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NORMAL ENVELOPING ALGEBRAS

ALEXANDRE N. GRISHKOV, MARINA RASSKAZOVA

AND SALVATORE SICILIANO

A full characterization is given of ordinary and restricted enveloping alge-
bras which are normal with respect to the principal involution.

1. Introduction

Let A be an algebra with involution ∗ over a field F. We recall that A is said to be
normal if xx∗= x∗x for every x ∈ A. Over the decades, normal algebras with invo-
lutions have been extensively investigated on their own; see, for example, [Beidar
et al. 1981; Bovdi et al. 1985; Bovdi 1990; 1997; Bovdi and Siciliano 2007; Brešar
and Vukman 1989; Herstein 1976; Knus et al. 1998; Lim 1977; 1979; Maxwell
1972]. Moreover, they have several applications in linear algebra and functional
analysis; see, for example, [Berberian 1959; Fuglede 1950; Maxwell 1972; Mosić
and Djordjević 2009; Putnam 1951; Yood 1974]. It is well-known that any nor-
mal algebra with involution satisfies the standard polynomial identity of degree 4
[Herstein 1976, Section 5]. Moreover, Maxwell [1972] determined the structure
of a normal simple algebra of matrices with entries in a field with involution. He
also proved that a division algebra D with involution is normal if and only if D
is either a field or a generalized quaternion algebra over its center. Furthermore, a
characterization of group algebras which are normal under the standard involution
was established by Bovdi, Gudivok, and Semirot [Bovdi et al. 1985]. Subsequently,
such a result has been extended to twisted group algebras [Bovdi 1990; 1997] and
to group algebras under a Novikov involution [Bovdi and Siciliano 2007].

On the other hand, it seems that the rather natural problems of characterizing
ordinary and restricted enveloping algebras which are normal under their canonical
involutions have not been settled yet. The present paper is just devoted to answering
these questions.

For an arbitrary Lie algebra L we denote by U (L) the universal enveloping
algebra of L . Moreover, if L is restricted with a p-map [p] over a field F of
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characteristic p > 0, then we denote by u(L) the restricted enveloping algebra
of L . We consider U (L) and u(L) with the principal involution ∗, namely, the
unique F-antiautomorphism such that x∗ = −x for every x in L; see [Bourbaki
2007, Section 2] or [Dixmier 1974, Section 2]. Note that ∗ is just the antipode of
the F-Hopf algebras U (L) or u(L).

We use the symbols Z(L) and L ′ for the center of L and the derived subalgebra
of L , respectively. If S ⊆ L , we denote by 〈S〉F the F-vector space generated by
S. Also, if L is restricted, 〈S〉p denotes the restricted subalgebra generated by S,
and we put S[p] = {x [p] | x ∈ S}. In our first main result we completely settle the
restricted case:

Theorem 1.1. Let L be a restricted Lie algebra over a field F of characteristic
p > 0. Then u(L) is normal if and only if either L is abelian or p = 2, L is
nilpotent of class 2, and one of the following conditions holds:

(i) L contains an abelian restricted ideal I of codimension 1.

(ii) dimF L/Z(L)= 3.

(iii) dimF L ′ = 1 and
(
L ′
)[2]
= 0.

(iv) L = 〈x, x1, x2, x3〉p + Z(L) with

[x1, x2] = ξ [x, x3],

[x1, x3] = µ[x, x2],

[x2, x3] = λ[x, x1],

and
λ[x, x1]

[2]
+µ[x, x2]

[2]
+ ξ [x, x3]

[2]
= 0

for some λ,µ, ξ ∈ F.

Afterwards we apply Theorem 1.1 in order to solve the ordinary case:

Theorem 1.2. Let L be a Lie algebra over an arbitrary field F. Then U (L) is
normal if and only if either L is abelian or p= 2, L is nilpotent of class 2, and one
of the following conditions holds:

(i) L contains an abelian ideal of codimension 1.

(ii) dimF L/Z(L)= 3.

2. Proofs

For any associative algebra A, we shall consider the Lie bracket on A defined by
[a, b] := ab − ba ∈ A, a, b ∈ A. The symbol Z(A) will denote the center of
A. Moreover, for a subset S of a Lie algebra L we shall denote by CL(S) the
centralizer of S in L .
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It is easy to verify that a normal algebra with involution satisfies the ∗-polyno-
mial identity [x, y] = [x∗, y∗]. The converse is also true in characteristic different
from 2, but in general it fails without such an assumption [Lim 1977]. However,
for restricted Lie algebras we have the following:

Lemma 2.1. Let L be a restricted Lie algebra over a field F of characteristic 2
such that [x, y] = [x∗, y∗] for every x, y ∈ u(L). Then L is nilpotent of class at
most 2 and u(L) is normal.

Proof. For every a, b, c ∈ L , we have

0= [ab, c] + [(ab)∗, c∗] = [[a, b], c].

Hence L is nilpotent of class at most 2.
Let (ei )i∈I be an ordered F-basis of L . Then every element u of u(L) is an F-

linear combination of elements ei1 · · · eim , where m≥0 and the indices i1< · · ·< im

are in I . As L is nilpotent of class at most 2, for every z ∈ L we have z[2] ∈ Z(L),
and then

[ei1 · · · eim , (ei1 · · · eim )
∗
] = 0.

Moreover, by hypothesis we clearly have [x, y∗] = [x∗, y] for every x, y ∈ u(L).
We conclude that [u, u∗] = 0, so that u(L) is normal. �

Lemma 2.2. Let L be a restricted Lie algebra over a field F of characteristic p> 0
such that u(L) is normal. Then either L is abelian, or p = 2 and L is nilpotent of
class 2.

Proof. As u(L) satisfies the ∗-polynomial identity [x, y] = [x∗, y∗], if p = 2,
Lemma 2.1 assures that L is nilpotent of class at most 2. Now suppose p> 2. For
every x, y ∈ L , we have

0= [x2
+ y, (x2

+ y)∗] = −4x[x, y] + 2[x, [x, y]].

Since p > 2, in view of the Poincaré–Birkhoff–Witt (PBW) theorem for restricted
Lie algebras [Strade and Farnsteiner 1988, Section 2, Theorem 5.1], the previous
relation is possible only when [x, y] = 0, so that L is abelian. This yields the
claim. �

Let L be a restricted Lie algebra over a field of characteristic 2. For every
a, b, c, d ∈ L , we put

2(a, b, c, d) := [a, b][c, d] + [a, c][b, d] + [a, d][b, c] ∈ u(L).

The following result will be extremely useful in the sequel.
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Lemma 2.3. Let L be a restricted Lie algebra over a field F of characteristic
2, and suppose L to be nilpotent of class 2. Then u(L) is normal if and only if
2(a, b, c, d)= 0 for all a, b, c, d ∈ L.

Proof. If u(L) is normal, for all a, b, c, d ∈ L we have

2(a, b, c, d)= [a, bcd] + [a, dcb] = [a, bcd] + [a, (bcd)∗] = 0.

Conversely, assume that 2(a, b, c, d)= 0 for all a, b, c, d ∈ L . Let (e j ) j∈J be an
ordered F-basis of L containing an F-basis of Z(L). Since u(L) is a free u(Z(L))-
module, there exists a unique homomorphism of u(Z(L))-modules

φ : u(L)→ u(L),

which vanishes on 1 and L , and such that for every n > 1 and j1 < . . . < jn , one
has

φ(e j1 · · · e jn )=
∑

1≤h<k≤n

e j1 · · · ê jh · · · ê jk · · · e jn [e jh , e jk ],

where the symbol êih indicates that eih is to be omitted.
We claim that

Im(φ)⊆ Z(u(L)).

For this purpose it is enough to prove that [x, φ(e j1 · · · e jn )] = 0 for every x ∈ L ,
n > 1, and j1, . . . , jn ∈ J with j1 < . . . < jn . Indeed, by the hypothesis we have

[x, φ(e j1 · · · e jn )] =

[
x,

∑
1≤h<k≤n

e j1 · · · ê jh · · · ê jk · · · e jn [e jh , e jk ]

]

=

∑
1≤h<k≤n

∑
1≤s≤n
s 6=h,k

e j1 · · · ê jh · · · ê js · · · ê jk · · · e jn [e jh , e jk ][x, e js ]

=

∑
1≤h<k<s≤n

e j1 · · · ê jh · · · ê jk · · · ê js · · · e jn
(
[e jh , eik ][x, e js ]

+ [e jh , eis ][x, e jk ] + [e jk , eis ][x, e jh ]
)
= 0,

yielding the claim.
Now we shall prove that

a = a∗+φ(a)

for every a ∈ u(L). For this purpose it is enough to show that for all n ≥ 0 and
j1, . . . , jn ∈ J with j1 < . . . < jn , one has

e j1 · · · e jn = e jn · · · e j1 +φ(e j1 · · · e jn ).
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Let us proceed by induction on n. By the proved claim and the inductive assump-
tion, we have, for n > 0,

e j1 · · · e jn

= (e jn−1 · · · e j1)e jn +φ(e j1 · · · e jn−1)e jn

= e jn e jn−1 · · · e j1 + [e jn−1 · · · e j1, e jn ] +φ(e j1 · · · e jn−1)e jn

= e jn e jn−1 · · · e j1 + [e j1 · · · e jn−1, e jn ] + [φ(e j1 · · · e jn−1), e jn ] +φ(e j1 · · · e jn−1)e jn

= e jn · · · e j1 +φ(e j1 · · · e jn ),

completing the inductive step.
Finally, by applying the properties proved above, for all a, b ∈ u(L), we have

[a, b] = [a∗+φ(a), b∗+φ(b)] = [a∗, b∗].

Hence u(L) is normal by Lemma 2.1, as required. �

Remark 2.4. Since 2 is an alternating F-multilinear function, by Lemma 2.3 it
is clear that in order to conclude that u(L) is normal, it suffices to check that
2(a, b, c, d) = 0 for all pairwise distinct noncentral elements a, b, c, d in a fixed
F-basis of L .

We are now in position to prove Theorem 1.1:

Proof of Theorem 1.1. Assume that u(L) is normal and L is not abelian. Then, by
Lemma 2.3, we know that F has characteristic 2 and L is nilpotent of class 2. Let
us proceed with a case-by-case analysis.
Case 1. max{dimF[L , x] | x ∈ L}=1. Let x1 and y1 be two noncommuting element
of L and put z1 := [x1, y1]. By assumption we have [L , x1] = [L , y1] = F z1 and
L = F y1 ⊕ CL(x1). Now, if CL(x1) is abelian, L satisfies alternative (i) of the
statement. Suppose then that there exist x2, y2∈CL(x1) such that [x2, y2] := z2 6=0.
From Lemma 2.3 it follows that

(1) z1z2 =2(x1, y1, x2, y2)= 0.

Therefore the PBW theorem for restricted Lie algebras entails that z1 = λz2 for
some λ ∈ F, which shows that L ′ = F z1. Also, as λ 6= 0, by (1), we have z[2]1 = 0.
Thus

(
L ′
)[2]
= 0, and alternative (iii) of the statement holds.

Case 2. max{dimF[L , x] | x ∈ L} = 2. Let x, x1, x2 ∈ L such that z1 := [x, x1] and
z2 := [x, x2] are F-linearly independent. We clearly have L = 〈x1, x2〉F⊕CL(x).
Furthermore, by Lemma 2.3, we have, for all y1, y2 ∈ CL(x),

0=2(x, x1, y1, y2)= z1[y1, y2] and 0=2(x, x2, y1, y2)= z2[y1, y2].
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Since z1 and z2 are F-linearly independent, the PBW theorem forces [y1, y2] = 0.
Hence CL(x) is abelian. Again by Lemma 2.3, for every y ∈ CL(x), we have

(2) 0=2(x, x1, x2, y)= z1[x2, y] + z2[x1, y].

At this stage, a straightforward application of the PBW theorem yields

[x1, y] = λ11(y)z1+ λ12(y)z2 and [x2, y] = λ21(y)z1+ λ22(y)z2

for some λ11(y), λ12(y), λ21(y), λ22(y) ∈ F. From (2) it follows that

(λ11(y)+ λ22(y))z1z2 = λ21(y)z2
1+ λ12(y)z2

2 ∈ L ,

and, again by the PBW theorem, the preceding relation is possible only when
λ11(y) = λ22(y) := λ(y). With the notation just introduced, we consider the fol-
lowing subcases.

Subcase 2.1. For every u ∈CL(x), one has λ12(u)=λ21(u)=0. Let y ∈CL(x) and
put ȳ :=λ(y)x+y. Then we have [ȳ, x]=[ȳ, x1]=[ȳ, x2]=0. As CL(x) is abelian,
it follows that ȳ ∈ Z(L) and then CL(x) = F x ⊕ Z(L). Thus dimF L/Z(L) = 3,
and alternative (ii) of the statement holds.

Subcase 2.2. There exists u ∈ CL(x) such that λ12(u) 6= 0 and λ21(u) = 0. By
replacing u by λ−1

12 (u)u, we can suppose that λ12(u)= 1. Put y := λ(u)x+u. Then
we have

[x1, y] = z2 and [x2, y] = 0.

Let y1 ∈ CL(x). Since CL(x) is abelian, by Lemma 2.3 we have

(3) 0=2(x1, x2, y, y1)= z2[x2, y1] = z2(λ21(y1)z1+ λ(y1)z2).

Consequently, as z1 and z2 are F-linearly independent, the PBW theorem forces
λ21(y1)=0. Also, from relation (3) (applied for y1= x), we infer that z[2]2 =0. Now
put ȳ1 := λ(y1)x+λ12(y1)y+ y1. Then ȳ1 ∈ Z(L), and CL(x)= F x⊕F y⊕ Z(L).
We conclude that L = 〈x, x1, x2, y〉p + Z(L), and it is clear that L is a restricted
Lie algebra satisfying alternative (iv) of the statement.

Subcase 2.3. There exists u ∈ CL(x) such that λ12(u)= 0 and λ21(u) 6= 0. This is
analogous to Subcase 2.2.

Subcase 2.4. There exists u ∈ CL(x) such that λ12(u) 6= 0 and λ21(u) 6= 0. By
replacing u by λ−1

12 (u)u, we can suppose that λ12(u)= 1. Put y := λ(u)x+u. Then
we have

[x1, y] = z2 and [x2, y] = λ21(u)z1.

Moreover, Lemma 2.3 yields

0=2(x, x1, x2, y)= λ21(u)z2
1+ z2

2.
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Let y1 ∈CL(x) and put ȳ1 := λ(y1)x+ y1. As CL(x) is abelian, Lemma 2.3 yields

0=2(x1, x2, y, ȳ1)= z2[x2, ȳ1]+λ21(u)z1[x1, ȳ1]=(λ21(ȳ1)+λ21(u)λ12(ȳ1))z1z2,

so that λ21(ȳ1)=λ21(u)λ12(ȳ1). Put ŷ1 := ȳ1+λ12(ȳ1)y. Then we have [x1, ŷ1]=0.
Now, if for some y1 ∈CL(x) one has [x2, ŷ1] = λ21(ŷ1)z1 6= 0 then we can replace
y by ŷ1 and conclude by Subcase 2.3 that alternative (iv) holds. On the other hand,
if [x2, ŷ1] = 0 for every y1 ∈CL(x) then L = 〈x, x1, x2, y〉p+ Z(L), and it is clear
that, also in this case, L is a restricted Lie algebra satisfying alternative (iv).

Case 3. max{dimF[L , x] | x ∈ L} = 3. Let x, u1, u2, u3 ∈ L such that z1 := [x, u1],
z2 := [x, u2], and z3 := [x, u3] are F-linearly independent. We clearly have L =
〈u1, u2, u3〉F⊕CL(x), and one can show that CL(x) is abelian in the same way as
in Case 2. Moreover, in view of Lemma 2.3, we have

(4) 0=2(x, u1, u2, u3)= z1[u2, u3] + z2[u1, u3] + z3[u1, u2].

Thus, for every 1≤ i < j ≤ 3, by the PBW theorem, we see that

(5) [ui , u j ] =

3∑
k=1

α
(k)
i j zk,

where α(k)i j ∈F, k=1, 2, 3. By (4) and (5), another application of the PBW theorem
yields

α
(1)
12 = α

(3)
23 , α

(2)
12 = α

(3)
13 , α

(1)
13 = α

(2)
23 .

Put
x1 := u1+α

(2)
12 x, x2 := u2+α

(1)
12 x, x3 := u3+α

(1)
13 x,

and, moreover, α(1)23 := λ, α(2)13 := µ, and α(3)12 := ξ . Then we have

[x1, x2] = ξ z3, [x1, x3] = µz2, [x2, x3] = λz1.

From Lemma 2.3 it follows that

λz[2]1 +µz[2]2 + ξ z[2]3 =2(x, x1, x2, x3)= 0.

Now, let y ∈ CL(x). By Lemma 2.3 we obtain

2(x, x1, x2, y)= z1[x2, y] + z2[x1, y] = 0,

2(x, x1, x3, y)= z1[x3, y] + z3[x1, y] = 0,

2(x, x2, x3, y)= z2[x3, y] + z3[x2, y] = 0.

Consequently, by the PBW theorem there exists β ∈ F such that [xi , y] = βzi for
every i = 1, 2, 3. Put ȳ := y+ βx . Then ȳ ∈ Z(L) and CL(x) = F x ⊕ Z(L). We
conclude that L = 〈x, x1, x2, x3〉p + Z(L), and alternative (iv) is satisfied.
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Case 4. max{dimF[L , x] | x ∈ L}> 3. Let S := (ui )i∈I be a subset of L such that
the elements zi := [x, ui ], i ∈ I , are F-linearly independent, and [S, x] = [L , x].
We clearly have L = 〈S〉F ⊕ CL(x), and one can show that CL(x) is abelian by
proceeding in a similar way as in Case 2. Let i, j ∈ I , i 6= j . In view of Lemma 2.3,
for every k ∈ I\{i, j}, we have

0=2(x, ui , u j , uk)= zi [u j , uk] + z j [ui , uk] + zk[ui , u j ].

At this stage, by arguing as in the first case of Case 3, we have that [ui , u j ] ∈ F zk .
As |I |> 3, we conclude that [ui , u j ] = 0. Finally, let y ∈ CL(x). By Lemma 2.3,
for all pairwise distinct elements i , j , k of I , we have

2(x, ui , u j , y)= zi [u j , y] + z j [ui , y] = 0,

2(x, ui , uk, y)= zi [xk, y] + zk[ui , y] = 0.

Therefore, an application of the PBW theorem shows that there exists β ∈ F such
that [ui , y] = βzi for every i ∈ I . Put ȳ := y + βx . Then ȳ ∈ Z(L), so that
CL(x) = F x ⊕ Z(L). Therefore, as L [2] ⊆ Z(L), we conclude that Z(L)+ 〈S〉F
is an abelian restricted ideal of codimension 1 in L , and the proof of the necessity
part is finished.

Now let us prove sufficiency. The claim is trivial if L is abelian. Then assume
that the ground field has characteristic 2 and L is nilpotent of class 2. If L has an
abelian restricted ideal of codimension 1, it is clear that 2(a, b, c, d) = 0 for any
a, b, c, d ∈ L , and so, by Lemma 2.3, u(L) is normal. Also, if dimF L/Z(L) = 3
then u(L) is normal by Lemma 2.3 and Remark 2.4. Furthermore, the claim is
clear whenever L ′ = F z for some 0 6= z ∈ L with z[2] = 0. Finally suppose
that alternative (iv) holds. We can assume that x , x1, x2, and x3 are F-linearly
independent (otherwise alternative (i) or (ii) holds). Extend the set {x, x1, x2, x3}

by central elements in order to form an F-basis of L . We have

2(x, x1, x2, x3)= [x, x1][x2, x3] + [x, x2][x1, x3] + [x, x3][x1, x2]

= λ[x, x1]
[2]
+µ[x, x2]

[2]
+ ξ [x, x3]

[2]
= 0.

From Lemma 2.3 and Remark 2.4 it follows that u(L) is normal. �

Finally, we deal with ordinary universal enveloping algebras of arbitrary Lie
algebras. Indeed, we shall prove Theorem 1.2 as a consequence of Theorem 1.1.

Proof of Theorem 1.2. Suppose first that ground field F has characteristic zero.
If L is abelian then U (L) is obviously normal. On the other hand, if U (L) is
normal then it satisfies the standard polynomial identity of degree 4 [Herstein 1976,
Section 5]. Therefore, in view of a theorem of Latysěv [Bahturin 1987, Section 6.7,
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Theorem 25], L is necessarily abelian. Now suppose p > 0. Put

L̂ :=
∑
k≥0

L pk
⊆U (L),

where L pk
is the F-vector space spanned by the set {l pk

| l ∈ L}. Then L̂ is a
restricted Lie algebra with h[p] = h p for all h ∈ L̂ . Moreover, by [Strade 2004,
Section 1, Corollary 1.1.4], we have U (L)= u(L̂), and then Theorem 1.1 applies.
Suppose first that U (L) is normal. If p > 2, Theorem 1.1 forces L̂ (and so L) to
be abelian. Now assume that p = 2 and L is not abelian. Then L̂ satisfies one of
the alternatives (i)–(iv) in the statement of Theorem 1.1. If L̂ contains an abelian
restricted ideal of codimension 1 then L contains an abelian ideal of codimension 1.
Likewise, if dimF L̂/Z(L̂)= 3, dimF L/Z(L)= 3. Observe that, as u(L̂)=U (L)
is a domain, alternative (iii) in the statement of Theorem 1.1 cannot occur. Finally,
suppose that L̂ = 〈x, x1, x2, x3〉p + Z(L̂), where x , x1, x2, and x3 are elements of
L with [x1, x2] = ξ [x, x3], [x1, x3] = µ[x, x2], [x2, x3] = λ[x, x1], and

λ[x, x1]
[2]
+µ[x, x2]

[2]
+ ξ [x, x3]

[2]
= 0

for some λ,µ, ξ ∈ F. Now, if dimF L ′ = 3, the PBW theorem for ordinary en-
veloping algebras forces λ = µ = ξ = 0. Hence L contains an abelian ideal of
codimension 1. If dimF L ′ = 2, we can suppose without loss of generality that
[x, x1] and [x, x2] are F-linearly independent and [x, x3] = α[x, x1]+β[x, x2] for
suitable α, β ∈ F. Consequently, we have

α2ξ [x, x1]
2
+β2ξ [x, x2]

2
= ξ [x, x3]

2
= λ[x, x1]

2
+µ[x, x2]

2,

and the PBW theorem gets λ= α2ξ and µ= β2ξ . Put

y := αβξ x +αx1+βx2+ x3.

Then y ∈ Z(L̂) and L̂ = 〈x, x1, x2, y〉p + Z(L̂). It follows that dimF L̂/Z(L̂)= 3
and then dimF L/Z(L) = 3 as well. Finally, if dimF L ′ = 1 then it is easy to see
that L contains an abelian ideal of codimension 1, and the necessity part is proved.
Sufficiency easily follows from Theorem 1.1 and the fact that U (L)= u(L̂). �
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