Vol. 258, No. 2, 2012

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
An optimal anisotropic Poincaré inequality for convex domains

Guofang Wang and Chao Xia

Vol. 258 (2012), No. 2, 305–326
Abstract

In this paper, we prove a sharp lower bound of the first (nonzero) eigenvalue of the anisotropic Laplacian with the Neumann boundary condition. Equivalently, we prove an optimal anisotropic Poincaré inequality for convex domains, which generalizes the classical result of Payne and Weinberger. A lower bound of the first (nonzero) eigenvalue of the anisotropic Laplacian with the Dirichlet boundary condition is also proved.

Keywords
anisotropic Laplacian, first eigenvalue, gradient estimate, optimal Poincaré inequality
Mathematical Subject Classification 2010
Primary: 35P15
Secondary: 35J62, 35P30
Milestones
Received: 4 October 2011
Revised: 26 January 2012
Accepted: 22 May 2012
Published: 1 August 2012
Authors
Guofang Wang
Albert-Ludwigs-Universität Freiburg
Mathematisches Institut
Eckerstraße 1
D-79104 Freiburg
Germany
Chao Xia
Albert-Ludwigs-Universität Freiburg
Mathematisches Institut
Eckerstraße 1
D-79104 Freiburg
Germany