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Under the assumption of Gauss curvature vanishing at infinity, we prove
Meeks’ conjecture: the number of disjointly supported minimal graphs in
R3 is at most two.

1. Introduction

Let � be an open subset in R2 and denote its boundary by ∂�. As we know, if a
function u(x) defined on � satisfies the equation

(1) div
∇u√

1+ |∇u|2
= 0,

G = {(x, u(x)) : x ∈�} is called a minimal graph in R3. We say the minimal graph
G is supported on � if u|∂� = 0 and u ≥ 0.

Meeks [2005] has conjectured that the number of disjointly supported minimal
graphs with zero boundary values over an open subset in R2 is at most 2. In fact,
for arbitrary dimension, Meeks and Rosenberg [2005] proved if a set of disjointly
supported minimal graphs have bounded gradient, then the number of the graphs
must be finite. Later, Li and Wang [2001] gave an upper bound of the number of the
graphs without any assumption on the growth rate of each graph. As a corollary,
when minimal graphs are two dimensional in R3, they obtained the number is
at most 24. At the same time, Spruck [2002] proved that there are at most two
admissible sublinear growth solution pairs of Equation (1) defined over disjoint
domains. Recently, by using angular density, Tkachev [2009] showed the number
of two dimensional disjointly supported minimal graphs is less than or equals 3.

Observing the similarity between disjoint d-massive sets and disjointly supported
minimal graphs, we can apply the method for proving the finiteness theorem of
disjoint d-massive sets in R2 [Li and Wang 1999] to study disjoint minimal graphs.
We obtain the following theorem:
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Theorem 1.1. Suppose {Gi = (�i , ui )}
k
i=1 is a set of disjointly supported minimal

graphs in R3, where each �i is an open subset in R2. If the Gauss curvature Ki (x)
of each graph satisfies

Ki (x)→ 0 as |x | →∞,

then the number k is at most two.

By choosing a different region of integration, one obtains an improvement on a
theorem of Spruck [2002]:

Corollary 1.2. Suppose {Gi = (�i , ui )}
k
i=1 is a set of disjointly supported minimal

graphs in R3, where each �i is an open subset in R2. If each graph has sublinear
growth, then k is at most two.

2. Proof of Theorem 1.1

We denote the 3-dimensional ball of radius R centered at the origin of R3 by B3(R)
and the 2-dimensional sphere of radius R by S2(R). The key is to estimate the sum
of all curves’ length `(Gi ∩ S2(R)) when R is sufficiently large.

Theorem 2.1. Suppose {Gi = (�i , ui )}
k
i=1 is a set of disjointly supported minimal

graphs in R3, where the Gauss curvature Ki (x) of each Gi satisfies

Ki (x)→ 0 as |x | →∞.

For a sufficiently large radius R, we have the bound
k∑

i=1
`(Gi ∩ S2(R))≤ π2 R+ o(1)R.

In the particular case when k = 3, we have the better estimate
3∑

i=1
`(Gi ∩ S2(R))≤ 2

√
2πR+ o(1)R.

Before proving this, we introduce a lemma.

Lemma 2.2. Let B3
+
(R) be a 3-dimensional upper half-ball with radius R and let

S2
+
(R) be a 2-dimensional upper half-sphere. Suppose πi : Gi → R2 is the natural

projection map. If 61, 62, . . . , 6s are planes in R3 such that the interiors of
πi (6i ∩ B3

+
(R)) are pairwise disjoint for sufficiently large R, we have

s∑
i=1
`(6i ∩ S2

+
(R))≤ π2 R.

Moreover, when s = 3, we have the better estimate
3∑

i=1
`(6i ∩ S2

+
(R))≤ 2

√
2πR.
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Proof. Suppose D(R)= {(x1, x1, 0) : x2
1 + x2

2 ≤ R2
} is a disk in R3. Since each 6i

is a plane, 6i ∩ D(R) is a chord; let θi be the corresponding central angle. Here
we only need to consider the case that the union

⋃s
i=1(6i ∩ D(R)) is a polygon;

otherwise, one can add more planes still satisfying the required conditions and such
that the union of chords becomes a polygon.

If the center of the disk D(R) is in the interior of the polygon or on one of the
edges of the polygon, each central angle θi satisfies 0< θi ≤ π . Since the interiors
of the πi (6i ∩ B3

+
(R)) are pairwise disjoint, a simple computation yields the bound

`(6i ∩ S2
+
(R))≤ πR sin

θi

2
.

on the length of the arc `(6i ∩ S2
+
(R)). The right-hand side achieves the maximum

if and only if 6i is perpendicular to the disk D(R). Thus

(2)
s∑

i=1

`(6i ∩ S2
+
(R))≤

s∑
i=1

πR sin
θi

2
≤ πRs sin

(1
s

s∑
i

θi

2

)
≤ πRs sin

π

s
≤ π2 R.

In the second inequality, we have used the concave property of the sine function
on the interval [0, π].

For the special case when s = 3, one gets from (2)

(3)
3∑

i=1

`(6i ∩ S2
+
(R))≤ 3πR sin

π

3
=

3
√

3
2
πR.

If the center of the disk D(R) is outside the polygon, there exists an i0 such that
θi0 > π . For simplicity, let us assume i0 = s. A similar computation leads to

`(6i ∩ S2
+
(R))≤

πR sin θi
2

for 1≤ i ≤ s− 1,

Rθs for i = s.

In the first case, equality holds if and only if 6i is perpendicular to the disk, and
in the second, if and only if 6s is in the same plane of the disk D(R). Hence

(4)
s∑

i=1

`(6i ∩ S2
+
(R))≤

s−1∑
i=1

πR sin
θi

2
+ Rθs ≤

s−1∑
i=1

πR sin
θi

2
+ 2πR sin

θs

4

≤ πR(s+ 1) sin
π

s+ 1
≤ π2 R.
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If s = 3, by (4) we obtain that

(5)
3∑

i=1

`(6i ∩ S2
+
(R))≤ 4πR sin π

4
= 2
√

2πR

The conclusion is derived from (2), (4) and (3), (5). �

Proof of Theorem 2.1. For each minimal graph Gi , since the Gauss curvature
Ki = 0 at infinity, it means Gi is asymptotic to a flat plane. Therefore, we can use
the intersection of a plane 6i and S2

+
(R) to approximate the curve Gi ∩ S2(R). By

Lemma 2.2, one has

`(Gi ∩ S2(R))≤ `(6i ∩ S2
+
(R))+ o(1)R.

Therefore
k∑

i=1

`(Gi ∩ S2(R))≤
k∑

i=1

`(6i ∩ S2
+
(R))+ o(1)R ≤ π2 R+ 0(1)R. �

The following area growth estimate of a minimal graph is proved using a well-
known argument; one can see [Li and Wang 2001] for the details.

Lemma 2.3. If G = (�, u) is a minimal graph in R3, the area of G ∩ B3(R)
satisfies

A(G ∩ B3(R))≤ 3πR2.

Proof of Theorem 1.1. Let B3(R) be the ball of radius R in R3. Since∫
Gi∩B3(R)

|∇̃ui |
2
≤

∫
Gi∩∂B3(R))

ui

(
∇̃ui ·

∂

∂r

)
,

where ∇̃ means the gradient operator on Gi , one has

2λ1/2
1 (Gi ∩ ∂B3(R))

∫
Gi∩B3(R)

|∇̃ui |
2

≤ 2λ1/2
1

∫
Gi∩∂B3(R)

ui ·
∂ui

∂r

≤ λ1

∫
Gi∩∂B3(R)

u2
i +

∫
Gi∩∂B3(R)

(
∂ui
∂r

)2

≤

∫
Gi∩∂B3(R)

|∇̄ui |
2
+

∫
Gi∩∂B3(R)

(
∂ui
∂r

)2
=

∫
Gi∩∂B3(R)

|∇̃ui |
2.

Here λ1/2
1 (Gi ∩∂B3(R)) denotes the first Dirichlet eigenvalue on Gi ∩∂B3(R). We

know that

λ
1/2
1 (Gi ∩ ∂B3(R))≥

π2

`2(Gi ∩ ∂B3(R))



TWO-DIMENSIONAL DISJOINT MINIMAL GRAPHS 507

in R3. Therefore ∫
Gi∩∂B3(R) |∇̃ui |

2∫
Gi∩B3(R) |∇̃ui |

2
≥ 2λ1/2

1 ≥
2π
`(0i )

,

where 0i := Gi ∩ ∂B3(R). Thus we obtain

k∑
i=1

∫
Gi∩∂B3(R) |∇̃ui |

2∫
Gi∩B3(R) |∇̃ui |

2
≥

k∑
i=1

2π
`(0i )

.

Notice that

k2
≤

( k∑
i=1

`(0i )

)( k∑
i=1

1
`(0i )

)
.

According to Theorem 2.1, one has

k∑
i=1

`(0i )≤ π
2 R+ o(1)R

for a sufficiently large radius R. Then it can be concluded that

(6)
k∑

i=1

∫
Gi∩∂B3(R) |∇̃ui |

2∫
Gi∩B3(R) |∇̃ui |

2
≥

2πk2

R(π2+ o(1))
.

Observing that

(7)
∫

Gi∩∂B3(r)
|∇̃ui |

2
=
∂

∂r

∫
Gi∩B3(r)

|∇̃ui |
2,

we obtain from (6) that

(8) ln
k∏

i=1

∫
Gi∩B3(R) |∇̃ui |

2∫
Gi∩B3(R0)

|∇̃ui |
2
≥

2πk2

π2+ o(1)
ln

R
R0
.

Let (x, y, ui (x, y)) be a parametrization of Gi , so the induced metric on Gi is

ds2
= (1+ (ui )

2
x) dx2

+ 2(ui )x(ui )y dx dy+ (1+ (ui )
2
y) dy2.

We then have

|∇̃ui | =
√

ux i ux j gi j
=

√
|∇ui |

2

1+ |∇ui |
2 ≤ 1,

from which one can deduce

(9)
k∏

i=1

∫
Gi∩B3(R))

|∇̃ui |
2
≤ Ak(Gi ∩ B3(R))≤ (3πR2)k .
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Combining (8) and (9) implies

2πk2

π2+ o(1)
(ln R− ln R0)≤ 2k ln R+ c1.

Letting R→+∞ we see that k ≤ π ; in particular, k ≤ 3.
If k = 3, an analogous argument using the refined length estimate in Theorem 2.1

leads to k ≤ 2
√

2, which is a contradiction. Thus k has to be at most 2. �

Remark. Tkachev [2009] has already proved the number of two dimensional dis-
jointly supported minimal graphs is at most 3. Here a different approach can lead
to a better estimate if assuming the Gauss curvature vanishes at infinity.

3. Proof of Corollary 1.2

Let πi : Gi → R2 be the natural projective map and B2(R) be the ball of radius
R in R2. By employing the same method in the proof of Theorem 1.1 except for
using a different region of integration π−1

i (�i ∩ B2(R)), one can conclude

Theorem 3.1. Suppose {(�i ,ui )}
k
i=1 is a set of disjointly supported minimal graphs

in R3 where each �i is an open subset in R2. If the gradient of each ui is bounded,
say |∇ui | ≤ c, then k satisfies k ≤ 2

√
1+ c2.

Proof. By a similar argument, one can obtain that

k∑
i=1

∫
π−1

i (�i∩∂B2(R)) |∇̃ui |
2∫

π−1
i (�i∩B2(R)) |∇̃ui |

2
≥

2πk2∑k
i=1 `(0i )

.

where 0i := π
−1
i (�i ∩ ∂B2(R)). If one chooses the parametrization

(R cos θ, R sin θ, ui (R cos θ, R sin θ))

for the curve 0i and assume |∇ui | ≤ c, then

`(0i )=

∫ θ1

θ0

√
R2+

(
−(ui )x R sin(θ)+ (ui )y R cos(θ)

)2dθ

≤

∫ θ1

θ0

√
R2+

(
(ui )2x + (ui )2y

)
(R2 sin(θ)2+ R2 cos(θ)2)dθ

≤ (θ1− θ0)R
√

1+ c2.

Since the minimal graphs are disjoint, we get

k∑
i=1

`(0i )≤ 2πR
√

1+ c2.
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Then it can be concluded that

(10)
k∑

i=1

∫
π−1

i (�i∩∂B2(R)) |∇̃ui |
2∫

π−1
i (�i∩B2(R)) |∇̃ui |

2
≥

k2

R
√

1+ c2
.

Integrating (10), one obtains

(11) ln
k∏

i=1

∫
π−1

i (�i∩∂B2(R)) |∇̃ui |
2∫

π−1
i (�i∩B2(R0))

|∇̃ui |
2
≥

k2
√

1+ c2
ln

R
R0
.

On the other hand,

(12)
k∏

i=1

∫
π−1

i (�i∩B2(R))
|∇̃ui |

2
≤ Ak(π−1

i (�i ∩ B2(R)))

=

(∫
�i∩B2(R)

√
1+ |∇u|2

)k

≤ (
√

1+ c2πR2)k .

Combining (11) and (12), we have

k2
√

1+ c2
(ln R− ln R0)≤ 2k ln R+ c1.

Letting R→+∞ yields
k ≤ 2

√
1+ c2. �

Obviously, Corollary 1.2 follows from above theorem when each graph satisfies

|∇ui | → 0 (|x | → +∞).

Remark. J. Spruck [2002] proved Corollary 1.2 under the assumption of a certain
decay rate at infinity for the Gauss curvature. However, here we do not need any
restrictions on the Gauss curvature.
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