmetic invariants of the complex reflection group. It is the technical heart of
the paper.

Let 0 = 4(R1, R2, R3) be a complex hyperbolic triangle group with reflection
factors η j , complex angles θ j , and angular invariant ψ . Assume that 0 is an
arithmetic lattice in U(2, 1). By Theorem 1.4, 0 is of first type, so there is an
associated hermitian form h over a totally imaginary field E . Let F be the totally
real quadratic subfield of E .

Lemma 5.1. We can choose polar vectors v j for the reflection R j so that v j ∈ E3.

Proof. Associated with each reflection is an arithmetic Fuchsian subgroup of 0.
When 0 is a uniform lattice, this follows from Theorem 1.3. For the nonuniform
case, see [Holzapfel 1998, Chapter 5]. Arithmetic Fuchsian subgroups stabilizing a
complex hyperbolic line come from the h-orthogonal complement of an h-positive
line in E3. (To be more precise, this line is h-positive over the unique real embed-
ding of F at which h is indefinite.) Any vector in E3 representing this line is a
polar vector for R j . �
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This leads us to the following important fact.

Lemma 5.2. Each reflection factor η j is contained in E.

Proof. It follows from Proposition 4.2 in [Platonov and Rapinchuk 1994] that
there exists an x j ∈C so that x j R j ∈GL3(E) (see the end of Section 3 above). By
Lemma 5.1, and because the h-orthogonal complement to a polar vector evidently
has an E-basis, E3 has a basis of eigenvectors for R j . The lemma follows from
Lemma 2.1. �

Now we turn to the complex angles and the angular invariant.

Lemma 5.3. For each j , cos2 θ j ∈ F and e2iψ
∈ E.

Proof. Choose polar vectors v j ∈ E3. The terms in Equations (2) and (3) resulting
from these choices of polar vectors are all contained in E . Hence cos2 θ j ∈ F . One
can also prove this using Tr Ad(R1 R2) and Lemma 5.2.

Similarly, consider

δ = h(v1, v2)h(v2, v3)h(v3, v1)= reiψ
∈ E

from (4). Note that eiψ
∈ E if and only if r ∈ E . Either way, when δ 6= 0, we have

δ/δ = e2iψ
∈ E . This completes the proof. �

Combining the above, we see that

Q
(
η1, η2, η3, cos2 θ1, cos2 θ2, cos2 θ3, e2iψ)

⊆ E .

We can also bound E from above using the fact that E ⊆ Q(Tr0). Using well-
known computations of traces for products of reflections (e.g., [Mostow 1980, §4]
or [Pratoussevitch 2005]), we have

Q(Tr0)=Q(η1, η2, η3, cos2 θ1, cos2 θ2, cos2 θ3, eiψ cos θ1 cos θ2 cos θ3
)
.

Similarly,

Q
(
Re η1,Re η2,Re η3, cos2 θ1, cos2 θ2, cos2 θ3, cos2 ψ

)
⊆ F

⊆Q(Re η1,Re η2,Re η3, cos2 θ1, cos2 θ2, cos2 θ3, cosψ cos θ1 cos θ2 cos θ3
)
.

This gives the following.

Corollary 5.4. Let 0 be a complex hyperbolic triangle group and an arithmetic
lattice in U(2, 1). If the angular invariant of the triangle associated with 0 is
rational, then the fields that define 0 as an arithmetic lattice are subfields of a
cyclotomic field.

Let h4 be as in (5) and consider h4 as a hermitian form on the extension

E4 =Q
(
η1, η2, η3, cos θ1, cos θ2, cos θ3, eiψ),
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of E . It follows from [Mostow 1980, §2] that h and h4 are equivalent over E4.
Consequently, h4 is indefinite over exactly one complex conjugate pair of places
of E . This implies that there are precisely [E4 : E] conjugate pairs of places of
E4 over which h4 is indefinite.

Let H be a hermitian form in 3 variables over the complex numbers for which
there is a vector with positive H -norm. Then H is indefinite if and only if det H<0.
Since any polar vector has positive h4-norm by definition, we have the following.

Proposition 5.5. There are exactly [E4 : E] complex conjugate pairs of Galois
automorphisms τ of E4 ⊂C under which τ(det h4) is negative. All such automor-
phisms act trivially on E.

This has the following consequence for the relationship between the geometry
of the triangle and the arithmetic of the lattice.

Corollary 5.6. If 0 is a complex hyperbolic triangle group and an arithmetic lat-
tice, then the reflection factors of 0 are restricted by the geometry of the triangle.
In particular,

E4 =Q
(
cos θ1, cos θ2, cos θ3, eiψ).

Proof. Since det h4 is independent of the reflection factors, for each Galois auto-
morphism of

E4/Q
(
cos θ1, cos θ2, cos θ3, eiψ)

we obtain a new complex conjugate pair of embeddings of E4 into C such that
det h4 is negative. Any such automorphism necessarily acts nontrivially on some
reflection factor η j . These embeddings of E4 lie over different places of E by
Lemma 5.2. This contradicts Proposition 5.5. �

We also obtain the following dependence between the angular invariant and the
angles of the triangle.

Proposition 5.7. If 0 is a complex hyperbolic triangle group and an arithmetic
lattice. If 0 has rational angular invariant and θ j ≤ π/3 for j = 1, 2, 3, then

cos2 ψ ∈ F ′ =Q
(
cos2 θ1, cos2 θ2, cos2 θ3, cos θ1 cos θ2 cos θ3

)
.

Proof. If ψ is rational, then E4 is a subfield of a cyclotomic field KN = Q(ζN ),
where ζN is a primitive N -th root of unity. Therefore the Galois automorphisms
of E4 are induced by ζN 7→ ζm

N for some m relatively prime to N .
Consider the stabilizer S of F ′ in Gal(KN/Q). It acts on the roots of unity in

E4 as a group of rotations along with complex conjugation. By definition of E4,
every nontrivial element of S acts nontrivially on eiψ . In particular, if cos2 ψ /∈Q

and S contains a rotation through an angle other than an integral multiple of π , then
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the orbit of eiψ under S contains two non-complex conjugate points with distinct
negative real parts.

Let τ be any such automorphism of E4. Then, since τ(cos θ j ) = cos θ j for all
j by definition of S,

τ(det h4)= 1−
3∑

j=1

cos2 θ j + 2τ(cosψ)
3∏

j=1

cos θ j .

Furthermore, 1−
∑

cos2 θ j ≤0 for any triple of angles θ j =π/r j that are the angles
of a hyperbolic triangle with each r j ≥ 3. Since τ(cosψ) < 0 and cos θ j > 0, it
follows that τ(det h4) < 0. Since τ acts nontrivially on e2iψ

∈ E , this contradicts
Proposition 5.5. Therefore, S is generated by complex conjugation and rotation by
π , so cos2 ψ ∈ F ′. �

Remark. For several of the lattices in [Mostow 1980], F ′ = F (with notation as
above) and cosψ /∈ F ′. Thus Proposition 5.7 is the strongest possible constraint
on rational angular invariants.

6. Finiteness results

We are now prepared to collect facts from Section 5 to prove Theorem 1.1. A more
precise version is the following.

Theorem 6.1. Suppose that 0 is a complex hyperbolic triangle group and a non-
uniform arithmetic lattice in U(2, 1). Then:

(1) Each generator has order 2, 3, 4, or 6.

(2) Each complex angle θ j of the triangle comes from the set

{π/2, π/3, π/4, π/6, 0}.

(3) If ψ is the angular invariant, then eiψ lies in a biquadratic extension of Q.

(4) If ψ is rational, then ψ = sπ/t for

t ∈ {2, 3, 4, 6, 8, 12}.

Proof. Since 0 is a nonuniform arithmetic lattice, the associated field E is imag-
inary quadratic. For (1), we apply Lemma 5.2 to E . For (2) and (3), we apply
Lemma 5.3. Then (4) follows from determining those integers m so that ϕ(m)= 2
or 4 and e2iψ is at most quadratic over Q, where ϕ is Euler’s totient function. �

See [Paupert 2010; Deraux et al. 2011] for the known nonuniform arithmetic
complex hyperbolic triangle groups. We now determine the right triangle groups
that can determine an arithmetic lattice in SU(2, 1).
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Proof of Theorem 1.6. Suppose that 0 is an arithmetic complex hyperbolic triangle
group with θ1 = π/2. The hermitian form h4 associated with the triangle has
determinant

1− cos2 θ2− cos2 θ3.

By Lemma 5.3, this is an element of the totally real field F that defines 0 as an
arithmetic lattice. Consequently, there is no Galois automorphism of F over Q

under which this expression remains negative.
This is precisely Takeuchi’s condition that determines whether or not the triangle

in the hyperbolic plane with angles π/2, θ2, θ3 determines an arithmetic Fuchsian
group. The theorem follows from Takeuchi’s classification of arithmetic Fuchsian
right triangle groups, Lemma 5.3, and Corollary 5.6. �

There are 41 such right triangles in H2. We now finish the paper with finiteness
for arithmetic complex hyperbolic triangle groups with equilateral complex triangle
and rational angular invariant.

Proof of Theorem 1.7. Let 0 be an arithmetic complex hyperbolic triangle group
with equilateral triangle of angles π/n and angular invariantψ . By Proposition 5.7,
we can assume that ψ = sπ/12n for some integer s. Indeed, F ′ = Q(cosπ/n),
and the assertion follows from an easy Galois theory computation.

Then

(6) det h4 = 1− 3 cos2(π/n)+ 2 cos(sπ/12n) cos3(π/n),

so we want to find a nontrivial Galois automorphism of F4 whose restriction to F
is nontrivial and such that the image of (6) under this automorphism is negative.
Let p be the smallest rational prime not dividing 12n. This determines a nontrivial
Galois automorphism τp of F4 under which

(7) τp(det h4)= 1− 3 cos2(pπ/n)+ 2 cos(psπ/12n) cos3(pπ/n).

It is nontrivial on F by definition. If we show that τp(det h4) < 0 for n sufficiently
large, this, along with Corollary 5.6, suffices to prove the theorem.

First, notice that the function

D(x, y)= 1− 3 cos3
+2 cos y cos3 x

is an increasing function of x ∈ (0, π/2) for any fixed y. In our language, this
implies that if y is the angular invariant of an equilateral complex triangle in H2

C

with angle x , then it remains an angular invariant for a complex triangle with
angle x ′ for any x ′ < x . Similarly, if we know that π/12n is an angular invariant
for a triangle with angles pπ/n, then we know that psπ/n (more precisely, a
representative modulo 2π ) is the angular invariant of an equilateral triangle in H2

C

with angles pπ/n. Therefore, it is enough to show that π/12n is the angular
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invariant of a triangle having angles pπ/n for all sufficiently large n, where p is
the smallest not prime dividing 12n.

From the above, we conclude further that it suffices to show that there exists a
function q(n) such that p < q(n) and

(8) 1− 3 cos2(q(n)π/n)+ 2 cos(π/12n) cos3(q(n)π/n) < 0

for all sufficiently large n. To prove this, we consider the function j (n), defined
in [Jacobsthal 1961]. For any integer n, j (n) is the smallest integer such that any
j (n) consecutive integers must contain one that is relatively prime to n. Clearly
p ≤ j (12n).

Iwaniec [1978] proved that

j (n)� (log n)2.

Therefore, for any ε > 0, there is an nε so that the first prime number coprime to
12n is at most (log 12n)2+ε for every n ≥ nε . Consider the function

fε(x)= 1− 3 cos2(log(12/x)2+επx
)
+ 2 cos(πx/12) cos3(log(12/x)2+επx

)
.

Then limx→0 fε(x) exists and equals 0 for all ε > 0. Further, x = 0 is a local
maximum of fε , so fε(1/n) < 0 for all sufficiently large n.

Taking q(n)= (log n)2+ε for any small ε shows that (8) holds for all sufficiently
large n. This implies that (7) is negative for all large n. This proves the theorem. �

Unfortunately, the proof of Theorem 1.7 isn’t effective, so we cannot list the
angles that can possibly determine an arithmetic lattice. In particular, we don’t
know which n makes the bound from [Iwaniec 1978] effective for any ε > 0. If
this bound is less than n = 105 for some ε, which computer experiments show is
extraordinarily likely, then we obtain n < 5,000,000. We expect the actual bound
to be quite a bit smaller, especially given that the smallest equilateral triangle in
H2 that defines an arithmetic Fuchsian group has angles π/15.
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