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In this paper we deal with sequences of polynomials orthogonal with respect
to the discrete Sobolev inner product

(f, 8)s= fo w(x)f(x)g(x)dx +Mf(&)gE) +Nf'(§)g' &),

where @ is a weight function, £ < 0, and M, N > 0. The location of the
zeros of discrete Sobolev orthogonal polynomials is given in terms of the ze-
ros of standard polynomials orthogonal with respect to the weight function
. In particular, for @ (x) = x*e™ we obtain the asymptotics for discrete
Laguerre-Sobolev orthogonal polynomials.

1. Introduction

Polynomials orthogonal with respect to an inner product

o)) (f.8) = /Ew(X)f(X)g(X) dx+Mf (&g +Nf'€)g &),

where £ is a real number and d  is a positive Borel measure supported on an infinite
subset E of the real line have been considered by several authors (see, for instance,
[Alfaro et al. 1992; Lépez et al. 1995; Marcellan and Ronveaux 1990; Marcellan
and Van Assche 1993] and the references therein). They are known in the literature
as Sobolev-type or discrete Sobolev orthogonal polynomials. Special attention
has been paid to their algebraic and analytic properties of these polynomials, in
particular, the distribution of their zeros taking into account the location of the
point & with respect to the set E.

When E is the interval [0, +00) and & = 0, Meijer [1993a] analyzed some
analytic properties of the zeros of the so called discrete Sobolev orthogonal poly-
nomials (1). Some results of [Meijer 1993a] are direct generalizations of the re-
sults of [Koekoek and Meijer 1993], where the weight function is the Laguerre
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weight w(x) = x*e™*. Koekoek and Meijer established properties of the discrete
Laguerre—Sobolev polynomials such as their representation as a hypergeometric
series, an holonomic second order linear differential equation associated with them,
properties of the zeros, and a higher-order recurrence relation that such polynomials
satisfy. The asymptotic properties of these discrete Laguerre—Sobolev polynomials
have been studied in [Alvarez—Nodarse and Moreno-Balcazar 2004; Marcellan and
Moreno-Balcizar 2006], while the analysis of convergence of the Fourier expan-
sions in terms of such polynomials was done in [Fejzullahu and Marcellan 2009].

In this paper we consider the discrete Sobolev polynomials {S’n}nzo orthogonal
with respect to (1) where E = [0, +00) and £ < 0. We show that these polynomials
can be expressed as

Sp(x) = Po(x) + A1 (x —E) P (0) + A, 0 —6)2 P (),

where {13,,},,20 and {ﬁ,[k]}nzo, k € N, are the sequences of monic polynomials or-
thogonal with respect to the weight functions w(-) and (- —§ Ya (), respectively.
Moreover, the behavior of the coefficients A, ; and A, > is studied in more detail.
In particular, when w is the Laguerre weight, we obtain some asymptotic properties
for the sequence of discrete Laguerre—Sobolev orthogonal polynomials.

The structure of the manuscript is as follows. In Section 2 we give some basic
background concerning polynomial perturbations of a measure as well as inter-
lacing properties for the zeros of the corresponding orthogonal polynomials. We
point our that the results presented therein are of independent interest in terms of
the core of our contribution. Indeed, they constitute an alternative approach in
the subject. In Section 3, a representation of monic polynomials orthogonal with
respect to the inner product (1) is given in terms of polynomial orthogonal with
respect to polynomial perturbations of the weight function. Some results about
their zeros are deduced. In Section 4 we focus our attention on the asymptotics
of discrete Laguerre—Sobolev orthogonal polynomials. More precisely, we obtain
outer relative asymptotics, a Mehler—Heine formula and the Plancherel-Rotach
outer asymptotics for such orthogonal polynomials.

Throughout this paper positive constants are denoted by c, ¢y, .. ., and they may
vary at every occurrence. The notation u,, = v, means that the sequence {u,/v,},
converges to 1. We will denote by k(rr,,) the leading coefficient of any polynomial
7y and 72, (x) = (k(72,)) ™" 70 ().

2. Auxiliary results

Let w denote a weight function on (0, 00), i.e., w(x) > 0 and all moments

o0
cn=/ ox)x"dx, n=0,1,...
0
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exist. Let {Isn}nzo denote the sequence of monic polynomials orthogonal (SMOP,
in short) with respect to the standard inner product

(f. ) = /O () (g () dax.

In particular, from the moments we get an explicit expression of the SMOP.
Indeed, we get

Py(x)=1
and
co €1 € ... Cy
c1 € €3 ... Cptl
A 1 Cr €3 C4 ... Cpyd
@) Po(x) = ~ Lozl
Anfl
Ch—1 Cn Cpy1 --. C2n—1
1 x x2 x"
where
cp C1 C2 ... Cp—1
¢y C €3 ... Cp
Ap1=|c2 ¢3 ¢4 ... Cog1|, n=1,
Chn—1 Cn Cp41 .. C2p—2

are the Gram determinants.
The n-th reproducing kernel for w is

n

P (x)P,
Kn(x,y)zz e (X) k(y).

k=0 ”Pk”czg

Here, || 13,, ||¢20 = 13,1, 13,,). Because of the Christoffel-Darboux formula, it may also
be expressed as

1 13n+1(x)ﬁn(y) - ﬁn(x)ﬁnJrl(Y)

Kn(X, y) = ~
[P Y
The confluent formula reads as
i b 2
(Pe(x)) 14 5 50\ B
3) Kix,x)=)_ A = pp g Crn B = B P (0)
k=0 Kl nilw

In the same way we can describe the SMOP {13,["]}”20, orthogonal with respect
to the inner product

(f> &)k =/O (x — &) w(x) f(x)g(x) dx,
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where £ < 0. For n > 1, they are given by the determinant (2) where c; is replaced

by d¥, k € N, where

n+1

o0
4) dt = / x—&ox)x"dx =d" | —d*', n=0,1,...,
0
and ¢, = d,? . In the sequel, we will set
A 00 A 2
B2, = / (x = £ () (B)’ dx.
0

Proposition 1. Let D;’jq = det[al{‘ lo<i,j<n—1, where al{‘. =d* .,k eN. Then

J J i)
(5) Df_ = (=1)"Di P,
with DY_| = A,_y.
Proof. Forn>1and k e N,

dytart L ak!
R

Sl—1] n+1
k=1 gk—1 k—1
n=l \d,~, dy7" ... dy,

1 x ... x"

with P, = Pl%1. The determinant in (6) becomes [Szeg6 1975, Formula (2.2.9)]

di7'—adi x5 —af T x L d T —db e
ﬁ[kfl](x) — (_l)n dg_l —df_lx déc_l —dé‘_lx ce dr]:;% —dr]f_lx
n k—1
k= . . .
_ k=1 k-1 - k—1 k—1
drlf l_dn—lx dyyy _dr]f o dyy_y =y, pX
Now, by using (4), (5) follows. O

Next we will compute some integrals involving the polynomials P[],

o0
Proposition 2. (i) The integral / (x — é)k’lw(x)Pn[k] (x) dx is given by
0

12,12 .
. . ifk =1,
IPEYI0 ] B
BTN _ pli—1
(3 (—nk=t PN

[T

= A—“ﬁH2 ifk>2.
B e

A1)
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(i1) The integral / (x — é)k_za)(x)ls,gk] (x) dx is given by
0

plk—2] / plk—2]12
(Poy (x))x:g”Pn[ J”a),k—Z
PN B )

(Pur1(0))_ I Ball?,

WY ifk=2,
PP ®)
= 1 k ﬁ[k—Z] / ﬁ[i_]] A
(Ak)—l( - k(i))x:g [T=h =55 © sz ks,
PN PP g) BI-Te)

Proof. (1) Using (4) recursively as well as properties of determinants, we have

dk dkoako.. dk
00 dedkodkoLdk
D, / G- oM@y de=| . . . ,
’ dflfcfl dr]; drlfﬂ dgnfl
dit dft dbt L k!

k=1 gk—1 gk—1 k-1
O
k=1 k=1 gk—1 k—1
A @t gt ak]
k=1 gk—1 k-1 k-1
dn dn+1 dn+2 d2n
dyitaytdasTt L ak!
=(-1)"Dy"".
On the other hand,
Alk—1112 Oo k-1 A1k Dy
BRI, = / (= £ (o B () dx = 21
0 anl

and by using (5) we get
(=" D P2,
Dk

n—1

o0
@[ e em e dr =
0
B ||ﬁr£k_l]||i,k71
)
On the other hand, we have from [Szegd 1975, Theorem 2.5]

. . pk-1lgy
_ plk—1] n+l1 -
(8) x—&PHx) =P ) - ﬁrE’j‘—Ws)P’[k Hx).
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Therefore,
[k 1]
”ﬁ[k]HZ == I’l+l (s) ” A[k—l]”2
C R e

Using this relation recursively we obtain

. ,E;]”@)

©) 1PN, = (- 1>"1‘[ ! Pl k=2
(é)
Combining (7) and (9), our statement follows.
(i1)) We have
k=2 k=2 k=2 k=2
d(l)c—Z d}c—z d%—z d’itlz
i~ dy " dy™" ... d5

10 (B w) =

:k',_
I\)

k2 k2 k2 k—2
A2 k2 gt g

0 1 2x ... nx"1

Now, adding to the last column the n-th and (n — 1)-th columns multiplied by
—2x and x?2, respectively, and repeating this operation for each of the preceding
columns, we obtain

(11 (A% )

dy™* d{? ds P —2xd{ T PxdiTE L di—2xdf R 4x2dl ]
| d{“z d§*2 d§’2—2xd§’2+x2df’2 s di - 2xd"+1+x2d};—2

k=2 k=2 k-2 k— 2 jk—2 k—2 k— 2 2 k—2
dt dn+1 A" oxd 2 pxd L dk Y —oxdl T 4xtds

0 1 0 0
dy 2 =2xdy T x2dy T dy P =2xds PHx2dy T L di s —2xd) +x2dE?
dy P =2xdy P 4x2d\ P dy T =2xdy U HxPdy L dy 3 —2xdy S +xld) ]

1 3 2 1 4 3 2 n+3 n+1
_Dﬁ72 k—2 k'—2 2k2 k—2 k—2 2k72“. k=2 k'—2 2 gk—2
d, i —2xd, " +x°d, "y d,5— 2xdn+l+x d, dy, [ —2xdy, “+x7dy, 7
dy dy df=2.
On the other hand,
S O
& d b

Dﬁlf x =20 PH(x)dy =] . .
° d_, dbo.dk

n n

k=2 k-2 —
dy~> dy™" ... df7?
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and by using (5), (9), and (11) we get

/ oo(x — 62w (x) PM (x) dx
0

DIP(A W) (BT @) IR
DL A e A 21(5) AR
—_1)k(plk-2 k=2 pli-1] R

_ OV ). g Bl TATS 0

() Al (2 Wt ll Sl ()

Denote by xr[kn], r=1,2,...,n, the zeros of }3,1["] (x) in increasing order.

Proposition 3. (i) The zeros of P[k] (x) interlace with both the zeros of P[k 1 (x)
and ﬁ,{k_l](x), Le.,

xr[f‘n_l] < x[k] < xy_ill,]ﬂr], r=1,2,...,n.
i) Between two consecutive zeros o plk- 2], k > 2, there is exactly one zero o
n+1 Y
P[k]
s
(i) sgn BEAGH ) = (1 = —sgn AP ) forr=1,2,. ~1

Proof. (i) Here we will use the same argument as in [Chihara 1978, page 65] (see
also [Bracciali et al. 2002, Lemma 1]). It is well known that the zeros of P[k 1
interlace with the zeros of P¥~11, je.,

o <alll <al ) <l <<l <l

From (5) P [k~ 1](.s,%)/P[" 1](5) < 0 and taking (8) into account we have

sgn Pt = sgn BIFU G = (" for r=1,2, . 0+ 1,

sgn P ety = sgn PR (e lh =ty = (— "= for r=1,2,...,n

Thus, there exist zeros x*], r =2,3, ... n, of ﬁ,{k] (x) satisfying

r,n’

[k 1] [k] [k—1] _
Xp o <Xpp <X i r=1,2,...,n.

(i1) By using (8) and the recurrence relation we obtain

(x —©)2PM () = (1 px +do) P () + s P2 ().

Since P[k 2 (§) # 0 we have d3 , # 0. Now, the rest of the proof can be done in a
similar way as in [Meijer 1993a, Lemma 6.1]; see also [Meijer 1993b, Lemma 4.1].
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(iii) From (ii) we have x,[f‘n_z] < xr[ﬁ}_l < xr”jr 12] forr =1,2,...,n—1. Therefore,
- X _
sgn PGy = (1)
Again, according to (ii), xr[]‘_Jq2,]1 ) < x[k] < xr[kn+22] forr=1,2,...,n—2,and

[k+2] [k]
Xp_op2 <Xp_{n_1- Therefore,

[k+2]( [k] 1) _( l)n r—1 and sgnP[k+2](x[k] )= 1.

sgn P n—1,n—1
As a conclusion,

sgn PGy = —sen PGy =12, 01 O

r,n—1 r,n—

3. Discrete Sobolev orthogonal polynomials

Connection formula. We consider the inner product

12 (f g)s=/0 o(x) f(x)g(x)dx +Mf(&)g€) +Nf'()g' &),

where £ <0, and M, N > 0. Let {3,,},,20 denote the SMOP with respect to the
discrete Sobolev inner product (12)).

Theorem 1. Let M > 0 and N > 0. There are real constants A, 1 and A, 2 such

that
$p(x) = By (x) + At (x —6) PP (1) + A, 200 — )PP, (0),
where
A = N ©PI®) = M€ P(6)
U Na(E)aE) — NI, € PP &)
MNP, (£)P? () = NI ,(6) P, ©)
n2 —
La(E).,(8) = NI, (6) PP (6)
P.(8)
L) = ——22
&)= €8
PP &) P (e)
La(®) == ‘f” l[i] li] 12,212,
P.a(6) P ()P (6) PP (8)
ﬁn_ 13[1] P[2]
Ly (&) = — ORLEELE 5 2

P& P (&) PP (6) PP (6)
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Proof. We will prove that
(Sp, (- —&)K)s=0 for k=0,1,...,n—1.
For k> 2 and n > k,
(Sp, (- =85
OO ~
=/ (x) S, (x)(x — &)* dx
0
o0 n o0 n
= / W (x) By (x)(x — &)  dx + Ap / (x — )20 (x) PP (x)(x — ) dx
0 0
o0
+Aua / (x —£)*o(x) P (x) (x — £) 2 dx
0
=0,
Now consider kK =0 and n > 1. We have
o0

(S, I)s =/ @ ()8, (x) dx + M S, (£)
0

:An,1/Oo(x—s)w(x>P[2]1(x>dx+Anzf (x — )20 (x) P, (x) dx
0

+M P, (8).
On the other hand, by using Proposition 2(i),
00 ISn
13 1, = [ @O b wdx = ST N
0 n—l(E)Pn,l(f)

and taking derivatives in (8) and then substituting x = § we get

(14) P ® = (P Nw), B© O (g )iz
" = RS

Combining (3), (13), and (14), we get

P(8)

) == €5

Using Proposition 2(ii),

(B2 ) B2
P2 &) PP (&)

(15) L&) = / (x —6)2wx)PY (x) dx =

_ A ®RLOCFL W), 1802l

P& P (6) PP (6) PP (£)
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Therefore,

A

(Sps 1)s = An 1 T1n(€) + An2 o n(§) + M P, (5).

In the same way, for k =1 and n > 2, we have

(Su, (- —E))s =/0 @ (x) S8, (x)(x — &) dx + NS, (&)

= Apal3,(€) + NA, PP (6) + NP (#),

where
00 . _ B,
Ly (8) = / (x = o) P, (x) dx = —5=
0 Pn (5)
PP @) P @) Bl

= T = ~ n—2 .

P2 P, & P &) PP &) ?
Finally, using the expressions of A, ; and A, 2, our statement follows. (]

Next, we will study the behavior of the coefficients A, ; and A, 5.

Proposition 4.

() Lip(E)V (&) = NI, (€) PP () = =1, (&) PP (E)(N + . B,), where

3 p (21
Ocanm in® gy B ASEO _ha®) 1 n
PP (&) g~ PRl La® B &

(i) NIo,(&)PL(E) — M3, () Pu(§) = Ly (E) PL(E)(N + MB,yy), where

ﬁ<_P,:(§)_ 1 n

co P v &

i) MNPA@ B ) = NI P&) = NE@ B2 6 (M +2).
n

Proof. (1) From the Christoffel-Darboux formula for polynomials { f’,[Z]}nzo we

have

P[2] P[Z] n P[2]
16 ey AOH0 [21(x) G-9PPm
im0 1P ”w,l =0 ||1D 12

1

=P, (P2 0 BP ) — BP0 B ().
n ,2

n+1
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If we multiply (16) by (y — &)w(y) and integrate over (0, 0o), evaluation at x = &
yields

S B®)

=) s

1A / =& oM PP () dy
k=0

= g A @ © = PO N0120)

Since
o
/ =6 20PP(y)dy=0 fork=1,2,....n
0
and f’éz] = 1, the left-hand side is negative. Therefore,
B @11 ) = PPUE 1 42(8) <0

From (5) we have

sgn P17 (&) = (="' and  sgn PP(E) = (D).
Thus, P[z]1 (&) P121(£) is negative and, as a consequence,

I n2(8) 11,n+1(§) .
,Eih@) PE)

Using this relation recursively, we get

I () 1
0< —
PR

From (16)

P[Z] 1 )
0< Z [f)) i (B @PPE - P& P ).
BRI, A2,

Since P17, (&) P?!(£) is negative this yields

Pia® _ PP
PP  PPe
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Using this relation recursively, we obtain

PL® _B® _ 4
P”ﬂ(é) PP 4§

Let 0 < x{?) <xP) <... < x[2] denote the zeros of P[?!. Then
2
P& 1 1 1

TP T TR T T S T
Statements (ii) and (iii) can be proved in a similar way as (i). U
Proposition 5. Let M, N > 0 and not both zero. Then
sgnA, 1 =—1 and sgnA,,=—sgnN.

Proof. From (5) and Proposition 4

sgnA 1 = —S8gn P(S) =S n(_ﬁr:(g))sn ﬁ(%‘) -1
, A[Z] (s) P.(£) [2] (%_)
In a similar way,
sgnA,2=—sgnN sgn Fa®)
2,n

P> (5)) P, <s>Pn @) P ) PP ()PP ()
AW(&) PP )P (&)
=—sgnN. U

=sgn N sgn(

The zeros. We now analyze the zeros of the polynomials S,. The techniques are
the same as those used by Meijer [1993a; 1993b].

Theorem 2. The discrete Sobolev orthogonal polynomial S, has n real simple
zeros and at most one of them is outside of [, 00).

Proof. Since for N =0, S, is a standard orthogonal polynomial, in the sequel we
will consider the cases when N > 0 and M > 0. Let vi < vp < --- < v be the
zeros of S, (x) on (£, co) with odd multiplicity. Let us introduce the polynomial

d(x)=x—v)(x—v2) - (x — ).

Notice that ¢ (&) and ¢'(&) have opposite signs and ¢(x)§n (x) does not change
sign on [£, 00). If degp < n — 2, then

= (¢, Sp)s = fo @ (X)$ (x) S, (x) dx + Mp(€)S,(§) + N/ (€) S, (&)
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and
0=((- —&)p, Su)s =/0 () (x —E)p(x) S, (x) dx + N (£)S) ().

This means that ¢’ (& )S’,; (&) and ¢ (& )S,/l (&) have the same sign, and therefore ¢’ (&)
and ¢ (£) have the same sign. This yields a contradiction.
As a conclusion, deg ¢ = n — 1 or deg ¢ = n, which proves our statement. []
Next, we prove that the zeros of S‘n (x) interlace with the zeros of 1352_]1 (x) if
S’n (x) has a zero outside [, 0o). Notice that, by Theorem 1, S’n (&) £0.

Theorem 3. Denote by v,,,r =1, 2 ., 1, the zeros of S’n (x) in increasing order.
Suppose that vy ,, < &. Then 2§ —xl w1 < Vi <& and

(2]

(2]
E<m, < X < <Vnn <X,y .1

Proof. From Theorem 1 we have

$u(xin ) = Pax i )+ Ana =8B 000 ) r=12, a1

r,n—1 r,n—1 r,n—1

Then from Proposition 3(iii) and Proposition 5 we get
sen S, (2 =(=D"", r=12,...,0-1,
On the other hand, from (5) and Theorem 1,
sgn Sn@) =sgn P (§) = (="

Therefore, every interval (&, xl ._1) and (xrlznJ 1’ r[ﬂl g forr=1,....,n-2,
contains an odd number of zeros of S (x). Since S has n real zeros and at most

one of them is outside of (&, co), then
(2]

(2]
E<m, < X < <Vnn <X,y 1

Now, we will prove that 2& — x1[2,]1 | <via <§&. Let

Sp(x) = (x — Vi) (X — Vo) -+ (X = V)

By Theorem 1 and Proposition 4,

&  Pu(8)(M + [y
§1&) = BlE) + Apy P25y = P ?j;a ﬁ“ [¥n)
Therefore,
sgn 8, (&) = sgn P, (&) = sgn 8, (&)
and

S/ € 1 1 1
S &) é —Viy v,—§ Van —§& .
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1 1 S :
Hence > , which implies successively
§—Vin V2, —§
2 2
x][,]l 1 —&>v,—§>86—v, and 25;:—)61[] 1 <Vin-
Our statement follows. O

4. Discrete Laguerre—Sobolev orthogonal polynomials: asymptotics
Laguerre polynomials. For o € R, the Laguerre polynomials are defined by

" " /n+a (—x)k
Lﬁ‘)(x):z<n—k> K

k=0

Fora > —1, the {L(a) (x)}n>0 are orthogonal on [0, 4-00) with respect to the weight
function w (x) =x%e™" [Szegd 1975, Chapter V]. Let {L(a k)};’lo o» k €N, denote the
sequence of polynomials orthogonal with respect to the modified Laguerre weight
(x —&)*w(x), £ <0, normalized by the condition that Lﬁ,a’k) has the same leading
coefficient as the classical Laguerre orthogonal polynomial Lﬁ,“) = Lﬁf"o). That is,
k(L) = (=1y"/nl.
We summarize some properties of the L,(f“k) (x), k e NU {0}, to be used later.

Proposition 6 [Fejzullahu 2011]. (i) Fora > —1,

@ R - F(n+a+1)
Ly )||§,=/ (L@ () x%e d(x) = — 2T )
0 Fn+1)
(ii) Foreveryn € N,
(Lﬁla)(x))/ L(OH-I)( ).

(iii)) (Perron’s formula) Let o € R. Then

L}(;x)(x) _ 2—17_[—1/Zex/Z(_x)—a/2—1/4na/2—1/482«/—nx(1 n O(n—l/z)).

This relation holds for x in the complex plane cut along the positive real semi-
axis; both (—x)~/>=V* and /—x must be taken real and positive if x < 0.
The bound of the remainder holds uniformly in every closed domain which
does not overlap the positive real semiaxis.

Moreover, we get the outer ratio asymptotics

(OH‘J)(X) )
lim n'— /)/ZL = (—x)=D2, jleR, hkez,
n—00 L(OH-I)( )
n—+h
Ly (x) I

li = ,
nR k2L () (VX EF

uniformly on compact subsets of C\ [0, 00).
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(iv) (Mehler—Heine formula) Uniformly on compact subsets of C, we have

L® j
lim M =x_“/2Ja(2ﬁ)
n— 00 n«
and
Ly (x/(n + ) 1
. n - —a/2
Jim Y = (\/__S)kx Jo(24/%)

where j € NUO and J, is the Bessel function of the first kind.
(v) (Plancherel-Rotach type outer asymptotics for L ,(f"N)) Uniformly on compact
subsets of C\ [0, 4] and uniformly on j € NU{0}, we have

. L(“)I«nﬂ)x) 1
n— o0 () x—2)/2
LY (n+ j)x) o )/2)

and

i L ) (¢<<x ~2)/2)+ 1)N

=00 L{((n 4 j)x) x

where ¢ is the conformal mapping of C\ [—1, 1] onto the exterior of the unit
circle given by

p(x)=x+vVx2—-1, xeC\[-1,1],
with v/x2 — 1> 0 when x > 1.

Proposition 7. LD gy = L @D gy,

48

Proof. Using integration by parts we have

o.¢]
| @) L e - e et
0
)0 ifk <n-—3,
~ = DILEP)2, ifk=n—2.
Therefore,

(Ll(icx,Z)(x))/ _ _Lilajilﬁ)( )+H L(a-‘rl 3)( )’

where
f(@2))2

n(n=DILFY I

I3 1

a+1,3
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Using (8) and Proposition 6(iii),

(a+1,2) 2 L(oz-‘rl,i—l) (a,i—1)

g, = Ot L DO B L O Ly @
(=17 L@ LSO L@

n—1
LS 13[ LSO LETE (1)
Ty (@+1,2) (a+1,i—1) (a,i—1)
L@ i L & L@

n—1

o)
On the other hand, [Fejzullahu 2011, Proposition 2.2] gives
(17) (LEe? @) =LY () + GuL 5 (x),

where

SGIN o LSRRGl (O
(=D L@ LV

n—1

LY@ (L OLSYE L@@ LSV E LD (&) o]
(a+1,i—1) (@) (a,1) T (@ (a,1) (,2) T (E)
LT\ LY EL e LY ©LeYEL e

Again, from [Fejzullahu 2011, Proposition 2.2],

G,=H,

LEAOLL® _ LAGOLLE  L5E) (4)
LY®Lye  LrYeLLre LY e
LYEOLYY LY@ LY @©OLY LY @)
LO@OLYOLSY @) LOLY©OL" Y@
(a—1) (a—1,1)
Ly VeLy e

’
n

9
n
and

L © L4 ©OLL @ L5 ©)
L @ LiPeOLrE L)
L ©OL® L)@ (4)

Ly YLy e LY

_%ﬂ@L%%Mﬁ%>wﬁ@Hw)

e LEVOLET e L4 PE )

n

Therefore, by using Proposition 6(iii),

VnG, = —\/—E.
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and taking into account (17) the result follows. U

Discrete Laguerre—Sobolev orthogonal polynomials. Let {S,},>¢ be the sequence
of polynomials orthogonal with respect to the discrete Sobolev inner product (12),
where w(x) = x%*e¢ ™ and £ < 0, normalized by the condition that S, has the
same leading coefficient as the classical Laguerre orthogonal polynomial LY. ie.,
k(Sp) = (=D)"/n!.

Theorem 4. Let M > 0 and N > 0. There are real constants B, o, By,.1, and B, 2
such that

(18)  S,(x) = BuoL® (x) + By 1 (x — )L (x) 4+ Bya(x — )L (x),
1 An,l

where B,g= ———— B, | = — ,and
n.0 1+A,1+A2 1 n(1+A,1+4A,2)
B )= An,2
" n(n_l)(1+An,l+An,2)‘
Moreover:

(1) If M >0and N > 0, then

8EnY 32 —s,a—1/2 1
(19) Bn,o’é%, P C. i L V(f)”z B2 = .
M(L," (§)) M(Ly" () n
(i) If M =0and N > 0, then
B, o= ! B, = ! B,, = !
n,0—4\/_—%_n, n,1 = n» n,2—4n2\/_—§n-
(iii) If M > 0 and N =0, then
~ V=& ~ 1
Bn’O = 172 (Cfl) 21 Bl’l,l = Bn,2 = 0
Mn!/2=(L,", (§)) "

Proof. From Theorem 1,

(—1)"S, (x)
nl(1+A,1+A,2)

Sn(x) =

and, as a consequence,

Sp(x) = By oL@ (x) + By 1 (x —E)L Y (x) 4 Buo(x — £)2L3 (x),

n

where B, 0, By,1, and B, > are as in the statement of the theorem.
Now, from Proposition 4 we can obtain the behavior of the coefficients By, o,
B, and B, for n large enough. In order to estimate A, ; and A, ,, first we
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compute oy, By, &n/Vn, Bn¥n and I ,(§). From (13) and Proposition 6, we can
write

= L ® L&) 1@ 2
LYo L OLEYeLeY e
T(+a) nL,” () . 8(=§)/n '
L) L@ @LCYOLYY ¢ LPELE e
% _ Lha®LY @) L) 1@ 2
v LOOLEVE) L9,V ©L D) Fni
_To+e) L@ 862 2L ¢
F(l’l) L(Ol) (S)L(a 1)(%-)L(Ot ,2) (g_—) (Lﬁla)(é))3 s

LW@)YN £

Yoo~ Lo 5) N\ L §
Bn¥n —anﬁn @ = (Lila-i-l)(%-)

n 9
LY GLEYELEY @)
LYS@E L) G L) G LT @)
L 851" (0 =)t
L6 '
Next, we will analyze the following three situations.

(i) Let M > 0 and N > 0. Then,

IZ,n(S) = (_1)"_1(;1 —2)! na+3

~ () () (Ol+1)
P R 2 el

P« L) _lﬁ”@>
and
A MLP© ML)
T L@ T 8
Therefore,
. 8&n“ 326 /=En""12 1/2 N
SO M Tueey T
M(L &) ML ©) n

(i1) Let M =0 and N > 0. Then,

7 (o)
A1 = —4)"En and Ay, = — o &)~y
n2(§) Vn
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Therefore,
B,o = ! B,1 = ! B,, = !
n,0 = _Snv n,1 = n’ n,2—4n2J_—%71-
(iii) Let M > 0 and N = 0. Then,
7 () 7 (@) (a 1)) 1/2—a
ML ML, L M /
An L= n (S) __ 1(%—) (‘i:) n (L(Ol)l(%-)) An »=0.
‘ L1 (§) 1L 112 NE3 ’
Therefore,
v — 1
By = — ; i) 5, Bu =——, B,2=0. O
Mn'/2=(L,", (&) &

Next we deduce several asymptotic properties for discrete Laguerre—Sobolev
polynomials when M, N > 0. (For M > 0 and N = 0, the same asymptotic results
for corresponding Laguerre-type polynomials has been deduced in [Dueiias et al.
2011] and [Fejzullahu and Zejnullahu 2010].)

Theorem 5. (i) (Outer relative asymptotics) Uniformly on compact subsets of
C\ [0, co) we have:

e IfM >0and N > 0, then

S :(d—_x—d—_s>2
RN W=

Notice that, according to the Hurwitz’s Theorem, the point § attracts two

negative zeros of S, (x) for n large enough.
e IfM=0and N >00r M > 0and N =0, then

fim 52 _ VX = VE
neoo [ (x) =X+ V/—E
Notice that, according to the Hurwitz’s Theorem, the point & attracts one
negative zero of S, (x) for n large enough.
(i1)) (Mehler-Heine formula)
e IfM >0and N >0

S
lim n(x/n) =x"?J,2Vx),
n—oo n¢

e [fM=0and N >00rM >0and N =0
Sn
im &M _ a2y o 0.

n—o0 ne
uniformly on compact subsets of C.
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(iii) (Plancherel-Rotach type outer asymptotics for S,)
e IfM >0and N > 0, then
. Sp(nx)
lim T =
n— 00 Lna (nx)
uniformly on compact subsets of C\ [0, 4].

Proof. We will prove the theorem when M > 0 and N > 0. The proofs of the other
cases can be done in a similar way.

(i) From (18)
(oc 2) L(a,4)
S0 gt B -2 g g2 @)
L (x) L<°”< ) n2Ly (x)

Now, Proposition 6(iii) and (19) yield

S N ) (J—x—d—?)z
lim = lim .

=x-¥5)

n—00 L,(fl) (x) n—00 nzL,(f‘) (x) \/__x_{_ \/—_f
(i1) Scaling the variable as x — x/n in (18) then dividing by n* we get
Sn(x/n)
nl)l
() (a 2) (o, 4)

L L x/n
L O R B M Bl
Now, Proposition 6(iv) and (19) yield

(Ol 4)
S
fim S ez i Ea2 ) e o .
n—00 ne n—00 +2

(iii) Dividing (18) by L¢ (x) then scaling the variable as x — nx we get

S, (nx) nx —& L% (x) L', (nx)
@, = BrotnBu <a> @
L, (nx) n ((nx) Ly’ (nx)
+n’B, (nx —§&)? L(a 4 5 (nx) L(o‘)2 (nx)
SE (a> ,(nx) L( )(nx)

From Proposition 6(v) and (19)

. Sau(nx) 5 <¢((x —2)/2)+ 1)4 1
hm — =X .
=00 @ (nx) x (@ ((x —2)/2))*

Now, using the fact that (¢ (z) + D2 =2@z+ D (z) if |z] > 1, we get our result. [
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