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BOLDIZSÁR KALMÁR AND ANDRÁS I. STIPSICZ

Suppose that the 3-manifold M is given by integral surgery along a link
L ⊂ S3. In the following we construct a stable map from M to the plane,
whose singular set is canonically oriented. We obtain upper bounds for
the minimal numbers of crossing singularities, nonsimple singularities, and
connected components of fibers of stable maps from M to the plane in terms
of properties of L.

1. Introduction

It is well-known that a continuous map between smooth manifolds can be approxi-
mated by a smooth map and any smooth map on a 3-manifold can be approximated
by a generic stable map. This line of argument, however, gives no concrete map on
a given 3-manifold M even if it is given by some explicit construction. Recall that
by [Lickorish 1962; Wallace 1960] a closed oriented 3-manifold M can be given
by integral surgery along some link L in S3. In the present work we construct an
explicit stable map F : M→ R2 based on such a surgery presentation of M .

Results of Gromov [2009; 2010] give lower bounds on the topological complex-
ity of the set of critical values of generic smooth maps and on the complexity of
the fibers in terms of the topology of the source and target manifolds. In a slightly
different direction, [Costantino and Thurston 2008] gives a lower bound for the
number of crossing singularities of stable maps from a 3-manifold to R2 in terms
of the Gromov norm of the 3-manifold. Recently Baykur [2008; 2009] and Gay
and Kirby [2007] studied the topology of 4-manifolds through the singularities of
their maps into surfaces.

In the present paper we give upper bounds on the minimal numbers of the cross-
ing and nonsimple singularities and of the connected components of the fibers of
stable maps on the 3-manifold M in terms of properties of diagrams of L (e.g.,
the number of crossings or the number of critical points when projected to R). As
an additional result, these constructions lead to upper bounds on a version of the
Thurston–Bennequin number of negative Legendrian knots.

MSC2010: primary 57R45; secondary 57M27.
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Before stating our main results, we need a little preparation. First of all, a stable
map of a 3-manifold into the plane can be easily described by its Stein factorization.

Definition 1.1. Let F be a map of the 3-manifold M into R2. Let us call two points
p1, p2 ∈ M equivalent if and only if p1 and p2 lie on the same component of an
F-fiber. Let WF denote the quotient space of M with respect to this equivalence
relation and qF :M→WF the quotient map. Then there exists a unique continuous
map F̄ :WF→R2 such that F = F̄ ◦qF . The space WF or the factorization of the
map F into the composition of qF and F̄ is called the Stein factorization of the
map F . (Sometimes the map F̄ is also called the Stein factorization of F .)

In other words, the Stein factorization WF is the space of connected components
of fibers of F . Its structure is strongly related to the topology of the 3-manifold
M . For example, an immediate observation is that the quotient map qF : M→WF

induces an epimorphism between the fundamental groups since every loop in WF

can be lifted to M . If F : M→ R2 is a stable map, then its Stein factorization WF

is a 2-dimensional CW complex. The local forms of Stein factorizations of proper
stable maps of orientable 3-manifolds into surfaces are described in [Kushner et al.
1984; Levine 1985]; see Figure 1. Indeed, let F be a stable map of the closed
orientable 3-manifold M into R2. We say that a singular point p ∈ M of F is of
type (A), . . . , (E), respectively, if the Stein factorization F̄ at qF (p) looks locally
like (a), . . . , (e) of Figure 1, respectively. We will call a point w ∈ WF a singular
point of type (A), . . . , (E), respectively, if w= qF (p) for a singular point p ∈M of
type (A), . . . , (E), respectively. According to [Kushner et al. 1984; Levine 1985]
we give the following characterization of the singularities of F : The singular point
p is a cusp point if and only if it is of type (C), the singular point p is a definite
fold point if and only if it is of type (A) and p is an indefinite fold point if and
only if it is of type (B), (D) or (E). Singular points of types (D) and (E) are called
nonsimple, while the others are called simple. A double point in R2 of two crossing

(a) (b) (c) (d) (e)

Figure 1. The local forms of Stein factorizations of stable maps
from orientable 3-manifolds to surfaces. The map (symbolized by
an arrow) maps from the CW complex WF to R2.
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images of singular curves which is not an image of a nonsimple singularity is called
a simple singularity crossing. A simple singularity crossing or an image in R2 of
a nonsimple singularity is called a crossing singularity. A stable map is called a
fold map if it has no cusp singularities.

Let L ⊂ R3
⊂ S3 be a given link, and let L denote a generic projection of it

to the plane. Let n(L) and cr(L) denote the number of components of L and the
number of crossings of L , respectively.

Choose a direction in R2, which we represent by a vector v∈R2. We can assume
that v satisfies the condition that the projection of the diagram L to Rv⊥ along v
yields only non-degenerate critical points. Let t(L) = tv(L) denote the number
of times L is tangent to v. Suppose at each v-tangency p the half line emanating
from p in the direction of v avoids the crossings of L and intersects L transversally
(at the points different from p). Denote the number of transversal intersections by
`(L, v, p). Let `(L, v) denote the maximum of the values `(L, v, p), where p runs
over the v-tangencies. With these definitions in place now we can state the main
result of the paper.

Theorem 1.2. Suppose that the 3-manifold M is obtained by integral surgery on
the link L ⊂ S3. Then there is a stable map F : M→ R2 such that

(1) the Stein factorization WF is homotopy equivalent to the bouquet
∨n(L)

i=1 S2,

(2) the number of cusps of F is equal to tv(L),

(3) all the nonsimple singularities of F are of type (D), and their number is equal
to cr(L)+ 3

2 tv(L)− n(L),

(4) the number of nonsimple singularities which are not connected by any singu-
lar arc of type (B) to any cusp is equal to cr(L)+ 1

2 tv(L)− n(L),

(5) the number of simple singularity crossings of F in R2 is no more than

8 cr(L)+ 6`(L, v)tv(L)+ tv(L)2,

(6) the number of connected components of the singular set of F is no more than
n(L)+ 3

2 tv(L)+ 1, and

(7) the maximal number of the connected components of any fiber of F is no more
than tv(L)+ 3.

(8) Suppose we got M by cutting out and gluing back the regular neighborhood
NL of L from S3. Then the indefinite fold singular set of F contains a link in
S3
− NL , which is isotopic to L in S3 and whose F-image coincides with L.

Remarks 1.3. (1) Let Y be a closed orientable 3-manifold, f a given smooth
map of Y into R2 and L ⊂ Y a link disjoint from the singular set of f . Suppose
furthermore that f |L is an immersion. Let M denote the 3-manifold obtained
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by some integral surgery along L . Then the method developed in the proof of
Theorem 1.2 provides a stable map of M into R2 (relative to f ).

(2) In constructing the map F , the proof of Theorem 1.2 provides a sequence of
stable maps f0, f1, . . . , f6 of S3 into R2, where each fi is obtained from fi−1 by
some deformation, i = 1, . . . , 6. Finally, the map F is obtained from f6. Suppose
that X is a compact 4-manifold which admits a handle decomposition with only
0- and 2-handles; i.e., X can be given by attaching 4-dimensional 2-handles to D4

along S3. Using our method we can construct a stable map G of X into R2
×[0, 1].

Recall that according to [Burlet and de Rham 1974] a closed orientable 3-
manifold M has a stable map into R2 without singularities of types (B), (C), (D)
and (E) if and only if M is a connected sum of finitely many copies of S1

× S2.
According to [Saeki 1996] a closed orientable 3-manifold M has a stable map into
R2 without singular points of types (C), (D) and (E) if and only if M is a graph
manifold. By [Levine 1965] a 3-manifold always has a stable map into R2 without
singular points of type (C). Our arguments imply a constructive proof for

Theorem 1.4. Every closed orientable 3-manifold has a stable map into R2 with-
out singular points of types (C) and (E).

Remarks 1.5. (1) One cannot expect to eliminate the singular points of types (A),
(B) or (D) of stable maps from arbitrary closed orientable 3-manifolds to R2. In
this sense our Theorem 1.4 gives the best possible elimination on 3-manifolds.

(2) By taking an embedding R2
⊂ S2 we get for every closed orientable 3-manifold

a stable map into S2 as well without singular points of types (C) and (E). Then by
using the method of [Saeki 2006], for example, for eliminating the singular points
of type (A), we get a stable map, which is a direct analogue of the indefinite generic
maps appearing in [Baykur 2008; 2009; Gay and Kirby 2007].

The construction also implies certain relations between quantities one can nat-
urally associate to stable maps and to surgery diagrams.

Definition 1.6. Suppose that M is a fixed closed, oriented 3-manifold and that
F : M→ R2 is a stable map with singular set 6.

• Let s(F) denote the number of simple singularity crossings of F .

• Let ns(F) denote the number of nonsimple singularities of F .

• Let d(F) denote the number of crossing singularities of F . Clearly s(F)+
ns(F)= d(F).

• Let nsnc(F) denote the number of nonsimple singularities of F which are not
connected by any singular arc of type (B) to any cusp.

• Let c(F) denote the number of cusps of F . Clearly nsnc(F)+ c(F)≥ ns(F).
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• Let cc(F) denote the number of connected components of F(6). Clearly it
is no more than the number of connected components of 6.

• Let cf(F) denote the maximum number of connected components of the fibers
of F .

The inequality

rank H∗(M)≤ 2d(F)+ c(F)+ 2cc(F)

has been shown to hold in [Gromov 2009, Section 2.1].1 In addition, by [Costantino
and Thurston 2008, Theorem 3.38] we have d(F) ≥ ‖M‖/10, where ‖M‖ is the
Gromov norm of M ; see also [Gromov 2009, Section 3].

Theorem 1.2 provides several estimates for upper bounds on the topological
complexity of smooth maps of a 3-manifold given by surgery. For example, by
summing quantities in Definiton 1.6 and their estimates in Theorem 1.2, we im-
mediately obtain

Corollary 1.7. Suppose that the 3-manifold M is obtained by integral surgery on
the link L ⊂ S3. Let L be any diagram of L and v a general position vector in R2.
Then

• min d(F)≤ 9cr(L)+ (6`(L, v)+ 3
2)tv(L)+ tv(L)2− n(L),

• min cf(F)≤ tv(L)+ 3,

• min{2d(F)+c(F)+2cc(F)} ≤ 18cr(L)+(12`(L, v)+7)tv(L)+2tv(L)2+2,

where the minima are taken for all the stable maps F of M into R2. Evidently, we
can estimate other properties in Definiton 1.6 of stable maps on M as well.

These expressions can be simplified by estimating `(L, v) as

(1-1) `(L, v)≤ tv(L)− 1;

see Lemma 3.7.
The number of tangencies of a projection of a knot in a fixed direction is rem-

iniscent to the number of cusp singularities of a front projection of a Legendrian
knot in the standard contact 3-space. Based on this analogy, our previous results
imply an estimate on a quantity attached to a Legendrian knot in the following way.

Recall first that the standard contact structure ξst on R3 is the 2-plane field given
by the kernel of the 1-form α = dz+ xdy. A knot L is Legendrian if the tangent
vectors of L are in ξst . (To indicate the Legendrian structure on the knot, we will
denote it by L and reserve the notation L for smooth knots and links.) If L is chosen
generically within its Legendrian isotopy class, its projection to the (y, z) plane will
have no vertical tangencies, and at any crossing the strand with smaller slope will

1The paper [Motta et al. 1995] is also closely related.
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be over the one with higher slope. Consider now a Legendrian knot L and let L

denote such a projection (called a front projection) of L. The Thurston–Bennequin
number tb(L) of L is given by the formula w(L) − 1

2 #cusps(L), where w(L)
stands for the writhe (i.e., the signed sum of the double points) of the projection.
Although the definition of tb(L) uses a projection of the Legendrian knot L, it is
not hard to show that the resulting number is an invariant of the Legendrian isotopy
class of L.

If the projection has only negative crossings, we have thatw(L)=−cr(L), hence
the resulting Thurston–Bennequin number can be identified with −cr(L)− 1

2 tv(L)
after choosing v appropriately; cf. [Geiges 2008; Ozbagci and Stipsicz 2004]. (In
this case the generic projection L used in the definitions of tv(L) and cr(L) is
derived from the front projection L by rounding the cusps.)

As it is customary, we define TB(L) as the maximum of all Thurston–Bennequin
numbers of Legendrian knots smoothly isotopic to L . (It is a nontrivial fact, and
follows from the tightness of ξst that this maximum exists.) A modification of
this definition for negative knots (i.e., for knots admitting projections with only
negative crossings) provides

Definition 1.8. For a negative knot L⊂R3 let TB−(L) denote the value max{tb(L)}
where L runs over those Legendrian knots smoothly isotopic to L which admit
front diagrams with only negative crossings.

It is rather easy to see that if the knot L admits a projection with only negative
crossings, then it also has a front projection with the same property. Clearly
TB−(L)≤ TB(L).

Theorem 1.9. For a negative knot L ⊂ R3 and any 3-manifold M obtained by an
integral surgery along L we have

TB−(L)≤−min
√

s(F)

2
√

7
,

TB−(L)≤−min
√

d(F)

2
√

7
,

TB−(L)≤−min nsnc(F)− 1,

where the minima are taken for all the stable maps F of M into R2.

By Theorem 1.9 and [Costantino and Thurston 2008, Theorem 3.38] we obtain:

Corollary 1.10. For a negative knot L ⊂ R3 and any 3-manifold M obtained by
an integral surgery along L , we have

TB−(L)≤−
√
‖M‖

2
√

70
.
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2. Preliminaries

In this section, we recall and summarize some technical tools. First, we show that
a cusp can be pushed through an indefinite fold arc as in Figure 2.

Lemma 2.1 (moving cusps). Suppose that in a neighborhood U of a point p ∈ M
the Stein factorization of a map f : M → R2 is given by Figure 2(a). Then f can
be deformed in this neighborhood to a map f ′ so that the Stein factorization of f ′

is as the diagram of Figure 2(b).

Proof. Suppose q ∈ M is the cusp singular point and α ⊂ M is the indefinite fold
arc at hand. Let x ∈R2 be a point on the other side of f (α) in f (U ). Connect f (q)
and x by an embedded arc β ′. Then there is an arc β ⊂ M such that f (β) = β ′,
β starts at q , and β and α do not intersect. By using the technique of [Levine 1965]
we can now deform f in a small tubular neighborhood of β to achieve the claimed
map f ′. Note that during this move one singular point of type (D) appears. �

An analogous statement holds if we move a cusp from a 1-sheeted region to a
2-sheeted region.

According to the next result, two cusps can be eliminated as in Figure 3.

Lemma 2.2 (eliminating cusps). Suppose that in a neighborhood U of a point
p ∈ M the Stein factorization of a map f : M→ R2 is given by Figure 3(a). Then
f can be deformed in this neighborhood to a map f ′ so that the Stein factorization
of f ′ is as the diagram of Figure 3(b).

Proof. This statement is the elimination in [Levine 1965, pages 285–295] for
3-dimensional source manifolds. �

Recall that if f : M→ R2 is a stable map and S f ⊂ M denotes its singular set,
then f |S f is a generic immersion with cusps; i.e., if C f ⊂ M denotes the set of

(a) (b)

Figure 2. Moving cusps. A map can be deformed so that the
image of a cusp point goes to the other side of the image of an
indefinite fold arc.
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(a) (b)

Figure 3. Eliminating cusps.

t = 0

t = 1/3

t = 2/3

t = 1

Figure 4. The deformation of f to f ′ in a fiber of NL .
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cusp points, then f |S f−C f is a generic immersion with finitely many double points
and f |C f is disjoint from f |S f−C f .

The following result will be the key ingredient in our subsequent arguments for
proving Theorem 1.2.

Lemma 2.3 (making wrinkles). Suppose that f : M→ R2 is a stable map and let
L ⊂ M denote an embedded closed 1-dimensional manifold such that L is disjoint
from the singular set S f , f |L is a generic immersion and f |L∪S f is a generic
immersion with cusps. Let NL be a small tubular neighborhood of L disjoint from
S f and fix an identification of NL with the normal bundle of L. Let s : L→ NL be
a non-zero section such that f (s(x)) 6= f (x) for any x ∈ L. Then f is homotopic
to a smooth stable map f ′ such that

(1) f = f ′ outside NL ,

(2) the singular set of f ′ is S f ∪ L ∪ s(L),

(3) f ′ has indefinite fold singularities along L ,

(4) f ′ has definite fold singularities along s(L),

(5) f ′|L = f |L ,

(6) f ′|s(L) is an immersion parallel to f |L and

(7) if for a double point y of f |L the two points in f −1(y) ∩ L lie in the same
connected component of the fiber f −1(y), then the double point y of f ′|L
correspond to a singularity of type (D).

Proof. We perform the homotopy inside NL fiberwise as shown by Figure 4 (see
previous page). Since NL is the trivial bundle, the homotopy of the fibers yields a
homotopy of the entire NL . �

Remark 2.4. If the submanifold L has boundary, we can still get something sim-
ilar. In this case the section s should be zero at the boundary points of L , and the
homotopy yields a stable map f ′ with cusps at ∂L .

3. Construction of the stable map on M

Proof of Theorem 1.2. We will prove the theorem by presenting an algorithm which
produces the map F on M with the desired properties. This algorithm will be given
in seven steps; the first six of these steps are concerned with maps on S3. Let us
start with a fold map f0 : S3

→ R2 with one unknotted circle C ⊂ S3 as singular
set such that f0|C is an embedding and f −1

0 (p) is a circle for each regular point
p∈ f0(S3). Then the Stein factorization of f0 is a disk together with its embedding
into R2. By cutting out the interior of a sufficiently small tubular neighborhood
NC of C from S3, we get a solid torus S3

− int NC whose boundary is mapped
into R2 by f0 as a circle fibration over a circle parallel to f0(C), and f0|S3−int NC
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is a trivial circle bundle S1
× D2

→ D2. Suppose the link L ⊂ S3 is disjoint
from NC ∪ {1} × D2. Then by identifying S3

− (NC ∪ {1} × D2) with R3 and
f0|S3−(NC∪{1}×D2) with the projection onto R2, we get a link diagram L = f0(L).
Now we start modifying this map f0. In Steps 1 through 6 we will deal with maps
on S3, and the goal will be to obtain a map which is suitable with respect to the
fixed surgery link L . In particular, we aim to find a map on S3 with the property
that its restriction to any component of L is an embedding into R2. We suppose
that the modifications through Step 1, . . . , Step 6 happen so that all the images of
the maps f1, . . . , f6 lie completely inside the disk determined by the (unchanged)
circle fi (C), i = 1, . . . , 6. This can be reached easily by choosing f0(C) to bound
an area “large enough” in R2 and supposing that the diameter of L is small.

Step 1. Our first goal is to deform f0 so that the resulting map f1 has fold singu-
larities along L . Apply Lemma 2.3 to the map f0 : S3

→ R2 and the embedded
1-dimensional manifold L ⊂ S3, and denote the resulting stable map by f1. It is
a fold map, its indefinite fold singular set is L and its definite fold singular set is
C ∪ L ′, where L ′ = s(L) is isotopic to L; for an example see Figure 5.

Since L ′ is isotopic to L , the integral surgery along L giving M can be equally
performed along L ′. Recall that doing surgery along L ′ simply means that we cut
out a tubular neighborhood of the definite fold curve L ′ (which is diffeomorphic
to L ′× D2), and glue it back by a diffeomorphism of its boundary L ′× S1. If the
image f1(L ′) was an embedding of circles, then it would be easy to construct the
claimed map F on the 3-manifold given by the integral surgery. Since this is not
the case in general, we need to further deform the map f1.

Figure 5. The image of the singular set of the map f1 : S3
→R2,

where L is the trefoil knot. The outer circle is f1(C), the inner
solid curve is f1(L ′) and the dashed curve is f1(L). The double
points of f1(L) correspond to singularities of type (D).
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Let B denote the interior of the bands (one for each component of L) bounded
by q f1(L) and q f1(L

′) in the Stein factorization W f1 . Then B is immersed into R2

by f̄1. The Stein factorizations of the maps f2, . . . , f6 in the next steps will be
built on B. Let B ′ denote the surface W f1 − cl B.

Step 2. Now, our goal is to deform f1 so that the Stein factorization of the resulting
map f2 has small “flappers” near q f2(L

′) at the points where f̄2(q f2(L
′)) is tangent

to the general position vector v. These “flappers” will help us to move the image
of L so that it will become an embedding into R2.

First, we use Lemma 2.3 together with Remark 2.4 as follows. Let T be the set
of points in q f1(L

′) such that for each p ∈ T the direction v is tangent to f1(L ′)
at f̄1(p). For each p ∈ T take a small embedded arc αp in a small neighborhood
of p in B such that f̄1|αp is an embedding parallel to f1(L). For each arc αp there
exists an embedded arc α̃p in S3 such that q f1 |α̃p is an embedding onto αp. See, for
example, the upper picture of Figure 6, where the small dashed arcs having cusp
endpoints represent the arcs f1(α̃p)= f̄1(αp) for all p ∈ T .

Apply Lemma 2.3 and Remark 2.4 to the map f1 : S3
→ R2 and the arcs {α̃p ⊂

S3
: p ∈ T } to obtain a map f ′1. The section s in Lemma 2.3 is chosen so that

if we project the f ′1-images of the arising new definite fold curves in R2 to Rv,
then for each curve there is only one critical point, which is a maximum. An
example for the resulting map f ′1 can be seen in the upper picture of Figure 6.
Note that the deformation yielded small “flappers” in W f ′1 attached to B along the
arcs {αp : p ∈ T }. Next, for each p ∈ T take small arcs βp in W f ′1 which intersect
generically the previous arcs {αp : p ∈ T }, lie in B and on the “flappers” and are
mapped into R2 almost parallel to v. See the new small dashed arcs in the lower
picture of Figure 6. Once again, there are small arcs {β̃p : p ∈ T } embedded in S3

mapped by f ′1 onto {βp : p ∈ T }, respectively.
The application of Lemma 2.3 and Remark 2.4 for these arcs provides us a map,

which we denote by f2. This map will have one additional flapper for every flapper
of f ′1. We choose the section s in Lemma 2.3 so that the f2-images of the arising
new definite fold curves lie inward2 from the arcs { f̄ ′1(βp) : p ∈ T }, respectively,
in the f̄2-image of B and the previous flappers. For an enlightening example, see
the lower picture of Figure 6. Note that after this step |T | new singular points of
type (D) appeared. Also note that for each p ∈ T we have four cusp singular points
in S3, three of which are mapped by q f2 into B. We denote the set of these three
cusps by C p. For each p ∈ T the f2-images of two of these three cusps in C p point
to the direction −v. We denote the set of these two cusps by Dp. Note that the
definite fold curves in the images of the two cusps in Dp are on opposite sides.

2At a point of { f̄ ′1(p) : p ∈ T } let us call the direction which is perpendicular to f ′1(L
′) and points

toward the direction where locally f ′1(L
′) lies “inward”.
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v

Figure 6. We obtain the upper picture by applying Lemma 2.3 and
Remark 2.4 to the small arcs {α̃p : p ∈ T } in S3 which are mapped
by f1 to the dashed arcs near the points of the diagram L where it is
tangent to v. We obtain the lower picture by applying Lemma 2.3
and Remark 2.4 to the new arcs added to the upper picture. The
solid arcs correspond to singularities of type (A) and the black
double points of the dashed arcs correspond to singularities of type
(D).
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Step 3. Now our goal is to obtain definite fold arcs connecting points of S3 where
f2 had cusps. Moreover these definite fold arcs will be mapped into R2 parallel to
the diagram L . (These curves will be translated in the next step so that later they
will lead to an embedding of L into R2.)

In order to reach this goal, we deform the map f2 : S3
→R2 further by eliminat-

ing half of the cusps as follows. We proceed for each component of L separately
and in the same way, thus in the following we can suppose that L is connected.
Take a cusp q0 ∈ S3 which is in Cx−Dx for an x ∈ T such that the entire f2(L ′) lies
to the right hand side of its tangent at f̄2(x). By going along the band B in W f2 in
the direction to which the f2-image of this cusp q0 points, we reach another cusp q1

in C p for some p ∈ T at the next v-tangency of f2(L ′). If this cusp does not belong
to Dp, then it is possible to apply Lemma 2.2 and eliminate these two cusps, since
they are in the position of Figure 3. Then we continue by taking the cusp in Dp

whose Stein factorization is folded inward. If the cusp q1 does belong to Dp, then
we choose that cusp from Dp which can be used to eliminate q0 (it is easy to see
that this is exactly the cusp in Dp whose Stein factorization is folded inward), we
eliminate them, then we continue by taking the cusp belonging to C p − Dp. This
procedure goes all along the band B, meets all p ∈ T and eliminates half of the
cusps. After finishing this process, we obtain a stable map, which we denote by
f3; see Figure 7 for an example.

Figure 7. Eliminating half the cusps in the lower part of Figure 6.
The black double points correspond to singularities of type (D).
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The cusp elimination results new definite fold curves whose f3-image is an
immersion, and which have double points near the crossings of the diagram L . In
the next step we will deform f3 so that the double points of these new curves will
be localized near the images of the remaining cusps.

Step 4. Now our goal is to deform f3 to a map f4 such that the definite fold arcs
obtained in the previous step will be mapped into R2 far from the diagram L .
(Informally, we will “lift” some of the arcs in the direction of v.) Moreover, the
immersion of these definite fold arcs into R2 will have double points only near
some cusps of f4. This brings us closer to the original goal to have a map which
embeds a link isotopic to L into the plane.

The cusp eliminations above affect only small tubular neighborhoods of curves
connecting cusps in S3. Denote by δ ⊂ S3 the new definite fold arcs which appear
in these tubular neighborhoods after the eliminations. Note that by the algorithm
above, the arcs δ are mapped into R2 so that by an elementary deformation they
can be moved “upward” in the direction of v, see Figure 7.

So we further deform f3 : S3
→R2 to get a stable map denoted by f4 as indicated

in Figure 8: as it is shown by the picture, the arcs are “lifted”. In fact, we deform
f̄3: we move the top of the “flappers” corresponding to the α-curves of Step 2
and the f̄3-image of the curves q f3(δ) in the direction of v and far from f3(L).
We proceed for each component of L separately and in the same way, thus in the
following we can suppose that L is connected. First we choose a point x ∈ T such
that the entire f3(L ′) lies to the right hand side from its tangent at f̄3(x). Then,
by walking along the band B ⊂ W f3 starting from x , we deform the flappers and
the curves f̄3(q f3(δ)) to be mapped into the plane as a “zigzag” far away from the
diagram L . More precisely, consider the coordinate system in R2 with origin x and
coordinate axes Rv⊥ and Rv, respectively, where v⊥ denotes the vector obtained
by rotating v clockwise by 90 degrees. By extending the f̄3-image of the flappers
in the direction of v deform the f̄3-image of the curves q f3(δ) so that by going
along B between the points pi , pi+1 ∈ T , where 1 ≤ i ≤ |T | − 1 and p1 = x ,
the corresponding component of the curve f3(δ) is mapped into a small tubular
neighborhood of a line with slope (−1)i+1 for i = 1, . . . , |T |−1. Finally, arrange
the last component of f3(δ) starting with slope−1 and ending at the first (extended)
flapper belonging to x , see Figure 8.

As a result the double points of the immersion of the deformed curves f4(δ) are
in a small neighborhood of the cusps mapped close to the tops of the flappers.

Step 5. In this step, we modify the stable map f4 so that the cusps of the resulting
map f5 will be easy to eliminate in the next step. Let l⊂R2 be a line perpendicular
to v located near f̄4(B), separating it from the other parts moved to the direction
of v in Step 4, as indicated in Figure 8.
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Figure 8. The Stein factorization of f4, i.e., the deformation of
f3 of Figure 7. (The straight line represents the line l used to cut
W f4 in Step 5.) The upper part of W f4 from the bold 1-complex is
denoted by A. (As usual, the circle f4(C) is omitted.)

Now, we cut the 2-complex W f4 − B ′ (recall that B ′ denotes W f1 − cl B; see
Step 1) along the f̄4-preimage of the line l, thus we obtain the decomposition

W f4 = A∪ f̄ −1
4 (l)∩(W f4−B ′) A′,

where A′ denotes the 2-dimensional CW complex containing q f4(L) and A denotes
the closure of W f4 − A′. Then q−1

f4
(A) is a 3-manifold with boundary. Let us

denote the 1-complex q f4(∂q−1
f4
(A)) by ∂A. In order to visualize ∂A in Figure 8,

we suppose that the cutting of W f4 along f̄ −1
4 (l)∩(W f4−B ′) is a little bit perturbed
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and thus the bold 1-complex in Figure 8 represents ∂A. Before proceeding further,
we need a better understanding of the q f4-preimages of the sets appearing in the
above decomposition. The preimage q−1

f4
(∂A) is clearly diffeomorphic to J × S1

for a link J ⊂ S3. The following statements show much more about q−1
f4
(∂A). It

is easy to see that the numbers of components of J and L are equal. However, we
have a stronger result:

Lemma 3.1. A longitudinal curve in q−1
f4
(∂A) is isotopic to L.

Proof. The 1-complex ∂A decomposes as a union of 1-cells: some of them (which
we depict as “small 1-cells” in Figure 8) are attached at one of their endpoints to
the union of the other 1-cells, we denote these small cells by σi for i = 1, . . . , |T |.
Others are attached by both of their endpoints. Let σ denote the 1-complex ∂A−⋃|T |

i=1 σi . Then the PL embedding σ ⊂W f4 is isotopic to the subcomplex ι of W f4

formed by the arcs of type (B) in the open bands B connecting the singular points
of type (D) in B. Furthermore, the subcomplex ι is isotopic to q f4(L

′). Take a
small closed regular neighborhood N of q f4(L

′). Then q−1
f4
(N ) is naturally a D2-

bundle over L ′. The boundary of N in W f4 is a 1-manifold isotopic to q f4(L
′), and

we will denote it by λ. Clearly q−1
f4
(λ) is diffeomorphic to L ′× S1. Note that any

section of q−1
f4
(λ) is isotopic to L ′.

The isotopy between λ and ι and the isotopy between ι and σ can be chosen
easily so that they give a PL embedding ε : S1

× [0, 1] → W f4 such that S1
× {0}

and S1
×{1} correspond to λ and σ , respectively. For j = 1, . . . , |T |, let U j denote

small regular neighborhoods of the singular points of type (D) located near the cusp
points in B in W f4 , such a U j and the restriction f̄4|U j can be seen in Figure 1(d).
Then the intersection

ε(S1
×[0, 1])∩

( |T |⋃
j=1

U j

)
consists of a union of disks, which will be denoted by

|T |⋃
j=1

D j .

First, observe that for each j = 1, . . . , |T | there exists a disk D̃ j embedded into
q−1

f4
(U j ) in S3 whose boundary ∂ D̃ j is mapped by q f4 homeomorphically onto the

boundary ∂D j ; i.e., ∂ D̃ j is a lifting of ∂D j . To see this, consider the 3-manifold
q−1

f4
(U j ) for each j = 1, . . . , |T |. By [Levine 1985] the manifold q−1

f4
(U j ) is

diffeomorphic to R × [0, 1], where R is a disk with three holes and it is mapped
by f4 into R2 as we can see in Figure 9(a).
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(a) (b)

Figure 9. In (a) we can see the manifold R × [0, 1] and how
it is mapped onto the regular neighborhood U j and into R2; cf.
Figure 1(d). R × {0} is mapped onto the left side of the rectan-
gle f̄4(U j ) as a proper Morse function with two indefinite critical
points. The two “figure eights” in R × {0} are the two singular
fibers. R× {1} is mapped similarly onto the right side of f̄4(U j ).
The middle fiber in R × [0, 1] is mapped to the singular point of
type (D). For a detailed analysis see [Levine 1985]. In (b) we can
see the boundary ∂ D̃ j in R×[0, 1] and its image in U j represented
by a bold 1-complex.

Each disk D j can be located in U j essentially in four ways, for example the
lower picture of Figure 9(b) shows the disk D j for the leftmost nonsimple singu-
larity crossing of type (D) in Figure 8. We get D j on the picture by cutting out the
two shaded areas from the 2-complex U j . It is easy to see in the upper picture of
Figure 9(b) how to put the disk D̃ j into R×[0, 1]. The other three possibilities for
the location of a disk D j in U j and the disk D̃ j in q−1

f4
(U j ) can be described in a

similar way.
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Now observe that ε(S1
×[0, 1])−

⋃|T |
j=1 D j can be lifted to S3 extending

⋃|T |
j=1 D̃ j

because of the following. First, the regular neighborhoods of the singular points of
type (C) in B (see Figure 1(c)) intersect ε(S1

×[0, 1]) in disks which can be lifted to
S3. Then the intersection of the small regular neighborhoods of the singular curves
of type (B) and ε(S1

×[0, 1]) can be lifted as well since there is no constraint for the
lift at the regular points of f4. Finally observe that the rest of ε(S1

×[0, 1]) inter-
sects W f4 only in areas of non-singular points which are attached to the boundary
of ε(S1

×[0, 1]), so the previous lifts extend over the entire ε(S1
×[0, 1]).

Hence we obtain an embedding ε̃ : S1
×[0, 1]→ S3 with S1

×{0} and S1
×{1}

corresponding to lifts of λ and σ , respectively. Thus we obtain an isotopy between
a longitude of q−1

f4
(∂A) and a lift of λ. The fact that any lift of λ is isotopic to L ′

finishes the proof. �

Lemma 3.2. The preimage q−1
f4
(A) is isotopic to a regular neighborhood of L.

Proof. It is enough to show that q−1
f4
(A) is diffeomorphic to L × D2 extending

naturally the L × S1 structure on its boundary since by Lemma 3.1 the union of
tori ∂q−1

f4
(A) contains a longitude isotopic to L . Moreover it is enough to show that

the q f4-preimage of the part of A homeomorphic to the CW complex in Figure 10
is diffeomorphic to [0, 1] × D2, where the q f4-preimage of the two vertical edges
on the right-hand side of the 2-complex of Figure 10 corresponds to {0, 1} × D2.
Clearly the q f4-preimage of the two vertical edges on the right-hand side is diffeo-
morphic to {0, 1}× D2 since q−1

f4
(x) is a circle for any x lying in the two vertical

edges except if x is one of the two top ends. If x is one of the two top ends, then
q−1

f4
(x) is one point since it is a definite fold singularity. The q f4-preimage of the

backward sheet in Figure 10 is diffeomorphic to [0, 1] × D2 minus I × D2 for an
interval I . The q f4-preimage of the forward sheet is diffeomorphic to I × D2. �

Corollary 3.3. Any longitudinal curve in q−1
f4
(∂A) is isotopic to L.

Figure 10



MAPS ON 3-MANIFOLDS GIVEN BY SURGERY 27

Figure 11. The Stein factorization of

f5|q−1
f5
(W f5−A′) : L × D2

→ R2.

There are two P-pairs of cusps.

In order to obtain the map f5, we modify the map

f4|q−1
f4
(A) : L × D2

→ R2

outside a neighborhood of q−1
f4
(∂A), as shown by Figure 11: our goal is to have

the arrangement that if for a cusp singularity q1 ∈ S3 the point q f5(q1) is connected
in W f5− A′ to ∂A by a 1-cell γ mapped into R2 parallel to v and γ corresponding
to an indefinite fold curve, then a definite fold curve should connect q1 to another
cusp q2 with the same property for q f5(q2). Thus we obtain a map f5 such that
q−1

f5
(W f5− A′) is isotopic to a regular neighborhood of L by the same argument as

in Lemma 3.2. Also q−1
f5
(W f5 − A′) coincides with q−1

f4
(A) and f5 coincides with

f4 in a neighborhood of q−1
f5
(A′).

We arrange the cusps of f5 in q−1
f4
(A) to form pairs as follows. In W f5 sheets

are attached to B along arcs of type (B) (possibly containing points of type (C)
at some endpoints). Walking along the bands B and restricting ourselves to the
intersection of the sheets and W f5 − A′, we have that every sheet contains a pair
of cusps and every second sheet contains a singular arc of type (A) connecting its
pair of cusps; for example, see Figure 11.

A natural pairing is that two cusps form a pair if they are in the same sheet
and they are connected by a singular arc of type (A). We refer to this pairing as
Q-pairing. We also define another pairing P: two cusps form a P-pair if they are
in the same sheet and they are not connected by any singular arc of type (A).

Step 6. In this step, we eliminate the cusps of f5 contained in q−1
f5
(W f5 − A′).

These cusps are mapped by f5 in the direction of v far from L and arranged into
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P-pairs in the previous step. The restriction of the resulting map f6 : S3
→ R2 to

a link isotopic to L will be an embedding. (Hence after this step the construction
of the claimed map F on M will be easy.)

We have exactly |T |/2 P-pairs of cusps in q−1
f5
(W f5 − A′). Observe that for

each component of L one P-pair can be eliminated immediately: for example in
Figure 11 the pair on the “highest” sheet is in the sufficient position to eliminate.
In the following, we deal with the other P-pairs.

More concretely, we perform the deformations and the eliminations of the pairs
of cusps of f5 in q−1

f4
(A) as shown in Figure 12 as follows.

(a)

(b)

(c)

Figure 12. Moving and eliminating the cusps. We move and
eliminate the P-pair of cusps along the arrows. The dashed arcs
represent 1-complexes used to deform σ in the proof of
Lemma 3.4.
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First, by using Lemma 2.1 we move each pair of cusps having the position as in
Figure 12(a) to the position as in Figure 12(b) thus creating a singularity of type
(D). Then by using Lemma 2.2 we eliminate each pair of cusps, see Figures 12(b)
and 12(c).

The resulting map will be denoted by f6 (see Figure 13). Notice that f6 and
f5 coincide in a neighborhood of q−1

f5
(A′). The deformations above yield definite

fold curves K ⊂ S3, whose image under f6 is an embedding into R2 as indicated
in Figure 13 by the bold curve.

Lemma 3.4. The link K is isotopic to L.

Figure 13. The Stein factorization of the stable map f6 : S3
→R2.

(The circle f6(C) is omitted.)
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Proof. By Lemma 3.1 the link L is isotopic to a longitude of the union of tori
q−1

f4
(∂A). In Step 6 we modify f5 only inside q−1

f4
(A). The subcomplex σ of ∂A

used in the proof of Lemma 3.1 is PL-isotopic to a 1-dimensional PL submanifold
σ ′ of W f5− A′ such that σ ′ goes through the singular curves of type (A) appearing
in the Q-pairing at the end of Step 5 and goes through the top of W f5− A′, i.e., the
top of the 2-complex in Figure 11. To be more precise, in Figure 12(a) the part of
σ ′ connecting the two cusp endpoints of the singular arcs of type (A) is represented
by a bold dashed arc and denoted by σ ′′. During the moving of the pair of cusps as
depicted by the arrows in Figure 12(a), σ ′′ is deformed to the curve σ ′′′ represented
by a bold dashed arc in Figure 12(b). This deformation gives an isotopy between
some liftings to S3 of σ ′′ and σ ′′′. Since a part of σ ′′ is collinear to a singular
arc of type (A) as we can see in Figure 12(a), any lifting to S3 of σ ′′ is isotopic
to any other lifting. Hence further deforming σ ′′′ to σ ′′′′ represented by the bold
dashed curve in Figure 12(c) yields an isotopy between some liftings of σ ′′ and
σ ′′′′. Finally, changing again the lifting to S3 of σ ′′′′ if necessary, we eliminate the
pair of cusps as indicated in Figure 12(b) and deform σ ′′′′ to be identical to the
type (A) singular arc appearing at the elimination in Figure 12(c). All this process
gives an isotopy in S3 between K and a lifting of σ , hence an isotopy between K
and L . �

Step 7. As a final step, we perform the given surgeries along K with the appropriate
coefficients. Since f6|K is an embedding into R2 on each component of K , and
K consists of definite fold singular curves such that the local image of a small
neighborhood of the definite fold curve is situated “outside” of the image of the
definite fold curve, a map of M is particularly easy to construct: a small tubular
neighborhood NK of K , which is diffeomorphic to K × D2, is glued back to S3

−

int NK such that {pt.} × ∂D2 maps to a longitude in ∂(M − int NK ), hence NK

can be mapped into R2 as the projection π : K × D2
→ D2. This π extends over

M − int NK and the resulting map M→ R2 is stable. Let us denote it by F .
It is easy to see that F has the claimed properties:

The Stein factorization WF is homotopy equivalent to the bouquet
∨n(L)

i=1 S2. The
Stein factorization W f4 is clearly contractible. The CW-complexes W f5 and W f6

are still contractible since the corresponding steps do not change the homotopy
type. At the final surgery we attach a 2-disk to W f6 for each component of L .

The number of cusps of F is equal to tv(L). Each point in f1(L ′) at which f1(L ′) is
tangent to the chosen general position vector v (these are exactly the points of the
set f̄1(T )) corresponds to a cusp of F by the construction and there are no other
cusps. |T | = tv(L) hence we get the statement.

All the nonsimple singularities of F are of type (D). This follows from the fact that
singularities of type (E) never appear during the construction.
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The number of the nonsimple singularities of F is equal to cr(L)+ 3
2 tv(L)− n(L).

Each crossing of the diagram L gives a singularity of type (D). Also each point
in T gives a singularity of type (D) by the construction. Finally, the movement
illustrated in Figure 12(b) gives one singular point of type (D) for each pair of
points in T except one pair for each component of L .

The number of nonsimple singularities which are not connected by any singular
arc of type (B) to any cusp is equal to cr(L)+ 1

2 tv(L)− n(L).
In the previous argument, if we do not count the singularities of type (D) corre-

sponding to the v-tangencies of f1(L ′), then we get the statement.

The number of simple singularity crossings of F in R2 is no more than

8cr(L)+ 6`(L, v)tv(L)+ tv(L)2.

We can suppose that the number of simple singularity crossings of f4|q−1
f4
(A′) is at

most 8cr(L)+ 2tv(L)+ 6`(L, v)tv(L). The maps f4, f5, f6 and F coincide in a
neighborhood of q−1

f4
(A′) and also their images coincide in the half plane bounded

by the line l and lying in the direction −v (for the notations, see Step 5). The
simple singularity crossings of F in F(q−1

f4
(A)) come from the intersections of the

F̄-images of the “sheets” attached to the bands B ⊂WF (for the notation, see Step
2). For example, in Figure 13, two such sheets intersect on the right-hand side in
four simple singularity crossings. Hence we obtain an upper bound for the number
of simple singularity crossings of F in F(q−1

f4
(A)) if we suppose that all the sheets

intersect each other in eight crossings. This gives the upper bound

8
(

tv(L)
2
− 1+

tv(L)
2
− 2+ · · ·+ 1

)
= 4

tv(L)
2

(
tv(L)

2
− 1

)
= tv(L)2− 2tv(L).

Thus we obtain the upper bound

8cr(L)+2tv(L)+6`(L, v)tv(L)+tv(L)2−2tv(L)=8cr(L)+6`(L, v)tv(L)+tv(L)2

for all the simple singularity crossings of F .

The number of connected components of the singular set of F is no more than
n(L)+ 3

2 tv(L)+1. The curve C is a component and the links L and L ′ give singular
set components as well. Also the cusp elimination in Step 3 gives additional tv(L)
components. Steps 4 and 5 clearly do not increase more the number of singular set
components. In Step 6 the changings showed in Figure 12 increase the number of
components by at most 1

2 tv(L). Finally Step 7 decreases it by n(L).

The maximal number of the connected components of any fiber of F is no more
than tv(L)+3. The maximal number of the connected components of any fiber of
f1 is 3. This value is no more than 3+ tv(L) for f2, . . . , f5 and also for f6. When
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we perform the surgery in Step 7, 3+ tv(L) is still an upper bound hence we get
the statement.

The indefinite fold singular set of F. Finally the statement of (8) about the indefinite
fold singular set of F is obvious from the construction. This finishes the proof of
Theorem 1.2. �

Remark 3.5. Suppose we have two links in S3. If the projections of the two links
coincide, then the resulting stable maps on the two 3-manifolds in the construction
described above will have the same Stein factorizations. Therefore only the Stein
factorization itself is a very week invariant of the 3-manifold.3

Proof of Theorem 1.4. Let M be a closed orientable 3-manifold obtained by an
integral surgery along a link in S3. Theorem 1.2 gives a stable map F of M into
R2 without singularities of type (E). We can eliminate the cusps of F without intro-
ducing any singularities of type (E). Indeed, the map constructed by Theorem 1.2
has an even number of cusps, whose qF -image is situated in B ⊂ WF . Moreover
since the locations of the F-images of the cusps are at the v-tangencies of L , each
cusp c has a pair c′ which can be moved close to c (thus possibly creating new
singular points of type (D)) and can be used to eliminate these pairs in the sense
of Lemmas 2.1 and 2.2. �

Remark 3.6. By results from [Eliashberg and Mishachev 1997], every closed ori-
entable 3-manifold has a wrinkled map into R2 since any orientable 3-manifold is
parallelizable. This argument leads to another proof of Theorem 1.4. However, the
h-principle used in the proof of the results cited does not provide any construction
for the wrinkled map.

Next we give the proof of the estimate given in (1-1) in Section 1.

Lemma 3.7. `(L, v)≤ tv(L)− 1.

Proof. For any v-tangency p we have `(L, v, p)≤ tv(L)− 1 since by going along
the components of L in the diagram L , in order to pass through the intersections
of the half line emanating from p in the direction of v, for each intersection one
needs to pass through a v-tangency as well. �

4. Estimates for TB−

Recall that the Thurston–Bennequin number tb(L) of a Legendrian knot L can be
computed through the simple formula

tb(L)= w(L)− 1
2 #cusps(L).

3The paper [Motta et al. 1995] is closely related to this remark.
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Proof of Theorem 1.9. By Theorem 1.2(5) and Lemma 3.7 we have

s(F)≤ 8cr(L)+ 7tv(L)2− 6tv(L)

for the constructed stable map F . (Here, again, L denotes the generic projection
of the knot L we get from the front projection of the Legendrianization L of L
by rounding the cusps.) Since d(F)= s(F)+ ns(F), by Theorem 1.2 (3), (5) and
Lemma 3.7 we have

d(F)≤ 9cr(L)+ 7tv(L)2− 9
2 tv(L)− n(L).

If L has only negative crossings, then the Thurston–Bennequin number tb(L) is
equal to −cr(L)− 1

2 tv(L), where v is the vector in which the front projection has
no tangency.

Hence

28tb(L)2 = 28cr(L)2+ 28cr(L)tv(L)+ 7tv(L)2

and

28cr(L)2+ 28cr(L)tv(L)+ 7tv(L)2 ≥ 9cr(L)+ 7tv(L)2− 9
2 tv(L)− n(L).

Thus |tb(L)| ≥
√

d(F)/
√

28, implying (by the fact that tb(L) is negative for a
knot admitting a projection with only negative crossings)

(4-1) tb(L)≤−
√

d(F)
√

28
.

Also by Theorem 1.2 (4), we have

|tb(L)| = cr(L)+ 1
2 tv(L)≥ nsnc(F)+ 1,

which gives

(4-2) tb(L)≤−nsnc(F)− 1.

Finally note that d(F)≥ s(F) for any stable map F , and by taking the minimum
for all the stable maps in (4-1) and (4-2), we get the statement. �
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