ODD HAMILTONIAN SUPERALGEBRAS
AND SPECIAL ODD HAMILTONIAN SUPERALGEBRAS
OF FORMAL VECTOR FIELDS

LI REN, QIANG MU AND YONGZHENG ZHANG
ODD HAMILTONIAN SUPERALGEBRAS
AND SPECIAL ODD HAMILTONIAN SUPERALGEBRAS
OF FORMAL VECTOR FIELDS

LI REN, QIANG MU AND YONGZHENG ZHANG

The natural filtrations of odd Hamiltonian superalgebras and special odd Hamiltonian superalgebras of formal vector fields are proved to be invariant under their automorphism group respectively, by determining the set of ad-quasi-nilpotent elements. Thereby, the automorphism groups of these Lie superalgebras are determined.

1. Introduction

As is well known, filtration structures and automorphism groups play an important role in the classification of modular Lie algebras (see [Jin 1992; Strade and Farnsteiner 1988; Wilson 1975]) and nonmodular Lie superalgebras (see [Kac 1977; Kac 1998; Scheunert 1979]), respectively. Cartan-type Lie algebras and Lie superalgebras possess natural filtration structures. The natural filtrations of the infinite-dimensional Lie algebras \(L(m) \) and \(\hat{L}(m) \) were proved to be invariant in [Rudakov 1986], where \(L = W, S, H \) or \(K \). The natural filtrations of the general Lie superalgebra and special Lie superalgebra of formal vector fields were proved to be invariant in [Zhang and Liu 2004]. The invariance of natural filtrations of Cartan-type Lie algebras or Lie superalgebras provides a useful method of determining intrinsic properties and automorphism groups (see [Wilson 1971; Zhang and Liu 2004]).

We consider the infinite-dimensional odd Hamiltonian superalgebra \(HO \) and special odd Hamiltonian superalgebra \(SHO \) of formal vector fields, which are involved in [Kac 1998]. The corresponding results of Cartan-type Lie algebras are generalized and Jin’s methods are used (see [Jin 1992]). Denote by \(\{X_i\}_{i \geq -1} \)

Qiang Mu is the corresponding author.
Supported by the Tianyuan Fund for Mathematics (grant number 11126051), the Heilongjiang Provincial Natural Science Foundation of China (grant number A201008), the Scientific Research Fund of Heilongjiang Provincial Education Department (grant number 12511157), and the Doctoral Research Foundation of Harbin Normal University (grant number KJB201105).

Keywords: superalgebra of formal vector fields, ad-nilpotent element, filtration, continuous automorphism.
the natural filtration of X. By determining the ad-quasi-nilpotent elements in the even part and the subalgebras generated by certain ad-quasi-nilpotent elements, we prove that the natural filtration of X is invariant under automorphisms in the following sense: If φ is an automorphism of X, then $\varphi(X_i) \subseteq X_i$ for every $i \geq -1$. Besides, we prove that every automorphism of X is continuous and can be induced from an automorphism of $\Lambda(n, n)$. Finally, we prove that the automorphism group of X is isomorphic to the admissible automorphism group of the base superalgebra $\Lambda(n, n)$.

This paper is arranged as follows. In Section 2, we recall the necessary definitions concerning Lie superalgebras of Cartan type HO and SHO of formal vector fields. In Section 3, we characterize the ad-quasi-nilpotent elements with certain properties, and prove the invariance of their natural filtrations. In Section 4, we determine the automorphism groups of Lie superalgebras of Cartan type HO and SHO of formal vector fields.

2. Preliminaries

In this paper, \mathbb{F} denotes an algebraically closed field of characteristic zero, and n is a positive integer greater than 3. Let \mathbb{N} and \mathbb{N}_0 denote the sets of positive integers and nonnegative integers, respectively. Let $\mathbb{Z}_2 = \{\bar{0}, \bar{1}\}$ denote the ring of integers modulo 2. Let $P(n) = \mathbb{F}[[x_1, \ldots, x_n]]$ denote the ring of formal power series in n variables over field \mathbb{F}. For $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{N}_0^n$, we abbreviate $x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$ to $x^{(\alpha)}$, and put $|\alpha| = \sum_{i=1}^n \alpha_i$. Let $\Lambda(n)$ be the Grassmann algebra over \mathbb{F} in n variables $x_{n+1}, x_{n+2}, \ldots, x_{2n}$. Denote by $\Lambda(n, n)$ the tensor product $P(n) \otimes_{\mathbb{F}} \Lambda(n)$. Then $\Lambda(n, n)$ is a noncommutative linearly compact topological superalgebra with a fundamental system $\{(\Lambda_{1})^{j}\}_{j\geq 1}$ of neighborhoods of 0, where $(\Lambda_{1})^{j} = \text{span}_{\mathbb{F}}\{x_{i_{1}}\cdots x_{i_{k}} \mid j \leq k\}$. In particular, $(\Lambda_{1})^{1}$ is the ideal of $\Lambda(n, n)$ generated by $\{x_{1}, \ldots, x_{2n}\}$ (see [Kac 1998]). For $g \in P(n)$ and $f \in \Lambda(n)$, we abbreviate $g \otimes f$ to gf.

Put $Y_0 = \{1, 2, \ldots, n\}$, $Y_1 = \{n+1, \ldots, 2n\}$ and $Y = Y_0 \cup Y_1$. Let

$$\mathbb{B}_k = \{\langle i_1, i_2, \ldots, i_k \rangle \mid n+1 \leq i_1 < i_2 < \cdots < i_k \leq 2n\}$$

and $\mathbb{B}(n) = \bigcup_{k=0}^{n} \mathbb{B}_k$, where $\mathbb{B}_0 = \emptyset$. Given $u = \langle i_1, i_2, \ldots, i_k \rangle \in \mathbb{B}_k$, set $|u| = k$, $\{u\} = \{i_1, i_2, \ldots, i_k\}$ and $x^u = x_{i_1}x_{i_2}\cdots x_{i_k}$ (with the convention that $|\emptyset| = 0$ and $x^{\emptyset} = 1$). Then $\{x^{(\alpha)}x^u \mid \alpha \in \mathbb{N}_0^n, u \in \mathbb{B}(n)\}$ is a \mathbb{F}-basis of the infinite-dimensional superalgebra $\Lambda(n, n)$. Clearly, $\Lambda(n, n)$ has a \mathbb{Z}-grading structure $\Lambda(n, n) = \bigoplus_{i \geq 0} \Lambda(n, n)_{[i]}$, where

$$\Lambda(n, n)_{[i]} = \text{span}_{\mathbb{F}}\{x^{(\alpha)}x^u \mid |\alpha| + |u| = i, \alpha \in \mathbb{N}_0^n, u \in \mathbb{B}(n)\}.$$
An arbitrary element $f \in \Lambda(n, n)$ can be uniquely decomposed into $f = \sum_{i=0}^{\infty} f_i$, where $f_i \in \Lambda(n, n)_{[i]}$. The continuation of the addition of topological algebra $\Lambda(n, n)$ allows us to get the sum of infinite nonzero elements of $\Lambda(n, n)$. Set $\Lambda(n, n)_j = \bigoplus_{i \geq j} \Lambda(n, n)_{[i]}$. Then $\{\Lambda(n, n)_j\}_{j \geq 0}$ is a filtration of $\Lambda(n, n)$. Clearly, $\Lambda(n, n)_j = \{(\Lambda_1)^j\}$, where $j \in \mathbb{N}_0$.

Let D_1, D_2, \ldots, D_{2n} be the linear transformations of $\Lambda(n, n)$ such that

$$D_i(x^{(\alpha)} y^{(\beta)}) = \begin{cases} x^{(\alpha - \delta_i)} y^{(\beta)} & \text{if } i \in Y_0, \\ x^{(\alpha)} \cdot (\partial y^{(\beta)} / \partial x_i) & \text{if } i \in Y_1. \end{cases}$$

Then D_i is a derivation of superalgebra $\Lambda(n, n)$ for every $i \in Y$. Let $\text{Der} \Lambda(n, n)$ be the Lie superalgebra consisting of all continuous derivations of $\Lambda(n, n)$. Then $\text{Der} \Lambda(n, n) = W(n, n)$, where $W(n, n) = \{\sum_{i=1}^{2n} f_i D_i \mid f_i \in \Lambda(n, n)\}$, and we call $W(n, n)$ the general superalgebra of formal vector fields (see [Kac 1998]). Clearly, $W(n, n)$ has a \mathbb{Z}-grading structure $W(n, n) = \bigoplus_{i \geq -1} W(n, n)_{[i]}$, where $W(n, n)_{[i]} = \text{span}_\mathbb{F}\{f D_j \mid f \in \Lambda(n, n)_{[i+1]}, \ j \in Y\}$. Let

$$W(n, n)_j = \bigoplus_{i \geq j} W(n, n)_{[i]}.$$

Then $\{W(n, n)_j\}_{j \geq -1}$ is called the natural filtration of $W(n, n)$. Therefore, $W(n, n)$ is a linearly compact topological Lie superalgebra with $\{W(n, n)_j\}_{j \geq -1}$ as a fundamental system of neighborhoods of 0.

If $\deg f$ appears in some expression in this paper, we always regard f as a \mathbb{Z}_2-homogenous element and $\deg f$ as the \mathbb{Z}_2-degree of f. Then $\deg D_i = \mu(i)$, where

$$\mu(i) = \begin{cases} 0 & \text{if } i \in Y_0, \\ 1 & \text{if } i \in Y_1. \end{cases}$$

The following formula holds in $W(n, n)$ (see [Zhang 1997]):

$$[f D_i, g D_j] = f D_i(g) D_j - (-1)^{\deg f D_i \deg g D_j} g D_j(f) D_i,$$

where $f, g \in \Lambda(n, n)$ and $i, j \in Y$.

Put

$$i' = \begin{cases} i + n & \text{if } i \in Y_0, \\ i - n & \text{if } i \in Y_1. \end{cases}$$

Let $T_H : \Lambda(n, n) \to W(n, n)$ be the linear mapping such that

$$T_H(f) = \sum_{i=1}^{2n} (-1)^{\mu(i)} \deg f D_i(f) D_{i'}.

(1)$$

Put $HO(n) = \{T_H(f) \mid f \in \Lambda(n, n)\}$. Then $HO(n)$ is an infinite-dimensional Lie superalgebra (see [Kac 1998]), called the odd Hamiltonian superalgebra of formal
vector fields. For \(f, g \in \Lambda(n, n) \) the equation
\[
(2) \quad [T_H(f), T_H(g)] = T_H(T_H(f)(g))
\]
holds (see [Kac 1998]). Clearly, the algebra \(HO(n) \) has a \(\mathbb{Z} \)-grading structure \(HO(n) = \bigoplus_{i \geq -1} HO(n)_{[i]} \), where \(HO(n)_{[i]} = \{ T_H(f) \mid f \in \Lambda(n, n)_{[i+2]} \} \). Set \(HO(n)_i = HO(n) \cap W(n, n)_i \). Then \(\{ HO(n)_i \}_{i \geq -1} \) is called the natural filtration of \(HO(n) \).

Let \(HO(n, n) \) be the \(\mathbb{Z}_2 \)-graded space \(\Lambda(n, n)/\mathbb{F} \cdot 1 \) with reversed parity, that is, \(HO(n, n) = HO(n, n)_{\bar{0}} + HO(n, n)_{\bar{1}} \), where
\[
HO(n, n)_\theta = \text{span}_\mathbb{F} [x^{(\alpha)} x^u \in \Lambda(n, n)_{\theta + 1} \mid |\alpha| + |u| \geq 1], \quad \theta \in \mathbb{Z}_2.
\]
We denote by \(\text{p}(y) \) the \(\mathbb{Z}_2 \)-degree of the element \(y \) of \(HO(n, n) \) to distinguish it from the \(\mathbb{Z}_2 \)-degree in \(\Lambda(n, n) \). By (2), we can define a Lie multiplication in \(HO(n, n) \) by
\[
(3) \quad [y, z] = \sum_{i=1}^{2n} (-1)^{\mu(i)\text{p}(y)+\mu(i)} D_i(y) D_i(z).
\]
Clearly, Lie superalgebra \(HO(n, n) \) is isomorphic to \(HO(n) \).

Let \(\Delta = \sum_{i=1}^{n} D_i D_i \) be a linear mapping on \(\Lambda(n, n) \), let
\[
\Lambda^\Delta(n, n) = \{ f \in \Lambda(n, n) \mid \Delta f = 0 \},
\]
and let \(\overline{SHO}(n, n) = \Lambda^\Delta(n, n)/\mathbb{F} \cdot 1 \). Then \(\overline{SHO}(n, n) \) is a \(\mathbb{Z}_2 \)-graded subspace of \(HO(n, n) \). For \(f, g \in \Lambda(n, n) \) we have
\[
\Delta(T_H(f)(g)) = (-1)^{\deg f + 1} T_H(f)(\Delta g) - (-1)^{\deg f \deg g + \deg f} T_H(g)(\Delta f);
\]
see [Kac 1998]. Therefore, with the multiplication defined in (3), \(\overline{SHO}(n, n) \) is a subalgebra of \(HO(n, n) \). Set
\[
(4) \quad SHO(n, n) = \text{span}_\mathbb{F} \{ [x^{(\alpha)}, x^u] \mid \alpha \in \mathbb{N}_0^n, u \in \mathbb{B}(n), |\alpha| + |u| \geq 3 \}.
\]
Then \(SHO(n, n) \) is an infinite-dimensional subalgebra of \(\overline{SHO}(n, n) \), called the special odd Hamiltonian superalgebra of formal vector fields (see [Kac 1998]). Clearly, \(SHO(n, n) \) has a \(\mathbb{Z} \)-grading structure \(SHO(n, n) = \bigoplus_{i \geq -1} SHO(n, n)_{[i]} \), where
\[
SHO(n, n)_{[i]} = \text{span}_\mathbb{F} \{ [x^{(\alpha)}, x^u] \mid \alpha \in \mathbb{N}_0^n, u \in \mathbb{B}(n), |\alpha| + |u| = i + 4 \}.
\]
Set \(SHO(n, n)_i = SHO(n, n) \cap W(n, n)_i \). Then \(\{ SHO(n, n)_i \}_{i \geq -1} \) is called the natural filtration of \(SHO(n, n) \).

Set \(SHO(n) = T_H(SHO(n, n)) \). Clearly, with the multiplication defined in (2), \(SHO(n) \) is a Lie superalgebra that is isomorphic to \(SHO(n, n) \). For the sake of simplicity, we always write \(SHO \) for \(SHO(n, n) \) or \(SHO(n) \).
In the following, we simply write HO for $HO(n)$, and let X denote the Lie superalgebra HO or SHO.

3. Invariant subalgebras and natural filtrations

Lemma 3.1. Suppose that $y \in X^- \cap X_0$ and that $y \neq 0$. Then

$$y(\Lambda(n, n)_{[r]}) = \Lambda(n, n)_{[r-1]}$$

for all $r \in \mathbb{N}$; hence $y(\Lambda(n, n)) = \Lambda(n, n)$.

Proof. We first prove that $\Lambda(n, n)_{[r-1]} \subseteq y(\Lambda(n, n)_{[r]})$. Write $y = \sum_{j=1}^{n} c_j D_j$, where $c_j \in \mathbb{F}$. Then there exists at least one nonzero element in $\{c_1, \ldots, c_n\}$. Let $c_{ij} = c_j$, where $1 \leq j \leq n$. Then there exist $c_{ij} \in \mathbb{F}$, where $2 \leq l \leq n$, $1 \leq j \leq n$, such that the matrix $(c_{ij})_{1 \leq i, j \leq n}$ is invertible. Let $(a_{ij})_{1 \leq i, j \leq n} = (c_{ij})^{-1}_{1 \leq i, j \leq n}$. Note that $(1, 0, \ldots, 0) (c_{ij})_{1 \leq i, j \leq n} = (c_1, c_2, \ldots, c_n)$. It follows that

$$y((1, 0, \ldots, 0) = (c_1, c_2, \ldots, c_n) (a_{ij})_{1 \leq i, j \leq n}.$$

Let $h_j = \sum_{i=1}^{n} a_{ij} x_i$, where $j \in Y_0$, and let $h_k = x_k$, where $k \in Y_1$. Then the set

{h_1, h_2, \ldots, h_{2n}} is an \mathbb{F}-basis of $\Lambda(n, n)_{[1]}$. Therefore, for every $r \in \mathbb{N}$, we have

$$\Lambda(n, n)_{[r-1]} = \text{span}_\mathbb{F}\{h_1^{\alpha_1} \cdots h_n^{\alpha_n} h_i \cdots h_k\},$$

where $(\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$, $(i_1, \ldots, i_k) \in \mathbb{B}_k$ and $\sum_{i=1}^{n} \alpha_i + k = r - 1$. Noting that $\alpha_1 \in \mathbb{N}_0$, we see that $\alpha_1 + 1 \neq 0$, since char $\mathbb{F} = 0$. By (5), we have $y(h_j) = \delta_{j1}$, where $j \in Y_0$. Consequently, we have

$$y((\alpha_1 + 1)^{-1} h_1^{\alpha_1} \cdots h_n^{\alpha_n} h_i \cdots h_k) = h_1^{\alpha_1} \cdots h_n^{\alpha_n} h_i \cdots h_k.$$

Thus $\Lambda(n, n)_{[r-1]} \subseteq y(\Lambda(n, n)_{[r]})$. The reverse inclusion can be verified trivially.

Suppose that $f = \sum_{s \geq 0} f_s$ is an arbitrary element of $\Lambda(n, n)$, where f_s is in $\Lambda(n, n)_{[s]}$. According to the results above, for every $s \in \mathbb{N}_0$, there exists a g_{s+1} in $\Lambda(n, n)_{[s+1]}$ such that $f_s = y(g_{s+1})$. Since y is continuous, it follows that $f = \sum_{s \geq 0} y(g_{s+1}) = y(\sum_{s \geq 0} g_{s+1}) \in y(\Lambda(n, n))$. Thus $\Lambda(n, n) = y(\Lambda(n, n))$. \qed

Lemma 3.2. Suppose that $y \in X^- \cap X_0$ and that $y \neq 0$. Then $[y, X_{[r]}] = X_{[r-1]}$ for all $r \in \mathbb{N}_0$.

Proof. It suffices to show that $X_{[r-1]} \subseteq [y, X_{[r]}]$. Consider the case of HO. Suppose that $T_H(f)$ is an element of $HO_{[r-1]}$, where $f \in \Lambda(n, n)_{[r+1]}$. Then by Lemma 3.1 there exists $g \in \Lambda(n, n)_{[r+2]}$ such that $y(g) = f$, which combined with (2) yields that $T_H(f) = [y, T_H(g)] \in [y, HO_{[r]}]$.

Consider the case of SHO. Suppose that $[x^{(\alpha)}, x^u]$ is a standard basis element of $SHO_{[r-1]}$, and assume that $y = x_i$, where $i \in Y_0$. Then by (3), we have that $-[x^{(\alpha)}, x^u] = [x_i, [x^{(\alpha+i)}, x^u]]$ is in $[y, SHO_{[r]}]$. \qed
Lemma 3.3. Suppose that \(y \in X_{-1} \cap X_0 \setminus X_0 \) and that \(y \neq 0 \). Then \([y, X] = X\).

Proof. It suffices to show that \(X \subseteq [y, X] \). Suppose that \(y = \sum_{i \geq -1} y_i \), where \(y_i \in X_{[i]} \), and suppose that \(z = \sum_{i \geq -1} z_i \) is an arbitrary element of \(X \), where \(z_i \in X_{[i]} \). Then by Lemma 3.2, we can inductively pick \(w_j \in X_{[j]} \), such that \([y_{-1}, w_0] = z_{-1} \) when \(j = 0 \), and \([y_{-1}, w_j] = z_{j-1} - \sum_{i=0}^{j-1} [y_i, w_{j-1-i}] \) when \(j > 0 \). For arbitrary \(k \in \mathbb{N}_0 \), direct calculations show that

\[
(y_{-1}, \sum_{j=0}^{k} w_j) = [y_{-1}, w_0] + \sum_{j=1}^{k} [y_{-1}, w_j] = \sum_{j=-1}^{k-1} z_j - \sum_{0 \leq i+j \leq k-1} [y_i, w_j],
\]

and

\[
\left[\sum_{i \geq 0} y_i, \sum_{j=0}^{k} w_j \right] = \left[\sum_{i=0}^{k-1} y_i, \sum_{j=0}^{k} w_j \right] + \left[\sum_{i \geq k} y_i, \sum_{j=0}^{k} w_j \right] = \sum_{0 \leq i+j \leq k-1} [y_i, w_j] + \sum_{i+j \geq k} [y_i, w_j].
\]

Combining (6) and (7), we have

\[
[y, \sum_{j=0}^{k} w_j] = [y_{-1}, \sum_{j=0}^{k} w_j] + \left[\sum_{i \geq 0} y_i, \sum_{j=0}^{k} w_j \right] = \sum_{j=-1}^{k-1} z_j + \sum_{i+j \geq k} [y_i, w_j] \in \sum_{j=-1}^{k-1} z_j + X_k.
\]

Noting that \(X_k = \bigcap_{i=0}^{k} X_i \), we see that \([y, \sum_{j=0}^{k} w_j] \equiv \sum_{j=-1}^{k-1} z_j \pmod{\bigcap_{i=0}^{k} X_i} \). Let \(w = \sum_{j \geq 0} w_j \). Then \([y, w] = [y, \sum_{j \geq 0} w_j] \equiv \sum_{j \geq -1} z_j \pmod{\bigcap_{i \geq 0} X_i} \), whence \([y, w] = z\). Thus \(X \subseteq [y, X] \). \(\square \)

For an element \(y \) of Lie superalgebra \(L \), we call \(y \) ad-nilpotent if there exists a positive integer \(t \) such that \((\text{ad} \, y)^t(L) = 0\). We call \(y \) ad-quasi-nilpotent if \(\bigcap_{i=1}^{\infty} (\text{ad} \, y)^i(L) = 0 \) (see [Humphreys 1972; Jin 1992]). Obviously, ad-nilpotent elements are ad-quasi-nilpotent elements. In particular, \(D_i \) is an ad-nilpotent element of \(X \) for every \(i \in Y_1 \).

Let \(J \) be a subset of \(L \). Put

\[
\text{qn}_L(J) := \{ y \in J \mid y \text{ is an ad-quasi-nilpotent element of } L \}.
\]

In the following, we simply write \(\text{qn}(J) \) for \(\text{qn}_X(J) \), and denote by \(\text{Qn}(J) \) the subalgebra of \(X \) generated by \(\text{qn}(J) \). It is clear that \(X_1 \subseteq \text{qn}(X) \). In the following, we will determine the ad-quasi-nilpotent elements of \(X_{[0]} \), and prove the invariance of natural filtration of \(X \).

We denote by \(M_{2n}(\Lambda(n, n)) \) the \(F \)-algebra consisting of all \(2n \times 2n \) matrices over \(\Lambda(n, n) \), denote by \(\text{pr}_{[0]} \) the projection of \(\Lambda(n, n) \) on \(\Lambda(n, n);[0] \), and denote
by pr_1 the projection on $\Lambda(n,n)_1$. For $(a_{ij})_{i,j \in Y} \in M_{2n}(\Lambda(n,n))$, we also denote

$$\text{pr}_0 : (a_{ij})_{i,j \in Y} \mapsto (\text{pr}_0(a_{ij}))_{i,j \in Y} \quad \text{and} \quad \text{pr}_1 : (a_{ij})_{i,j \in Y} \mapsto (\text{pr}_1(a_{ij}))_{i,j \in Y}.$$

Lemma 3.4. Suppose that $h_1, h_2, \ldots, h_{2n} \in \Lambda(n,n)_1$ with $\deg(h_j) = \mu(j)$ such that the matrix $(\text{pr}_0(D_i h_j))_{i,j \in Y}$ is invertible. Then there exists an automorphism σ of $\Lambda(n,n)$ such that

$$\sigma(x_i) = h_i \quad \text{for all } i \in Y.$$

Proof. Let $\sigma : \Lambda(n,n) \to \Lambda(n,n)$ be an even endomorphism such that (8) holds. Note that the natural filtration of $\Lambda(n,n)$ is invariant under σ. Then σ induces a linear transformation σ_i of $\Lambda(n,n)_i/\Lambda(n,n)_{i+1}$ for every $i \geq 0$. We first use induction on k to show that σ_k is bijective. Since the matrix of σ_1 with respect to \mathbb{F}-basis $\{x_1 + \Lambda(n,n)_2, \ldots, x_{2n} + \Lambda(n,n)_2\}$ is just $(\text{pr}_0(D_i h_j))_{i,j \in Y}$, we see that σ_1 is bijective. Suppose that $k > 1$ and $x^{(\alpha)} x^u$ is an element of $\Lambda(n,n)_{[k]}$. Then we can write $x^{(\alpha)} x^u = f_j f_{k-j}$, where $f_j \in \Lambda(n,n)_{[j]}$ and $f_{k-j} \in \Lambda(n,n)_{[k-j]}$ with $1 \leq j < k$. By induction, there exist $f'_j \in \Lambda(n,n)_{[j]}$ and $f'_{k-j} \in \Lambda(n,n)_{[k-j]}$ such that $\sigma(f'_j) \equiv f_j$ (mod $\Lambda(n,n)_{j+1}$) and $\sigma(f'_{k-j}) \equiv f_{k-j}$ (mod $\Lambda(n,n)_{k-j+1}$), whence

$$\sigma(f'_j f'_{k-j}) = \sigma(f'_j) \sigma(f'_{k-j}) \equiv f_j f_{k-j} = x^{(\alpha)} x^u \pmod{\Lambda(n,n)_{k+1}}.$$

Thus σ_k is surjective. Note that since $\Lambda(n,n)_k/\Lambda(n,n)_{k+1}$ is finite-dimensional, it follows that σ_k is bijective.

We next prove that σ is bijective. Suppose that $f \in \ker(\sigma) \cap \Lambda(n,n)_i$ for any $i \geq 0$. Then $\sigma_i(f + \Lambda(n,n)_{i+1}) = 0$. It follows that $f \in \Lambda(n,n)_{i+1}$, since σ_i is injective. Thus $\ker(\sigma) \subseteq \bigcap_{j \geq i} \Lambda(n,n)_j = 0$, and σ is injective. Suppose that $g = g_0 + g_1 \in \Lambda(n,n)$, where $g_0 \in \mathbb{F}$, $g_1 \in \Lambda(n,n)_1$. Since σ_1 is surjective, there exists $g'_1 \in \Lambda(n,n)_1$ such that $\sigma_1(g'_1 + \Lambda(n,n)_2) = g_1 + \Lambda(n,n)_2$. It follows that $g_2 := g_1 - \sigma(g'_1) \in \Lambda(n,n)_2$. Note that σ_i is surjective for every $i \geq 0$. Then we can inductively pick $g'_i \in \Lambda(n,n)_i$, and define $g_{i+1} \in \Lambda(n,n)_{i+1}$ by

$$g_{i+1} := g_i - \sigma(g'_i).$$

Let $g' = g_0 + \sum_{i \geq 0} g'_i$. Since σ is continuous, it follows from (9) that

$$\sigma(g') = \sigma(g_0) + \sum_{i \geq 0} \sigma(g'_i) = g_0 + \sum_{i \geq 1} (g_i - g_{i+1}) = g_0 + g_1 = g,$n whence σ is surjective.

Let ρ be the corresponding representation with respect to $X_{[0]}$-module $X_{[-1]}$, that is, $\rho(y) = \text{ad}_y|_{X_{[-1]}}$ for all $y \in X_{[0]}$. It is easy to see that ρ is faithful. For $y \in X_{[0]}$, we also denote by $\rho(y)$ the matrix of $\rho(y)$ relative to the fixed ordered
Theorem 3.5. Suppose that A is an invertible matrix of $\operatorname{gl}(n, n)$, and $y \in W(n, n)_{[0]}$. Then there exists an automorphism φ of $W(n, n)$ such that $\rho(\varphi(y)) = A\rho(y)A^{-1}$.

Proof. Suppose that $A = (a_{ij})_{1 \leq i, j \leq 2n}$, and let $h_j = \sum_{i=1}^{2n} a_{ij} x_i$, where $1 \leq j \leq 2n$. Then $\{h_1, h_2, \ldots, h_{2n}\}$ is an \mathbb{F}-basis of $\Lambda(n, n)_{[1]}$. Note that $D_t(h_j) = a_{ij}$ for all $i, j \in Y$. It follows from Lemma 3.4 that there exists $\sigma \in \operatorname{Aut} \Lambda(n, n)$ such that $\sigma(x_i) = h_i$ for all $i \in Y$. Clearly, $\sigma \in \operatorname{Aut}(\Lambda(n, n) : W(n, n))$.

Let $\varphi : W(n, n) \to W(n, n)$ be the linear mapping such that $z \mapsto \sigma z \sigma^{-1}$ for all z in $W(n, n)$. Then φ is an automorphism of $W(n, n)$. We claim that φ is the desired automorphism. Suppose that $A^{-1} = (c_{ij})_{1 \leq i, j \leq 2n}$, and let $y = \sum_{s, r \in Y} b_{sr} x_s D_r$ be an arbitrary element of $W(n, n)_{[0]}$, where $b_{sr} \in \mathbb{F}$. Then $\rho(y) = (b_{sr})_{1 \leq s, r \leq 2n}$. Noting that $(\varphi y)(\sigma x_i) = \sigma(y x_i)$, we see that $\varphi(y) = \sum_{t, j \in Y} \sigma(y x_i) D_j$. Thus

$$\varphi(y) = \sum_{t, j \in Y} c_{ij} \sigma \left(\sum_{s \in Y} b_{st} x_s \right) D_j = \sum_{t, j \in Y} b_{st} c_{ij} \sigma(x_s) D_j = \sum_{t, j, s \in Y} b_{st} c_{ij} h_s D_j = \sum_{t, j, s, k \in Y} a_{ks} b_{st} c_{ij} x_k D_j.$$

It follows that $\rho(\varphi(y)) = A\rho(y)A^{-1}$.

Lemma 3.6. Suppose that $y \in W(n, n)_{[0]}$. Then y is a nilpotent linear transformation of $W(n, n)_{[r]}$ for every $r \geq -1$ if and only if $\rho(y)$ is a nilpotent matrix.

Proof. If $y|_{W(n, n)_{[r]}}$ is nilpotent, then the definition of ρ shows that $\rho(y)$ is a nilpotent matrix. Conversely, suppose that $\rho(y)$ is nilpotent. By Lemma 3.5, it suffices to consider the case when $\rho(y)$ is a strictly upper triangular matrix. Suppose that $y = \sum_{i, j \in Y, i < j} a_{ij} x_i D_j$, where $a_{ij} \in \mathbb{F}$.

We first prove that $\operatorname{ad} x_i D_j$ is nilpotent linear transformation of $W(n, n)_{[r]}$ for every $r \geq -1$ when $i < j$. For any standard basis element $x^{(\alpha)} x^u D_k$ of $W(n, n)_{[r]}$, where $\alpha \in \mathbb{N}_0^u$, $u \in \mathfrak{B}(n)$ and $k \in Y$, two cases arise.

Case 1. $j \in Y_0$. If $k \neq i$, then

$$(\operatorname{ad} x_i D_j)^t(x^{(\alpha)} x^u D_k) = x_i^t D_j^t(x^{(\alpha)}) x^u D_k = 0$$

when $t \geq r + 2$. If $k = i$, then

$$(\operatorname{ad} x_i D_j)^t(x^{(\alpha)} x^u D_i) = x_i^t D_j^t(x^{(\alpha)}) x^u D_i - t x_i^{t-1} D_j^{t-1}(x^{(\alpha)}) x^u D_j = 0$$

when $t \geq r + 3$.

Case 2. $j \in Y_1$. If $k \neq i$, then

$$(\operatorname{ad} x_i D_j)^t(x^{(\alpha)} x^u D_k) = (\operatorname{ad} x_i D_j)^{t-2}(x_i^2 x^{(\alpha)} D_j^2(x^u) D_k) = 0$$
when $t \geq 2$, and if $k = i$, then
\[(\text{ad} \, x_i \, D_j)^t (x^{(a)} \, x^u \, D_i) = l(\text{ad} \, x_i \, D_j)^{t-3} (x_i^2 \, x^{(a)} \, D_j^2 (x^u) \, D_j) = 0\]
when $t \geq 3$, where $l = 1$ or $l = -1$.

Therefore $(\text{ad} \, x_i \, D_j)^t (x^{(a)} \, x^u \, D_k) = 0$ when $t \geq r + 4$. Let $f_k = \sum_{\alpha, u} c_{\alpha, u} x^{(a)} \, x^u$ be an arbitrary element of $\Lambda(n, n)_{[r+1]}$, where $c_{\alpha, u} \in \mathbb{F}$, $k \in Y$. Then for any $t \geq r + 4$,
\[(\text{ad} \, x_i \, D_j)^t (f_k \, D_k) = \sum_{\alpha, u} (\text{ad} \, x_i \, D_j)^t (c_{\alpha, u} x^{(a)} \, x^u \, D_k) = 0,\]
since $(\text{ad} \, x_i \, D_j)^t$ is continuous. Consequently, we see that $\text{ad} \, x_i \, D_j |_{W(n, n)_{[r]}}$ is nilpotent for every $r \geq -1$ when $i < j$.

Note that the set $\{ \pm x_i \, D_j, 0 \mid i < j \}$ is closed under the multiplication of $W(n, n)$, and the Lie superalgebra $\text{span}_\mathbb{F} \{ \pm x_i \, D_j, 0 \mid i < j \}$ is finite-dimensional. It follows from [Strade and Farnsteiner 1988, Theorem 1.3.1] that $\text{ad} \, y |_{W(n, n)_{[r]}}$ is nilpotent.

Lemma 3.7. Suppose that $y \in X_{[0]}$. Then $\text{ad} \, y$ is a nilpotent linear transformation of $X_{[r]}$ for every $r \geq -1$ if and only if $\rho(y)$ is a nilpotent matrix.

Proof. Clearly, $\rho(y)$ is a nilpotent matrix when $\text{ad} \, y |_{X_{[-1]}}$ is nilpotent. Conversely, suppose that $\rho(y)$ is a nilpotent matrix. Then by Lemma 3.6, $\text{ad} \, y$ is a nilpotent linear transformation of $W(n, n)_{[r]}$ for every $r \geq -1$. Since X is a subalgebra of $W(n, n)$, it follows that $\text{ad} \, y |_{X_{[r]}}$ is nilpotent.

Lemma 3.8. Suppose that $y = y_0 + y_1 \in \text{qn}(X_0)$, where $y_0 \in X_{[0]}$, $y_1 \in X_1$. Then $\rho(y_0)$ is a nilpotent matrix, and hence, $y_0 \in \text{qn}(X_{[0]})$.

Proof. Let $X_{(i)} = X / X_{i+1}$ for every $i \geq -1$. Then $X_{(i)} \cong \bigoplus_{j \leq i} X_{[j]}$. For every $i \geq -1$, let τ_i be the endomorphism on $X_{(i)}$ satisfying $\tau_i(z) \equiv [y, z] \pmod{X_{i+1}}$ for all $z \in X_{(i)}$. Assume that $\rho(y_0)$ is not a nilpotent matrix. Then τ_i is not nilpotent for every $i \geq -1$. Let $X_{(i)} = U_i \oplus V_i$ be the Fitting decomposition of $X_{(i)}$ with respect to τ_i, where $U_i \neq 0$, $\tau_i|_{U_i}$ is invertible, $\tau_i|_{V_i}$ is nilpotent. Since $X_{(i)} = X_{(i+1)} / X_{[i+1]}$, $\tau_i = \tau_{i+1} \pmod{X_{i+1}}$ and $\tau_{i+1}(X_{[i+1]}) \subseteq (X_{[i+1]})$, it follows that
\[X_{(i)} = (U_{i+1} + X_{[i+1]} / X_{[i+1]}) \oplus (V_{i+1} + X_{[i+1]} / X_{[i+1]}).\]
is also the Fitting decomposition of $X_{(i)}$ with respect to τ_i, and by the uniqueness of the Fitting decomposition, we get $U_i = U_{i+1} + X_{[i+1]} / X_{[i+1]}$. This implies that U_i is the projection of U_{i+1} on $X_{(i)}$. Set
\[\overline{U} = \{ z \in X \mid \text{the projection of } z \text{ on } X_{(i)} \text{ belongs to } U_i \text{ for all } i \geq -1 \}.\]
By the completeness of X, the set \overline{U} is nonempty, and its projection on $X_{(i)}$ is U_i for each $i \geq -1$. It follows that $[y, \overline{U}] = \overline{U}$. So $\bigcap_{i=0}^{\infty} (\text{ad} \, y)^i(X) \supseteq \overline{U} \neq 0$,
contradicting the hypothesis that \(y \) is ad-quasi-nilpotent. Therefore, \(\rho(y_0) \) is a nilpotent matrix, which combined with Lemma 3.7 yields \(y_0 \in \text{qn}(X_{[0]}) \).

\[\text{Proposition 3.9. One has} \quad \text{qn}(X_0) = A N_0 \cap X_{[0]} + X_1, \text{where} \]

\[AN_0 = \{ y \mid y \in W(n, n)_{[0]} \text{ such that } \rho(y) \text{ is a nilpotent matrix} \}. \]

Proof. By Lemma 3.8, it suffices to show that \(A N_0 \cap X_{[0]} + X_1 \subseteq \text{qn}(X_0) \). Suppose that \(y_0 \in A N_0 \cap X_{[0]} \), and suppose that \(y_1 \in X_1 \). Let \(y = y_0 + y_1 \). Then \(\rho(y_0) \) is a nilpotent matrix. According to Lemma 3.7, there exists a positive integer \(t_i \) such that \((\text{ad } y_0)^{t_i}(X_{[1]}) = 0 \) for each \(i \geq -1 \). This implies that \((\text{ad } y_0)^{t_i}(X_i) \subseteq X_{i+1} \). Consequently, we have \((\text{ad } y)^{t_i+\cdots+k}(X_0) \subseteq X_{k+1} \) for any \(k \geq -1 \). It follows that \(\bigcap_{i=1}^{\infty} (\text{ad } y)^{t_i}(X_0) \subseteq \bigcap_{k=1}^{\infty} X_k = 0 \), whence \(y \in \text{qn}(X_0) \).

\[\text{Lemma 3.10.} \quad \text{qn}(X_{\bar{0}}) = \text{qn}(X_{[0]} \cap X_{\bar{0}}) + X_1 \cap X_{\bar{0}}, \text{and then} \quad \text{qn}(X_{\bar{0}}) \subseteq X_0 \cap X_{\bar{0}}. \]

Proof. Note that \(X_1 \subseteq \text{qn}(X) \). It follows that \(X_1 \cap X_{\bar{0}} \subseteq \text{qn}(X_{\bar{0}}) \). Consequently, we have \(\text{qn}(X_{[0]} \cap X_{\bar{0}}) + X_1 \cap X_{\bar{0}} \subseteq \text{qn}(X_{\bar{0}}) \).

Conversely, suppose that \(y = y_{-1} + y_0 \in \text{qn}(X_{\bar{0}}) \), where \(y_{-1} \in X_{[1]} \cap X_{\bar{0}} \), and \(y_0 \in X_0 \cap X_{\bar{0}} \). Assume that \(y_{-1} \neq 0 \). It follows from Lemma 3.3 that \([y, X] = X \), which implies that \(y \) is not an ad-quasi-nilpotent element of \(X \), a contradiction. Thus \(y \in X_0 \cap X_{\bar{0}} \).

Now we can write \(y = y_0 + y_1 \), where \(y_0 \in X_{[0]} \cap X_{\bar{0}} \), and \(y_1 \in X_1 \cap X_{\bar{0}} \). By Lemma 3.8, we have \(y_0 \in \text{qn}(X_{[0]} \cap X_{\bar{0}}) \subseteq \text{qn}(X_{[0]} \cap X_{\bar{0}}) \). It follows that \(y \in \text{qn}(X_{[0]} \cap X_{\bar{0}}) + X_1 \cap X_{\bar{0}} \). Thus

\[(10) \quad \text{qn}(X_{\bar{0}}) \subseteq \text{qn}(X_{[0]} \cap X_{\bar{0}}) + X_1 \cap X_{\bar{0}}. \]

The right-hand side of (10) is a subalgebra of \(X_{\bar{0}} \). Then

\[\text{qn}(X_{\bar{0}}) \subseteq \text{qn}(X_{[0]} \cap X_{\bar{0}}) + X_1 \cap X_{\bar{0}}. \]

Thus the lemma holds.

\[\text{Lemma 3.11.} \quad \text{Suppose that} \quad i, j \in Y \text{ with} \quad i \neq j. \text{ Then} \quad T_H(x_i x_j) \in \text{qn}(X_{[0]}). \]

Proof. It suffices to show that \(\text{ad } T_H(x_i x_j) \) is a nilpotent linear transformation of \(W(n, n)_{[t]} \) for every \(t \geq -1 \). Suppose that \(x^{(\alpha)} x^u D_k \) is a standard basis element of \(W(n, n)_{[t]} \), where \(t \geq -1 \). To simplify our proof for the lemma, we only verify the case \(i \in Y_0, j \in Y_1, \) and \(k \neq i, j \) as the proofs for the other cases are similar and hence omitted.

An induction on \(l \) shows that

\[(\text{ad } T_H(x_i x_j))^l(x^{(\alpha)} x^u D_k) \]

\[= (-1)^{l-1} (x^{(\alpha)} x^u D_k) + (-1)^l x_i x_j D_k = 0. \]

This yields that \((\text{ad } T_H(x_i x_j))^l(x^{(\alpha)} x^u D_k) = 0 \) when \(l \geq t + 3 \).
Let I_n denote the identity matrix of size $2n \times 2n$, and let e_{ij} denote the $2n \times 2n$ matrix whose (i, j)-entry is 1 and whose other entries are 0. Set \[
\tilde{p}(n) = \left\{ \begin{pmatrix} A & B \\ C & -A^T \end{pmatrix} \in \text{gl}(n, n) \ \mid \ B = -B^T, \ C = C^T \right\}, \
p(n) = \left\{ \begin{pmatrix} A & B \\ C & -A^T \end{pmatrix} \in \tilde{p}(n) \ \mid \tr A = 0 \right\}, \]
where A^T is the transpose of A. Then $\tilde{p}(n)$, $p(n)$ are subalgebras of $\text{gl}(n, n)$ (see [Kac 1998]). Clearly, \[
\tilde{p}(n) = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix} \in \text{gl}(n, n) \right\}, \
p(n) = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix} \in \tilde{p}(n) \ \mid \tr A = 0 \right\}.
\]

Lemma 3.12.
(1) $\rho(T_H(x_i x_j)) = (-1)^{i \mu(i')} e_{i'j} - (-1)^{i \mu(i')} e_{j'i}$ for all $i, j \in Y$, hence $\rho(HO_{0\bar{0}}) = \tilde{p}(n)$ and $\rho(HO_{0\bar{0}} \cap HO_{\bar{0}\bar{0}}) = p(n)_{\bar{0}}$.
(2) $\rho(T_H(x_i x_j)) = (-1)^{i \mu(i')} e_{i'j} - (-1)^{i \mu(i')} e_{j'i}$ for all $i, j \in Y$ with $i \neq j'$, $\rho(T_H(x_k x_{k'} - x_1 x_{l'})) = e_{kk} - e_{k'k'} - e_{ll} + e_{l'l'}$ for all $k, l \in Y_0$ with $k \neq l$, hence $\rho(SHO_{0\bar{0}}) = p(n)$ and $\rho(SHO_{0\bar{0}} \cap SHO_{\bar{0}\bar{0}}) = p(n)_{\bar{0}}$.

Proof.
(1) Direct calculation shows that $\text{ad} T_H(x_i x_j)(D_j) = (-1)^{i \mu(i')} D_{i'}$, and $\text{ad} T_H(x_i x_j)(D_j) = -(-1)^{i \mu(i')} D_{j'}$. It follows that $\rho(T_H(x_i x_j)) = (-1)^{i \mu(i')} e_{i'j} - (-1)^{i \mu(i')} e_{j'i}$.

Note that $HO_{0\bar{0}} = \text{span}_F \{T_H(x_i x_j) \mid i, j \in Y\}$. Consequently, (1) holds.

(2) The proof is similar to that of (1), hence omitted. \hfill \Box

Lemma 3.13. $\rho(Qn(X_{[0]} \cap X_{\bar{0}})) = p(n)_{\bar{0}}$.

Proof. Suppose that $y \in Qn(X_{[0]} \cap X_{\bar{0}})$. Then $\rho(y)$ is a nilpotent matrix by Lemma 3.8. It follows from Lemma 3.12 that $\rho(y) = \text{diag}(A, -A^T)$, where A and $-A^T$ are $n \times n$ nilpotent matrices. This shows that $\tr A = 0$, that is $\rho(y) \in p(n)_{\bar{0}}$. Thus $\rho(Qn(X_{[0]} \cap X_{\bar{0}})) \subseteq p(n)_{\bar{0}}$.

Conversely, set \[
R = \{T_H(x_i x_j) \mid i \in Y_0, j \in Y_1, \text{ with } i \neq j' \}.
\]
Then $R \subseteq Qn(X_{[0]} \cap X_{\bar{0}})$, by Lemma 3.11, whence $\rho(R) \subseteq \rho(Qn(X_{[0]} \cap X_{\bar{0}}))$. Noting that $\rho(T_H(x_i x_j)) = e_{j'i} - e_{i'j}$ for all $i \in Y_0, j \in Y_1$ with $i \neq j'$, by Lemma 3.12, we see that $\rho(R)$ generates $p(n)_{\bar{0}}$. Thus $p(n)_{\bar{0}} \subseteq \rho(Qn(X_{[0]} \cap X_{\bar{0}}))$. \hfill \Box

Note that $\text{Nor}_{X_{\bar{0}}}(Qn(X_{\bar{0}})) = \{y \in X_{\bar{0}} \mid [y, Qn(X_{\bar{0}})] \subseteq Qn(X_{\bar{0}})\}$. Clearly, the set $\text{Nor}_{X_{\bar{0}}}(Qn(X_{\bar{0}}))$ is invariant under automorphisms of X.
Proposition 3.14. $X_0 \cap X_0 = \text{Nor}_{X_0}(Qn(X_0))$. In particular, $X_0 \cap X_0$ is an invariant subalgebra.

Proof. Note that $[\tilde{p}(n)\bar{0}, n] = p(n)\bar{0}$. It follows from Lemmas 3.12 and 3.13 that

$$[\rho(X_0 \cap X_0), \rho(Qn(X_0 \cap X_0))] = [\tilde{p}(n)\bar{0}, p(n)\bar{0}] = \rho(Qn(X_0 \cap X_0)),$$

whence

(11) $[X_0 \cap X_0, Qn(X_0 \cap X_0)] = Qn(X_0 \cap X_0)$, since ρ is faithful. By Lemma 3.10 and (11), we have

$$[X_0 \cap X_0, Qn(X_0 \cap X_0)] = [X_0 \cap X_0 + X_1 \cap X_0, Qn(X_0 \cap X_0) + X_1 \cap X_0] \subseteq [X_0 \cap X_0, Qn(X_0 \cap X_0)] + X_1 \cap X_0 \subseteq Qn(X_0 \cap X_0) + X_1 \cap X_0 = Qn(X_0).$$

Thus $X_0 \cap X_0 \subseteq \text{Nor}_{X_0}(Qn(X_0))$.

Conversely, suppose that $y = y_1 + y_0 \in \text{Nor}_{X_0}(Qn(X_0))$, where $y_1 \in X_{[-1]} \cap X_0$, $y_0 \in X_0 \cap X_0$. We want to show that $y_1 = 0$. Assume $y_1 = \sum a_i D_i \neq 0$, where $a_i \notin \mathbb{F}$. Then we can pick $k \in Y_0$ such that $a_k \neq 0$, and then pick $j_k \in Y_1$ such that $j_k \neq k'$. From Lemma 3.11 we see that $T_H(x_kx_{j_k}) \in Qn(X_0)$, which combined with our hypothesis that $y \in \text{Nor}_{X_0}(Qn(X_0))$, yields $[y, T_H(x_kx_{j_k})] \in Qn(X_0)$, whence $[y, T_H(x_kx_{j_k})] \in X_0 \cap X_0$ by Lemma 3.10. On the other hand, a direct calculation shows that

$$[y, T_H(x_kx_{j_k})] = [y_1, T_H(x_kx_{j_k})] + [y_0, T_H(x_kx_{j_k})] = -a_k D_{j_k} \neq [y_0, T_H(x_kx_{j_k})].$$

Since $[y_0, T_H(x_kx_{j_k})] \in X_0 \cap X_0$, we see that $a_k = 0$, contradicting our assumption, thus $y_1 = 0$. So $y = y_0 \in X_0 \cap X_0$, proving $\text{Nor}_{X_0}(Qn(X_0)) \subseteq X_0 \cap X_0$. Since $\text{Nor}_{X_0}(Qn(X_0))$ is invariant, we see that $X_0 \cap X_0$ is invariant. \hfill \Box

Set $\Omega = \{y \in qn(X_0 \cap X_0) \mid [y, X_0 \cap X_0] \subseteq qn(X_0 \cap X_0)\}$. Then Proposition 3.14 shows that Ω is invariant under automorphisms of X.

Proposition 3.15. $X_1 \cap X_0 = \Omega$. In particular, $X_1 \cap X_0$ is an invariant subalgebra.

Proof. We only verify the case of SHO, as the proof for HO is similar and hence omitted. Suppose that $y = y_0 + y_1$ is an arbitrary element of Ω, where y_0 is in $SHO_{[0]} \cap SHO_0$ and y_1 is in $SHO_1 \cap SHO_0$. Suppose that

$$y_0 = \sum_{i,j \in Y_0, i \neq j} a_{ij} T_H(x_ix_{j'}) + \sum_{i = 1}^{n-1} a_{ii} T_H(x_i x_{i'} - x_{i+1} x_{(i+1)'})$$

and $y_1 = \sum_{i = 1}^{n-1} a_{ii} T_H(x_i x_{i'})$. Then $y = y_0 + y_1 \in \text{Nor}_{X_0}(Qn(X_0))$, and hence $y_1 = 0$. Therefore $y = y_0 \in X_0 \cap X_0$, proving $\text{Nor}_{X_0}(Qn(X_0)) \subseteq X_0 \cap X_0$. Since $\text{Nor}_{X_0}(Qn(X_0))$ is invariant, we see that $X_0 \cap X_0$ is invariant. \hfill \Box
where \(a_{ij} \in \mathbb{F} \). Let \(b_{ij} = a_{ij} \), where \(i, j \in Y_0 \) with \(i \neq j \), and let \(b_{ii} = a_{ii} - a_{i-1,i-1} \), where \(i \in Y_0 \), and \(a_{00} = a_{nn} = 0 \). Let

\[
\begin{align*}
l &= \min \left\{ i \in Y_0 \mid b_{ij0} \neq 0 \text{ for some } j_0 \in Y \right\}, \\
t &= \min \left\{ j \in Y_0 \mid b_{i0j} \neq 0 \text{ for some } i_0 \in Y \right\}.
\end{align*}
\]

We first consider the case \(l \leq t \). Set \(k = \max \{ j \in Y_0 \mid b_{ij} \neq 0 \} \). Then \(l \leq t \leq k \), and \(b_{lk} \neq 0 \). If \(l = k \), then

\[
y_0 = \sum_{i=l+1}^{n} \sum_{j=l+1}^{n} a_{ij} T_H(x_i x_j') + \sum_{i=l}^{n-1} a_{ii} T_H(x_i x_i' - x_{i+1} x_{(i+1)'}),
\]

and

\[
\rho(y_0) = \sum_{i=l}^{n} a_{ii}(e_{ii} - e_{i+1,i+1}) - \sum_{i=l}^{n} a_{ii}(e_{i'i'} - e_{(i+1)'(i+1)'})
+ \sum_{i=l+1}^{n} \sum_{j=l+1}^{n} a_{ij}(e_{ji} - e_{i'j'}) = \left(a_{ll} A_{ll} \begin{array}{c} * \\ 0 \end{array} \right),
\]

where \(A_{ll} \) is the \(l \times l \) matrix whose \((l,l)\)-entry is 1 and 0 elsewhere. Since \(a_{ll} \neq 0 \), we conclude that \(\rho(y_{0l}) \) is not a nilpotent matrix. It follows from Lemma 3.8 that \(y \notin \text{qn}(SHO_0) \), contradicting the hypothesis that \(y \in \Omega \). Therefore \(l < k \) and

\[
y_0 = \sum_{j=t,j \neq l}^{k} a_{lj} T_H(x_l x_{j'}) + \sum_{i=l+1}^{n} \sum_{j=t,i \neq j}^{n} a_{ij} T_H(x_i x_{j'}) + \sum_{i=t}^{n} a_{ii} T_H(x_i x_{i'} - x_{i+1} x_{(i+1)'}).
\]

A direct calculation shows that

\[
\rho([T_H(x_k x_{l'}), y_0]) = [e_{lk} - e_{k'l'}, \rho(y_0)]
= a_{lk}(e_{ll} - e_{l'l'} - e_{kk} + e_{k'k'}) - \sum_{j=t,j \neq l}^{k-1} a_{lj}(e_{jk} - e_{k'j'})
+ \sum_{i=t+1,i \neq k}^{n} a_{ik}(e_{li} - e_{i'l'}) + (a_{kk} - a_{k-1,k-1} - \delta_{ll} a_{ll})(e_{lk} - e_{k'l'})
= \left(a_{lk} A_{ll} \begin{array}{c} * \\ 0 \end{array} \right),
\]

so \(\rho([T_H(x_k x_{l'}), y_0]) \) is not a nilpotent matrix. Since

\[
[T_H(x_k x_{l'}), y] = [T_H(x_k x_{l'}), y_0] + [T_H(x_k x_{l'}), y_1],
\]

it follows from Lemma 3.8 that \([T_H(x_k x_{l'}), y] \notin \text{qn}(SHO_0) \), contradicting our hypothesis that \(y \in \Omega \).
We now consider the case $l > t$. Set $k = \max\{i \in Y_0 \mid b_{ii} \neq 0\}$. Then $t < l \leq k$, $b_{kl} \neq 0$ and
\[
y_0 = \sum_{i=l}^{k} a_{il} T_H(x_i x_{i'}) + \sum_{i=l}^{k} \sum_{j=t+1, i \neq j}^{n} a_{ij} T_H(x_i x_{j'}) + \sum_{i=l}^{n} a_{ii} T_H(x_i x_{i'} - x_{i+1} x_{(i+1)'}) .
\]
A direct computation shows that
\[
\rho ([T_H (x_i x_{k'}), y_0]) = [e_{k'l} - e_{i'k'}, \rho (y_0)] = -a_{kl} (e_{ll'} - e_{kk'} + e_{kk'}) + \sum_{i=l}^{k-1} a_{il} (e_{ki} - e_{i'k'})
\]
\[- \sum_{j=t+1, i \neq k}^{n} a_{kj} (e_{ji} - e_{i'j'}) + (a_{k-1,k-1} - a_{k,k}) (e_{kl} - e_{i'k'})
\]
\[= \begin{pmatrix} -a_{kl} B_{tt} & 0 \\ \ast & \ast \end{pmatrix},
\]
where B_{tt} is the $t \times t$ matrix whose (t, t)-entry is 1 and 0 elsewhere. It follows that
\[
\rho ([T_H (x_i x_{k'}), y_0])
\]
is not a nilpotent matrix, whence $[T_H (x_i x_{k'}), y] \notin \text{qn}(\text{SHO}_0)$ by Lemma 3.8, a contradiction which yields $y_0 = 0$. Therefore $y = y_1 \in \text{SHO}_1 \cap \text{SHO}_0$, proving $\Omega \subseteq \text{SHO}_1 \cap \text{SHO}_0$.

Conversely, noting that $\text{SHO}_1 \subseteq \text{qn}(\text{SHO})$, we see that
\[
[\text{SHO}_1 \cap \text{SHO}_0, \text{SHO}_0 \cap \text{SHO}_0]
\]
\[\subseteq \text{SHO}_1 \cap \text{SHO}_0 \subseteq \text{SHO}_0 \cap \text{SHO}_0 \cap \text{qn}(\text{SHO}) = \text{qn}(\text{SHO}_0 \cap \text{SHO}_0).
\]
Thus $\text{SHO}_1 \cap \text{SHO}_0 \subseteq \Omega$. Since Ω is invariant, we see that $\text{SHO}_1 \cap \text{SHO}_0$ is invariant.

Lemma 3.16. $[X_1, X_1 \cap X_0] = X_0 \cap X_1$.

Proof. It suffices to show that $X_0 \cap X_1 \subseteq [X_1, X_1 \cap X_0]$. We first consider the case of HO. Suppose that $T_H (x^{(\alpha)} x^u) \in \text{HO}_0 \cap \text{HO}_1$, where $\alpha \in \mathbb{N}_0^n, u \in \mathbb{B}(n)$. Note that if $|u| \neq n$, then there exists $k \in Y_1 \setminus \{u\}$ such that
\[
T_H (x^{(\alpha)} x^u) = [D_k, T_H (x^{(\alpha)} x_k x^u)] \in [\text{HO}_1, \text{HO}_1 \cap \text{HO}_0],
\]
and if $|u| = n$, then
\[
-T_H (x^{(\alpha)} x^u) = [T_H (x_i x_j), T_H (x_i x^{(\alpha)} D_j (x^u))] \in [\text{HO}_1, \text{HO}_1 \cap \text{HO}_0],
\]
for all $i \in Y_0, j \in Y_1$.

Next, we consider the case of SHO. Suppose that $[x^{(\alpha)}, x^u] \in \text{SHO}_0 \cap \text{SHO}_1$, where $\alpha \in \mathbb{N}_0^n, u \in \mathbb{B}(n)$. If $|u| \neq n$, then there exists $k \in Y_1$ such that $k \notin \{u\}$. It
follows from (3) that
\[-[x^{(\alpha)}, x^u] = [x_{k'}, [x^{(\alpha)}, x_k x^u]] \in [\text{SHO}_1, \text{SHO}_1 \cap \text{SHO}_0].\]
If \(|u| = n\), then by the hypothesis, we see that \(|u|\) is even. It follows that
\[[x^{(\alpha)}, x^u] = [x_{3'} \cdots x_{n'}, [x^{(\alpha+\varepsilon_3)}, x_3 x_1 x_2]] \in [\text{SHO}_1, \text{SHO}_1 \cap \text{SHO}_0].\]

\[\square\]

Theorem 3.17. The natural filtration of \(X\) is invariant under automorphisms of \(X\).

Proof. By Proposition 3.15, we see that \(X_1 \cap X_0\) is invariant under automorphisms of \(X\). It follows from Lemma 3.16 that \(X_0 \cap X_1\) is invariant, which combined with Proposition 3.14 yields that \(X_0\) is invariant. Noting that
\[X_{[i]} = \{y \in X \mid [y, X] \subseteq X_{[i-1]}\}\]
for every \(i \geq 1\), we see that \(X_{[i]}\) is invariant. Thus \(X\) is invariant. \(\square\)

4. The automorphism group of \(X\)

Lemma 4.1. Suppose that \(\varphi_X \in \text{Aut } X\). Then:

1. \(\varphi_X\) is a continuous automorphism.
2. There exists an \(F\)-basis \(\{e_1, e_2, \ldots, e_{2n}\}\) of \(X_{[-1]}\) such that \(\varphi_X(D_i) \equiv e_i \pmod{X}\).

Proof. (1) By Theorem 3.17, we have \(\varphi_X(X_i) \subseteq X_i\) for every \(i \geq -1\). It follows that \(X_i \subseteq \varphi_X^{-1}(X_i)\). On the other hand, noting that \(\varphi_X^{-1} \in \text{Aut } X\), we see that \(\varphi_X^{-1}(X_i) \subseteq X_i\). Consequently, \(\varphi_X\) is a continuous automorphism.

(2) By Theorem 3.17, \(\varphi_X\) can induce an \(F\)-isomorphism \(\overline{\varphi}_X\) of the quotient spaces
\[\overline{\varphi}_X : X/X_0 \rightarrow X/X_0,\]
such that \(\overline{\varphi}_X(y + X_0) = \varphi_X(y) + X_0\) for all \(y \in X\). Since \(\{D_i + X_0 \mid i \in Y\}\) is an \(F\)-basis of \(X/X_0\), it follows that \(\{\varphi_X(D_i) + X_0 \mid i \in Y\}\) is an \(F\)-basis of \(X/X_0\). Then for every \(i \in Y\), there exists \(e_i \in X_{[-1]}\) such that \(\varphi_X(D_i) + X_0 = e_i + X_0\). Thus (2) holds. \(\square\)

Proposition 4.2. Suppose that \(\varphi, \psi \in \text{Aut } X\). If \(\varphi|_{X_{[-1]}} = \psi|_{X_{[-1]}}, \) then \(\varphi = \psi\).

Proof. We first use induction on \(k\) to show that \(\varphi|_{X_{[k]}} = \psi|_{X_{[k]}}, \) where \(k \geq -1\). The result is obvious for \(k = -1\). We assume it for \(k - 1\). Suppose that \(y \in X_{[k]}, \) and let \(z = \varphi(y) - \psi(y). \) Then
\[[z, \psi(D_i)] = [\varphi(y) - \psi(y), \psi(D_i)] = \varphi([y, D_i]) - \psi([y, D_i]) = 0\]
for every \(i \in Y. \) By Lemma 4.1 (2), we can write \(\psi(D_i) = e_i + w_i, \) where \(\{e_1, \ldots, e_{2n}\}\) is an \(F\)-basis of \(X_{[-1]}\) and \(w_i \in X_0. \) It follows that \([z, e_i + w_i] = 0. \)
Suppose that \(e_i = \sum_{j \in Y} a_{ij} D_j \), where \(a_{ij} \in \mathbb{F} \), and let \((c_{ij})_{1 \leq i, j \leq 2n} = (a_{ij})^{-1}_{1 \leq i, j \leq 2n} \). Then \([z, -w_i] = [z, e_i] = \sum_{j \in Y} a_{ij} [z, D_j] \), whence

\[
(z, D_l) = \sum_{i=1}^{2n} c_{li} [z, -w_i] \quad \text{for all } l \in Y.
\]

Noting that \(y \in X_0 \), we see that \(z \in X_0 \). Thus we can write \(z = \sum_{j \geq 0} z_j \), where \(z_j \in X_{[j]} \). Applying (12), we have \([z, D_l] \in X_0 \), thus \([z_0, D_l] \in X_0 \cap X_{[-1]} = 0 \) for all \(l \in Y \). This yields \(z_0 = 0 \). Now we can write \(z = \sum_{j \geq 1} z_j \). Repeating the argument above, we can see that \(z_j = 0 \) for each \(j \geq 1 \). It follows that \(z = 0 \), whence \(\varphi|_{X_{[k]} = \psi|_{X_{[k]}} \). Hence \(\varphi = \psi \), by Lemma 4.1 (1).

Given \(\sigma \in \text{Aut } \Lambda(n, n) \) and \(D \in \text{Der } \Lambda(n, n) \), we set \(D^\sigma = \sigma D \sigma^{-1} \). Then \(\tilde{\sigma} : D \mapsto D^\sigma \) is an automorphism of \(\text{Der } \Lambda(n, n) \). Let

\[
\text{Aut}(\Lambda(n, n) : X) = \{ \sigma \in \text{Aut } \Lambda(n, n) \mid |\tilde{\sigma}(X) \subseteq X \}.
\]

Then \(\text{Aut}(\Lambda(n, n) : X) \) is a subgroup of \(\text{Aut } \Lambda(n, n) \), and it is called the admissible automorphism group of \(\Lambda(n, n) \) relative to \(X \). Obviously, the morphism \(\Phi : \text{Aut}(\Lambda(n, n) : X) \rightarrow \text{Aut } X \) given by \(\sigma \mapsto \tilde{\sigma}|_X \) is a homomorphism of groups.

Lemma 4.3. (1) Suppose that \(A \in \mathbb{M}_{2n}(\Lambda(n, n)) \). Then \(\text{pr}_{[0]}(A) \) is invertible if and only if \(A \) is invertible.

(2) Suppose that \(\{e_1, \ldots, e_{2n}\} \) is a \(\Lambda(n, n) \)-basis of \(W(n, n) \). Let \(\text{pr}_{[-1]} \) be the projection of \(W(n, n) \) onto \(W(n, n)_{[-1]} \). Then \(\{\text{pr}_{[-1]} e_1, \ldots, \text{pr}_{[-1]} e_{2n}\} \) is an \(\mathbb{F} \)-basis of \(W(n, n)_{[-1]} \).

(3) Suppose that \(\varphi \) is an automorphism of \(X \), and suppose that \(\{y_i \mid i \in Y \} \subset X \) is a \(\Lambda(n, n) \)-basis of \(W(n, n) \). Then \(\{\varphi(y_i) \mid i \in Y \} \) is also a \(\Lambda(n, n) \)-basis of \(W(n, n) \).

(4) The natural filtration of \(\Lambda(n, n) \) is invariant under automorphisms of \(\Lambda(n, n) \).

Proof. (1) We first prove that \(A \) is invertible when \(\text{pr}_{[0]}(A) \) is invertible. Set

\[
P(n)_1 = \{ f \in P(n) \mid \text{pr}_{[0]}(f) = 0 \} \quad \text{and}
\]

\[
T = \text{span}_\mathbb{F}\{ x^{(a)} x^u \mid D_i(x^u) \neq 0 \text{ for some } i \in Y \}.
\]

Then we can write \(A = \text{pr}_{[0]}(A) + B + C \), where \(B \in \mathbb{M}_{2n}(P(n)_1) \), \(C \in \mathbb{M}_{2n}(T) \). Let \(D = \text{pr}_{[0]}(A) + B \). Since \(P(n) \) is commutative, we see that \(\det D \) is well defined. Note that \(\text{pr}_{[0]}(\det D) = \det(\text{pr}_{[0]} D) \neq 0 \), we can write \(\det D = a + f \), where \(0 \neq a \in \mathbb{F} \), \(f \in P(n)_1 \). Put \(g = a^{-1}(\sum_{i=0}^{\infty}(-1)^i(a^{-1} f)^i) \). A direct calculation shows that \(g \det D = 1 \). It follows that \(\det D \) is invertible, whence \(D \) is invertible.

Let \(E \) be the inverse of \(D \). Since \(C \in \mathbb{M}_{2n}(T) \), we have \(CE \in \mathbb{M}_{2n}(T) \), which combined with the fact that the product of any \(n+1 \) elements of \(T \) is 0 yields that
CE is nilpotent. Thus $I + CE$ is invertible. Consequently, we have

$$AE(I + CE)^{-1} = (C + D)E(I + CE)^{-1} = (CE + DE)(I + CE)^{-1} = I.$$

Therefore A is invertible.

Using the fact that $pr_{[0]}(AB) = pr_{[0]}(A) pr_{[0]}(B)$ for arbitrary matrices A and B in $M_{2n}(\Lambda(n, n))$, we can prove the converse implication.

(2) Suppose that $(D_1, \ldots, D_{2n})^T = A(e_1, \ldots, e_{2n})^T$, where $A \in M_{2n}(\Lambda(n, n))$. Then $(D_1, \ldots, D_{2n})^T = pr_{[0]}A(\pr_{[-1]}(e_1), \ldots, \pr_{[-1]}(e_{2n}))^T$. Since $\{D_1, \ldots, D_{2n}\}$ is an \mathbb{F}-basis of $W(n, n)_{[-1]}$, it follows that $\{\pr_{[-1]}(e_1), \ldots, \pr_{[-1]}(e_{2n})\}$ is an \mathbb{F}-basis of $W(n, n)_{[-1]}$.

(3) By Theorem 3.17, φ induces canonically $\varphi \in \mathfrak{gl}(X / X_0)$. Denote by \tilde{y}_i the image of y_i under the canonically map $X \to X / X_0$. Then $\{\tilde{y}_i \mid i \in Y\}$ is an \mathbb{F}-basis of X / X_0. Assume that

$$(\varphi(y_1), \ldots, \varphi(y_{2n}))^T = A(D_1, \ldots, D_{2n})^T,$$

where $A \in M_{2n}(\Lambda(n, n))$. Decomposing $A = pr_{[0]}A + pr_1A$, we obtain

$$(\varphi(Y_1), \ldots, \varphi(Y_{2n}))^T = (\varphi(y_1), \ldots, \varphi(y_{2n}))^T = pr_{[0]}A(D_1, \ldots, D_{2n})^T.$$

This implies that $pr_{[0]}A$ is invertible. It follows from (1) that A is invertible. Therefore $\{\varphi(y) \mid i \in Y\}$ is a $\Lambda(n, n)$-basis of $W(n, n)$.

(4) Since $\text{Der} \Lambda(n, n) = W(n, n)$, we have $\text{Aut} \Lambda(n, n) = \text{Aut}(\Lambda(n, n) : W(n, n))$. By [Zhang and Liu 2004, Theorem 2.12], the natural filtration of $W(n, n)$ is invariant under $\text{Aut} W(n, n)$. Note that for every $i \in Y$, $\tilde{\sigma}(fD_i) = (\sigma f)(\tilde{\sigma}D_i)$, where $\sigma \in \text{Aut} \Lambda(n, n)$ and $f \in \Lambda(n, n)$, which implies the desired result. □

Theorem 4.4. The map $\Phi : \text{Aut}(\Lambda(n, n) : X) \to \text{Aut} X$ given by $\sigma \mapsto \tilde{\sigma}|_X$ is an isomorphism.

Proof. It suffices to show that Φ is bijective. Assume that $\sigma \in \text{Aut}(\Lambda(n, n) : X)$ is an element such that $\tilde{\sigma}|_X = 1|_X$. We first use induction on $|\alpha| + |u|$ to show that $\sigma(x^{(\alpha)}x^u) = x^{(\alpha)}x^u$, where $x^{(\alpha)}x^u$ is a standard basis element of $\Lambda(n, n)$, $\alpha \in \mathbb{N}^n_0$, $u \in \mathbb{B}(n)$. If $|\alpha| + |u| = 1$, then $x^{(\alpha)}x^u = x_i$ for some $i \in Y$. Since for every $k \in Y$

$$D_k(\sigma(x_i)) = (\tilde{\sigma}(D_k))(\sigma(x_i)) = \sigma D_k \sigma^{-1}(\sigma(x_i)) = \sigma D_k(x_i) = \sigma(\delta_{ik}) = \delta_{ik} = D_k(\delta_{ik}),$$

it follows that $D_k(\sigma(x_i) - x_i) = 0$, which combined with Lemma 4.3(4) yields $\sigma(x_i) = x_i$. If $|\alpha| + |u| > 1$, then by induction

$$D_k(\sigma(x^{(\alpha)}x^u) - x^{(\alpha)}x^u) = (\tilde{\sigma} D_k)\sigma(x^{(\alpha)}x^u) - D_k(x^{(\alpha)}x^u) = 0,$$

for every $k \in Y$. Thus $\sigma(x^{(\alpha)}x^u) - x^{(\alpha)}x^u \in \mathbb{F} \cap \Lambda(n, n)_1 = 0$. Consequently, $\sigma = 1$ and Φ is injective.
We next prove that Φ is surjective. Suppose that φ is in $\text{Aut } X$. Then by Lemma 4.3 (3), $\{\varphi(D_1), \ldots, \varphi(D_{2n})\}$ is a $\Lambda(n,n)$-basis of $W(n,n)$. Therefore, we can suppose that $\varphi(T_H(x_i,x_j)) = \sum_{t=1}^{2n} h_{ijt} \varphi(D_t)$, where $i, j \in Y$ with $i \neq j'$, and $h_{ijt} \in \Lambda(n,n)$. Applying Lemma 4.3 (2), we have $h_{ijt} \in \Lambda(n,n)_1$. Thus

$$
(13) \quad \varphi([D_k, T_H(x_i,x_j)]) = \left[\varphi(D_k), \sum_{t=1}^{2n} h_{ijt} \varphi(D_t) \right] = \sum_{t=1}^{2n} (\varphi(D_k)(h_{ijt})) \varphi(D_t).
$$

On the other hand,

$$
(14) \quad \varphi([D_k, T_H(x_i,x_j)]) = \varphi[D_k, (-1)^{\mu(i)\mu(j')} x_j D_{i'} + (-1)^{\mu(j)} x_i D_{j'}] = (-1)^{\mu(i)\mu(j')} \delta_{kj} \varphi(D_{i'}) + (-1)^{\mu(j)} \delta_{ki} \varphi(D_{j'}).
$$

In particular, by letting $i = 1$ and $j \in Y \setminus \{1\}'$ in equations (13) and (14), one sees that $\varphi(D_k)(h_{11j'}) = \delta_{kj} + \delta_{k1} \delta_{j1}$ for all $k \in Y$. Similarly, by letting $i = 2'$ and $j = 1'$, we obtain $\varphi(D_k)(h_{21j'}) = \delta_{k1'}$. Let $h_1 = \frac{1}{2} h_{11'1'}, h_{1'} = h_{21'2'}$ and $h_j = h_{1j'}$ for $j \in Y \setminus \{1, 1\}'$. Then $h_j \in \Lambda(n,n)_1$ with $\deg(h_j) = \mu(j)$, and

$$
(15) \quad \varphi(D_i)(h_j) = \delta_{ij} \quad \text{ for all } i, j \in Y.
$$

Suppose that $\varphi(D_i) = \sum_{t=1}^{2n} f_{it} D_t$, where $f_{it} \in \Lambda(n,n)$. It follows from (15) that

$$
(\delta_{ij})_{i,j\in Y} = (\varphi(D_i)h_j)_{i,j\in Y} = (f_{ij})_{i,j\in Y}(D_i h_j)_{i,j\in Y}.
$$

This implies that $(D_i h_j)_{i,j\in Y}$ is invertible, whence $(\text{pr}_{\{0\}}(D_i h_j))_{i,j\in Y}$ is invertible by Lemma 4.3(1). Consequently, there exists $\sigma \in \text{Aut } \Lambda(n,n)$ such that $\sigma(x_i) = h_i$ by Lemma 3.4, which combined with (15) yields

$$(\tilde{\sigma} D_i - \varphi D_i)(h_j) = \sigma(D_i x_j) - \delta_{ij} = 0$$

for all $i, j \in Y$. Since h_1, h_2, \ldots, h_{2n} generate $\Lambda(n,n)$, we see that $\tilde{\sigma} D_i = \varphi D_i$, whence $\tilde{\sigma}|_X = \varphi$ by Proposition 4.2. \hfill \square

Acknowledgments

This paper was completed when Q. Mu visited the College of William and Mary, and he thanks the university and Professor Junping Shi for their warm hospitality.

References

Received September 22, 2011. Revised October 27, 2011.

LI REN
SCHOOL OF MATHEMATICS AND STATISTICS
NORTHEAST NORMAL UNIVERSITY
CHANGCHUN, 130024
CHINA
renl944@nenu.edu.cn

QIANG MU
SCHOOL OF MATHEMATICAL SCIENCES
HARBIN NORMAL UNIVERSITY
HARBIN, 150025
CHINA
qmu520@gmail.com

YONGZHENG ZHANG
SCHOOL OF MATHEMATICS AND STATISTICS
NORTHEAST NORMAL UNIVERSITY
CHANGCHUN, 130024
CHINA
zhyz@nenu.edu.cn
Extending triangulations of the 2-sphere to the 3-disk preserving a 4-coloring

RUI PEDRO CARPENTIER

Orthogonal quantum group invariants of links

LIN CHEN and QINGTAO CHEN

Some properties of squeezing functions on bounded domains

FUSHENG DENG, QIAN GUAN and LIYOU ZHANG

Representations of little q-Schur algebras

JIE DU, QIANG FU and JIAN-PAN WANG

Renormalized weighted volume and conformal fractional Laplacians

MARÍA DEL MAR GONZÁLEZ

The L_4 norm of Littlewood polynomials derived from the Jacobi symbol

JONATHAN JEDWAB and KAI-UWE SCHMIDT

On a conjecture of Kaneko and Ohno

ZHONG-HUA LI

Categories of unitary representations of Banach–Lie supergroups and restriction functors

STÉPHANE MERIGON, KARL-HERMANN NEEB and HADI SALMASIAN

Odd Hamiltonian superalgebras and special odd Hamiltonian superalgebras of formal vector fields

LI REN, QIANG MU and YONGZHENG ZHANG

Interior derivative estimates for the Kähler–Ricci flow

MORGAN SHERMAN and BEN WEINKOVE

Two-dimensional disjoint minimal graphs

LINFENG ZHOU