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We exhibit infinitely many overtwisted, right-veering, non-destabilizable
open books, thus providing infinitely many counterexamples to a conjecture
of Honda, Kazez and Matić. The page of all our open books is a four-holed
sphere and the underlying 3-manifolds are lens spaces.

1. Introduction

The purpose of this note is to construct infinitely many counterexamples to a con-
jecture of Honda, Kazez and Matić from [Honda et al. 2009]. For the basic notions
of contact topology not recalled below we refer the reader to [Etnyre 2003; Geiges
2008].

Let S be a compact, oriented surface with boundary and Map(S, ∂S) the group of
orientation-preserving diffeomorphisms of S that restrict to ∂S as the identity, up to
isotopies fixing ∂S pointwise. An open book (also known as an abstract open book)
is a pair (S,8) where S is a surface as above and 8 ∈Map(S, ∂S). Giroux [2002]
introduced a fundamental operation of stabilization (S,8) → (S′,8′) on open
books, and proved the existence of a 1-1 correspondence between the set of open
books modulo stabilization and the set of contact 3-manifolds modulo isomorphism
(see, for example, [Etnyre 2006] for details). Honda, Kazez and Matić [Honda
et al. 2007] showed that a contact 3-manifold is tight if and only if it corresponds
to an equivalence class of open books (S,8) all of whose monodromies 8 are
right-veering (in the sense of [Honda et al. 2007, Section 2]). In [Goodman 2005;
Honda et al. 2007] it is also showed that every open book can be made right-veering
after a sequence of stabilizations. Honda, Kazez and Matić [Honda et al. 2009]
proved that when S is a holed torus, the contact structure corresponding to (S,8)
is tight if and only if 8 is right-veering, and conjectured that a non-destabilizable
right-veering open book corresponds to a tight contact 3-manifold. The Honda–
Kazez–Matić conjecture was recently disproved by Lekili [2011], who produced a
counterexample (S,8) with S equal to a four-holed sphere and whose underlying
3-manifold is the Poincaré homology sphere.

MSC2010: primary 57R17; secondary 53D10.
Keywords: contact surgery, destabilizable diffeomorphisms, Giroux’s correspondence, open books,

overtwisted contact structures, right-veering diffeomorphisms.

219

http://msp.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2012.257-1


220 PAOLO LISCA

We shall now describe our examples. Denote by δγ ∈Map(S, ∂S) the class of a
positive Dehn twist along a simple closed curve γ ⊂ S.

Theorem 1.1. Let S be an oriented four-holed sphere, and a, b, c, d, e the simple
closed curves on S shown in Figure 1.

a b

c d

e

Figure 1. The four-holed sphere S.

Let h, k ≥ 1 be integers. Define 8h,k := δ
h
a δbδcδdδ

−k−1
e ∈Map(S, ∂S). Then

• the underlying 3-manifold Y(S,8h,k) is the lens space

L((h+ 1)(2k− 1)+ 2, (h+ 1)k+ 1);

• the associated contact structure ξ(S,8h,k) is overtwisted;

• 8h,k is right-veering;

• (S,8h,k) is not destabilizable.

Warning: in the above statement we adopt the convention that the lens space
L(p, q) is the oriented 3-manifold obtained by performing a rational surgery along
an unknot in S3 with coefficient −p/q .

We prove Theorem 1.1 in Section 2. The proof can be outlined as follows.
In Proposition 2.1 we use elementary arguments to determine a contact surgery
presentation for the contact 3-manifold (Y(S,8h,k), ξ(S,8h,k)), and in Corollary 2.2 we
apply Proposition 2.1 and a few Kirby calculus moves to identify the underlying 3-
manifold Y(S,8h,k). In Proposition 2.3 we appeal to calculations from [Lekili 2011]
to deduce that the contact Ozsváth–Szabó invariant of ξ(S,8h,k) vanishes, and we
conclude from the fact that Y(S,8h,k) is a lens space that ξ(S,8h,k) must be overtwisted.
That8h,k is right-veering in Lemma 2.4 follows directly from [Arıkan and Durusoy
2012, Theorem 4.3], but it can also be deduced by imitating the proof of [Lekili
2011, Theorem 1.2], that is, by applying [Honda et al. 2007, Corollary 3.4]. Finally,
we use results from [Arıkan 2008; Lekili 2011] to conclude that (S,8h,k) is not
destabilizable.
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2. Proof of Theorem 1.1

Recall that every contact structure has a contact surgery presentation. We refer the
reader to [Ding and Geiges 2004] for this fact and the basic properties of contact
surgeries, and to [Lisca and Stipsicz 2004] for the use of the “front notation” in
contact surgery presentations, in particular for the meaning of Figure 2 below.

Proposition 2.1. For h, k≥1, the contact structure ξ(S,8h,k) has the contact surgery
presentation given by Figure 2.

1
k+1

−
1
h

Figure 2. Contact surgery presentation for ξ(S,8h,k), h, k ≥ 1.

Proof. Figure 3 (a) represents an open book (A, f ), where A is an annulus and f
is a positive Dehn twist along the core of A. The associated contact 3-manifold is
the standard contact 3-sphere (S3, ξst), the annulus A can be viewed as the page
of an open book decomposition of S3, and the curve κ in the picture can be made
Legendrian via an isotopy of the contact structure, in such a way that the contact
framing on κ coincides with the framing induced on it by the page (see [Etnyre
2006, Figure 11]). The knot κ is the unique Legendrian unknot in (S3, ξst) having
Thurston–Bennequin invariant tb(κ)=−1 and rotation number rot(κ)= 0. A suit-
able choice of orientation for κ uniquely specifies its negative oriented Legendrian
stabilization κ−, which satisfies tb(κ−) = −2 and rot(κ−) = −1. As shown in
[Etnyre 2006], κ− can be realized as sitting on the page of a Giroux stabilization
(A′, f ′) of (A, f ). This is illustrated in Figure 3 (b), assuming the orientation
on κ was taken to be “counterclockwise” in Figure 3 (a). Finally, Figure 3 (c)
shows an open book (S, f ′′) obtained by Giroux stabilizing (A′, f ′) and containing
both κ− and (κ−)− in S (κ− was also given the “counterclockwise” orientation in
Figure 3 (b)). Clearly (S, f ′′) still corresponds to (S3, ξst), and it is well-known
that κ−, (κ−)− are the two Legendrian knots illustrated in Figure 2 (when oriented
“clockwise” in that picture). By definition, 8h,k is obtained by precomposing f ′′

with k + 1 negative Dehn twists along parallel copies of κ− and h positive Dehn
twists along parallel copies of (κ−)−. Moreover, if m 6= 0 is an integer, 1

m -contact
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surgery along any Legendrian knot λ is equivalent to m
|m| -contact surgeries along

|m| Legendrian push-offs of λ [Ding and Geiges 2004]. Since page and contact
framings coincide, and by [Etnyre 2006, Theorem 5.7] positive (negative, respec-
tively) Dehn twists correspond to −1-contact surgeries (+1-contact surgeries, re-
spectively), it is easy to check that the resulting contact structure is given by the
contact surgery presentation of Figure 2. �

   (a) (b) (c)

+ κ

+

+

κ−

+

+

+

κ−

(κ−)−

Figure 3. Determination of the contact surgery presentation.

Corollary 2.2. For h, k ≥ 1, the oriented 3-manifold underlying the open book
(S,8h,k) is the lens space L((h+ 1)(2k− 1)+ 2, (h+ 1)k+ 1).

Proof. Using the fact that the two Legendrian unknots illustrated in Figure 2 have
Thurston–Bennequin invariants −2 and −3, it is easy to check that the topological
surgery underlying Figure 2 is given by the first (upper left) picture of Figure 4.
Two +1-blowups and two inverse slam-dunks give the second picture, while the

−2

−2+ 1
k+1 −3− 1

h −k− 1 0

1

1
−1

h

−2−k− 1−1
h

−2−k− 1−2−2−2

h︷ ︸︸ ︷

Figure 4. Determination of the underlying 3-manifold.
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third picture is obtained from the second one by sliding the−1-framed knot over the
0-framed knot and then applying two +1-blow-downs. The last picture is obtained
simply converting the h-framed unknot in the third picture into the string of −2-
framed unknots via a sequence of −1-blowups and a final +1-blowdown. The last
picture shows that the underlying 3-manifold Y(S,8h,k) is obtained by performing a
rational surgery on an unknot in S3 with coefficient −p/q, where

p
q
= 2−

1

k+ 1−
1

2−
1

. . .
−

1
2

=
(h+ 1)(2k− 1)+ 2

(h+ 1)k+ 1
.

Therefore, according to our conventions Y(S,8h,k) can be identified with the lens
space L((h+ 1)(2k− 1)+ 2, (h+ 1)k+ 1). �

Proposition 2.3. For h, k ≥ 1, the contact structure ξ(S,8h,k) is overtwisted.

Proof. By [Giroux 2000; Honda 2000] a contact structure on a lens space is
either overtwisted or Stein fillable. Moreover, Stein fillable contact structures
have nonzero contact Ozsváth–Szabó invariant [Ozsváth and Szabó 2005]. Fi-
nally, [Lekili 2011, Theorem 1.3] immediately implies that the contact invariant of
(S,8h,k) vanishes, therefore ξ(S,8h,k) must be overtwisted. �

Lemma 2.4. For h, k ≥ 1, the diffeomorphism class

8h,k = δ
h
a δbδcδdδ

−k−1
e ∈Map(S, ∂S)

is right-veering.

Proof. The lemma follows immediately from the statement of Theorem 4.3 in
[Arıkan and Durusoy 2012]. Alternatively, one can imitate the proof of Theo-
rem 1.2 of [Lekili 2011]. Indeed, applying Corollary 3.4 from [Honda et al. 2007]
to the monodromy 81= δ

−k−1
e and a properly embedded arc γcd ⊂ S disjoint from

the curve e and connecting the components ∂c and ∂d of ∂S parallel to the curves
c and d shows that 82 = δdδ

−k−1
e is right-veering with respect to ∂d . Another

application of the corollary to 82 and γcd shows that 83 = δcδdδ
−k−1
e is right-

veering with respect to ∂c. Moreover, since δc is right-veering with respect to ∂c

and the composition of right-veering diffeomorphisms is still right-veering [Honda
et al. 2007], 83 is right-veering with respect to ∂d as well. Appying the corollary
in the same way to 83 and an arc connecting the components of ∂S parallel to the
curves a and b yields the statement of the lemma. �



224 PAOLO LISCA

Proof of Theorem 1.1. Corollary 2.2, Proposition 2.3 and Lemma 2.4 establish the
first three portions of the statement. Thus we only need to show that (S,8h,k) is
not destabilizable for every h, k ≥ 1. If (S,8h,k) were destabilizable, it would
be a stabilization of an open book (S′,8′), where S′ is a three-holed sphere and
8′ = τ

a1
1 τ

a2
2 τ

a3
3 , where ai ∈ Z and τi is a positive Dehn twist along a simple closed

curve parallel to the i-th boundary components of S′, i = 1, 2, 3. By [Arıkan
2008, Theorem 1.2], ξ(S,8h,k) is tight if and only if ai ≥ 0, i = 1, 2, 3. Therefore,
by Proposition 2.3 at least one of these exponents must be strictly negative. But
the proof of Theorem 1.2 of [Lekili 2011] shows that when one of the ai ’s is
negative, any stabilization of (S′,8′) to an open book with page a four-holed sphere
is not right-veering. This would contradict Lemma 2.4, therefore we conclude that
(S,8h,k) cannot be destabilizable. �

Note added in proof: after the submission of the present paper the author was
informed of unpublished work of A. Wand containing, in particular, a different
proof of Proposition 2.3.
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