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The Lempert function for a set of poles in a domain of Cn at a point z is
obtained by taking a certain infimum over all analytic disks going through
the poles and the point z; it majorizes the corresponding multipole pluri-
complex Green function. Coman proved that both coincide in the case of
sets of two poles in the unit ball. We give an example of a set of three poles
in the unit ball where this equality fails.

1. Introduction

Let � be a domain in Cn , and a j ∈ �, j = 1, . . . , N . The pluricomplex Green
function with logarithmic singularities at S := {a1, . . . , aN } is defined by

GS(z) := sup{u ∈ PSH(�,R−) : u(z)≤ log |z− a j | +C j , j = 1, . . . , N },

where PSH(�,R−) stands for the set of all negative plurisubharmonic functions
in �. When � is hyperconvex, this solves the Monge–Ampère equation with right
hand side equal to

∑N
i=1 δa j .

Pluricomplex Green functions have been studied by many authors at different
levels of generality. See [Demailly 1987; Zahariuta 1984; Lempert 1981; Lelong
1989; Lárusson and Sigurdsson 1998].

A deep result due to Poletsky [1993], and see also [Lárusson and Sigurdsson
1998; Edigarian 1997], is that the Green function may be computed from analytic
disks:

(1-1) GS(z)

= inf
{ ∑
α:ϕ(α)∈S

log|α| : such that there exists ϕ ∈ O(D, �) with ϕ(0)= z
}
.

MSC2010: 32U35, 32F45.
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However, it is tempting to pick only one α j ∈ ϕ
−1(a j ) in the range 1≤ j ≤ N ,

which motivated the Coman’s definition of the Lempert function [2000]:

(1-2) `S(z) := inf
{ N∑

j=1

log|ζ j | : ϕ(0)= z, ϕ(ζ j )= a j , j = 1, . . . , N

for some ϕ ∈ O(D, �)
}
,

where D is the unit disc in C.
One easily sees that `S(z) ≥ GS(z) without recourse to (1-1); the fact that

equality holds when N =1 and� is convex is part of Lempert’s celebrated theorem
[1981], which was, in fact, the starting point for many of the notions defined above;
see also [Edigarian 1995]. Coman [2000] proved that equality holds when N = 2
and �=B2, the unit ball of C2. The goal of this note is to present an example that
shows that this is as far as it can go.

Theorem 1.1. There exists a set of 3 points S ⊂ B2 such that `S(z) > GS(z) for
some z ∈ B2.

Other examples in the same vein have been found in [Carlehed and Wiegerinck
2003; Thomas and Trao 2003; Nikolov and Zwonek 2005]. The interesting features
of this one are that it involves no multiplicities and is minimal in the ball. Examples
with an arbitrary number of points can be deduced from it. Let z0 ∈ B2 satisfy
`S(z0)−GS(z0) =: ε0 > 0. Consider S′ := S ∪ {a4, . . . , aN } with all the a j close
enough to the boundary so that `S′(z0)≥ `S(z0)−ε0/2 (the Schwarz lemma shows
that |ζ j |→ 1 when ϕ(ζ j )= a j and |a j |→ 1). Then `S′(z0) >GS(z0)≥GS′(z0), as
was to be shown. (I thank Nikolai Nikolov for sharing this observation with me).

Moreover, the corresponding Green function can be recovered, up to a bounded
error, by using an analytic disk with just one more preimage than the number of
points: One of the points has exactly two preimages and each of the other two
points, only one; see [Magnússon et al. 2012, §6.8.2, Lemma 6.16].

More specifically, the theorem will follow from a precise calculation in the
bidisk D2. Let Sε = {(0, 0), (ρ(ε), 0), (0, ε)} ⊂ D2, where limε→0 ρ(ε)/ε = 0.

Proposition 1.2. There exists C1 > 0 such that for any δ ∈ (0, 1/4) there exists
ε0 = ε0(z, δ) > 0 and r0 = r0(δ) > 0 such that

GSε(z)≤ 2 log|z2| +C1,(1-3)

`Sε(z)≥ (2− δ) log|z2|.(1-4)

for any ε with |ε|< ε0 and any z = (z1, z2) ∈ D2 such that

(1-5) 1
2 |z2|

3/2
≤ |z1| ≤ |z2|

3/2 and ‖z‖< r0.

Proof of Theorem 1.1. If U and V are domains, and S⊂U ⊂V , then the definitions
of the Green and Lempert functions imply that GU

S (z)≥GV
S (z) and `U

S (z)≥ `
V
S (z).
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For |ε| small enough, Sε ⊂ B2. When |z1| = |z2|
3/2, so that z verifies (1-5), the

inclusion B2
⊂ D2 implies

`B2

Sε (z)≥ `
D2

Sε (z)≥ (2− δ) log |z2|.

Using the fact that D2/
√

2 ⊂ B2 and the invariance of the Green function under
biholomorphic mappings, we have

GB2

Sε (z)≤ GD2/
√

2
Sε (z)= GD2

√
2Sε
(
√

2z)≤ 2 log|z2| + log 2+C1.

The last inequality follows from the fact that
√

2z still verifies (1-5), and
√

2Sε has
the same form as Sε, so we can apply (1-3).

Comparing the last two estimates, we see that GB2

Sε (z) < `B2

Sε (z) for |z2| small
enough and |ε|< ε0. �

Open questions

This example is minimal in the ball, in terms of number of poles; what is the
situation for the bidisk? Are the Green and Lempert functions equal when one
takes two poles, not lying on a line parallel to the coordinate axes? Do they at least
have the same order of singularity as one pole tends to the other?

What is the precise order of the singularity of the limit as ε→ 0 of the Lempert
function in this case? Looking at the available analytic disks that give the correct
order of the singularity of the limit of the Green function, one finds 3

2 log|z2|, so
one would hope that the proposition can still be proved at least for δ < 1/2.

Do the analytic disks from [Magnússon et al. 2012] yield the Green function
itself, without any bounded error term?

More generally, when one is given a finite number of points in a given bounded
(hyperconvex) domain, is there a bound on the number of preimages required to
attain the Green function in the Poletsky formula? For instance, is 4 the largest
possible number of preimages required when looking at 3 points in the ball?

2. Upper estimate for the Green function

Proof of (1-3) of Proposition 1.2. The upper bound (1-3) follows from [Magnússon
et al. 2012, §6.8.2, Lemma 6.16]. For the reader’s convenience, and since that paper
is not generally available, we repeat the proof here in the case that concerns us.

We now construct an analytic disk passing twice through one of the poles. Our
disk will be a perturbation of the Neil parabola ζ 7→ (ζ 3, ζ 2).

We write s(ε)= ρ(ε)/ε = o(1).
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Choose complex numbers λ and µ such that

λ2
:=

z1

z2(z2− ε)

( z1

z2− ε
+ s(ε)

)
and µ2

:= ε+

(s(ε)
2λ

)2
.

Let

9λ,µ(ζ ) :=

((
λζ − 1

2 s(ε)
)
(ζ 2
−µ2), ζ 2

−

(s(ε)
2λ

)2)
.

Then by construction 9λ,µ(µ)=9λ,µ(−µ)= (0, ε),

9λ,µ

(s(ε)
2λ

)
= (0, 0) and 9λ,µ

(
−

s(ε)
2λ

)
= (εs(ε), 0),

so we have a disk passing through all three poles of Gε. Furthermore, choosing

ζz :=
1
λ

( z1

z2− ε
+

s(ε)
2

)
,

we have 9λ,µ(ζz)= z. Notice that

ζ 2
z =

z2(z2− ε)

z1

( z1

z2− ε
+

s(ε)
2

)2( z1

z2− ε
+ s(ε)

)−1
,

so for any η > 0 there exists ε0(δ, η) > 0 such that for |ε|< ε0(δ, η)

(2-1)
∣∣|ζz| − |z2|

1/2∣∣≤ η
for any z such that δ ≤ 1

2 |z2|
3/2
≤ |z1| ≤ |z2|

3/2
≤ 1. In particular, by choosing η

small enough we ensure that ζz ∈ D. We need a more general fact.

Claim. Let η > 0, and δ > 0. Then there exists ε1 = ε1(δ, η) > 0 such that
for any ε with |ε| ≤ ε1, we have 9λ,µ(D(0, 1 − η)) ⊂ D2 for any z such that
δ ≤ 1

2 |z2|
3/2
≤ |z1| ≤ |z2|

3/2
≤ 1.

Proof. For |ε| ≤ δ2/3/2, we have |z2|/2≤ |z2− ε| ≤ 2|z2|, so

|λ|2 ≥

∣∣∣ z1

2z2
2

∣∣∣(∣∣∣ z1

2z2

∣∣∣− |s(ε)|)≥ ∣∣∣ z2
1

8z3
2

∣∣∣≥ 1
32

for ε small enough. So when |ζ | ≤ 1− η,

|9λ,µ,2(ζ )| ≤ (1− η)2+ 256|s(ε)|2 < 1

for ε small enough.
In a similar way, given η′, for ε small enough depending on δ and η′, we have
|z2| ≤ (1+ η′)|z2− ε|, so

|λ|2 ≤ (1+ η′)2
∣∣∣ z1

z2
2

∣∣∣(∣∣∣ z1

z2

∣∣∣+ |s(ε)|
(1+ η′)

)
≤ (1+ η′)3

∣∣∣ z2
1

z3
2

∣∣∣≤ (1+ η′)3
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for ε small enough. Choose η′ so that (1+ η′)3 = (1+ η). When |ζ | ≤ 1− η,

|9λ,µ,1(ζ )| ≤
(
(1+ η)(1− η)+ 1

2 |s(ε)|
)(
(1− η)2+ |ε| + 642

|s(ε)|2
)
< 1

for ε small enough. �

So now the function v(ζ ) := Gε(9λ,µ((1− η)ζ )) is negative and subharmonic
on D. Furthermore, it has logarithmic poles at the points

±
µ

1− η
and ±

s(ε)
2λ(1− η)

;

in the cases when µ = 0 or s(ε) = 0, we get a double logarithmic pole at the
corresponding point.

Denote by dG(ζ, ξ) := |(ζ − ξ)/(1− ζ ξ̄ )| the invariant (pseudohyperbolic) dis-
tance between points of the unit disk. Then

Gε(z)= v(ζz)≤ log dG

(
ζz,

µ

1− η

)
+ log dG

(
ζz,−

µ

1− η

)
+ log dG

(
ζz,

s(ε)
2λ(1− η)

)
+ log dG

(
ζz,−

s(ε)
2λ(1− η)

)
.

By (2-1), choosing m(δ, η) accordingly, we have Gε(z) ≤ 4 log|z2|
1/2
+ O(η) for

|ε| ≤ m. �

3. Lower estimate for the Lempert function

Proof of (1-4) of Proposition 1.2. The proof will follow the methods and notations
of [Thomas 2007]. We will make repeated use of the involutive automorphisms
of the unit disk given by φa(ζ ) := (a− ζ )/(1− āζ ) for a ∈ D, which exchange 0
and a. Notice that the invariant (pseudohyperbolic) distance verifies

dG(a, b) := |φa(b)| = |φb(a)|.

Write ρ(ε)= εs(ε) with limε→0 s(ε)= 0.
We will assume that the conclusion fails. That is, for any δ ∈ (0, 1/4), there

exist arbitrarily small values of |z2| =max(|z1|, |z2|), and |ε| such that

(3-1) `Sε(z) < (2− δ) log |z2|.

After applying, for each analytic disk, an automorphism of the disk that exchanges
the preimage of (0, 0) and 0, the assumption implies that there exists a holomorphic
map ϕ from D to D2 and points ζ j ∈ D, depending on z and ε, satisfying the
conditions

(3-2)
ϕ(0)= (0, 0), ϕ(ζ1)= (εs(ε), 0),

ϕ(ζ0)= (z1, z2), ϕ(ζ2)= (0, ε),
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with

(3-3) log|ζ0| + log|φζ0(ζ1)| + log|φζ0(ζ2)| ≤ (2− δ) log|z2|.

The interpolation conditions in (3-2) are equivalent to the existence of holomor-
phic functions h1 and h2 from D to itself such that

ϕ(ζ )= (ζφζ2(ζ )h1(ζ ), ζφζ1(ζ )h2(ζ )),

such that furthermore

h1(ζ1)=
εs(ε)

ζ1φζ2(ζ1)
=: w1,(3-4)

h1(ζ0)=
z1

ζ0φζ2(ζ0)
=: w2,(3-5)

h2(ζ2)=
ε

ζ2φζ1(ζ2)
=: w4,(3-6)

h2(ζ0)=
z2

ζ0φζ1(ζ0)
=: w3.(3-7)

By the invariant Schwarz lemma, the existence of a holomorphic function h1

mapping D to itself and satisfying (3-4) and (3-5) is equivalent to

(3-8) |w1|< 1, |w2|< 1 and dG(w1, w2) < dG(ζ1, ζ0)= |φζ1(ζ0)|.

In the same way, the existence of h2 is equivalent to

(3-9) |w3|< 1, |w4|< 1 and dG(w3, w4) < dG(ζ2, ζ0)= |φζ2(ζ0)|.

As in [Thomas 2007], we start by remarking that (3-3) can be rewritten as

(3-10) − log|w2| − log|w3| = log
∣∣∣ζ0φζ1(ζ0)

z2

∣∣∣+ log
∣∣∣ζ0φζ0(ζ2)

z1

∣∣∣
≤ log|ζ0| + (2− δ) log|z2| − log|z1| − log|z2|

≤ log|ζ0| −
(1

2 + δ
)

log|z2| + log 2,

by (1-5). We can rewrite this in a more symmetric fashion:

(3-11) log 1
|w2|
+ log 1

|w3|
+ log 1

|ζ0|
≤
( 1

2 + δ
)

log 1
|z2|
+ log 2.

Since all terms are positive by (3-8) and (3-9), each of the terms on the left hand
side is bounded by the right hand side.

We will proceed as follows: We have used the contradiction hypothesis (3-3) to
prove that |ζ0| and |w3| are relatively big. We will prove that |φζ2(ζ0)| has to be
relatively small, which by (3-9) forces |w4| to be roughly as large as |w3|. This
then allows us to bound |φζ1(ζ2)| by a quantity that becomes as small as desired
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when ε can be made small, and hence allows us to bound |φζ1(ζ0)| by the triangle
inequality.

The final contradiction will concern w2 = z1/(ζ0φζ2(ζ0)). On the one hand,
(3-11) guarantees that it is not too small; but an explicit computation of the quotient
w1/w4 shows that w1 must be small, and by (3-8) and the estimate on |φζ1(ζ0)|,
|w2| is small as well.

We provide the details. From (3-11),

(3-12) log|w3| ≥
( 1

2 + δ
)

log|z2| − log 2.

From (3-5) and (3-10),

(3-13) log|φζ2(ζ0)| = log|z1/ζ0| − log|w2|

≤ log|z1/ζ0| + log|ζ0| −
( 1

2 + δ
)

log|z2| + log 2

≤ (1− δ) log|z2| + log 2.

Since δ < 1/4, (3-13) and (3-12) imply that |φζ2(ζ0)| <
1
2 |w3| for |z2| ≤ r1(δ), so

by (3-9) and the triangle inequality for dG ,

(3-14) |w4| ≥
1
2 |w3|.

We now prove that both ζ1 and ζ2 must be close to ζ0 and even closer to each
other. First, since (3-11) implies that log|ζ0| ≥ (

1
2 + δ) log |z2| − log 2, by (3-13),

|φζ2(ζ0)| ≤
1
2 |ζ0| for |z2| ≤ r2(δ). By the triangle inequality for dG ,

(3-15) 1
2 |ζ0| ≤ |ζ2| ≤

3
2 |ζ0|.

On the other hand, from (3-11),

log|w3| + log|ζ0| ≥ (
1
2 + δ) log|z2| − log 2, that is, |w3ζ0| ≥

1
2 |z2|

δ+1/2.

Therefore, applying (3-14) and (3-15),

(3-16) |φζ1(ζ2)| =

∣∣∣ ε

ζ2w4

∣∣∣≤ 4
∣∣∣ ε

ζ0w3

∣∣∣≤ 8|ε||z2|
−δ−1/2.

In particular, for

(3-17) |ε|< 1
8 |z2|

3/2,

this implies |φζ1(ζ2)|< |z2|
1−δ, and by the triangle inequality,

(3-18) |φζ1(ζ0)|< |φζ2(ζ0)| + |φζ1(ζ2)|< 3|z2|
1−δ.

We now establish the two (contradictory) estimates for w2. On the one hand,
(3-11) implies that

(3-19) log |w2| ≥
( 1

2 + δ
)

log|z2| − log 2, that is, |w2| ≥
1
2 |z2|

δ+1/2.
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On the other hand, ∣∣∣w1

w4

∣∣∣= ∣∣∣ εs(ε)
ζ1φζ2(ζ1)

ζ2φζ1(ζ2)

ε

∣∣∣= ∣∣∣s(ε)ζ2

ζ1

∣∣∣.
By the triangle inequality for dG , when (3-17) holds, the lower bound in (3-15)
and the corollary to (3-16) imply

|ζ1| ≥ |ζ2| − |φζ1(ζ2)| ≥
1
2 |ζ0| − |z2|

1−δ
≥

1
4 |ζ0|

for |z2| small enough, because of (3-11) again. So finally, using the upper bound in
(3-15), |w1/w4| ≤ 6|s(ε)|. We choose ε0 <

1
8 |z2|

3/2 so that for any ε with |ε| ≤ ε0,

(3-20) |s(ε)|< |z2|
1−δ.

The triangle inequality for dG and (3-18) imply that when |ε| ≤ ε0,

|w2| ≤ |w1| + |φζ1(ζ0)| ≤ 6|s(ε)| + 3|z2|
1−δ
≤ 9|z2|

1−δ.

Finally, if we choose |z2| ≤ r0(δ), with

r0(δ)≤min(r1(δ), r2(δ)) and 9r0(δ)
1−δ < 1

2r0(δ)
1/2+δ,

we see that for any ε with |ε| ≤ ε0, this last bound contradicts (3-19). �
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