
Pacific
Journal of
Mathematics

RESONANT SOLUTIONS AND TURNING POINTS
IN AN ELLIPTIC PROBLEM

WITH OSCILLATORY BOUNDARY CONDITIONS

ALFONSO CASTRO AND ROSA PARDO

Volume 257 No. 1 May 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 257, No. 1, 2012

RESONANT SOLUTIONS AND TURNING POINTS
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WITH OSCILLATORY BOUNDARY CONDITIONS

ALFONSO CASTRO AND ROSA PARDO

We consider the elliptic equation−1u+u=0 with nonlinear boundary con-
ditions ∂u/∂n = λu+ g(λ, x, u), where the nonlinear term g is oscillatory
and satisfies g(λ, x, s)/s→ 0 as |s| → 0. We provide sufficient conditions
on g for the existence of sequences of resonant solutions and turning points
accumulating to zero.

1. Introduction

This work complements the study initiated in [Arrieta et al. 2010] and [Castro and
Pardo 2011] on the positive solutions to the following boundary-value problem

(1-1)

{
−1u+ u = 0 in �,
∂u
∂n
= λu+ g(λ, x, u) on ∂�,

where � ⊂ RN is a bounded and sufficiently smooth domain, N ≥ 2, λ is a real
parameter, g(λ, x, s) = o(s) as s → 0 and g is oscillatory. A typical example of
such a g is

(1-2) g(x, s) := sα
(

sin
∣∣∣∣ s
81(x)

∣∣∣∣β +C
)

with α+β > 1, β < 0,

where 81 stands for the first eigenfunction of the Steklov eigenvalue problem

(1-3)

{
−18+8= 0 in �,
∂8

∂n
= σ8 on ∂�.
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Figure 1. Bifurcation diagram of subcritical and supercritical so-
lutions, containing infinitely many turning points and infinitely
many resonant solutions. In all cases, β =−0.35.

The first eigenvalue σ1 is simple and, due to Hopf’s lemma, we may assume its
eigenfunction 81 to be strictly positive in � and we take ‖81‖L∞(∂�) = 1.

The case α+β < 1, β > 0 was treated in [Arrieta et al. 2010; Castro and Pardo
2011]. Here we focus on the case α+β > 1, β < 0, inside of the complementary
range. The case with α < 1 corresponds to a bifurcation from infinity phenomenon;
see [Arrieta et al. 2007; 2009; 2010; Castro and Pardo 2011; Rabinowitz 1973]. In
contrast, the case with α > 1 corresponds to a bifurcation from zero phenomenon;
see [Arrieta et al. 2007; Crandall and Rabinowitz 1971; Rabinowitz 1971].

The oscillatory situation is in principle more complex than the monotone one,
since order techniques such as sub- and supersolutions are not applicable.

One novelty in problem (1-1) is that the parameter appears explicitly in the
boundary condition. With respect to this parameter, we perform an analysis of the
local bifurcation diagram of nonnegative solutions to (1-1), which turns out to be
different from the case α < 1 (see Figure 1 for α > 1 and Figure 2 for α < 1).

Throughout this paper we make the following assumptions:

(H1) g :R×∂�×R→R is a Carathéodory function (i.e. g= g(λ, x, s) is measur-
able in x ∈�, and continuous with respect to (λ, s)∈R×R). Moreover, there
exist G1 ∈ Lr (∂�) with r > N − 1 and continuous functions 3 : R→ R+,

and U : R→ R+, satisfying
|g(λ, x, s)| ≤3(λ)G1(x)U (s) for all (λ, x, s) ∈ R× ∂�×R,

lim sup
|s|→0

U (s)
|s|α

< +∞ for some α > 1.
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Figure 2. Bifurcation diagram in the case α = 0.5, β =−0.35.

(H2) The partial derivative gs(λ, · , · ) (where gs := ∂g/∂s) belongs to C(∂�×R);
moreover, gs( · , · , 0)= 0 and there exist F1 ∈ Lr (∂�), with r > N − 1 and
ρ > 1 such that

|g(λ, x, s)− sgs(λ, x, s)|
|s|ρ

≤ F1(x) as λ→ σ1,

for x ∈ ∂� and s ≤ ε small enough.

Throughout this paper, by solutions to (1-1) we mean elements u ∈ H 1(�) such
that

(1-4)
∫
�

(∇u · ∇v+ uv) dx

= λ

∫
∂�

uv dσ +
∫
∂�

g(λ, x, u)v dσ for all v ∈ H 1(�).

As proven in [Arrieta et al. 2007, Proposition 2.3], all such solutions are in the
Holder space Cβ(�) for some β > 0. Moreover, there exists a connected set of
positive solutions of (1-1) known as a branch bifurcating from zero; see [Arrieta
et al. 2007, Theorem 8.1]. We denote it by C+ ⊂ R× C(�), and recall that for
(λ, uλ) ∈ C+

u = s81+w, with w = o (|s|) and |σ1− λ| = o(1) as |s| → 0.

Definition 1.1. A solution (λ∗, u∗) of (1-1) in the branch of solutions C+ ⊂ R×

C(�) is called a turning point if there is a neighborhood W of (λ∗, u∗) in R×C(�)
such that, either W ∩C+ ⊂ [λ∗,∞)×C(�) or W ∩C+ ⊂ (−∞, λ∗]×C(�).

Our goal is to give conditions on the nonlinear oscillatory term g that guarantee
the existence of sequences accumulating to zero of subcritical solutions (i.e., for
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values of the parameter λ < σ1), supercritical solutions (i.e., for λ > σ1), resonant
solutions (i.e., for λ= σ1), and turning points.

Our main result, Theorem 1.3 below, is exemplified by the case in which g is
given by (1-2). In fact we have:

Theorem 1.2. Assume that g is given by (1-2) with β < 0. If

|C |< 1 and α+β > 1,

then in any neighborhood of the bifurcation point (σ1, 0) in R×C(�), the branch
C+ of positive solutions of (1-1) contains a sequence of subcritical solutions, a
sequence of supercritical solutions, a sequence of turning points, and a sequence
of resonant solutions.

The proof of this follows directly from the next theorem.

Theorem 1.3. Assume the nonlinearity g satisfies hypotheses (H1) and (H2). As-
sume also that

(1-5)
∣∣∣∣g(λ, x, s)− g(σ1, x, s)

|s|α

∣∣∣∣→ 0 as λ→ σ1, s→ 0

pointwise in x.
Let G : R×C(�)→ R be defined by

(1-6) G(λ, u) :=
∫
∂�

ug(λ, · , u)
|u|1+α

81+α
1 .

If there exist sequences {sn}, {s ′n} converging to 0+, such that

(1-7) lim
n→+∞

G(σ1, s ′n81) < 0< lim
n→+∞

G(σ1, sn81),

then:

(i) For sufficiently large n� 1, if (λ, u) is a solution of (1-1) with

P(u) :=

∫
∂�

u81∫
∂�
82

1
= sn,

then (λ, u) is subcritical. Similarly, if P(u) = s ′n it is supercritical. Con-
sequently, there exist two sequences of solutions of (1-1), {(λn, un)} and
{(λ′n, u′n)} converging to (σ1, 0) as n→∞, one of them subcritical, λn <σ1,
and the other supercritical, λ′n > σ1.

(ii) There is a sequence converging to zero of turning points {(λ∗n, u∗n)} such that

λ∗n→ σ1 and ‖u∗n‖L∞(∂�)→ 0 as n→∞.

In fact, we can always choose two subsequences of turning points, one of
them subcritical, λ∗2n+1 < σ1, and the other supercritical, λ∗2n > σ1.
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(iii) There is a sequence converging to zero of resonant solutions; i.e., there are
infinitely many solutions {(σ1, ũn)} of (1-1) with ‖ũn‖L∞(∂�)→ 0.

The behavior of positive solutions to (1-1) bifurcating from (σ1, 0) described in
Theorems 1.2 and 1.3 is similar to that of the solutions bifurcating from (σ1,∞)

for the sublinear problem; see [Arrieta et al. 2010] for details.
The complex nature of the nonlinearity in (1-2), makes an exhaustive analysis

of the global bifurcation diagram outside the scope of this work.
In [Korman 2008] the author considers in the case α = 1 β = 1. He assumes

either N = 1 or � to be a ball and the nonlinearity to be bounded by a constant
small enough. He obtains what he calls an oscillatory bifurcation. We refer the
reader to [García-Melián et al. 2009] for related problems with nonlinear boundary
conditions.

Organization of the paper. Section 2 contains the proof of our main result, giving
sufficient conditions for having subcritical, supercritical, and resonant solutions.
Section 3 presents two examples; explicit resonant solutions for the oscillatory
nonlinearity (1-2) and the one-dimensional case.

2. Subcritical, supercritical and resonant solutions

In this section we give sufficient conditions for the existence of a branch of so-
lutions to (1-1) bifurcating from zero which is neither subcritical (λ < σ1), nor
supercritical, (λ < σ1). From this, we conclude the existence of infinitely many
turning points, see Definition 1.1, and an infinite number of solutions for the res-
onant problem, i.e. for λ= σ1. This is achieved in Theorem 1.3

At this step, we analyze when the parameter may cross the first Steklov eigen-
value. To do that, we look at the asymptotic growth rate of the nonlinear term

(2-1) G0+ :=

∫
∂�

lim inf
(λ,s)→(σ1,0)

sg(λ, · , s)
|s|1+α

81+α
1

for α > 1. Changing lim inf to lim sup we define the number G0+ . If G0+ > 0 then
C+ is subcritical, and if G0+ < 0 then C+ is supercritical in a neighborhood of
(σ1, 0) See [Arrieta et al. 2009, Theorems 3.4 and 3.5] for the bifurcation from
infinity case. In this paper we consider nonlinearities for which

G0+ < 0< G0+ .

We shall argue as in [Arrieta et al. 2010] for the bifurcation from infinity case. To
determine whether a sequence of solutions (λn, un) is subcritical or supercritical,
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one must check the sign of

(2-2) lim inf
n→∞

G(λn, un) and lim sup
n→∞

G(λn, un),

where G is defined by (1-6). This is done in Lemma 2.3.
In Proposition 2.2, it is proved that when g is such that

|g(λ, x, s)| = O
(
|s|α

)
as |s| → 0 for some α > 1,

then the solutions in C± can be described as

un = sn81+wn, where
∫
∂�

wn81= 0 and wn = O(|sn|
α) as n→ 0.

We unveil the signs of the expressions in (2-2) by just looking at the signs of the
expressions in (2-2) at λn = σ1 and un = sn81 This is achieved in Lemma 2.4.

For this we first consider a family of linear Steklov problems with a variable
nonhomogeneous term at the boundary h depending on the parameter λ

(2-3)

{
−1u+ u = 0 in �,
∂u
∂n
= λu+ h(λ, x) on ∂�,

where h(λ, · ) ∈ Lr (∂�), r > N − 1 and λ ∈ (−∞, σ2).
We use the decomposition

Lr (∂�)= span[81]⊕ span[81]
⊥,

where

span[81]
⊥
:=

{
u ∈ Lr (∂�) :

∫
∂�

u81 = 0
}
.

For h(λ, · ) ∈ Lr (∂�), with r > N − 1, we write

(2-4) h(λ, · )= a1(λ)81+ h1(λ, · ),

with

a1(λ)=

∫
∂�

h(λ, · )81∫
∂�
82

1
,

∫
∂�

h1(λ, · )81 = 0.

For λ 6= σ1 the solution u = u(λ) of (2-3) has a unique decomposition

(2-5) u =
a1(λ)

σ1− λ
81+w, where

∫
∂�

w81 = 0,

and w = w(λ) ∈ span[81]
⊥ solves the problem

(2-6)

{
−1w+w = 0 in �,
∂w

∂n
= λw+ h1(λ, x) on ∂�.
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Note that in (2-6) w(λ) ∈ span[81]
⊥ is also well defined for λ= σ1. Moreover:

Lemma 2.1. For each compact set K ⊂ (−∞, σ2) ⊂ R there exists a constant
C = C(K ), independent of λ, such that

‖w(λ)‖L∞(∂�) ≤ C‖h1(λ, · )‖Lr (∂�) for any λ ∈ K ,

where w ∈ span[81]
⊥ is the solution of (2-6) and h1 ∈ span[81]

⊥ is defined in
(2-4).

Proof. See Lemma 3.1 of [Arrieta et al. 2010]. �

Now we turn our attention to the nonlinear problem (1-1). Recall that for solu-
tions (λ, u) close to the bifurcation point (σ1, 0) we have

(2-7) u = s81+w, where w ∈ span[81]
⊥

satisfies

(2-8) w = o(s) as s→ 0.

We define

(2-9) P(u) :=

∫
∂�

u( · )81∫
∂�
82

1
.

Next, we give sufficient conditions on the nonlinear term g in (1-1), for w =
O(|s|α) as s → 0; compare (2-8). We restrict ourselves below to the branch of
positive solutions; a completely analogous result holds for the branch of negative
solutions. The next result is essentially Proposition 3.2 in [Arrieta et al. 2010]
rewritten for s→ 0; we include the proof for completeness.

Proposition 2.2. Assume g satisfies hypotheses (H1) and (H2). There exists an
open set O ⊂ R× C(�) of the form O = {(λ, u) : |λ− σ1| < δ0, ‖u‖L∞(�) < s0},
for some δ0 and s0, satisfying these conditions:

(i) There exists a constant C1 independent of λ such that, if (λ, u) ∈C+∩O and
(λ, u) 6= (σ1, 0) then u = s81+w, where s > 0, w ∈ span[81]

⊥ and

‖w‖L∞(∂�) ≤ C1‖G1‖Lr (∂�) |s|α as |s| → 0.

(ii) There exists a constant S0 > 0 such that for all |s| ≤ S0 there exists (λ, u) in
C+ ∩O satisfying u = s81+w, with w ∈ span[81]

⊥.

(iii) Moreover, for any (λ, u) ∈ C+ ∩O, u = s81+w, with w ∈ span[81]
⊥,

|σ1− λ| ≤ C2|s|α−1 as |s| → 0,
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with C2 independent of λ; in fact,

C2 =
2‖G1‖L1(∂�)∫

∂�
82

1
.

Proof. From (2-7) and (2-8), we have 81 + w/s → 81 as s → 0 in L∞(∂�).
Together with (H1) and Lemma 2.1, this implies that ‖w‖L∞(∂�)≤C |s|α as s→ 0.
This proves part (i).

To prove part (ii) note that C+∩O is connected. Hence, using the decomposition
in (2-7), we have u = s81 + w with w ∈ span[81]

⊥. Since the projection P is
continuous, by (2-9), the set{

s ∈ R : (1-1) has a solution of the form u = s81+w and w ∈ [span[81]
⊥
]
}

contains an interval in R containing zero.
To prove part (iii) we observe that if (λ, u) is a solution of (1-1), u = s81+w,

with w ∈ span[81]
⊥, multiplying the equation by the first Steklov eigenfunction

81 > 0 and integrating by parts we obtain,

(σ1− λ)s
∫
∂�

82
1 =

∫
∂�

g(λ, x, s81+w)81.

Taking into account that

|g(λ, x, s81+w)|

|s|
=
|g(λ, x, s81+w)|

|s81+w|

∣∣∣81+
w

s

∣∣∣→ 0 as s→ 0

we get λ→ σ1 as s→ 0.
Moreover, from (H1), we obtain that

|g(λ, x, s81+w)| = |s|α
|g(λ, x, s81+w)|

|s81+w|α

∣∣∣81+
w

s

∣∣∣α
≤ C |s|α G1(x)

∣∣∣81+
w

s

∣∣∣α ,
and therefore

|σ1− λ| ≤ C
|s|α−1∫
∂�
82

1

∫
∂�

G1(x)
∣∣∣81+

w

s

∣∣∣α 81 ≤ C‖G1‖Lr (∂�)|s|α−1,

which ends the proof. �

Our next result is essentially Lemma 3.1 in [Arrieta et al. 2009] rewritten for
s→ 0. It allows us to estimate σ1− λn as λn converges σ1.

Lemma 2.3. Assume the nonlinearity g satisfies hypotheses (H1) and (H2). Let
(λn, un) be a sequence of solutions of (1-1) with λn → σ1 and ‖un‖L∞(∂�) → 0.
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If un > 0 then

(2-10)
G0+∫
∂�
82

1
≤

1∫
∂�
82

1
lim inf
n→∞

G(λn, un)

≤ lim inf
n→∞

σ1− λn

‖un‖
α−1
L∞(∂�)

≤ lim sup
n→∞

σ1− λn

‖un‖
α−1
L∞(∂�)

≤
1∫

∂�
82

1
lim sup

n→∞
G(λn, un)≤

G0+∫
∂�
82

1.

A similar statement is obtained for the case un < 0, just replacing G0+ by G0−

and G0+ by G0− .

Proof. We show that un > 0; the other case has a similar proof. Consider a family
of solutions un of (1-1) for λ = λn with λn → σ1 and 0 < un → 0. Multiplying
(1-1) by 81 and integrating by parts, we get

(2-11) (σ1− λn)

∫
∂�

un81 =

∫
∂�

g(λn, x, un)81.

But ∫
∂�

g(λn, x, un)81 = ‖un‖
α
L∞(∂�)

∫
∂�

g(λn, x, un)

uαn

(
un

‖un‖L∞(∂�)

)α
81.

Taking into account the definition of G(λ, u) in (1-6), we can write∫
∂�

g(λn, x, un)

uαn

(
un

‖un‖L∞(∂�)

)α
81

=

∫
∂�

g(λn, x, un)

uαn

[(
un

‖un‖L∞(∂�)

)α
−8α1

]
81+G(λn, un).

Moreover,∫
∂�

g(λn, x, un)

uαn

[(
un

‖un‖L∞(∂�)

)α
−8α1

]
81→ 0 as n→∞,

because un/‖un‖L∞(∂�)→81 uniformly in ∂�.
But, firstly from the above, secondly from Fatou’s lemma, and thirdly from

definition of G0+ ,

(2-12) lim inf
n→∞

∫
∂�

g(λn, x, un)

uαn

(
un

‖un‖L∞(∂�)

)α
81

≥ lim inf
n→∞

G(λn, un)≥

∫
∂�

lim inf
n→∞

g(λn, x, un)

uαn
81+α

1

≥ G0+ .
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Dividing both sides of (2-11) by ‖un‖
α
L∞(∂�) and passing to the limit we obtain

the first two inequalities in the chain (2-10). The third inequality in the chain is
trivial and the last two are obtained in a similar manner. �

Let {sn} and {s ′n} satisfy

(2-13) −∞ < lim
n→+∞

G(σ1, s ′n81) < 0 < lim
n→+∞

G(σ1, sn81) < ∞.

In order to prove Theorem 1.3, we show that the signs in (2-2) can be deduced
from those of (2-13). This is stated in the following result, which is a slight varia-
tion of [Arrieta et al. 2010, Lemma 3.3].

Lemma 2.4. Assume that g satisfies hypotheses (H1), (H2), and (1-5).
If (λn, sn)→(σ1, 0) and there exists a constant C such that ‖wn‖L∞(∂�)≤C |sn|

α

for all n→ 0, then

lim inf
n→+∞

G(λn, sn81+wn)≥ lim inf
n→+∞

G(σ1, sn81),

where G is given by (1-6). Similarly,

lim sup
n→+∞

G(λn, sn81+wn)≤ lim sup
n→+∞

G(σ1, sn81).

Proof. Throughout this proof, C denotes several constants depending only on
(�, g). Given ε > 0, assume that |(λn, sn)− (σ1, 0)|< ε.

By the mean value theorem we have

(2-14) g(λn, x, sn81+wn)− g(λn, x, sn81)

= wn

∫ 1

0
gs(λn, · , sn81+ τwn) dτ

≤ ‖wn‖L∞(∂�) sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�) .

Therefore

(2-15)
∫
∂�

∣∣∣g(λn, x, sn81+wn)− g(λn, x, sn81)

∣∣∣ 81 dx

≤ ‖wn‖L∞(∂�)

∫
∂�

sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�)

≤ |∂�|‖wn‖L∞(∂�) sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�) .

By hypotheses (H1) and (H2), for all x ∈ ∂�,

(2-16)
|gs(λn, x, s)|
|s|γ−1

≤ |s|ρ−γ F1(x)+C |s|α−γG1(x)max{3(λn), n ≥ 1} =: D1(x),
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for n large, and γ =min{ρ, α}> 1 Hence, D1 ∈ Lr (∂�) with r > N − 1 and

(2-17) sup
|s|≤1/n

|gs(λn, x, s)| ≤ D1(x)
(1

n

)γ−1
, with γ > 1.

Since ‖wn‖L∞(∂�) = O(|sn|
α), we obtain from (2-15) and (2-17)

(2-18)
∫
∂�

|g(λn, · , sn81+wn)− g(λn, · , sn81)|

|sn|
α

81

≤ C sup
τ∈[0,1]

‖gs(λn, · , sn81+ τwn)‖L∞(∂�)

≤ C sup
|s|≤1/n

‖gs(λn, · , s)‖L∞(∂�) ,

which tends to 0 as n→∞.
Therefore

lim inf
n→+∞

∫
∂�

sng(λn, · , sn81+wn)

|sn|
1+α 81

≥ lim
n→∞

∫
∂�

sng(λn, · , sn81+wn)− sng(λn, · , sn81)

|sn|
1+α 81

+ lim inf
n→+∞

∫
∂�

sng(λn, · , sn81)

|sn|
1+α 81

= lim inf
n→+∞

∫
∂�

sng(λn, · , sn81)

|sn|
1+α 81

= lim inf
n→+∞

∫
∂�

sng(σ1, · , sn81)

|sn|
1+α 81,

where we have used (2-18) and (1-5) respectively.
Now note that, multiplying and dividing by |81+wn/sn|

α the integrand of the
left hand side above can be written as

sng(λn, · , sn81+wn)

|sn|
1+α 81 =

(sn81+wn)g(λn, · , sn81+wn)

|sn81+wn|
1+α

∣∣∣∣81+
wn

sn

∣∣∣∣α81.

Then, (H2) and the fact that 81+wn/sn→81 in L∞(∂�) concludes the proof.
�

Now we prove the first main result in this paper. Roughly speaking, it states
that if there are a sequence of subcritical solutions and another of supercritical
solutions, since the solution set is connected, there are infinitely many turning
points and infinitely many resonant solutions. We prove the result for the positive
branch. The same conclusions can be attained for the connected branch of negative
solutions bifurcating from zero.
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Proof of Theorem 1.3. From Proposition 2.2(ii), consider any two sequences of
solutions of (1-1), such that (λn, un)→ (σ1, 0) and (λ′n, u′n)→ (σ1, 0) in C+ with

P(un)=

∫
∂�

un81∫
∂�
82

1
= sn and P(u′n)=

∫
∂�

u′n81∫
∂�
82

1
= s ′n.

Writing un = sn81+wn , with wn ∈ span[81]
⊥, from Proposition 2.2(i), we have

‖wn‖L∞(∂�) = O(|sn|
α). From Lemmata 2.3, and 2.4, hypotheses (1-5) and (1-7)

we get that

lim inf
n→∞

σ1− λn

‖un‖
α−1
L∞(∂�)

≥
1∫

∂�
82

1
lim inf
n→∞

∫
∂�

(sn81+wn)g(λn, · , sn81+wn)

|sn81+wn|
1+α 81+α

1

≥
1∫

∂�
82

1
lim inf
n→+∞

∫
∂�

sng(λn, · , sn81)

|sn|
1+α 81

=
1∫

∂�
82

1
lim inf
n→+∞

∫
∂�

sng(σ1, · , sn81)

|sn|
1+α 81 > 0,

and therefore λn < σ1.
Analogously, for (λ′n, u′n) we get λ′n > σ1. Hence (i) is proved.
To prove (ii), assume, by choosing subsequences if necessary, that sn> s ′n> sn+1

for all n≥0 and that 0< sn, s ′n ≤ S0 where S0 is the one from Proposition 2.2(ii). In
particular, by parts (i) and (ii) of Proposition 2.2, if (λ, u)∈C+ and P(u)= s < S0

then ‖u‖L∞(∂�) ≤ (1+C1‖G1‖Lr (∂�)|S0|
α−1)s. Taking S0 small enough we may

assume that ‖u‖L∞(∂�) ≤ 2s.
Let

(2-19) Kn = {(λ, u) ∈ C+ : P(u)= s and sn ≥ s ≥ sn+1}.

Let us see that, for each n ∈ N, Kn is a compact subset of R × C(�̄). Let
{(µk, vk)} be a sequence in Kn . Without loss of generality we may assume that
{µk} converges to µ∗. Since vk = tk81 +wk with wk = O(|tk |α) and sn ≥ tk =:
P(vk)≥sn+1, for all k, we have ‖vk‖C(∂�)≤ tk+‖wk‖C(∂�)≤C with C independent
of k. This together with Proposition 2.3 of [Arrieta et al. 2007] yields

(2-20) ‖vk‖C(�̄) ≤ C1(1+‖vk‖C(∂�))≤ C,

where, again, C is independent of k. Since the embedding Cγ (�̄)→ Cγ ′(�̄) is
compact for 0<γ ′<γ we may further assume that the sequence {vk} converges to
some u∗ ∈Cγ ′(�̄). This, hypothesis (H1) and the dominated convergence theorem
imply that {g(µk, · , vk)} converges to g(µ∗, · , u∗) in Lr (∂�). Therefore, since

(2-21)

{
−1vk + vk = 0 in �
∂vk
∂n
= µkvk + g(µk, x, vk) on ∂�,
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passing to the limit in the weak sense we have

(2-22)

{
−1u∗+ u∗ = 0 in �,
∂u∗

∂n
= µ∗u∗+ g(λ∗, x, u∗) on ∂�.

By the continuity of the projection operator we also have sn ≥ s∗ = P(u∗) =
limk→∞ P(vk)≥ sn+1. Hence (µ∗, u∗) ∈ Kn , which proves that Kn is compact.

Since sn > s ′n > sn+1 there exists (λ, u) ∈ Kn with λ > σ1. Hence, if we define

(2-23) λ∗n = sup{λ : (λ, u) ∈ Kn},

then λ∗n ≥ λ
′
n > σ1 see part (i). From the compactness of Kn there exists u∗n such

that (λ∗n, u∗n) ∈ Kn . From the definition of λ∗n if (λ, u) is a solution of (1-1) with
sn > P(un) > sn+1, then λ ≤ λ∗n which proves that (λ∗n, u∗n) is a (supercritical)
turning point.

With a completely symmetric argument, using the sets

K ′n = {(λ, u) ∈ C+ : P(u)= s and s ′n ≥ s ≥ s ′n+1}

and defining λ′∗n = inf{λ : (λ, u) ∈ K ′n}, we show the existence of u∗ such that
(λ′∗n , u′∗n ) ∈ K ′n is a (subcritical) turning point.

In order to prove the existence of resonant solutions, we now show that there
exists n0 ∈ N such that for each n ≥ n0 both sets Kn and K ′n contain resonant
solutions, that is, solutions of the form (σ1, u).

We use a reductio ad absurdum argument for the sets Kn . If this is not the
case, then there will exist a sequence of integers numbers n j → +∞ such that
Kn j does not contain any resonant solution. This implies that the compact sets
K+n j
= {(λ, u) ∈ Kn j : λ≥ σ1} can be written as

K+n j
= C+ ∩ {(λ, u) ∈ R×C(∂�) : λ > σ1, sn j > P(u) > sn j+1};

therefore K+n j
contains at least a connected component of C+. Moreover it is

nonempty since we know that there exists at least one solution (λ, u) with P(u)=
s ′n j
∈ (sn j , sn j+1) and therefore λ > σ1. The fact that we can construct a sequence

of connected components of C+ contradicts the fact that C+ is a connected near
(σ1, 0) ∈ R×C(�).

A completely symmetric argument can be applied to the sets K ′n . �

3. Two examples

3.1. Resonant solutions for the oscillatory nonlinearity (1-2). In [Arrieta et al.
2007, Theorem 8.1] it is proved that if α > 1, for any β ∈ R, and C ∈ R there is
an unbounded branch of positive solutions. Assume from now that β < 0.



88 ALFONSO CASTRO AND ROSA PARDO

Taking |C | ≤ 1 it is not difficult to see that

uk(x) := [asin(−C)+ kπ ]1/β81(x), k ≥ 0,

defines a sequence of resonant solutions to (1-1) such that uk(x)→ 0 as k→∞.

3.2. A one-dimensional example. Now we consider the one-dimensional version
of (1-1), where most computations can be made explicit.

Let {σi } denote the sequence of Steklov eigenvalues of the problem (1-3). For
N>1 the Steklov eigenvalues form an increasing sequence of real numbers, {σi }

∞

i=1
while for N = 1 there are only two Steklov eigenvalues as we made explicit below.

Observe that Equation (1-1) in the one-dimensional domain �= (0, 1) reads
−uxx + u = 0 in (0, 1),

−ux(0)= λu+ g(λ, 0, u(0)),

ux(1)= λu+ g(λ, 1, u(1)).

The general solution of the differential equation is u(x)= aex
+be−x and there-

fore the nonlinear boundary conditions provide two nonlinear equations in terms
of two constants a and b. The function u = aex

+ be−x is a solution if (λ, a, b)
satisfy (

−(1+λ) (1−λ)
(1−λ)e −(1+λ)e−1

)(
a
b

)
=

(
g(λ, 0, a+b)

g(λ, 1, ae+be−1)

)
.

In this case we only have two Steklov eigenvalues,

σ1 =
e− 1
e+ 1

< σ2 =
1
σ1
=

e+ 1
e− 1

.

Restricting the analysis to symmetric solutions us(x)= s(ex
+e1−x), with s ∈R,

and choosing g(λ, x, s) = g(s), it is easy to prove that us(x) is a solution if and
only if λ satisfies

(3-1) λ(s)= σ1−
g(s(e+ 1))

s(e+ 1)
, s > 0.

Therefore, whenever g(u)=o(u) at zero, there is a branch of solutions (λ(s), us)

converging to (σ1, 0) as s→ 0.
Now fix g(s)= sα sin(sβ) for an arbitrary α > 1, β < 0. From the definition in

(2-1) we can write

G0+ :=

∫
∂�

lim inf
s→0+

sg(s)
|s|1+α

81+α
=

∫
∂�

lim inf
s→0+

sin(sβ) 81+α
=−

∫
∂�

81+α < 0,

G0+ :=

∫
∂�

lim sup
s→0+

sg(s)
|s|1+α

81+α
=

∫
∂�

lim sup
s→0+

sin(sβ) 81+α
=

∫
∂�

81+α > 0,
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and then G0+ < 0< G0+ .
Moreover, by looking in (3-1) at the values of s ∈ R such that λ(s) = σ1 it is

easy to check that (σ1, uk) is a solution for any k ∈ Z, where

uk(x) :=
(kπ)1/β

e+ 1
(ex
+ e1−x);

that is, there is a sequence of solutions of the resonant problem converging to zero,
as shown in Figure 3.

Moreover, computing in (3-1) the local maxima and minima of λ(s) it is not
difficult to check that (λ∗k , u∗k) is a sequence of turning points converging to zero,
where

λ∗k := σ1− t (α−1)/β
k sin(tk), u∗k(x) := t 1/β

k (ex
+ e1−x)

and where tk is such that

tan (tk)=−
β

α− 1
tk, tk ∈ [−π/2+ kπ, π/2+ kπ ]

with tk→∞ and t 1/β
k → 0 as k→∞ thanks to β < 0.

Let us observe that the bifurcation from zero phenomena occurs whenever α> 1
for any β and that whenever α+β < 1 the number of oscillations grows up faster
than the number of oscillations of multiples of the eigenfunction and cannot be
controlled; compare the two parts of Figure 3.
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Figure 3. Bifurcation diagram in the case α= 1.4, for two values
of β.
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