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Under the assumption of Gauss curvature vanishing at infinity, we prove
Meeks’ conjecture: the number of disjointly supported minimal graphs in
R3 is at most two.

1. Introduction

Let Q be an open subset in R? and denote its boundary by 3. As we know, if a
function u(x) defined on 2 satisfies the equation

. Vu
(1) div ———==0

JI+IVuz
G = {(x,u(x)) : x € Q} is called a minimal graph in R3. We say the minimal graph
G is supported on  if u|3o =0 and u > 0.

Meeks [2005] has conjectured that the number of disjointly supported minimal
graphs with zero boundary values over an open subset in R? is at most 2. In fact,
for arbitrary dimension, Meeks and Rosenberg [2005] proved if a set of disjointly
supported minimal graphs have bounded gradient, then the number of the graphs
must be finite. Later, Li and Wang [2001] gave an upper bound of the number of the
graphs without any assumption on the growth rate of each graph. As a corollary,
when minimal graphs are two dimensional in R?, they obtained the number is
at most 24. At the same time, Spruck [2002] proved that there are at most two
admissible sublinear growth solution pairs of Equation (1) defined over disjoint
domains. Recently, by using angular density, Tkachev [2009] showed the number
of two dimensional disjointly supported minimal graphs is less than or equals 3.

Observing the similarity between disjoint d-massive sets and disjointly supported
minimal graphs, we can apply the method for proving the finiteness theorem of
disjoint d-massive sets in R? [Li and Wang 1999] to study disjoint minimal graphs.
We obtain the following theorem:
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Theorem 1.1. Suppose {G; = (2;, ui)}i.‘:] is a set of disjointly supported minimal
graphs in R3, where each Q; is an open subset in R?. If the Gauss curvature K;(x)
of each graph satisfies

Ki(x)— 0 as |x| > oo,

then the number k is at most two.

By choosing a different region of integration, one obtains an improvement on a
theorem of Spruck [2002]:

Corollary 1.2. Suppose {G; = (2;, ui)}fle is a set of disjointly supported minimal
graphs in R, where each Q; is an open subset in R>. If each graph has sublinear
growth, then k is at most two.

2. Proof of Theorem 1.1

We denote the 3-dimensional ball of radius R centered at the origin of R® by B3(R)
and the 2-dimensional sphere of radius R by S?(R). The key is to estimate the sum
of all curves’ length £(G; N S?(R)) when R is sufficiently large.

Theorem 2.1. Suppose {G; = (2;, u,-)}f.‘:1 is a set of disjointly supported minimal
graphs in R3, where the Gauss curvature K;(x) of each G; satisfies

Ki(x)— 0 as |x| > oo.

For a sufficiently large radius R, we have the bound
k
> UGiNS*(R) <m*R+o(1)R.
i=1

In the particular case when k = 3, we have the better estimate

3
3 4(G; N S*(R)) <2v27 R+ o(1)R.

i=1
Before proving this, we introduce a lemma.

Lemma 2.2, Let Bf’r(R) be a 3-dimensional upper half-ball with radius R and let
S_% (R) be a 2-dimensional upper half-sphere. Suppose w; : G; — R? is the natural
projection map. If 1, %o, ..., X are planes in R® such that the interiors of
(XN Bi(R)) are pairwise disjoint for sufficiently large R, we have

)
> U(Z;NSI(R) < ’R.
i=1
Moreover, when s = 3, we have the better estimate

i €(;NS2(R)) <2v2rR.

i=1
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Proof. Suppose D(R) = {(x1, x1,0) : x12 +x22 < R?} is a disk in R3. Since each ¥;
is a plane, X; N D(R) is a chord; let 9; be the corresponding central angle. Here
we only need to consider the case that the union | J;_,(Z; N D(R)) is a polygon;
otherwise, one can add more planes still satisfying the required conditions and such
that the union of chords becomes a polygon.

If the center of the disk D(R) is in the interior of the polygon or on one of the
edges of the polygon, each central angle 6; satisfies 0 < 6; < . Since the interiors
of the m; (X; N Bi(R)) are pairwise disjoint, a simple computation yields the bound

9.
€(%;NS3(R)) <R sin 3

on the length of the arc £(X; N SfL(R)). The right-hand side achieves the maximum
if and only if ¥; is perpendicular to the disk D(R). Thus

N N N
0; 1 6;
@) z}:azimsi(m) Sz;nR sin 3 <7 Rs sin(;Xi:E’)
1= 1=
. T 2
<mwRssin— <m“R.
S

In the second inequality, we have used the concave property of the sine function
on the interval [0, 7].

For the special case when s = 3, one gets from (2)

3
7 33
3 €(Z;NS2(R)) <37Rsin= = ——nR.
3) ;(l+(>)_nsln3 ST

If the center of the disk D(R) is outside the polygon, there exists an i such that
0;, > . For simplicity, let us assume ip = s. A similar computation leads to

) JrRsinﬁ forl<i<s-—1,
L(Z;NSL(R)) < 2
RO, fori =s.

In the first case, equality holds if and only if ¥; is perpendicular to the disk, and
in the second, if and only if X is in the same plane of the disk D(R). Hence

s s—1 s—1

b; 6; G

@ Y u=mnSi(R) <Y wRsin 5+ RO < > 7 Rsin - +2mRsin
i=1 i=1 i=1

<mwR(s+1)sin

T
57[2R.
s+ 1
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If s = 3, by (4) we obtain that

3
(5) Y USiNSLR)) <4mRsin 7 =2V27 R
i=1

The conclusion is derived from (2), (4) and (3), (5). O

Proof of Theorem 2.1. For each minimal graph G;, since the Gauss curvature
K; =0 at infinity, it means G; is asymptotic to a flat plane. Therefore, we can use
the intersection of a plane X; and Si(R) to approximate the curve G; N S?(R). By
Lemma 2.2, one has

£(GiNS*(R)) < €(Z;NSZ(R)) +o(1)R.

Therefore

k k
D UGiNSHR) =D LUEiNSI(R) +o(DR <7*R+0(HR. O
i=1 i=1

The following area growth estimate of a minimal graph is proved using a well-
known argument; one can see [Li and Wang 2001] for the details.

Lemma 2.3. If G = (Q, u) is a minimal graph in R3, the area of G N B3(R)
satisfies
A(GNB3(R)) <37 R>.

Proof of Theorem 1.1. Let B3(R) be the ball of radius R in R3. Since

/ |@ui|2 < f ui<6ui . i),
G:NB3(R) GiNdB3(R)) ar

where V means the gradient operator on G;, one has

20%(G;NaB3(R)) Vi |?
G;NB3(R)

ou;
< 21}/2/ w2
GiNdB3(R) ar
N2
SM/ M,2+/ <%)
GiNAB3(R) GiNAB3(R) or

- .\ 2 ~
5/ Vul e [ (Ge) :/ Vi
G;NdB3(R) G;NIB3(R) or G;NdB3(R)
172

Here A,""(G; N dB>(R)) denotes the first Dirichlet eigenvalue on G; N9 B>(R). We

know that
2
1 (GiNIB(R) = il
~ 02(G;NIB3(R))
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in R3. Therefore
5 2
fG,-maB3(R)|V“i| w12 2
)Wu,-l2 - Ty

fG,-mB3(R
where I'; := G; NdB3(R). Thus we obtain

) |V, |? 2
Z G;NAB3(R) i >Z T

i=1 fG,ﬂB3(R) Vi~ i €T)

k k 1
2 . —_—
©= (;M’))(; um)'

Notice that

According to Theorem 2.1, one has

k
ZZ(F,-) <7’R+0o()R

i=1
for a sufficiently large radius R. Then it can be concluded that

k Y 2
Z fGiﬁ3B3(R) |Vul| - 27Tk2

(6) G |
Jonm IVuil2 ~ R@@?+o(1)

i=1

Observing that

= 2 0 = 9
@) [Vu;|* = — |Vu;|,
GiNIB3(r) or Je.nea)

we obtain from (6) that

£ fGiﬁB3(R)|vui|2 - 2k R

3 In _ > B
i=1 fG,ﬂB3(RO) |Vu;|2 ~ 72 4+o0(1)  Ro

Let (x, y, u;(x, y)) be a parametrization of G;, so the induced metric on G; is
ds® = (14 )?) dx® +2(u)x i)y dx dy + (1 + u)}) dy*.
We then have

N — |Vu;|?
Vil = Vuyiu,gd = :

1+ |Vu;2 = 7

from which one can deduce

k
) ]_[f |Vu;|? < A¥(G; N B3(R)) < Br R,
iz1 YGiNB3(R))
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Combining (8) and (9) implies

27 k?

——— (InR—InRy <2kInR .
n2+0(1)(n nRy) < nR+c

Letting R — 400 we see that k < 7r; in particular, k < 3.
If k = 3, an analogous argument using the refined length estimate in Theorem 2.1
leads to k < 2+/2, which is a contradiction. Thus k has to be at most 2. (I

Remark. Tkachev [2009] has already proved the number of two dimensional dis-
jointly supported minimal graphs is at most 3. Here a different approach can lead
to a better estimate if assuming the Gauss curvature vanishes at infinity.

3. Proof of Corollary 1.2

Let 7; : G; — R? be the natural projective map and B2(R) be the ball of radius
R in R%. By employing the same method in the proof of Theorem 1.1 except for
using a different region of integration ni_l (€ N B%(R)), one can conclude

Theorem 3.1. Suppose {(Q2;,u ,-)}{.‘:1 is a set of disjointly supported minimal graphs
in R® where each Q; is an open subset in R?. If the gradient of each u; is bounded,
say |Vu;| < c, then k satisfies k < 2+/1 4+ c2.

Proof. By a similar argument, one can obtain that

Xk: fnfl(sz,-maBZ(R)) |Vu; ? - 2mk?
i=1 fnlfl(sz,-mBZ(R)) Va2 7 Y em
where I'; := ni_l (S2; N3B?(R)). If one chooses the parametrization
(RcosO, Rsinf, u;(Rcosf, Rsinf))

for the curve I'; and assume |Vu;| < ¢, then

01
oIy = / VR 4+ (=)« Rsin®) + (), R cos(6))>d6
0

0

6
< / \/R2 + ()2 + (ui)?) (R? sin(0)% + R cos(6)*)d6
0
< (61 —6)RV1+c2.

Since the minimal graphs are disjoint, we get

k
Ze(ri) < 2w RV1+c2.
i=1
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Then it can be concluded that
& 2
fnfl(sz,«naBZ(R)) Vi - k2

12 T .
i=l fﬂf’l(Q;ﬂBZ(R)) |Vuil RV1+c2

Integrating (10), one obtains

(10)

k f -1(0.nqR2 |6M'|2 k2
(11) 1n1_[ 7 (QinoBA(R)) T 12 . 2lnR—.
imt Jaiqunprroy IVHilP T V14c 0

On the other hand,

k

a2 J] / IVui* < A* (e, (i N BX(R)))
i i (QiNB2(R)) '

k
=(/ \/1+|Vu|2) < (V142 RH .
Q;NB%(R)

Combining (11) and (12), we have
k2
V1 +c2

Letting R — 400 yields

(InR—InRy) <2kInR+cy.

k<2v1+c2. O

Obviously, Corollary 1.2 follows from above theorem when each graph satisfies
[Vuil -0 (x| = 400).

Remark. J. Spruck [2002] proved Corollary 1.2 under the assumption of a certain
decay rate at infinity for the Gauss curvature. However, here we do not need any
restrictions on the Gauss curvature.
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