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UNIQUENESS THEOREMS FOR CR AND CONFORMAL
MAPPINGS

YOUNG-JUN CHOI AND JAE-CHEON JOO

We provide a uniqueness theorem for CR and conformal mappings that
generate compact sequences of iteration.

1. Introduction

The primary aim of this paper is to prove a version of uniqueness theorem for CR
and conformal mappings.

Let M be a C∞-smooth manifold and let C be a class of smooth mappings from
M into itself containing the identity map. We say that the pair (M,C) satisfies the
Cartan uniqueness property (or simply Cartan uniqueness) at p ∈ M if an element
f ∈ C coincides with the identity map whenever f (p)= p, d f p = IdTp M and

{ f k
: k ∈ Z+}

is compact, where IdTp M is the identity transform of tangent space Tp M of M
at p, Z+ is the set of nonnegative integers, and f k is the k-time composition of f ,
namely,

f k
= f ◦ · · · ◦ f︸ ︷︷ ︸

k

.

In this definition, the compactness of a subclass C′ of C means that every sequence
in C′ contains a subsequence that is uniformly Cauchy on every compact subset
of M . (In other words, C′ is relatively compact with respect to the compact-open
topology.) One of the most important examples of this property in complex analysis
is the uniqueness theorem of H. Cartan.

Theorem 1.1 (The Cartan uniqueness theorem). Let � be a domain in Cn and let
H be the class of holomorphic mappings from � into itself. Then (�,H) satisfies
the Cartan uniqueness property at every point of �. In particular, if � is bounded,
then f ∈H coincides with the identity map if f (p)= p and d f p = IdTp� for some
p ∈ �, since the sequence { f k

: k ∈ Z+} is automatically compact by the Montel
theorem.

MSC2010: 32V10, 32V40, 53A30.
Keywords: Cartan uniqueness, CR mappings, conformal mappings.
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It is not trivial to determine under what conditions a similar uniqueness theorem
holds if the reference point p lies on the domain boundary. For biholomorphic
mappings we have the following theorems:

Theorem 1.2 [Krantz 1987]. Suppose that � is a strongly pseudoconvex domain
that is not biholomorphic to the ball. Let f :�→� be a biholomorphic mapping
and let p ∈ ∂�. If f (z)= z+ o(|z− p|), then f ≡ Id.

Theorem 1.3 [Huang 1993]. Suppose that � is a bounded pseudoconvex domain
satisfying Condition R. Let f :�→� be a biholomorphic map and let p ∈ ∂�. If
f (z)= z+ o(|z− p|) and { f k

: k ∈ Z} is compact, then f ≡ Id.

A crucial part in the proof of the Cartan uniqueness theorem are the Cauchy
estimates for holomorphic mappings, which are consequences of the ellipticity of
∂ . In contrast, the operator ∂ does not enjoy ellipticity or even subellipticity on
the boundary of a domain. Huang [1993] exploited Bell’s theorem [1987] on the
boundary behavior of biholomorphic mappings in the C∞ smooth sense, which is
obtained from an analysis of the transformation formula of the Bergman kernel
function.

In this paper, we prove a CR version of the uniqueness theorem:

Theorem 1.4 (CR case). Let M be either a real hypersurface in Cn+1 that does not
contain any analytic hypersurface or a compact real hypersurface that bounds a
domain. Let Hb be the class of all CR mappings from M into itself. Then (M,Hb)

satisfies the Cartan uniqueness property at every strongly pseudoconvex point.

The main interest of this theorem is that we assume neither a global type condition
on M nor global injectivity of the mappings in the class Hb. Therefore, we may
regard this theorem as a generalization of Theorem 1.2 in the CR case. The proof of
Theorem 1.4 is based on the method of derivative estimates of CR diffeomorphisms
by the local solvability of the CR Yamabe equation, which was mainly developed
in [Schoen 1995; Fischer-Colbrie and Schoen 1980].

By considering the conformal Yamabe equation instead of the CR Yamabe equa-
tion, we can have a conformal version of Theorem 1.4. For given two Riemannian
manifolds (M, g) and (N , h), a diffeomorphism f from M to N is said to be
conformal if f ∗h = u g for some positive function u on M . We define a little bit
wider class of mappings as follows.

Definition 1.5. Let (M, g) and (N , h) be Riemannian manifolds. A smooth map
f : M→ N is said to be semiconformal if f ∗h = λg for some smooth function λ.
In this definition, we assume neither that f is 1-1 nor λ > 0.

Theorem 1.6 (Conformal case). Let (M, g) be a Riemannian manifold of dimension
n > 2, and let S be the class of all semiconformal mappings from M into itself.
Then (M,S) satisfies the Cartan uniqueness property at every point of M.
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We present the proof of Theorem 1.6 in Section 2 and then prove Theorem 1.4
in Section 3. Each section contains fundamental definitions of corresponding
geometric objects — Yamabe equation, CR and pseudohermitian structures, CR
mappings and so on.

2. Proof of Theorem 1.6

We start this section by recalling the Yamabe equation and problem. Let (M, g)
be a Riemannian manifold of real dimension n ≥ 3. Let g̃ = e2 f g be a conformal
change of a Riemannian metric g, where f is smooth real-valued function on M .
If we denote by S and S̃ the scalar curvatures of g and g̃, respectively, it turns out
that they satisfy the transformation law

S̃ = e−2 f (S− 2(n− 1)1g f − (n− 1)(n− 2)|∇g f |2
)
,

where 1g f denotes the Laplacian — the trace of the second covariant derivative —
of f and ∇g f its covariant derivative for the metric g. Let φ be the positive function
satisfying e2 f

= φ pn−2, where pn = 2n/(n−2). Then the equation above turns into
the following nonlinear equation for φ:

(2-1) −an1gφ+ Sφ = S̃φ pn−1,

where an = 4(n− 1)/(n− 2). This is called the Yamabe equation and the linear
operator Lg = −an1g + S is called the conformal Laplacian for g. When we
mention the Yamabe problem, we mean the problem of finding a positive solution φ
of (2-1) that makes S̃ constant. This problem was first introduced in [Yamabe 1960],
and its solvability has been intensively investigated there and elsewhere [Trudinger
1968; Aubin 1976a; 1976b; Schoen 1984; 1995].

For our purposes, a local scalar flattening argument is needed rather than the
global solvability of the Yamabe problem:

Theorem 2.1 [Fischer-Colbrie and Schoen 1980]. Let (M, g) be a Riemannian
manifold and let Q be a smooth function on M. For x ∈ M and R > 0, we denote
by BR(x) the geodesic ball centered at x of radius R. If the minimum eigenvalue

λ(BR(x))= inf
{∫

BR(x)
(|∇ f |2+ Q f 2) dV : Support( f )⊂ BR(x),

∫
BR(x)

f 2
= 1

}
of 1g − Q on BR(x) is positive, then there exists a positive function φ on M such
that

(1g − Q)φ = 0

on BR(x).
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Let us return back to the situation of Theorem 1.6. Let p be a fixed point of M
and let f :M→M be a semiconformal map satisfying that f (p)= p, d f p = IdTp M

and that { f k
: k ∈Z+} is compact. Then we can choose a neighborhood U = BR(p)

of p such that

(i) f is one-to-one on U .

Choosing R small enough, we may also assume that the minimum eigenvalue of
−Lg is positive on U by the Poincaré inequality (see [Gilbarg and Trudinger 1983],
for example), and that

‖u‖q ≤ C R ‖∇u‖q

for every u ∈C∞0 (U ) and 1≤ q <∞, where C is a constant depending only on the
dimension n. Therefore, there exists a positive function φ on M such that Lg φ = 0
on U by Theorem 2.1. Replacing the metric g by φ4/(n−2)g, then we may assume
that

(ii) the metric g is scalar flat on U

by the Yamabe equation (2-1).
Thanks to the assumption that { f k

: k ∈ Z+} is compact, there exists a neigh-
borhood V of p that is relatively compact in U , such that f k(V ) ⊂ U for every
k = 1, 2, . . . . By (i), f k is a conformal transformation from V to f k(V ) ⊂ U .
Therefore, there exists a positive function uk on V such that

( f k)∗g = (uk)
4/(n−2)g

for every k = 1, 2, . . . . We denote u1 by u.
Since g and ( f k)∗g are scalar flat on V , uk satisfies the homogeneous Yamabe

equation

1guk = 0

on V by (2-1).
Since f k is a one-to-one map from V into U , it follows that∫

V
u2n/(n−2)

k dVg = Vol( f k)∗g V = Volg f k(V )≤ Volg U <∞.

By the elliptic mean value inequality, there exists C > 0 such that uk < C for every
k on a neighborhood V ′ of p that is relatively compact in V .

Let V ′′ be a neighborhood of p that is relatively compact in V ′. By the elliptic
estimate for 1g [Gilbarg and Trudinger 1983], there is a C j independent of k such
that

(2-2) ‖uk‖C j (V ′′) < C j .
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Note that

(2-3) uk(x)= u( f k−1(x)) · · · · · u( f (x)) · u(x)

for every positive integer k. Let x = (x1, . . . , xn) be local coordinates on V centered
at p and let

u(x)= 1+ h j (x)+ O(|x | j+1),

where h j is a j-th degree homogeneous polynomial. Since f (x)= x + o(|x |) by
the hypothesis, we see that

uk(x)= 1+ kh j (x)+ O(|x | j+1)

from (2-3). Therefore, if h j does not vanish, then the j -th order differential of uk at
p = 0 diverges as k→∞, which contradicts the inequality (2-2). This means that
h j vanishes identically on V ′′, hence v = u− 1 vanishes at p up to infinite order.
By the unique continuation principle [Garofalo and Lin 1987; Kazdan 1988], we
have v = 0 on V ′′, namely, u = 1 on V ′′. This implies that f is an isometry on V ′′.
Therefore, f coincides with the identity map on V ′′, since every local geodesic
passing through p should be preserved by f .

Let F = {x ∈ M : f (x) = x} and let F◦ the interior of F . Since V ′′ ⊂ F◦, we
see that F◦ is nonempty. If x0 is a limit point of F◦, then obviously f satisfies that
f (x0) = x0 and d fx0 = IdTx0 M . Repeating all the arguments above, we conclude
that x0 ∈ F◦. Thus F◦ is closed. This completes the proof of Theorem 1.6. �

Corollary 2.2. Let f be a conformal transformation of M such that f (p)= p and
d f p = IdTp M . Then either f ≡ Id or M is conformally equivalent to the unit sphere
Sn and f can be transformed into the conformal transformation φa of Sn that fixes
p0 = (1, 0, . . . , 0) ∈ Rn+1 for some a = (a1, . . . , an) ∈ Rn , where φa = 8a/|8a|

and 8a is the affine transformation of Rn+1 defined by

y0 =
|a|2

4
+

(
1− |a|

2

4

)
x0
+

1
√

2

n∑
j=1

a j x j ,

y j
= x j
+

a j
√

2
(1− x0)

for j = 1, . . . , n.

Proof. By Theorem 1.6, we may assume that { f k
: k ∈ Z} is noncompact if f is not

the identity transform. Then Schoen’s theorem [1995] implies that M is conformally
equivalent to either Rn or Sn . Since Rn is conformally equivalent to Sn

\ {p∞ =
(−1, 0, . . . , 0)}, we may also assume that f is a conformal transformation of Sn

fixing p0 = (1, 0, . . . , 0). By Obata’s theorem [1970], either f has two fixed points
or it has only one fixed point. Moreover, if f has two fixed points, then each fixed
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point is a contracting fixed point of f or f −1. This contradicts the hypothesis
that d f p0 = IdTp0 M . In particular, M is conformally equivalent to Sn , since if M
were conformally equivalent to Rn , then f should fix two points p0 and p∞ as a
conformal transform of Sn . If f has only one fixed point p0 and d f p0 = Id, then
f =8a/|8a| for some a ∈ Rn by the algebraic characterization of the conformal
transformation group of Sn via projectivization. See [Obata 1970] for more details.

�

3. Proof of Theorem 1.4

We first review some definitions related to CR manifolds and CR mappings.
Let M be a smooth manifold of real dimension 2n+ 1 and let H be a subbundle

of T M with fiber dimension 2n. Let J be a smooth section of the endomorphism
bundle of H satisfying J 2

= − IdH . Then the triple (M, H, J ) is called a CR
manifold if it satisfies the integrability condition

[0(H1,0), 0(H1,0)] ⊂ 0(H1,0),

where H1,0 is the subbundle of C⊗ H on which J = i , and 0(H1,0) is the space of
smooth sections of H1,0. A typical example of a CR manifold is a real hypersurface
of a complex manifold. Let (M, H, J ) and (M ′, H ′, J ′) be two CR manifolds. A
smooth map f : M→ M ′ is called a CR mapping if d f (H1,0)⊂ H ′1,0. For a CR
manifold (M, H, J ), let θ be a nonvanishing real 1-form on M that vanishes on H .
The Levi form Lθ is the symmetric bilinear form on H defined by

(Lθ )x(X, Y )= dθx(X, JY )

for every x ∈ M and X, Y ∈ Hx .
A CR manifold (M, H, J ) is said to be strongly pseudoconvex if the Levi form Lθ

for some θ is positive definite on H . In this case, the 1-form becomes a contact form.
The quadruple (M, H, J, θ) is called a pseudohermitian manifold; see [Webster
1978]. We abbreviate this by (M, θ).

For a pseudohermitian manifold (M, θ), let ξ be the vector field on M defined
by θ(ξ)= 1 and ξy dθ = 0. Then for every x ∈ M , Tx M = [ξx ]⊕ Hx , where [ξx ]

denotes the space generated by ξx . This decomposition defines a natural projection
π : Tx M→ Hx . We define a Riemannian metric g on M by

(3-1) gx(X, Y )= θx(X) θx(Y )+ (Lθ )x(π(X), π(Y ))

for every X , Y ∈ Tx M . The Tanaka–Webster connection ∇ on (M, θ) is an affine
connection for which g, V and J are parallel. This connection is determined
uniquely under suitable conditions on the torsion tensor. See [Tanaka 1975; Webster
1978]. By differentiating the Tanaka–Webster connection form, the pseudohermitian
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curvature tensor can be defined. The trace of this tensor is the Ricci tensor, and the
trace of the Ricci tensor is the Webster scalar curvature Rθ . Obviously, the Webster
scalar curvature depends the choice of the contact form θ .

Let θ̃ = u2/nθ be another choice of contact form, where u is a positive smooth
function, and let R̃ and R be the Webster scalar curvatures for θ̃ and θ , respectively.
Then it is known that

(3-2) −bn1θu+ Ru = R̃u p−1,

where
bn =

2(2n+1)
n+1

, p = 2+ 2
n
,

and 1θ is the sublaplacian for θ . Equation (3-2) is called the CR Yamabe equation.
The CR Yamabe problem is to find a positive solution of (3-2) that makes R̃ constant.
One may refer to [Jerison and Lee 1987; 1989; Lee 1986] for the properties of the
CR Yamabe equation and the solvability of the CR Yamabe problem.

Now let us consider the situation of Theorem 1.4. Let M be a smooth real
hypersurface in Cn+1, p ∈ M be a strongly pseudoconvex point and let f : M→ M
be a CR mapping satisfying that f (p) = p, d f p = IdTp M and that the iteration
sequence { f k

: k ∈ Z+} is compact. Let 0 be the connected component of the
set of strongly pseudoconvex points in M that contains p. One should notice that
Theorem 2.1 is still valid for subelliptic cases, since the proof depends only on the
Fredholm alternative theorem. Therefore, by a similar argument as in the conformal
case, we can choose a neighborhood U of p in 0 and a contact 1-form θ on 0 such
that

• f is one-to-one, and

• the Webster scalar curvature for θ vanishes on U .

Take a relatively compact neighborhood V of p in U such that f k(V )⊂U for
every k = 1, 2, . . . . Then an iteration argument as in the conformal case and the
subellipticity of the sublaplacian yield that u− 1 vanishes at p up to infinite order,
where u is the positive function on V defined by

(3-3) f ∗θ = u2/nθ.

Remark 3.1. Although 1θu = 0 on V , we cannot conclude that u ≡ 1 at this
stage, since the unique continuation principle for subelliptic operator has not been
completely solved. In fact, an example in [Bahouri 1986] shows that a continuation
theorem of Garofalo–Lin–Kazdan type cannot hold in the 3-dimensional Heisenberg
group. Some partial results on the unique continuation principle for the sublaplacian
were obtained in [Garofalo and Lanconelli 1990] for the Heisenberg group and in
[Niu and Wang 2010] for more general nilpotent groups.
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Let g be the Riemannian metric on 0 defined by (3-1). Then (3-3) yields that

g̃ := f ∗g = λ2θ ⊗ θ + λLθ ,

where λ= u2/n . Since u− 1 vanishes at p up to infinite order, so does λ− 1.
Let (x0, . . . , x2n) be local coordinates centered at p such that gi j (0)= δi j . Since

λ− 1 vanishes at p = 0 up to infinite order, the Taylor coefficients of gi j and g̃i j at
p = 0 coincide. Since derivatives of f at 0 of order ≥ 2 are completely determined
by differences between the Taylor coefficients of gi j and g̃i j , we see that f coincides
with the identity at 0 up to infinite order. Note that f is a CR diffeomorphism from
V onto f (V ). Since every local CR diffeomorphism on a strongly pseudoconvex
CR manifold is uniquely determined by its finite order jet at the fixed point [Chern
and Moser 1974; Kim and Zaitsev 2005], we conclude that f ≡ Id on V .

If M is a compact real hypersurface that bounds a domain D, then the CR mapping
f extends continuously to a holomorphic map F on D by the Bochner–Hartogs
extension theorem. Since F − IdD vanishes on an open piece V of the boundary
∂D = M , we see that F and hence f coincide with the identity map. Now suppose
that M is a real hypersurface in Cn+1 containing no analytic hypersurface. Let

F = {x ∈ M : f (x)= x}

and let F◦ be the interior of F , which is nonempty by the argument above. Let x0

be a limit point of F◦. By Trépreau’s theorem [1986], there exists a neighborhood
� of x0 in Cn+1 such that �\M =�+∪�− and such that f extends continuously
to a holomorphic map F defined on �+. Since F ≡ Id on a nonempty open piece
F◦ ∩� in ∂�+, we see that F ≡ Id on �+. Therefore, x0 ∈ F◦. This yields the
conclusion. �

Corollary 3.2. Let M be a real hypersurface in Cn+1 containing no analytic hy-
persurface. Let p be a strongly pseudoconvex point of M. If f : M→ M is a CR
automorphism that f (p)= p and d f p= Id, then either f = Id or M is CR equivalent
to the sphere S2n+1, and f can be transformed into the CR transformation φa,r of
S2n+1 fixing p0 = (1, 0, . . . , 0) ∈ Cn+1 for some a = (a1, . . . , an) ∈ Cn and r ∈ R,
where φa,r =8a,r/9a,r and 8a,r is the affine transformation of Cn+1 defined by

w0
=
(
1− 1

2(|a|
2
+ ir)

)
z0
− i

n∑
j=1

a j z j
+

1
2(|a|

2
+ ir),

w j
= z j
+ ia j (1− z0)

for j = 1, . . . , n, and 9a,r is the C-valued function defined by

9a,r (z)= 1
2

(
|a|2+ 2+ ir

)
− i

n∑
j=1

a j z j
−

1
2

(
|a|2+ ir

)
z0.
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Proof. By Theorem 1.4, we may assume that { f k
: k ∈ Z} is noncompact if f is

not the identity map. Let 0 be the connected component of the set of strongly
pseudoconvex points that contains p. Since f is a CR diffeomorphism of M onto
M , it preserves 0. Moreover, the group { f k

|0} is also noncompact, since otherwise,
f|0 ≡ Id by Theorem 1.4 and this implies that f ≡ Id on M . Therefore, Schoen’s
theorem [1995] implies that 0 is CR equivalent to either the Heisenberg group Hn or
the standard unit sphere in Cn+1. Since S2n+1 is the one point compactification of Hn ,
we also may assume that f is a CR transformation of S2n+1 fixing p0= (1, 0, . . . , 0).
By a result in [Webster 1977], either f has two fixed points or it has only one fixed
point. If f has two fixed points, then each fixed point is a contracting fixed point
of f or f −1. This contradicts the hypothesis that d f p0 = Id. Hence f has only one
fixed point p0. In particular, 0 cannot be equivalent to the Heisenberg group. Since
S2n+1 is a boundary-free compact manifold, we can conclude that M = 0 and that
M is CR equivalent to the unit sphere S2n+1.

To obtain explicit formulas for CR transformations of S2n+1 it is useful to imbed
S2n+1 into the complex projective (n+1)-space CPn+1 in the following manner: Let
Cn+1 be a complex Euclidean (n+ 1)-space with a coordinate system (z0, . . . , zn),
and let S2n+1 be given by the equation

|z0
|
2
+ |z1
|
2
+ · · ·+ |zn

|
2
= 1 .

We also let Cn+2 be a complex Euclidean (n+ 2)-space with a coordinate system
(Z0, Z1, . . . , Zn+1), and let CPn+1 be the projective (n+ 1)-space with a homoge-
neous coordinate system [Z0, Z1, . . . , Zn+1

]. We define a holomorphic embedding
of Cn+1 into CPn+1 by the equations

(3-4) Z0
= 1+ z0, Z j

= z j ( j = 1, . . . , n), Zn+1
= i(1− z0),

and the image of S2n+1 in CPn+1 under this embedding is the real hypersurface Q
that is defined by

|Z1
|
2
+ · · ·+ |Zn

|
2
+

i
2
(
Zn+1 Z0

− Z0 Zn+1)
= 0.

The special unitary group SU(n+1, 1) is the group of the linear transformations of
Cn+2 leaving the quadratic form

|Z1
|
2
+ · · ·+ |Zn

|
2
+

i
2
(
Zn+1 Z0

− Z0 Zn+1)
invariant, and whose determinant has absolute value 1. We can regard the CR
transformation group of S2n+1 as SU(n+ 1, 1). The Lie algebra of SU(n+ 1, 1)
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consists of (n+ 2)× (n+ 2) matrices of the form λ −2i t a r
−

1
2i b B a
q t b −λ

 ,
where B is a skew-hermitian n × n matrix, a and b are column n-vectors with
complex entries, and r , q are real numbers.

In particular, the Lie algebra of the isotropy group SUp0(n+ 1, 1) at the point
p0 consists of the matrices of the form λ −2i t a r

0 B a
0 0 −λ

 .
If λ is not purely imaginary, then f has two fixed points, by [Webster 1977]. This
contradicts our hypothesis. Write λ = iθ for some θ ∈ R. The isotropy group
SUp0(n+ 1, 1) itself, as a subgroup of SU(n+ 1, 1), consists of the matrices of the
form

(3-5)

 eiθ
−2ieiθ (t a) −ieiθ

|a|2+ reiθ

0 T T a
0 0 eiθ

 ,
where T ∈ SU(n) and r is a real number. Hence we can consider f as a linear
transformation of the form (3-5). Since d f p0 |Tp0 S2n+1 = Id, T is the identity map.
So f is represented by the matrix

(3-6)

 eiθ
−2ieiθ (t a) −ieiθ

|a|2+ reiθ

0 Id a
0 0 eiθ

 .
By Webster [1977], the CR transformation represented by (3-6) has only one fixed
point.

Since [Z0, . . . , Zn+1
] is the homogeneous coordinate of CPn+1, the inverse map

of (3-4) is given by

(3-7) z0
=

i Z0
−Zn+1

i Z0+Zn+1 and z j
=

2i Z j

i Z0+Zn+1

for j = 1, . . . , n. If eiθ is not 1, then the map represented by the matrix (3-6) does
not satisfy that d f p0 |Tp0 S2n+1 = Id. This implies that eiθ

= 1. Using (3-6) and (3-7)
we can conclude that f =8a,r/9a,r for some a ∈ Cn and r ∈ R. �
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SOME FINITE PROPERTIES FOR VERTEX OPERATOR
SUPERALGEBRAS

CHONGYING DONG AND JIANZHI HAN

Vertex operator superalgebras are studied and various results on rational
vertex operator superalgebras are obtained. In particular, the vertex oper-
ator super subalgebras generated by the weight 1

2 and weight 1 subspaces
are determined. It is also established that if the even part V0̄ of a vertex
operator superalgebra V is rational, so is V .

1. Introduction

Vertex operator superalgebras, which are natural generalizations of vertex operator
algebras, have been studied extensively in [Dong and Zhao 2005; 2006; Kac and
Wang 1994; Li 1996b; 1996a; Xu 1998]. In this paper, we study certain finite
properties of vertex operator superalgebras following [Dong et al. 1998b; Dong
and Mason 2004; 2006; Mason 2011].

A vertex operator superalgebra V = V0̄⊕ V1̄ has even part V0̄ and odd part V1̄,
where V0̄ consists of vectors of integral weights and V1̄ consists of vectors whose
weights are half integers but not integers. So there is a canonical automorphism
σ of V acting on Vī as (−1)i and V0̄ is a vertex operator algebra which is also a
fixed point subalgebra of V . So a better understanding of the relationship between
representation theories of V and V0̄ is definitely useful for the study of orbifold
theory; see [Dijkgraaf et al. 1989; Dong et al. 2000]. Even the orbifold theory for
vertex operator algebras with order 2 automorphism has not been understood fully.

Rationality, which is an analogue of semisimplicity of associative and Lie alge-
bras, is probably the most important concept in the representation theory of vertex
operator superalgebra. We first establish that if V0̄ is rational, V is rational, al-
though we believe that the rationalities of V and V0̄ are equivalent from the orbifold
theory. The main tool consists of the associative algebras Ag,n(V ) for n ∈ 1

2 Z+,
which are generalizations of Ag,n(V ) as introduced and studied in [Dong et al.
1998b] (also see [Zhu 1996; Kac and Wang 1994; Dong et al. 1998a; Dong et al.

Chongying Dong was supported by NSF grants and a faculty research fund from the University of
California at Santa Cruz.
MSC2010: 17B65, 17B69.
Keywords: vertex operator superalgebra.

269
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1998c]), where g is an automorphism of V of finite order. It is established that V is
g-rational if and only if Ag,n is a finite dimensional semisimple associative algebra
for large n. This is the key result to prove the rationality of V from the rationality
of V0̄. Another characterization of rationality is given through the Ext functor.

Our investigation next centers around the vertex operator super subalgebras of
V generated by homogeneous subspaces of small weights. The vertex operator
subalgebra generated by V1

2
is a holomorphic vertex operator superalgebra U as-

sociated to an infinite dimensional Clifford algebra built from a finite dimensional
vector space with a nondegenerate symmetric bilinear form. This enables us to
decompose V as a tensor product U ⊗U c where U c, whose weight 1

2 subspace is
zero, is the commutant of U in V [Frenkel and Zhu 1992; Lepowsky and Li 2004].
Moreover, the module categories of V and U c are equivalent. To study V1, we first
need to understand the algebraic structure of V1. Under the assumption that V is
rational or σ -rational together with C2-cofiniteness, we are able to show that V1 is
a reductive Lie algebra, using the modular invariance results from [Dong and Zhao
2005; Zhu 1996], and the fact that E2(τ ) is not modular. Also, the rank of V1 and
the dimension of V1

2
are controlled by the effective central charge. Furthermore, for

any simple Lie subalgebra g of V1, the vertex operator subalgebra generated by g is
isomorphic to the vertex operator algebra L(k, 0), which is the integrable highest
weight module for the affine Kac–Moody algebra ĝ. We also give a rational vertex
operator subalgebra, which is a tensor product of affine vertex operator algebras
and a lattice vertex operator algebra, and whose weight one subspace is exactly V1.

We should point out that most of the results in this paper have been obtained
in the case where V is a vertex operator algebra in [Dong et al. 1998b; Dong and
Mason 2004; 2006; Mason 2011]. So the results of this paper can be regarded as
a “super” analogues of results presented in [Dong et al. 1998b; Dong and Mason
2004; 2006; Mason 2011]. The main ideas and the broad outlines also follow from
these papers. A lot of arguments are omitted if they are the same as in the case
of vertex operator algebras. On the other hand, there is a new phenomenon in the
super case. Namely, either rationality together with C2-cofiniteness or σ -rationality
together with C2-cofiniteness implies that V1 is reductive. This gives strong evi-
dence that rationality, σ -rationality of V , and rationality of V0̄ are equivalent. But
we have no idea how to establish this.

This paper is organized as follows. In Section 2, we recall various notions
of twisted modules for a vertex operator superalgebra and g-rationality for any
automorphism of finite order from [Frenkel et al. 1988; Zhu 1996; Dong et al.
1998a; Dong and Zhao 2006]. In Section 3, we define a series of associative
algebras Ag,n(V ) for a vertex operator superalgebra V and n ∈Z+. We exhibit how
to use An(V ) to prove rationality of V from the rationality of V0̄. It is also shown
that if V is C2-cofinite or rational, V is finitely generated and the automorphism
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group Aut(V ) is an algebraic group. Section 4 is devoted to the study of vertex
operator super subalgebras generated by V1

2
. In Section 5 we show that if V is

rational or σ -rational together with C2-cofiniteness then the weight one subspace
V1 is a reductive Lie algebra whose rank is bounded above by the effective central
charge c̃. Consequently, dim V1

2
is bounded above by 2c̃+ 1. Section 6 deals with

the vertex operator subalgebra of V generated by V1.
We make the assumption that the reader is familiar with the theory of vertex

operator algebras as presented in [Borcherds 1986; Dong and Lepowsky 1993;
Frenkel et al. 1988; Lepowsky and Li 2004].

2. Basics

In this section we give the definition of a vertex operator superalgebra and several
notions of modules; cf. [Dong et al. 1997; Dong and Zhao 2006; Feingold et al.
1991; Frenkel et al. 1988; Li 1996b; Zhu 1996].

We first recall that a super vector space is a Z2-graded vector space V = V0̄⊕V1̄.
The elements in V0̄ (respectively V1̄) are called even (respectively odd). Let ṽ be
0 if v ∈ V0̄, and 1 if v ∈ V1̄.

Definition 2.1. A vertex operator superalgebra (VOSA) is a 1
2 Z-graded vector

space
V =

⊕
n∈ 1

2 Z

Vn = V0̄⊕ V1̄

with V0̄=
∑

n∈Z Vn and V1̄=
∑

n∈Z Vn+ 1
2

satisfying all the axioms in the definition
of vertex operator algebra except that the Jacobi identity is replaced by

z−1
0 δ

(
z1− z2

z0

)
Y (u, z1)Y (v, z2)− (−1)ũṽz−1

0 δ

(
−z2+ z1

z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1− z0

z2

)
Y (Y (u, z0)v, z2).

Throughout the paper we always assume that V is a vertex operator superalgebra
unless otherwise stated.

Definition 2.2. An automorphism g of a VOSA V is a linear automorphism of V
preserving the vacuum vector 1 and the conformal vector ω such that the actions
of g and Y (v, z) on V are compatible in the sense that

gY (v, z)g−1
= Y (gv, z)

for v ∈ V .

Denote by Aut(V ) the set consisting of all automorphisms of V . Observe that
any automorphism of V commutes with L(0) and hence preserves each homoge-
neous subspace Vn . As a consequence, any automorphism preserves both V0̄ and
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V1̄. There is a canonical automorphism σ of V with σ | Vī = (−1)i associated to
the Z2-grading of V .

Let g ∈Aut(V ) with finite order T . Then we can decompose V into eigenspaces
of g:

V =
T−1⊕
r=0

V r ,

where V r
= {v ∈ V | gv = e−2π ir/T v}.

Definition 2.3. A weak g-twisted V -module M is a Z2-graded vector space equip-
ped with a linear map

YM : V → (End M)[[z, z−1
]],(2-1)

v 7→ YM(v, z)=
∑

n∈(1/T )Z

vnz−n−1,(2-2)

such that, for all u ∈V r (0≤ r ≤ T−1), v∈V , andw∈W , the following conditions
hold:

YM(u, z)=
∑

n∈r/T+Z

unz−n−1, unw = 0 for n� 0,

YM(1, z)= IdM ,

and

z−1
0 δ

(
z1− z2

z0

)
YM(u, z1)YM(v, z2)−(−1)ũṽz−1

0 δ

(
−z2+ z1

z0

)
YM(v, z2)YM(u, z1)

= z−1
2 δ

(
z1− z0

z2

)−r/T

δ

(
z1− z0

z2

)
YM(Y (u, z0)v, z2).

Definition 2.4. An admissible g-twisted V -module is a weak g-twisted V -module
M which carries a (1/T )Z+-grading

M =
⊕

n∈(1/T )Z+

M(n)

satisfying

vm M(n)⊆ M(n+wt v−m− 1)

for homogeneous v ∈ V and m ∈ 1
T Z.

Definition 2.5. An ordinary g-twisted V -module is a weak g-twisted V -module

M =
⊕
λ∈C

Mλ

such that dim Mλ is finite and for fixed λ, Mn/T+λ= 0 for all small enough integers
n, where Mλ = {w ∈ M | L(0)w = λw} and YM(ω, z)=

∑
n∈Z L(n)z−n−2.
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We say V is g-rational if every admissible g-twisted V -module is completely
reducible, that is, a direct sum of simple admissible g-twisted V -modules. V is
g-regular if the category of weak g-twisted V -modules is semisimple, namely,
every weak g-twisted V -module is a direct sum of irreducible weak g-twisted V -
modules. If g = 1, we have the definitions of rationality and regularity for vertex
operator superalgebras.

The following definitions are given for vertex operator algebras in [Dong and
Mason 2006; Zhu 1996] and we extend these to vertex operator superalgebras here.

A vertex operator superalgebra V is said to be of CFT type if the L(0)-grading
on V has no negative weights and the degree-zero homogeneous subspace V0 is
one-dimensional: in symbols, V =

⊕
n∈ 1

2 Z+
Vn and V0=C1. We say V is of strong

CFT type if V satisfies the further condition L(1)V1=0. V is said to be C2-cofinite
in the case where C2(V ) has finite codimension in V , where C2(V ) is the subspace
of V linearly spanned by all elements of the form u−2v for u, v ∈ V .

For convenience, let us introduce the term strongly g-rational for a simple vertex
operator superalgebra V which satisfies the following conditions:

(1) V is of strong CFT type.

(2) V is C2-cofinite.

(3) V is g-rational.

Definition 2.6. A bilinear form ( · , · ) on a V -module M is said to be invariant
[Frenkel et al. 1993] if it satisfies the condition

(Y (a, z)u, v)=
(
u, Y (ezL(1)(eπ i z−2)L(0)a, z−1)v

)
for a ∈ V and u, v ∈ M.

It is proved in [Li 1994; Xu 1998] that there exists a linear isomorphism from
the space of invariant bilinear forms on V to HomC(V0/L(1)V1,C). This implies
that there is a unique, up to multiplication by a nonzero scalar, nondegenerate
symmetric invariant bilinear form on V if V is simple and of strong CFT type.

3. Rationality

In this section we give a characterization of the rationality of a vertex operator
superalgebra V in terms of the rationality of a vertex operator subalgebra V0̄. We
will show that if V0̄ is rational, V is rational. We certainly believe that the converse
is also true, that is, if V is rational, V0̄ is also rational. This is similar to a well-
known conjecture in orbifold theory: Let V be a rational vertex operator algebra,
and g is an order 2 automorphism of V . Then the fixed point vertex operator
subalgebra is also rational. We will establish some other results on rationality. We
also discuss the generators of V .
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The tool we use to prove the main result is the associative algebras An(V ), which
is defined in [Dong et al. 1998c] for vertex operator algebra. Let V be a vertex
operator superalgebra. Let On(V ) be the subspace of V linearly spanned by all
L(−1)u+ L(0)u and u ◦n v where, for homogeneous u ∈ V and v ∈ V ,

u ◦n v =


Resz

(1+ z)wt u+n

z2n+2 Y (u, z)v, if u ∈ V0̄,

Resz
(1+ z)wt u+n− 1

2

z2n+1 Y (u, z)v, if u ∈ V1̄.

Define another operation ∗n on V by

u ∗n v =


n∑

m=0

(−1)m
(

m+ n
n

)
Resz

(1+ z)wt u+n

zn+m+1 Y (u, z)v, if u, v ∈ V0̄,

0, if u ∈ V1̄ or v ∈ V1̄.

Set An(V )=V/On(V ). Then A0(V ) is the A(V ) studied in [Kac and Wang 1994].
Let M be a weak V -module. Define the “n-th lowest weight vector” subspace of
M as

�n(M)= {w ∈ M | uwt u+n+iw = 0, u ∈ V, i ≥ 0}.

As in [Dong et al. 1998c] we have the following results.

Theorem 3.1. (1) Suppose that M is a weak V -module. Then �n(M) is an
An(V )-module such that a acts as o(a) for a ∈ V0̄, where o(a) is defined
to be awt a−1 for homogeneous a ∈ V0̄ and extends it linearly.

(2) Suppose M =
⊕

i∈ 1
2 Z+

M(i) is an admissible V -module. Then

(a) �n(M)⊃
⊕

i≤n M(i);
(b) assuming M is simple, �n(M) =

⊕
i≤n M(i), and each M(i) is a simple

An(V )-module for i = 0, 1
2 , . . . , n.

(3) M 7→ M(0) gives a bijection between irreducible admissible V -modules and
simple A(V )-modules.

(4) The identity map induces an epimorphism from An(V ) to Am(V ) for any
n ≥ m.

(5) If V is g-rational, there are only finitely many irreducible admissible g-twisted
V -modules up to isomorphism, and each irreducible admissible g-twisted V -
module is ordinary.

Note that part (3) of the theorem was obtained in [Kac and Wang 1994].
The next lemma will be used as a characterization of the rationality of V in

terms of semisimplicity of An(V ) for large enough n.

Lemma 3.2. Suppose that A(V ) is finite dimensional. Then any admissible V -
module is a direct sum of generalized eigenspaces for L(0).
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Proof. Let M =
⊕

i∈ 1
2 Z+

M(i) be an admissible V -module with M(0) 6= 0. Let W
be a maximal subspace of M which is a direct sum of generalized eigenspaces with
respect to L(0). Then it is not hard to see that W is a submodule of M . Consider
the A(V )-module M(0). By our assumption on finite dimension of A(V ), we see
that there exists a nonzero simple A(V )-submodule of M(0), on which L(0) acts
as a scalar by Schur’s lemma. This shows that W 6= 0. We shall show W = M .
Suppose M/W 6=0. Choose the minimal n∈ 1

2 Z+ such that M(n)/W (n) 6=0, where
W (n)=W ∩M(n). Then, by similar argument as above, we see that M(n)/W (n)
contains a nonzero simple A(V )-submodule, say W(n)/W (n) 6= 0, where W(n)
is a subspace of M(n). Since both W(n)/W (n) and W (n) are a direct sum of
generalized eigenspaces for L(0), so is W(n). Thus W(n)⊂W and W(n)=W (n),
a contradiction. �

Assume that A(V ) is finite dimensional. Let

f (x)= (x − λ1)(x − λ2) · · · (x − λr ) ∈ C[x]

be the monic polynomial of least degree such that f ([w]) = 0 in A(V ). Then,
on any given simple A(V )-module, L(0) must act as a constant λi for some i .
Note from Theorem 3.1 that V has exactly r inequivalent irreducible admissible
modules M i

=
∑

n∈ 1
2 Z+

M i
λi+n for i = 1, · · · , r . Then there exists mi > 0 such

that M i
λi+n 6= 0 for all n ≥ mi . Let N be a positive integer greater than |λi − λ j |,

|λi | + 1, and mi for i, j = 1, . . . , r .
Note that the rationality is defined from the representation theory. It is always

believed that such a property, which is analogous to the semisimplicity of Lie and
associative algebras, should have its own internal characterization. The following
result can be regraded as an internal characterization of rationality.

Theorem 3.3. V is rational if and only if An(V ) is finite dimensional and semisim-
ple for some n ≥ N.

Proof. The proof of [Dong et al. 1998c, Theorem 4.10] shows that if V is rational,
An(V ) is semisimple and finite dimensional for all n. Now we assume that An(V )
is semisimple for some n ≥ N . By Theorem 3.1, Am(V ) is semisimple for all
m ≤ n. Let M =

⊕
i∈ 1

2 Z+
M(i) be an admissible V -module with M(0) 6= 0. By

Lemma 3.2, we can write

M =
∑

λ∈{λ1,...,λr }

⊕
n∈ 1

2 Z+

Mλ+n,

where Mλ+n is the generalized eigenspace for L(0) with eigenvalue λ+ n. Note
that, for each λ ∈ {λ1, . . . , λr }, the subspace

⊕
n∈ 1

2 Z+
Mλ+n is an admissible sub-

module of M . Without loss of generality, we may assume that M =
⊕

n∈ 1
2 Z+

M(n)
for some λ ∈ {λ1, . . . , λr }, where M(n)= Mλ+n .
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We assert that the submodule W generated by
⊕

n≤N , n∈ 1
2 Z+

M(n) is equal to
the entire M . Otherwise, 0 6= M/W =

⊕
n>N , n∈ 1

2 Z+
M(n)/W (n), where W (n)=

W ∩M(n). Let n0 ∈
1
2 Z+ be minimal such that M(n0)/W (n0) 6= 0. Then n0 > N

and M(n0)/W (n0) is an A(V )-module by Theorem 3.1. Since A(V ) is semisimple,
there exists a nonzero simple A(V )-submodule of M(n0)/W (n0) on which L(0)
acts as the constant λ+ n0 ∈ {λ1, . . . , λr }, which implies |λ− λ j | = n0 for some
j . But this is impossible by our choice on N . Thus we must have W = M .

We next show that if X is a simple A(V )-submodule, X generates an irreducible
V -module U . Denote by J =

⊕
n∈ 1

2 Z+
J (n) the maximal submodule of U such that

J (0)= 0, where J (n)= J ∩U (n). Then the quotient W =U/J is irreducible and
W (0) = X . Since

⊕
0≤n≤N U (n) is a semisimple AN (V )-module we can regard

each W (n) as an AN (V )-submodule of U (n) for n ≤ N . From the choice of N ,
we know that W (N ) 6= 0. Then the admissible V -submodule of U generated by
W (N ) contains W (0)= X . Thus W (N )=U (N ), so J (N )= 0. By our choice of
N , again we see that J must be trivial. This implies that U =W is irreducible.

It follows that the admissible V -submodule W of M generated by M(0) is com-
pletely reducible. Note that M(1) =W(1)⊕ P , where P is a semisimple A(V )-
module. Again the admissible submodule of M generated by P is completely
reducible. Continuing in this way completes the proof. �

Remark 3.4. Even in the case where V is a vertex operator algebra, Theorem 3.3
strengthens [Dong et al. 1998c, Theorem 4.11], where we require that An(V ) is
semisimple for all n.

Remark 3.5. There is a twisted analogue Ag,n(V ) (cf. [Dong et al. 1998b]) of
An(V ). One can similarly define the positive integer Ng. Then Theorem 3.3 still
holds, that is, V is g-rational if and only if Ag,n(V ) is finite dimensional and
semisimple for some n ≥ Ng.

We now use Theorem 3.3 to prove the following result.

Proposition 3.6. Let V = V0̄⊕ V1̄ be a VOSA. If V0̄ is rational, V is rational.

Proof. Suppose V0̄ is rational. Then, by Theorem 3.3, An(V0̄) is a finite dimen-
sional semisimple associative algebra if n is sufficiently large. This implies that
An(V ) is semisimple as An(V ) is a quotient of An(V0̄). Applying Theorem 3.3
again yields that V is rational. �

We remark that we do not know how to prove the rationality of V from the
rationality of V0̄ without using An(V ). It is certainly a very interesting problem to
find a different approach that does not use An(V ). Although we can not show the
converse of Proposition 3.6, we strongly believe that rationalities of V and V0̄ are
equivalent.
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In the rest of this section we use the extension functor to consider the rationality
of a vertex operator superalgebra V . This approach has been studied in [Abe 2005]
for vertex operator algebra, but our rationality result is different from that given in
[ibid.].

First let us describe the set Ext1V (M
2,M1) for any weak V -module M1 and M2.

We call a weak V -module M an extension of M2 by M1 if there is a short exact
sequence 0→ M1

→ M→ M2
→ 0. Two extensions M and N of M2 by M1 are

said to be equivalent if there exists a V -homomorphism f : M→ N such that the
following diagram commutes:

0 −−−→ M1 φ
−−−→ M

ϕ
−−−→ M2

−−−→ 0 (exact)∥∥∥ y f
∥∥∥

0 −−−→ M1 φ′

−−−→ N
ϕ′

−−−→ M2
−−−→ 0 (exact).

Define Ext1V (M
2,M1) to be the set of all equivalent classes of M2 by M1. It is

well known that Ext1V (M
2,M1) carries the structure of an abelian group such that

the equivalent class of M1
⊕M2 is the zero element.

Here is another equivalent condition of rationality.

Proposition 3.7. Let V be a vertex operator superalgebra. Then V is rational if
and only if the following two conditions hold.

(a) Every admissible V -module contains a nontrivial irreducible admissible sub-
module.

(b) For any irreducible V -modules M and N , Ext1V (M, N )= 0.

Proof. It is clear that rationality implies both (a) and (b). Now we assume that (a)
and (b) hold. Let M=

⊕
n∈ 1

2 Z+
M(n) be a nonzero admissible V -module. Let W be

the sum of irreducible admission V -submodules of M . Then W =
⊕

i∈I W i , where
each W i is an irreducible admissible V -module. By condition (a), W 6= 0. We
assert that W =M . Otherwise consider the quotient module M/W . It follows from
condition (a) again that there exists a weak V -submodule M ′ such that M ′ ! W
and M ′/W is an irreducible admissible V -module. Then by condition (b) and the
properties of Ext, we have

Ext1V (M
′/W,W )=

⊕
i∈I

ExtV (M ′/W,W i )= 0,

that is, M ′ = M ′/W ⊕W as V -modules, contradicting the maximality of W . So
the assertion is true and M is a direct sum of irreducible admissible V -modules. �

We now turn our attention to the generators of vertex operator superalgebras.
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Proposition 3.8. Let V be a vertex operator superalgebra.

(a) If V is rational or C2-cofinite, V is finitely generated.

(b) If V is finitely generated, Aut(V ) is an algebraic group.

These results were obtained in the case of vertex operator algebras in [Dong and
Zhang 2008; Karel and Li 1999]; see also [Gaberdiel and Neitzke 2003; Dong and
Griess 2002]. The same proof works here.

4. Vertex operator subalgebra generated by V1
2

In this section we study the vertex operator super subalgebra U of V generated by
V1

2
, and decompose V as a tensor product U ⊗U c, where U is holomorphic in

the sense that U is the only irreducible module for itself and U c, whose weight 1
2

subspace is 0, is the commutant of U in V . This decomposition reduces the study of
vertex operator superalgebras to the study of vertex operator superalgebras whose
weight 1

2 subspaces are 0.
Let V be a simple vertex operator superalgebra of strong CFT type. Then there

is a unique invariant, symmetric, and nondegenerate bilinear form ( · , · ) such that

(4-1) (1, 1)=
√
−1;

see [Li 1994; Xu 1998]. Then, for u, v ∈ V1
2
, one has

(4-2) u0v = (u, v)1

and

(4-3) [u(m), v(n)]+ = (u, v)δm+n+1,0.

Note that the restriction of ( · , · ) to V1
2

is still nondegenerate. Let {a1, a2, . . . , al
}

be an orthonormal basis of V1
2

with respect to the form ( · , · ), where l = dim V1
2
.

Let U be the vertex super subalgebra of V generated by V1
2
. Then, using (4-3),

we see that

U = Span
{
u1
−n1

u2
−n2
· · · ur

−nr
1
∣∣ ui
∈ V1

2
, n1 ≥ n2 ≥ · · · ≥ nr > 0 and r ∈ Z+

}
.

In fact, U carries the structure of a vertex operator superalgebra with conformal
vector

ω′ = 1
2

l∑
i=1

ai
−2ai
−11.

Define operators L ′(n) for n ∈ Z by

Y (ω′, z)=
∑
n∈Z

w′nz−n−1
=

∑
n∈Z

L ′(n)z−n−2.
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Then the weight n subspace Un for L ′(0) is given by

Un =

〈
u1
−n1

u2
−n2
· · · ur

−nr
1
∣∣∣ ui
∈ V1

2
, n1 ≥ n2 ≥ · · · ≥ nr > 0, r ∈ Z+,

and n1+ n2 · · · + nr = n+ r
2

〉
.

It is well known (cf. [Kac and Wang 1994]) that the vertex operator algebra
U generated by V1

2
is holomorphic. So for any admissible V -module M , we can

decompose M into irreducible U -modules as follows

M =U ⊗M,

where M = {w ∈ M | unw = 0 for all u ∈U and n ∈ Z+} is the multiplicity space
of U in M . If M = V , the multiplicity space M is denoted by U c and is called the
commutant of U in V . In particular, V = U ⊗U c. The U c is a vertex operator
superalgebra (see [Frenkel and Zhu 1992; Lepowsky and Li 2004]) with ω−ω′ as
its conformal vector and U c

1
2
= 0.

Let Irr(V ) and Irr(U c) denote the sets of the isomorphism classes of admissi-
ble irreducible V -modules and U c-modules, respectively. The following result is
straightforward.

Proposition 4.1. Let V be a vertex operator superalgebra.

(a) For any admissible V -module M. M is an admissible U c-module. Moreover,
M is irreducible if and only if M is irreducible.

(b) The map U ⊗∗ : Irr(U c)→ Irr(V ) is a bijection.

(c) V is rational if and only if U c is rational.

5. The structure of weight 1 subspace

In this section we will investigate the Lie algebra structure of weight 1 subspace
V1 and show that V1 is a reductive Lie algebra if V is σ -rational, using the modular
invariance results obtained in [Dong and Zhao 2006]. We also find an upper bound
for the rank of V1 in terms of effective central charge. Similar results for vertex
operator algebras were given previously in [Dong and Mason 2004], and the proof
presented here is a modification of that used in [ibid.]. We also apply these results
to estimate the dimension of weight 1

2 subspace V1
2

of V .
First, we need to discuss vertex operator superalgebras on the torus [Zhu 1996;

Dong and Zhao 2005], vector-valued modular forms [Knopp and Mason 2003],
and the modular invariance of trace functions [Zhu 1996; Dong and Zhao 2005].

Let V be a vertex operator superalgebra. The vertex operator superalgebra

(V, Y [v, z], 1, ω̃)
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on a torus (see [Zhu 1996; Dong and Zhao 2005]) is defined as follows:

Y [v, z] = Y (v, ez
− 1)ewtv

=

∑
n∈Z

v[n]z−n−1,

Y [w̃, z] =
∑
n∈Z

L[n]z−n−2

for homogeneous v and ω̃ = ω− c/24.
We denote the eigenspace of L[0] with eigenvalue n ∈ 1

2 Z by V[n]. If v ∈ V[n],
we write wt[v] = n.

A holomorphic vector-valued modular form of weight k (where k is any real
number) on the modular group 0 = SL(2,Z) may be described as follows: for
any integer p ≥ 1 it is a tuple (T1(τ ), . . . , Tp(τ )) of functions holomorphic in the
complex upper half-plane together with a p-dimensional complex representation
ρ : 0→ GL(p,C) satisfying the following conditions.

(a) For all γ ∈ 0 we have

(T1, . . . , Tp)
t
|k γ (τ)= ρ(γ )(T1(τ ), . . . , Tp(τ ))

t

(where t refers to the transpose of vectors and matrices).

(b) Each function T j (τ ) has a convergent q-expansion holomorphic at infinity:

T j (τ )=
∑
n≥0

an( j)qn/N j

for positive integer N j . (Here and below, q = exp 2π iτ ).

The following result plays an important role in this section.

Proposition 5.1 [Knopp and Mason 2003]. Let (T1, . . . , Tp) be a holomorphic
vector-valued modular form of weight k associated to a representation ρ of 0.
Then there is a nonnegative constant α depending only on ρ such that the Fourier
coefficients an( j) satisfy the polynomial growth condition an( j) = O(nk+2α) for
every 1≤ j ≤ p.

Fix automorphisms g, h of V of finite orders. Let M be a simple gσ -twisted
V -module. Then

M =
∞⊕

n=0

Mλ+n/T ′

for some λ called the conformal weight of M (Mλ 6= 0), where T ′ is the order of
gσ . Suppose M is σh-stable, which is equivalent to the existence of a linearly
isomorphic map φ(σh) : M→ M such that

φ(σh)YM(v, z)φ(σh)−1
= YM((σh)v, z)
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for all v ∈ V . From now on we assume that V is C2-cofinite. Then a function FM

which is linear in v ∈ V is defined for homogeneous v ∈ V as follows:

(5-1) FM(v,τ )=qλ−c/24
∞∑

n=0

trMλ+n/T o(v)φ(σh)qn/T
= trM o(v)φ(σh)q L(0)−c/24,

which is a holomorphic function in the upper half-plane [Dong and Zhao 2005].
Here and below we write FM(τ ) rather than FM(1, τ ) for simplicity. Then for any
u, v in V such that gv = hv = v, we have

(5-2) trM o(u)o(v)φ(σh)q L(0)−c/24

= FM(u[−1]v, τ )−
∑
k≥1

E2k(q)FM(u[2k− 1]v, τ );

see [Dong and Zhao 2005; Zhu 1996]. The functions E2k(τ ) are the Eisenstein
series of weight 2k:

E2k(q)=
−B2k

2k!
+

2
(2k−1)!

∞∑
n=1

σ2k−1(n)qn,

where σk(n) is the sum of the k-powers of the divisors of n, and B2k is a Bernoulli
number. The E2(τ ) enjoys an exceptional transformation law. Namely, its trans-
formation with respect to the matrix

S =
( 0 −1

1 0

)
,

has the form

(5-3) E2

(
−1
τ

)
= τ 2 E2(τ )−

τ

2π i
.

We also need results on 1-point functions on the torus [Dong and Zhao 2005].
Let g, h be automorphisms of V of finite order. The space of (g, h) 1-point func-
tions C(g, h) is the C-linear space consisting of functions

S : V ×H→ C

(where H is the upper half-plane) satisfying certain conditions; see [Dong and Zhao
2005] for details. The following results can be found in [ibid.].

Theorem 5.2. Let V be C2-cofinite and g, h ∈ Aut(V ) of finite orders.

(1) For S ∈ C(g, h) and

γ =
( a b

c d

)
∈ 0,

we define

S|γ (v, τ )= S|k(v, τ )= (cτ + d)−k S(v, τ )
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for v ∈ V[k], and extend linearly. Then S|γ ∈ C((g, h)γ )), where (g, h)γ =
(gahc, gbhd).

(2) Let M be a simple gσ -twisted V -module such that M is h and σ -stable. Then
FM(v, τ ) ∈ C(g, h).

(3) Suppose that V is gσ -rational and M1, . . . ,Mm are the inequivalent, simple
gσ -twisted V -module such that M i is h and σ -stable. Let F1, . . . , Fm be the
corresponding trace functions defined by (5-1). Then F1, . . . , Fm form a basis
of C(g, h).

We now assume that V is of strong CFT type. Recall from [Frenkel et al. 1993]
that the weight 1 subspace V1 of V carries a natural Lie algebra structure, the Lie
bracket being given by [u, v] = u0v for u, v ∈ V1. Then any weak V -module is
automatically a V1-module such that v ∈ V1 acts as v0. Note that there is a unique
nondegenerate symmetric invariant bilinear form 〈 · , · 〉 such that 〈1, 1〉 = −1 and
the restriction of 〈 · , · 〉 to V1 endows V1 with a nondegenerate, symmetric, invariant
bilinear form such that u1v = 〈u, v〉1 for u, v ∈ V1.

The following two theorems are extensions of similar results from vertex oper-
ator algebras [Dong and Mason 2004] to vertex operator superalgebras.

Theorem 5.3. Let V be strongly rational or strongly σ -rational. Then the Lie
algebra V1 is reductive.

Proof. We first deal with the case where V is σ -rational. We have to show that
the nilpotent radical N of the Lie algebra V1 is zero. Suppose not, and take any
nonzero element u ∈ N . Each Vi for i ∈ 1

2 Z is a finite dimensional V1-module and
has a composition series 0 = W 0

⊂ W 1
⊂ W 2

⊂ W 3
⊂ · · · ⊂ such that u0 acts

trivially on each composite factor W i/W i−1(i = 1, 2, · · · ). Note that we can take
φ(σ)= σ on V . Thus V is σ -stable. In fact, any irreducible V -module is σ -stable;
see [Dong and Zhao 2005, Lemma 6.1]. As a result, trVi o(u)o(v)σ = 0 for all
v ∈ V1 and i ∈ 1

2 Z. It follows from (5-2) that

(5-4) FV (u[−1]v, τ )=
∑
k≥1

E2k(τ )FV (u[2k− 1]v, τ ),

where (g, h)= (σ, 1) and FV ∈ C(σ, 1), by Theorem 5.2.
Note that if k>1 is an integer, the element u[2k−1]v has L[0]-weight 2−2k<0

and hence is 0. The nondegeneracy of the bilinear form 〈 · , · 〉 guarantees that there
exists v ∈ V1 such that 〈u, v〉 = 1. With this choice of v, (5-4) simplifies to read

(5-5) FV (u[−1]v, τ )= E2(τ )FV (τ ).

By Theorem 3.1, V has finitely many irreducible σ -twisted V -modules up to
isomorphism. We denote these modules by M1, . . . ,Mm . Note from Theorem 5.2
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that the

S =
( 0 1
−1 0

)
∈ 0

maps C(σ, 1) to C(1, σ ). By Theorem 5.2 again we see that

FV

(
u[−1]v,−1

τ

)
= τ 2

m∑
i=1

si FM i (u[−1]v, τ )

and

FV

(
−

1
τ

)
=

m∑
i=1

si FM i (τ )

for some si ∈ C. Similar to equality (5-5), we also have

FM i (u[−1]v, τ )= E2(τ )FM i (τ ) for i = 1, . . . ,m.

Thus

τ 2
m∑

i=1

si FM i (u[−1]v, τ )= FV

(
u[−1]v, −1

τ

)
= E2

(
−1
τ

)
FV

(
−1
τ

)
=

(
τ 2 E2(τ )−

τ

2π i

) m∑
i=1

si FM i (τ )

= τ 2
m∑

i=1

si FM i (u[−1]v, τ )− τ

2π i

m∑
i=1

si FM i (τ ).

Of course, the equality (5-3) is involved in the calculations above. Canceling
the term τ 2∑m

i=1 si FM i (u[−1]v, τ ) gives rise to the identity
∑m

i=1 si FM i (τ ) = 0,
which in turn implies FV (−1/τ)= 0. But this is clearly not true, since

FV

(
−1
τ

)
= q−c/24

(∑
n∈Z

(dim Vn)qn
−

∑
n∈ 1

2+Z

(dim Vn)qn
)
6= 0.

So N = 0 and V1 is reductive.
Now we assume that V is rational. As before we need to show that the nilpotent

radical N of the Lie algebra V1 is zero. This time we use C(σ, σ ) instead of C(σ, 1)
and C(1, σ ). In this case, the S ∈ 0 maps C(σ, σ ) to itself. A similar argument
applies. �

Remark 5.4. It is proved in [Dong and Mason 2004] that if a vertex operator
algebra is strongly rational, weight one subspace is reductive. If one can prove the
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rationality of V0̄ from the rationality and σ -rationality of V , Theorem 5.3 follows
immediately. Unfortunately, none of these results have been established.

The following result will be used in the next section.

Lemma 5.5. Let V be a vertex operator superalgebra.
(a) If V is strongly rational, any admissible V -module is a completely reducible

V1-module. This is also equivalent to saying the action of any Cartan sub-
algebra of the Lie algebra V1 is semisimple on any admissible V -module.

(b) If V is strongly σ -rational, any admissible σ -twisted V -module is a com-
pletely reducible V1-module.

(c) If V is either strongly rational or strongly σ -rational, any irreducible σ i -
twisted V -module is a completely reducible V1-module for i = 0, 1.

Proof. Since the proof of (b) is similar to that of (a), we only show (a) and (c) for
strongly rational vertex operator superalgebra V . Let H be a Cartan subalgebra of
V1. It is enough to show that H acts semisimply on any irreducible σ i -twisted V -
module for i =0, 1. Since the homogeneous subspaces of an irreducible σ i -twisted
V -module are always finite dimensional, there is a common eigenvector of H on
the irreducible module. So it is enough to show that H acts on V semisimply.

First we show that for any nonzero u ∈ H , h0 is not nilpotent. Note that the
restriction of the bilinear form 〈 · , · 〉 to H is nondegenerate. If u0 is nilpotent
for some nonzero u ∈ H , we can take v ∈ H such that 〈u, v〉 = 1. The proof of
Theorem 5.3 then gives a contradiction.

We now prove that u0 is semisimple on V . Since Aut(V ) is an algebraic group
by Proposition 3.8, and {etu0 | t ∈ C} is a one-dimensional algebraic subgroup of
Aut(V ), we immediately see that {etu0 | t ∈C} is isomorphic to the one-dimensional
multiplicative algebraic group Cm as u0 is not nilpotent; cf. [Mason 2011]. �

Now that V1 is reductive, there are two extreme cases: V1 is a semisimple Lie
algebra, and V1 is abelian. The vertex operator subalgebra generated by V1 will be
extensively investigated in Section 6. We study the rank of V1 in the rest of this
section. Let l be the rank of V1, that is, l is the dimension of a Cartan subalgebra H
of V1. Similar to the case of vertex operator algebras in [Dong and Mason 2004], l
is closely related to the effective central charge c̃, which is defined as follows: Let
{M1, . . . ,Mm

} be the irreducible σ -twisted V -modules up to isomorphism. Then
there exist λi ∈ C such that M i

=
∑

n∈ 1
2 Z+

M i
λi+n with M i

λi
6= 0. The λi is called

the conformal weight of M i . By [Dong and Zhao 2005, Theorem 8.9], λi and the
central charge c of V are rational numbers for all i . Define λmin to be the minimum
of the conformal weights λi , and set

c̃ = c− 24λmin, λ̃i = λi − λmin.

Theorem 5.6. Let V be strongly σ -rational. Then l ≤ c̃.



SOME FINITE PROPERTIES FOR VERTEX OPERATOR SUPERALGEBRAS 285

Proof. Let H be a Cartan subalgebra of V1. Note that the component operators of
the vertex operators Y (u, z) on V for u ∈ H form a Heisenberg Lie algebra. This
amounts to saying that for u, v ∈ H the following relations hold:

(5-6) [um, vn] = mδm,−n〈u, v〉.

In fact, these relations also hold true on any σ -twisted V -module M .
Consider (g, h)= (1, 1). Let Fi = FM i be as defined in (5-1). Then Fi ∈C(1, 1).

Recall that

η(τ)= q1/24
∞∏

n=1

(1− qn)

is a modular form of weight 1
2 . Then

η(τ)c̃ Fi (τ )= q λ̃i

∞∏
n=1

(1− qn)c̃
∞∑

n=0

trMλi+n/2φ(σ)q
n/2

is holomorphic in H∪{i∞}. Now it follows from the transformation law for η(τ)
and Theorem 5.2 that the m-tuple(

η(τ)c̃ F1(τ ), . . . , η(τ )
c̃ Fm(τ )

)
is a holomorphic vector-valued modular form of weight c̃/2. So the Fourier coef-
ficients of η(τ)c̃ Fi (τ ) have polynomial growth by Proposition 5.1.

The Stone–von Neumann theorem provides us a somewhat different way to look
more closely at Fi (τ ). Namely, M i has the following tensor decomposition:

(5-7) M i
= M(1)⊗C�M i ,

where M(1)= C[um | u ∈ H, m > 0] is the Heisenberg vertex operator algebra of
rank l generated by H and �M i = {w ∈ M i

| unw= 0 for u ∈ H and n > 0}. Then
the trace function Fi (τ ) corresponding to the decomposition (5-7) is equal to

q(l−c)/24η(τ)−l tr�iφ(σ)q
L(0),

as trM(1)φ(σ)q L(0)
= ql/24η(τ)−l . Thus

(5-8) η(τ)c̃ Fi (τ )= q(l−c)/24η(τ)c̃−l tr�iφ(σ)q
L(0).

We know the Fourier coefficients of the left side of (5-8) have polynomial growth.
This forces the same to be true on η(τ)c̃−l . Then one has c̃− l ≥ 0, as η(τ)s has
exponential growth of Fourier coefficients whenever s < 0; cf. [Knopp 1970]. �

We now use Theorem 5.6 to do an estimation on the dimension of V1
2
.

Corollary 5.7. Let V be strongly σ -rational. Then dim V1
2
≤ 2c̃+ 1.
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Proof. Let d be a nonnegative integer such that 2d ≤ dim V1
2
≤ 2d+1. Then there

exists a unique (up to a constant) nondegenerate bilinear form satisfying (4-1). We
point out that the restriction of ( · , · ) to V1

2
is still nondegenerate. So we can choose

elements bi , bi ∗
∈ V1

2
such that (bi , b j ∗)= δi j and (bi , b j )= 0= (bi ∗, b j ∗) for all

1≤ i, j ≤ d . Set hi
= bi
−1(b

i )∗
−11 for i = 1, . . . , d. Then hi

∈ V1 and hi
1h j
= δi, j .

hi
0h j
= 0 for i, j ∈ {1, · · · , d}. As a result,

∑d
i=1 Chi

⊂ V1 is contained in a Cartan
subalgebra of V1. By Corollary 5.7, d ≤ l ≤ c̃, and the proof is complete. �

6. C2-cofiniteness and integrability

We continue our discussion on the weight 1 subspace V1. We will determine the
vertex operator subalgebra 〈V1〉 of V generated by V1 following the approach in
[Dong and Mason 2006]. It turns out that 〈V1〉 is isomorphic to

Lg1(k1, 0)⊗ · · ·⊗ Lgs (ks, 0)⊗M(1),

where V1 = g1 ⊕ · · · ⊕ gs ⊕ Z(V1), gi are simple, ki ≥ 1 are integers, and M(1)
is the Heisenberg vertex operator algebra built up from Z(V1) (see below for the
definition of Lg(k, 0)). Moreover, 〈V1〉 is contained in the rational vertex operator
subalgebra Lg1(k1, 0) ⊗ · · · ⊗ Lgs (ks, 0) ⊗ VL for some positive definite lattice
L ⊂ Z(V1) satisfying rank(L)= dim Z(V1).

Here we need to review the construction of untwisted affine Kac–Moody Lie
algebras ĝ associated with simple Lie algebras g and relevant results from [Kac
1990]. Let h be a Cartan subalgebra of g and 8 the corresponding root system.
Fix a nondegenerate symmetric invariant bilinear form ( · , · ) on ĝ such that the
square length of a long root is 2, where we have identified h with its dual via the
bilinear form. Then the affine Kac–Moody algebra associated to g is given by

ĝ= g⊗C[t, t−1
]⊕CK

with the bracket relations

(6-1) [u(m), v(n)] = [u, v](m+ n)+m(u, v)δm+n,0K and [K , ĝ] = 0

for u, v ∈ g and m, n ∈ Z, where u(m) = u ⊗ tm . Let L(λ) be the irreducible
g-module with highest weight λ ∈ h. Consider L(λ) as a g⊗ C[t]-module with
g⊗Ct[t] acting trivially and with K acting as the scalar k ∈C. Then the generalized
Verma module

V (k, λ)= Indĝ
gL(λ)=U (ĝ)⊗U (g⊗C[t]⊕CK ) L(λ)

has the unique irreducible quotient L(k, λ). It is well known that L(k, λ) is inte-
grable if and only if k is a nonnegative integer and λ is a dominant integral weight
such that (λ, θ)≤ k, where θ ∈8 is the maximal root.
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Let V be a VOSA of strong CFT type and let 〈 · , · 〉 be the unique nondegenerate
bilinear form satisfying 〈1, 1〉 = −1. Suppose that g ⊂ V1 is a simple subalgebra.
Then both bilinear forms ( · , · ) and 〈 · , · 〉 on g are symmetric and invariant, so
they must be proportional, that is,

(6-2) 〈 · , · 〉 = k( · , · ) for some k ∈ C.

Then, for any u, v ∈ V1 and integers m, n, one has

[um, vn] = [u, v]m+n +mu1vδm+n,0.

Comparing this with (6-1) shows that the map

u(m)→ um for u ∈ g and m ∈ Z

together with K → k gives rise to a representation of ĝ of level k.
Now we are going to state our main result related to C2-integrability, which

has already been proved to be true in [Dong and Mason 2006] for vertex operator
algebras satisfying C2-cofiniteness. But given a vertex operator superalgebra V =
V0̄⊕V1̄ which satisfies the C2-cofinite condition, generally, we can not prove that
the even part V0̄ also has such a property. So in this sense, the following result
sharpens [Dong and Mason 2006, Theorem 3.1], although the idea is similar.

Theorem 6.1. Let V be a simple vertex operator superalgebra which is C2-cofinite
of strong CFT type, with g ⊂ V1 a simple Lie subalgebra, k the level of V as ĝ-
module, and the vertex operator subalgebra U of V generated by g. Then:

(a) The restriction of 〈 · , · 〉 to g is nondegenerate.

(b) U ∼= L(k, 0).

(c) k is a positive integer.

(d) V is an integrable ĝ-module.

Proof. Let h be a Cartan subalgebra of g, and g= h⊕
∑

α∈8 gα the corresponding
Cartan decomposition of g. Since g is generated by subalgebras isomorphic to
sl(2,C), it is good enough to show the theorem for g= sl(2,C). Let {h, x, y} be the
standard basis of g. Then (α, α)= 2 and k=〈α, α〉/2 from this and Equation (6-2).

Clearly, U = 〈g〉 is a quotient of V (k, 0). So U is a ĝ-integrable module if and
only if U= L(k, 0) for some k ∈ Z+. This is also equivalent to the existence of a
positive integer r such that

(6-3) (x−1)
r 1= 0.

The proof of (6-3) is similar to the same result in [Dong and Mason 2006] and
we omit the proof. (b) then immediately follows. Also note that g ⊂ U , so U
can not be a one-dimensional trivial module. Thus k 6= 0 and k must be a positive
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integer, proving (c) and (a). Since L(k, 0) is rational (cf. [Dong et al. 1997]), V
is a direct sum of irreducible L(k, 0)-modules, each of which is integrable as ĝ-
module. Hence V is an integrable ĝ-module. This proves (d). �

Next we consider a toral subalgebra of V1. Let V be strongly rational or strongly
σ -rational, and let h ⊂ V1 be a toral subalgebra such that the restriction of 〈 · , · 〉
to h remains nondegenerate. Notably, any Cartan subalgebra of V1 automatically
satisfies such a condition.

Theorem 6.2. Suppose V is strongly rational or strongly σ -rational. Let h⊂ V1

be a toral subalgebra such that the restriction of 〈 · , · 〉 to h is nondegenerate.
Then there exists a positive-definite even lattice L ⊂ h with rank dim h and a vertex
operator super subalgebra U of V such that h⊂U ∼= VL .

This theorem has been proved in [Dong and Mason 2006] for vertex operator
algebras; see also [Mason 2011]. The same argument using Lemma 5.5 is also
valid for vertex operator superalgebras.

We now assume that
V1 = g1⊕ · · ·⊕ gs ⊕ h,

where gi are simple Lie algebras and Z(V1) = h. By Theorems 5.3, 6.1, and 6.2
we have the following; see [Dong and Mason 2006; Mason 2011].

Corollary 6.3. The V contains a strongly rational vertex operator subalgebra

U = Lg1(k1, 0)⊗ · · ·⊗ Lgs (ks, 0)⊗ VL ,

where the commutant U c of U in V is a vertex operator superalgebra such that
U c

1 = 0.
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ON THE GEOMETRIC FLOWS
SOLVING KÄHLERIAN INVERSE σk EQUATIONS

HAO FANG AND MIJIA LAI

Here we extend our previous work on the inverse σk problem. The inverse σk

problem is a fully nonlinear geometric PDE on compact Kähler manifolds.
Given a proper geometric condition, we prove that a large family of non-
linear geometric flows converges to the desired solution of the given PDE.

1. Introduction

We study general flows for the inverse σk-curvature problem in Kähler geometry.
This is a continuation of our previous work [Fang et al. 2011].

Geometric curvature flow has been a central topic in the recent development of
geometric analysis. The σk-curvature problems and inverse σk-curvature problems,
fully nonlinear in nature, have appeared in several geometric settings. Andrews
[1994; 2007] studies the curvature flow of embedded convex hypersurfaces in the
Euclidean space. Several authors study the σk-equation in conformal geometry;
see, for example, [Viaclovsky 2000; Chang et al. 2002; Guan and Wang 2003;
Brendle 2005] and references therein. It is thus interesting to explore the corre-
sponding problem in Kähler geometry.

In Kähler geometry, special cases of the σk-problem have appeared in earlier
literature. Among them, one important example is Yau’s seminal work on the
complex Monge–Ampère equations in the Calabi conjecture. The general case has
been studied recently in [Hou 2009; Hou et al. 2010]. There exist, however, some
analytical difficulties in completely solving this problem for k < n.

Another important example is Donaldson’s J -flow [1999], which gives rise to an
inverse σ1-type equation. J -flow is fully studied in [Chen 2000; 2004; Weinkove
2004; 2006; Song and Weinkove 2008]. The general case is described and treated
in [Fang et al. 2011], via a specific geometric flow. In contrast to the σk-problem,
we can pose nice geometric conditions to overcome the analytical difficulties in
the inverse σk-problem. Here we construct more general geometric flows to solve
this problem.

Hao Fang is supported in part by National Science Foundation grant DMS-1008249.
MSC2010: 35K55, 53C44, 53C55.
Keywords: fully nonlinear geometric flows, inverse σk equation.
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We now describe the problem in more detail.
Let (M, ω) be a compact Kähler manifold without boundary. Let χ be a Kähler

metric in the class [χ ] other than [ω]. For a fixed integer 1≤ k ≤ n, we define

σk(χ)=

(
n
k

)
χ k
∧ωn−k

ωn .

It is easy to see that σk(χ) is a global defined function on M , and pointwise it is
the k-th elementary symmetric polynomial on the eigenvalues of χ with respect to
ω. Define

ck :=

∫
M σn−k(χ)∫

M σn(χ)
=

(
n
k

)
[χ ]n−k

· [ω]k

[χ ]n
,

a topological constant depending only on cohomology classes [χ ] and [ω].

Problem [Fang et al. 2011]. Let (M, ω), χ and ck be given as above. Is there a
metric χ̃ ∈ [χ ] satisfying

(1-1) ck χ̃
n
=

(
n
k

)
χ̃n−k

∧ωk?

To tackle this problem, we consider the geometric flow

(1-2)


∂

∂t
ϕ = c1/k

k −

(σn−k(χϕ)

σn(χϕ)

)1/k
,

ϕ(0)= 0

in the space of Kähler potentials of χ :

Pχ :=

{
ϕ ∈ C∞(M)

∣∣χϕ := χ + √−1
2

∂∂̄ϕ > 0
}
.

It is easy to see that the stationary point of the flow corresponds to the solution
of (1-1).

When k= 1, Equation (1-2) is Donaldson’s J -flow [1999], defined in the setting
of the moment map; see [Chen 2000]. In this case, Song and Weinkove [2008]
provide a necessary and sufficient condition for the flow to converge to the critical
metric. For general k, this problem is solved in [Fang et al. 2011] with an analogous
condition, which we now describe.

We define Ck(ω) to be

(1-3) Ck(ω)=
{
[χ ]> 0

∣∣ there exists χ ′ ∈ [χ ] such that

nckχ
′ n−1
−

(
n
k

)
(n− k)χ ′ n−k−1

∧ωk > 0
}
.

Here the inequality indicates that the left-hand side is a positive (n−1, n−1) form.
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For k = n, condition (1-3) holds for any Kähler class. Hence Cn(ω) is the entire
Kähler cone of M .

The need for the cone condition (1-3) is easy to see once we write (1-1) locally
as

σn−k(χ)

σn(χ)
= σk(χ

−1)= ck .

Here χ−1 denotes the inverse matrix of χ under local coordinates. Since χ−1 > 0,
we necessarily have, for all i ,

σk(χ
−1
| i) < ck .

This condition is equivalent to the cone condition (1-3). See [Fang et al. 2011,
Proposition 2.4].

In this note, we generalize the following result:

Theorem 1.1 [Fang et al. 2011]. Let (M, ω) be a compact Kähler manifold. Let
k be a fixed integer 1 ≤ k ≤ n. Assume χ ∈ [χ ] is another Kähler form and
[χ ] ∈ CK (ω); then the flow

(1-4) ∂

∂t
ϕ = c1/k

k −

(
σn−k(χϕ)

σn(χϕ)

)1/k

,

with any initial value χ0 ∈ [χ ], has long-time existence and converges to a unique
smooth metric χ̃ ∈ [χ ] satisfying

(1-5) ck χ̃
n
=

(
n
k

)
χ̃n−k

∧ωk .

Specifically, we study an abstract flow on M of the form

(1-6)

{ ∂
∂t
ϕ = F(χϕ)−C,

ϕ(0)= 0,

where, for f ∈ C∞(R>0,R),

F(χϕ)= f
[
σn−k(χϕ)

σn(χϕ)

]
, C = f (ck).

Note that (1-2) is a special case of (1-6) for f (x)=−x1/k .
Abusing notation, we also regard F as a symmetric function on

0n := {χ ∈ Rn
| χ1 > 0, χ2 > 0, . . . , χn > 0}

by writing F(χϕ)= F(χ1, . . . , χn), where (χi ) are eigenvalues of χϕ with respect
to ω. Then by carefully examining the proof of Theorem 1.1 in [Fang et al. 2011],
we observed that the following structure conditions on F are necessary:
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• Ellipticity: Fi > 0.

• Concavity: Fi j ≤ 0.

• Strong concavity: Fi j + (Fi/χ j )δi j ≤ 0.

Here Fi = ∂F/∂χi and Fi j = ∂
2 F/∂χi∂χ j . Concavity of F follows from strong

concavity and ellipticity of F .
It is easy to check that F(χ1, . . . , χn) := −

(
σn−k(χ)/σn(χ)

)1/k satisfies these
conditions.

We prove the following:

Theorem 1.2 (Main theorem). Let (M, ω) be a compact Kähler manifold and let
k be a fixed integer, 1≤ k ≤ n. Let χ be another Kähler metric such that [χ ] ∈Ck .
Assume that f ∈ C∞(R>0,R) satisfies the conditions

(1-7) f ′ < 0, f ′′ ≥ 0, f ′′+
f ′

x
≤ 0.

Then the flow (1-6) with any initial value χ0 ∈ [χ ] has long-time existence and the
metric χϕ converges in C∞-norm to the critical metric χ̃ ∈ [χ ] that is the unique
solution of (1-1).

Remark 1.3. The novelty of our theorem is that there exists a large family of
nonlinear geometric flows that yields the convergence towards the solution of the
inverse σk problem (1-1). For example, the function f can be chosen as f (x) =
− ln x or f (x)=−x p, for 0< p≤ 1. For the special case f (x)=− ln x and k= n,
we get an analogue of the Kähler–Ricci flow. For f (x)=−x and k = n, a similar
flow was studied in [Cao and Keller 2011].

Remark 1.4. Theorem 1.2 is inspired by, and can be viewed as a Kähler analogue
of, Andrews’ result [2007] on pinching estimates of evolutions of convex hyper-
surfaces. In fact, our structure conditions are very similar to his.

This paper is organized as follows: in Section 2, we discuss the conditions on
f and strong concavity of F ; in Section 3, we give the proof of the main result.

2. Strong concavity

Here we explore concavity properties for functions involving the quotient of ele-
mentary symmetric polynomials.

Proposition 2.1. Let χ ∈ 0n and f : R>0→ R, define

ρ(χ1, . . . , χn)= f
(
σn−k(χ)/σn(χ)

)
,

and suppose f satisfies the conditions

(2-1) f ′ < 0, f ′′ ≥ 0, f ′′+
f ′

x
≤ 0.
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Then ρ satisfies:

• Ellipticity: ρi > 0 for all i .

• Concavity: ρi j ≤ 0.

• Strong concavity: ρi j + (ρi/χ j )δi j ≤ 0.

We refer to the conditions in (2-1) as the structure conditions on f .
The proof is based on the following two propositions:

Proposition 2.2. Let g(χ1, . . . , χn)= log σk(χ) and χ ∈ 0n . Then

• gi > 0,

• gi j ≤ 0, and

• gi j + (gi/χ j )δi j ≥ 0.

Proposition 2.3. Let h(χ1, . . . , χn) := −g(1/χ1, . . . , 1/χn)=− log σk(χ
−1) and

χ ∈ 0n . Then

• hi > 0,

• hi j ≤ 0, and

• hi j + (hi/χ j )δi j ≤ 0.

We refer the reader to the appendix of [Fang et al. 2011] for a detailed proof of
Propositions 2.2 and 2.3.

Proof of Proposition 2.1. Direct computation shows

ρi =− f ′σk−1(χ
−1
| i) 1
χ2

i
> 0.

Concavity of ρ follows from strong concavity and ρi > 0, and hence it suffices to
show that

ρi j +
ρi

χ j
δi j ≤ 0.

Direct computation yields

(2-2) ρi j +
ρi

χ j
δi j = f ′′σk−1(χ

−1
| i)σk−1(χ

−1
| j) 1

χ2
i

1
χ2

j

+ f ′σk−2(χ
−1
| i, j) 1

χ2
i

1
χ2

j
(1− δi j )+ σk−1(χ

−1
| i) 1
χ3

i
δi j .

Since f ′′+ f ′/x ≤ 0 and f ′′ ≥ 0, we have

(2-3) ρi j +
ρi

χ j
δi j ≤ f ′′

{
σk−1(χ

−1
| i)σk−1(χ

−1
| j)

χ2
i χ

2
j

− σk(χ
−1)

[
σk−2(χ

−1
| i, j)

χ2
i χ

2
j

(1− δi j )+
σk−1(χ

−1
| i)

χ3
i

δi j

]}
≤ 0.
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The last inequality follows from Proposition 2.3 and the equality

(2-4) hi j +
hi
χ j
δi j =

1
σk(χ−1)2

{
σk−1(χ

−1
| i)σk−1(χ

−1
| j)

χ2
i χ

2
j

− σk(χ
−1)

[
σk−2(χ

−1
| i, j)

χ2
i χ

2
j

(1− δi j )+
σk−1(χ

−1
| i)

χ3
i

δi j

]}
. �

For a hermitian matrix A = (ai j̄ ), let its eigenvalues be χ = (χ1, . . . , χn). For
f ∈ C∞(R>0,R), we define

F(A) := ρ(χ1, . . . , χn)= f
(σn−k(χ)

σn(χ)

)
.

Define

F i j̄
:=

∂F
∂ai j̄

, F i j̄,kl̄
:=

∂2 F
∂ai j̄ akl̄

.

It is a classical result that the properties of F(A) follow from those of ρ(χ);
see, for example, [Spruck 2005, Theorem 1.4]. In particular, Proposition 2.1 leads
to the following:

Proposition 2.4. Let F(A) be defined as above, and let f ∈ C∞(R>0,R) satisfy
(2-1). Then F satisfies:

• Ellipticity: F i j̄ > 0.

• Concavity: F i j̄,kl̄
≤ 0.

• Strong concavity: at A= diag(χ1, . . . , χn), we have F i ī, j j̄
+ (F i ī/χ j )δi j ≤ 0.

3. Proof of the main theorem

Long-time existence. Differentiating the flow (1-6), we get

∂

∂t
(∂ϕ
∂t
)
= F i j̄ (χ)∂i∂ j̄

(∂ϕ
∂t
)
.

By Proposition 2.4, ∂ϕ/∂t satisfies a parabolic equation. By the maximum princi-
ple, we have

min
t=0

∂ϕ

∂t
≤
∂ϕ

∂t
≤max

t=0

∂ϕ

∂t
,

and thus
min F(χ0)≤ F(χϕ)= f (σk(χ

−1
ϕ ))≤max F(χ0).

By the monotonicity of f , there exist two universal positive constants λ1 and λ2

such that

(3-1) λ1 ≤ σk(χ
−1
ϕ )≤ λ2.
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This implies that χϕ remains Kähler; that is, χϕ > 0. Also, with the bound (3-1),
regarding the estimate aspect, f , f ′, and f ′′ are all bounded.

Concerning the behavior of the flow (1-6) for arbitrary triple data (M, ω, χ), we
have:

Theorem 3.1. Let (M, ω, χ) be given as above; the general inverse σk flow (1-6)
has long-time existence.

Proof. Following [Chen 2004], we derive time-dependent C2-estimates for the
potential ϕ. Since χϕ > 0, it suffices to derive an upper bound for G := trωχϕ =
g pq̄χpq̄ . By a straightforward computation, we get

(3-2) ∂G
∂t
= g pq̄ F i j̄,kl̄χi j̄,pχkl̄,q̄ + g pq̄ F i j̄χi j̄,pq̄

= F i j̄ (g pq̄χpq̄)i j̄ + g pq̄ F i j̄,kl̄χi j̄,pχkl̄,q̄ + g pq̄ F i j̄ (χmq̄ Rm
pi j̄ −χm j̄ Rm

piq̄).

The second term is nonpositive by the concavity of F . For the last term, by
choosing normal coordinates, it is easy to see that

(3-3) g pq̄ F i j̄ (χmq̄ Rm
pi j̄ −χm j̄ Rm

piq̄)≤ C3+C4G,

for two universal positive constants.
Now the upper bound of G follows from the standard maximum principle. Con-

sequently, we have long-time existence for the flow (1-6). �

In what follows, we give the proof of the main theorem. Following [Fang et al.
2011], we first derive a partial C2-estimate for the potential ϕ depending on the
C0-norm of ϕ when the condition [χ ] ∈ Ck(ω) holds. Then we follow the method
developed in [Song and Weinkove 2008] to get a uniform C0-estimate and the
convergence of the flow.

Partial C2-estimate. Without loss of generality, we can assume the initial metric
χ0 is the metric χ ′ in [χ ] satisfying cone condition (1-3). Since different initial
data differ by a fixed potential function, the same estimates carry over. Again, since
χϕ > 0, it suffices to bound χϕ from above. Take G(x, t, ξ) := log(χi j̄ξ

iξ j̄ )− Aϕ,
for x ∈ M and ξ ∈ T(1,0)x M with gi j̄ξ

iξ j̄
= 1. A is a constant to be determined.

Assume G attains its maximum at (x0, t0) ∈ M × [0, t], along the direction ξ0 .
Choose normal coordinates of ω at x0 , such that ξ0 = ∂/∂z1 and (χi j̄ ) is diagonal at
x0 . By the definition of G, it is easy to see that χ11̄=χ1 is the largest eigenvalue of
{χi j̄ } at x0 . We can assume t0 > 0; otherwise we would be done. Thus, locally, we
consider H := logχ11̄− Aϕ instead, which also achieves its maximum at (x0, t0).

For simplicity, we write χ = χϕ . At x0 , assume that χ = diag(χ1, . . . , χn) with
χ1 ≥ χ2 · · · ≥ χn > 0. We use χ to denote the hermitian matrix (χi j̄ ) or the set of
the eigenvalues of χϕ interchangeably when no confusion arises.
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We compute the evolution of H :

∂H
∂t
=
χ11̄,t

χ11̄
− A

∂ϕ

∂t
=

F i j̄χi j̄,11̄+ F i j̄,kl̄χi j̄,1χkl̄,1̄

χ11̄
− A

∂ϕ

∂t
,

Hi ī =
χ11̄,i ī

χ11̄
−
|χ11̄,i |

2

χ2
11̄

− Aϕi ī .

By the maximum principle, at (x0, t0) we have

(3-4) 0≤ ∂H
∂t
−

n∑
i=1

F i ī Hi ī =
1
χ11̄

F i ī (χi ī,11̄−χ11̄,i ī )− A∂ϕ
∂t
+ AF i īϕi ī + B,

where

B = 1
χ11̄

∑
1≤i, j,k,l≤n

F i j̄,kl̄χi j̄,1χkl̄,1̄+

n∑
i=1

F i ī |χ11̄,i |
2

χ2
11̄

is the collection of all terms involving third-order derivatives.
We claim that B ≤ 0; the proof is presented at the end of this section. Assuming

that, (3-4) leads to

(3-5) 1
χ11̄

F i ī (χi ī,11̄−χ11̄,i ī )≥ A∂ϕ
∂t
− AF i īϕi ī .

We simplify the left-hand side of (3-5) by the Ricci identity:

(3-6) LHS=
1
χ11̄

n∑
i=1

F i ī (χi ī Ri ī11̄−χ11̄ R11̄i ī )

≤
C1
∑n

i=1 F i īχi

χ11̄
−

n∑
i=1

F i ī R11̄i ī ≤
C0

χ11̄
+C2

n∑
i=1

F i ī .

For the bound on
∑n

i=1 F i īχi , we used (3-1) and the following computation:

(3-7)
n∑

i=1

F i īχi =− f ′
n∑

i=1

σk−1(χ
−1
|i) 1
χ2

i
χi

=− f ′
n∑

i=1

σk−1(χ
−1
|i) 1
χi
=−k f ′σk(χ

−1)≤ C.

To deal with the right-hand side of (3-5), we divide into two cases:

Case 1: k< n. In this case, we have the following technical lemma due to the cone
condition.

Lemma 3.2. For k < n, assume that χ0 = χ
′
∈ [χ ] is a Kähler form satisfying

the cone condition (1-3), and that C1 ≤ σk(χ
−1)≤ C2 for two universal constants.
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Then there exists a universal constant N such that if χ1/χn ≥ N , then there exists
a universal constant θ > 0 such that

(3-8) σ
1/k
k

(χ0i ī

χ2
i

)
≥ (1+ θ)c−1/k

k σ
2/k
k (χ−1).

We refer the reader to [Fang et al. 2011, Theorem 2.8] for a proof.

Case 1a: χ1/χn ≥ N , where N is given in Lemma 3.2. Applying Lemma 3.2, we
claim that there exists a universal constant ε > 0 such that

(3-9)
∂ϕ

∂t
− F i īχi ī + (1− ε)F

i īχ0i ī ≥ 0.

Indeed, by direct computation, we have

(3-10)

n∑
i=1

F i īχ0i ī =− f ′
n∑

i=1

σk−1(χ
−1
| i)
χ0i ī

χ2
i

≥−k f ′σ 1−1/k
k (χ−1)σ

1/k
k

(χ0i ī

χ2
i

)
≥−k f ′σ 1−1/k

k (χ−1)(1+ θ)c−1/k
k σ

2/k
k (χ−1).

The first inequality follows from Gårding’s inequality.
Therefore, by taking ε such that (1− ε)(1+ θ) = 1, Equation (3-9) is reduced

to

(3-11)
∂ϕ

∂t
− F i īχi ī − k f ′σ 1+1/k

k (χ−1)c−1/k
k ≥ 0.

By scaling, we can assume ck = 1, and modifying f by adding a constant, we
can further assume that f (1)= 0. Plugging in F i ī and letting x = σk(χ

−1), (3-11)
is equivalent to

(3-12) f (x)+ k f ′(x)x − k f ′(x)x1+1/k
≥ 0.

The inequality above holds provided f ′′+ f ′/x ≤ 0 and f (1)= 0.
Combining (3-5), (3-6) and (3-9), we have

(3-13) Aε
n∑

i=1

F i īχ0i ī ≤
C1

χ1
+C2

n∑
i=1

F i ī .

Since χ0 is a fixed form, there exists a universal constant λ > 0 such that

Aλ
n∑

i=1

F i ī
≤ Aε

n∑
i=1

F i īχ0i ī .
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Hence, in (3-13), taking A such that Aλ−C2 = 1, an upper bound for χ1 will
follow once we have shown

∑n
i=1 F i ī is bounded from below. For that we have

(3-14)
n∑

i=1

F i ī
=− f ′

∑
σk−1(χ

−1
| i) 1
χ2

i

≥−k f ′σ 1−1/k
k (χ−1)σ

1/k
k

( 1
χ2

i

)
≥ C̃σ 1+1/k

k (χ−1)≥ C.

Case 1b: χ1/χn ≤ N . In this case, the upper bound for χ1 follows directly from
the lower bound (3-1) on σk(χ

−1). Since

(3-15) λ1 ≤ σk(χ
−1)≤

(
n
k

)
1
χ k

n
,

we get an upper bound for χn , and thus an upper bound for χ1, because χ1 ≤ Nχn .

Case 2: k = n. In this case, we continue on (3-5) directly. Since we are only
concerned with f on the closed interval [λ1, λ2], we can assume that f is positive
by adding a constant. By (3-6), we have that

(3-16) LHS of (3-5)≤
C0

χ1
+C2

n∑
i=1

F i ī
≤ C3

n∑
i=1

1
χi
.

For the right-hand side, we have

(3-17) RHS of (3-5)≥ A
(
− f (ck)+ n f ′σn(χ

−1)
)
+ AεC4

n∑
i=1

1
χi
.

Combining (3-16) and (3-17) and taking A such that AεC4 −C3 = 1, we find
there exists a universal constant C such that

(3-18)
n∑

i=1

1
χi
≤ C.

Consequently, we have a lower bound on χi for all i , and thus an upper bound for
χ1 by (3-1).

Thus we have proved that there exists a universal constant C such that

χ1 ≤ C.

This leads to:

Theorem 3.3. Let the notation be as above; we have

|∂∂̄ϕ|C0 ≤ CeAϕ−infM×[0,t] ϕ

for two universal constants A and C and any time interval [0, t].
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Finally, we prove the claim that

B = 1
χ11̄

∑
1≤i, j,k,l≤n

F i j̄,kl̄χi j̄,1χkl̄,1̄+

n∑
i=1

F i ī |χ11̄,i |
2

χ2
11̄

≤ 0.

We divide B into three groups:

X = 1
χ11̄

∑
1≤i, j≤n

F i ī, j j̄χi ī,1χ j j̄,1̄+ F11̄ |χ11̄,1|
2

χ2
11̄

.

That X is nonpositive follows from the strong concavity of F in Proposition 2.4.

Y = 1
χ11̄

n∑
i=2

F i 1̄,1īχi 1̄,1χ1ī,1̄+

n∑
i=2

F i ī |χ11̄,i |
2

χ2
11̄

.

One sees by direct computation that F i 1̄,1ī
+ F i ī/χ1 ≤ 0 for all i , and thus Y ≤ 0.

Z = 1
χ11̄

∑
i 6= j, j>1,k 6=l,k>1

F i j̄,kl̄χi j̄,1χkl̄,1̄.

Again by direct computation, each term is nonpositive. We have thus finished the
proof of the claim.

C0-estimate and convergence of the flow. Following the method in [Song and
Weinkove 2008], we introduce two functionals. The monotonic behavior of these
functionals along the flow (1-6) yields the C0-estimate and convergence of the flow.
Define functionals in Pχ0 by

(3-19) Fk,χ0
(φ)= Fk(φ)=

∫ 1

0

∫
M
φ̇tχ

k
φt
∧ωn−k dt,

where φt is an arbitrary smooth path in Pχ0
connecting 0 and φ, and φ̇t denotes

a time derivative. One can readily check that this definition is independent of the
choice of the path ϕt . Moreover, define

(3-20) Fk,n(φ)=

(
n
k

)
Fk(φ)− cn−kFn(φ).

The first variation of Fn−k,n is

d
dt

Fn−k,n(φ)=

∫
M
φ̇t

((
n
k

)
χn−k
φt
∧ωk
− ckχ

n
φt

)
.

It follows that the Euler–Lagrange equation of Fn−k,n is precisely the critical equa-
tion (1-1):

ckχ
n
φ =

(
n
k

)
χn−k
φ ∧ωk .
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We have the following properties, the first of which is shown in [Fang et al.
2011, Theorem 4.1].

Proposition 3.4 (uniqueness). The solution to the critical equation (1-1) is unique
up to a constant.

Proposition 3.5 (monotonicity of Fn−k,n). The functional Fn−k,n is decreasing
along the flow (1-6).

Proof. By direct computation, we have

(3-21) d
dt

Fn−k,n(ϕt)=

∫
M
ϕ̇t

((
n
k

)
χn−k
ϕ ∧ωk

− ckχ
n
ϕ

)
=

∫
M

(
f (σk(χ

−1
ϕ ))− f (ck)

)
(σk(χ

−1
ϕ )− ck)χ

n
ϕ < 0.

The integrand is of the form ( f (a) − f (b))(a − b), which is negative because
f ′ < 0. �

Proposition 3.6 (monotonicity of Fn−k). The functional Fn−k is nonincreasing
along the flow (1-6).

Proof. First define g(x) = f (1/x). It follows that g is concave if and only if
f ′′+ f ′/x ≤ 0. Then by Jensen’s inequality, we have

(3-22) 1∫
M χ

n−k∧ωk

∫
M

f (σk(χ
−1))χn−k

∧ωk

=
1∫

M χ
n−k∧ωk

∫
M

g
(
σn(χ)

σn−k(χ)

)
χn−k

∧ωk

≤ g
(

1∫
M χ

n−k∧ωk

∫
M

σn(χ)

σn−k(χ)
χn−k

∧ωk
)

= g
( 1

ck

)
= f (ck).

Hence

(3-23) ∂

∂t
Fn−k =

∫
M

(
f (σk(χ

−1
ϕ ))− f (ck)

)
χn−k
ϕ ∧ωk

≤ 0. �

Finally, we single out the essential steps for the rest of the proof. By [Fang et al.
2011, Theorem 4.5], we have uniform bounds for the oscillation of ϕt , that is,

‖supϕt − infϕt‖ ≤ C.

Then using the functional Fn−k , we obtain a suitable normalization ϕ̂t of ϕt ,
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for which we can get uniform C0-estimates, and thus uniform C2-estimates by
Theorem 3.3. Higher-order estimates follow from the Evans–Krylov and Schauder
estimates. The corresponding metric thus converges to the critical metric solving
the inverse σk problem (1-1).
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AN OPTIMAL ANISOTROPIC POINCARÉ INEQUALITY FOR
CONVEX DOMAINS

GUOFANG WANG AND CHAO XIA

In this paper, we prove a sharp lower bound of the first (nonzero) eigen-
value of the anisotropic Laplacian with the Neumann boundary condition.
Equivalently, we prove an optimal anisotropic Poincaré inequality for con-
vex domains, which generalizes the classical result of Payne and Weinberger.
A lower bound of the first (nonzero) eigenvalue of the anisotropic Laplacian
with the Dirichlet boundary condition is also proved.

1. Introduction

In this paper we are interested in studying the eigenvalues of the anisotropic Lapla-
cian Q, which is a natural generalization of the ordinary Laplacian 1. We say that
F is a norm on Rn if F : Rn

→ [0,+∞) is a convex function of class C1(Rn
\{0}),

which is even and positively 1-homogeneous, that is,

F(tξ)= |t |F(ξ) for any t ∈ R, ξ ∈ Rn,

and

F(ξ) > 0 for any ξ 6= 0.

A typical norm on Rn is F(ξ)= (
∑n

i=1 |ξi |
q)1/q for q ∈ (1,∞). The anisotropic

Laplacian (or Finsler–Laplacian) of u : Rn
→ R is defined by

(1) Qu(x) :=
n∑

i=1

∂

∂xi

(
F(∇u(x))Fξi (∇u(x))

)
, x ∈ Rn,

where

Fξi (ξ)=
∂F
∂ξi
(ξ) and ∇u(x)=

(
∂u
∂x1

(x), . . . , ∂u
∂xn

(x)
)
.

When F(ξ) = |ξ | = (
∑n

i=1 |ξi |
2)1/2, the anisotropic Laplacian Q = 1, the usual

Laplacian. Note that, in this paper, we use ξ ∈Rn for F and x ∈Rn for functions u.

Wang is partly supported by SFB/TR71 “Geometric partial differential equations” of DFG. Xia is
supported by the China Scholarship Council.
MSC2010: primary 35P15; secondary 35J62, 35P30.
Keywords: anisotropic Laplacian, first eigenvalue, gradient estimate, optimal Poincaré inequality.

305



306 GUOFANG WANG AND CHAO XIA

The anisotropic Laplacian has been studied by many mathematicians, in the
context of both Finsler geometry (see, for example, [Amar and Bellettini 1994; Ge
and Shen 2001; Ohta 2009; Ohta and Sturm 2011; Shen 2001]) and quasilinear
PDE (see, for example, [Alvino et al. 1997; Belloni et al. 2003; Ferone and Kawohl
2009; Wang and Xia 2011b; 2011a; 2012]). Particularly, many problems related
to the first eigenvalue of the anisotropic Laplacian have already been considered
in [Belloni et al. 2003; Ge and Shen 2001; Kawohl 2011; Ohta 2009; Wang and
Xia 2011a]. In this paper we investigate the estimates of the first eigenvalue of the
anisotropic Laplacian.

Let � be a smooth bounded domain in Rn and ν the outward normal unit vector
of its boundary ∂�. The first (nonzero) eigenvalue λ1 of the anisotropic Laplacian
Q is defined by the smallest positive constant such that there exists a nonconstant
function u satisfying

(2) −Qu = λ1u in �

with the Dirichlet boundary condition

(3) u = 0 on ∂�

or the Neumann boundary condition

(4) 〈Fξ (∇u), ν〉 = 0 on ∂�.

We call λ1 the first Dirichlet eigenvalue (respectively the first Neumann eigenvalue)
and denote it by λD

1 (respectively λN
1 ). Here 〈Fξ (∇u), ν〉 =

∑n
i=1 Fξi (∇u)νi and

ν = (ν1, . . . , νn). Equation (4) is a natural Neumann boundary condition for the
anisotropic Laplacian. When F(ξ)= |ξ |, 〈Fξ (∇u), ν〉 = ∂u/∂ν.

The first (nonzero) Dirichlet (respectively Neumann) eigenvalue can be formu-
lated as a variational problem by

λD
1 (�)= inf

{∫
�

F2(∇u) dx∫
�

u2 dx

∣∣∣∣ 0 6= u ∈W 1,2
0 (�)

}
.(5)

λN
1 (�)= inf

{∫
�

F2(∇u) dx∫
�

u2 dx

∣∣∣∣ 0 6= u ∈W 1,2(�),

∫
�

u dx = 0
}
.(6)

Therefore obtaining a sharp estimate of first eigenvalue is equivalent to obtaining
the best constant in Poincaré type inequalities.

We remark that Equation (2) should be understood in a weak sense, that is,∫
�

n∑
i=1

∂

∂ξi

( 1
2 F2)(∇u)ϕi dx =

∫
�

λ1uϕ dx for any ϕ ∈ C∞0 (�).
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Finding a lower bound for the first eigenvalue is always an interesting problem.
In [Belloni et al. 2003; Ge and Shen 2001], the authors proved the Faber–Krahn
type inequality for the first Dirichlet eigenvalue of the anisotropic Laplacian. A
Cheeger type estimate for the first eigenvalue of the anisotropic Laplacian involving
the isoperimetric constant was also obtained there. In this paper, we are interested
in the Payne–Weinberger type sharp estimate [Payne and Weinberger 1960] of the
first eigenvalue in terms of some geometric quantity, such as the diameter with
respect to F .

Before stating our main result, we need to introduce some concepts and definitions.
We say that ∂� is weakly convex if the second fundamental form of ∂� with respect
to the inward normal is nonnegative definite. We say that ∂� is F-mean convex if
the F-mean curvature HF is nonnegative. For the definition of F-mean curvature,
see Section 2.

There is another convex function F0 related to F , which is defined to be the
support function of K := {x ∈ Rn

: F(x) < 1}, namely,

F0(x) := sup
ξ∈K
〈x, ξ〉.

It is easy to verify that F0
: Rn
7→ [0,+∞) is also a convex, even, 1-positively,

homogeneous function. Actually F0 is dual to F (see, for instance, [Alvino et al.
1997]) in the sense that

F0(x)= sup
ξ 6=0

〈x, ξ〉
F(ξ)

and F(x)= sup
ξ 6=0

〈x, ξ〉
F0(ξ)

.

Hence the Cauchy–Schwarz inequality holds in the sense that

(7) 〈ξ, η〉Rn ≤ F(ξ)F0(η).

We call Wr (x0) := {x ∈ Rn
| F0(x − x0)≤ r} a Wulff ball of radius r with center at

x0. We say γ : [0, 1] →� a minimal geodesic from x1 to x2 if

dF (x1, x2) :=

∫ 1

0
F0(γ̇ (t)) dt = inf

∫ 1

0
F0( ˙̃γ (t)) dt,

where the infimum takes on all C1 curves γ̃ (t) in � from x1 to x2. In fact γ is
a straight line and dF (x1, x2) = F0(x2 − x1). We call dF (x1, x2) the F-distance
between x1 and x2.

Now we can define the diameter dF of � with respect to the norm F on Rn as

dF := sup
x1,x2∈�

dF (x1, x2).

In the same spirit we define the inscribed radius iF of � with respect to the norm
F on Rn as the radius of the biggest Wulff ball that can be enclosed in �.
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Our main result is the following.

Theorem 1.1. Let � be a smooth bounded domain in Rn and F ∈ C1(Rn
\ {0}) a

norm on Rn . Let λN
1 be the first Neumann eigenvalue of the anisotropic Laplacian

(1). Assume that ∂� is weakly convex. Then λN
1 satisfies

(8) λN
1 ≥

π2

d2
F
.

Moreover, equality holds in (8) if and only if n = 1, and hence � is a segment.

Estimate (8) for the Neumann boundary problem is optimal. This is in fact
a generalization of the classical result of Payne and Weinberger [1960] on an
optimal estimate of the first Neumann eigenvalue of the ordinary Laplacian. See
also [Bebendorf 2003]. There are many interesting generalizations. Here we just
mention its generalization to Riemannian manifolds, since we will use the methods
developed there. It should also be interesting to ask if the methods of [Payne and
Weinberger 1960] and [Bebendorf 2003] work to reprove our result, since there are
lots of motivations in computational mathematics.

For a smooth compact n-dimensional Riemannian manifold (M, g) with nonneg-
ative Ricci curvature and diameter d, possibly with boundary, the first Neumann
eigenvalue λ1 of the Laplace operator 1 is defined to be the smallest positive
constant such that there is a nonconstant function u satisfying

−1u = λ1u in M

with
∂u
∂ν
= 0 on ∂M,

if ∂M is not empty, where ν denotes the outward normal of ∂M . The fundamental
work in [Li 1979; Li and Yau 1980; Zhong and Yang 1984] gives us the following
optimal estimate

(9) λ1 ≥
π2

d2 ,

where d is the diameter of M with respect to g. Li and Yau [1980] derived a gradient
estimate for the eigenfunction u and proved that λ1 ≥ π

2/(4d2), and Li [1979] used
another auxiliary function to obtain a better estimate λ1≥π

2/(2d2). Finally, Zhong
and Yang [1984] were able to use a more precise auxiliary function to get the sharp
estimate λ1 ≥ π

2/d2, which is optimal in the sense that the lower bound is achieved
by a circle or a segment. Recently Hang and Wang [2007] proved that equality (9)
holds if and only if M is a circle or a segment. For related work see [Kröger 1992;
Chen and Wang 1997; Bakry and Qian 2000]. These results were generalized to
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the p-Laplacian in [Valtorta 2012] and to the Laplacian on Alexandrov spaces in
[Qian et al. 2012].

For the Dirichlet problem we have the following.

Theorem 1.2. Let � be a smooth bounded domain in Rn and F ∈ C1(Rn
\ {0})

a norm on Rn . Assume that λD
1 is the first Dirichlet eigenvalue of the anisotropic

Laplacian (1). Assume further that ∂� is F-mean convex. Then λN
1 satisfies

(10) λD
1 ≥

π2

4i2
F
.

Estimate (10) is by no means optimal.
Our idea to prove the result on the Dirichlet eigenvalue is based on the gradient

estimate technique for eigenfunctions from [Li 1979; Li and Yau 1980]. This
idea also works for the first Neumann eigenvalue to get a rough estimate, say
λN

1 ≥ π
2/(2d2

F ). However, for getting the sharp estimate of the first Neumann
eigenvalue (8), the method of Zhong and Yang seems hard to apply. Instead, we
adopt the technique based on gradient comparison with a one dimensional model
function, which was developed in [Kröger 1992] and improved in [Chen and Wang
1997; Bakry and Qian 2000]. Surprisingly, we find that the one dimensional model
coincides with that for the Laplacian case. In fact, this must be the case because
when we consider F in R, it can only be F(x)= c|x | with c > 0, a multiple of the
standard Euclidean norm. In order to get the gradient comparison theorem, we need
a Bochner type formula (13), a Kato type inequality (14), and a refined inequality
(15), which was referred to as the “extended curvature-dimension inequality” in
the context of [Bakry and Qian 2000]. Interestingly, the proof of these inequalities
sounds more “natural” than the proof of their counterpart for the usual Laplace
operator. These inequalities may have their own interest. Another difficulty we
encounter is handling the boundary maximum due to the different representation
of the Neumann boundary condition (4). We find a suitable vector field V (see
its explicit construction in Section 3) to avoid this difficulty. With the gradient
comparison theorem, we are able to follow step by step the argument in [Bakry and
Qian 2000] to get the sharp estimate. The proof for the rigidity part of Theorem 1.1
closely follows [Hang and Wang 2007]. Here we need to pay more attention to the
points with vanishing |∇u|.

A natural question arises of whether one can generalize Theorem 1.1 to manifolds.
The anisotropic Laplacian with the norm F does not have a direct generalization
to Riemannian manifolds. However, it has a (natural) generalization to Finsler
manifolds. In fact, Rn with F can be viewed as a special Finsler manifold. On
a general Finsler manifold, there is a generalized anisotropic Laplacian; see for
instance [Ge and Shen 2001; Ohta 2009; Shen 2001]. A Lichnerowicz type result for
the first eigenvalue of this Laplacian was obtained in [Ohta 2009] under a condition
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on some kind of new Ricci curvature RicN , N ∈ [n,∞]. A Li–Yau–Zhong–Yang
type sharp estimate, that is, a generalization of Theorem 1.1 for this generalized
Laplacian on Finsler manifolds would be a challenging problem. We will study this
problem in a forthcoming paper.

The paper is organized as follows. In Section 2, we give some preliminary
results on 1-homogeneous convex functions and the F-mean curvature, and prove
useful inequalities. In Section 3 we prove the sharp estimate for the first Neumann
eigenvalue and classify the equality case. We handle the first Dirichlet eigenvalue
in Section 4.

2. Preliminary

Without loss of generality, we may assume that F ∈C3(Rn
\{0}) and F is a strongly

convex norm on Rn , that is, F satisfies

Hess(F2) is positive definite in Rn
\ {0}.

In fact, for any norm F ∈ C1(Rn
\ {0}), there exists a sequence Fε ∈ C3(Rn

\ {0})
such that the strongly convex norm F̃ε :=

√
F2
ε + ε|x |2 converges to F uniformly

in C1
loc(R

n
\ {0}). Then the corresponding first eigenvalue λε1 of the anisotropic

Laplacian with respect to F̃ε converges to λ1 as well. Here | ·| denotes the Euclidean
norm. Therefore, in the following sections, we assume that F ∈ C3(Rn

\ {0})
and F is a strongly convex norm on Rn . Thus (2) is degenerate elliptic among
� and uniformly elliptic in � \C, where C := {x ∈ � | ∇u(x) = 0} denotes the
set of degenerate points. The standard regularity theory for degenerate elliptic
equations (see, for example, [Belloni et al. 2003; Tolksdorf 1984]) implies that
u ∈ C1,α(�)∩C2,α(� \C).

The following property is an obvious consequence of the 1-homogeneity of F .

Proposition 2.1. Let F : Rn
→ [0,+∞) be a 1-homogeneous function. Then the

following holds:

(i)
∑n

i=1 Fξi (ξ)ξi = F(ξ);

(ii)
∑n

j=1 Fξi ξ j (ξ)ξ j = 0 for any i = 1, 2, . . . , n. �

For simplicity, from now on we will follow the summation convention and
frequently use the notations F = F(∇u), Fi = Fξi (∇u), ui = ∂u/∂xi , ui j =

∂2u/(∂xi∂x j ), and so on. Denote

(11)
ai j (∇u)(x) := ∂2

∂ξi∂ξ j

( 1
2 F2)(∇u(x))= (Fi F j + F Fi j )(∇u(x)),

ai jk(∇u)(x) := ∂3

∂ξi∂ξ j∂ξk

( 1
2 F2)(∇u(x)).
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In the following we simply write ai j and ai jk if no confusion appears. With these
notations, we can rewrite the anisotropic Laplacian (1) as

(12) Qu = ai j ui j .

For the function 1
2 F2(∇u) we have a Bochner type formula.

Lemma 2.1 (Bochner formula). At a point where ∇u 6= 0, we have

(13) ai j
( 1

2 F2(∇u)
)

i j

= ai j akluiku jl + (Qu)k
∂

∂ξk

( 1
2 F2)(∇u)− ai jl

∂

∂xl

( 1
2 F2(∇u)

)
ui j .

Proof. The formula is derived from a direct computation.

ai j (∇u)
( 1

2 F2(∇u)
)

i j

= ai j
∂

∂x j

(
∂

∂ξk

( 1
2 F2)(∇u)uik

)
= ai j

∂2

∂ξk∂ξl

( 1
2 F2)(∇u)uiku jl + ai j

∂

∂ξk

( 1
2 F2)(∇u)ui jk

= ai j akluiku jl +
∂

∂ξk

(1
2 F2)(∇u)

(
∂

∂xk
(ai j ui j )−

(
∂

∂xk
ai j

)
ui j

)
.

Taking into account (12) and

∂

∂ξk

( 1
2 F2) ∂

∂xk
ai j = ai jl

∂

∂xl

( 1
2 F2(∇u)

)
,

we get (13). �

When F(ξ)= |ξ |, (13) is just the usual Bochner formula

1
21(|∇u|2)= |D2u|2+〈∇u,∇(1u)〉.

We have a Kato type inequality for the square of the “anisotropic” norm of the
Hessian.

Lemma 2.2 (Kato inequality). At a point where ∇u 6= 0, we have

(14) ai j akluiku jl ≥ ai j Fk Fluiku jl .

Proof. It is clear that

ai j akluiku jl−ai j Fk Fluiku jl =ai j F Fkluiku jl = F Fi F j Fkluiku jl+F2 Fi j Fkluiku jl .

Since (Fi j ) is positive definite, we know the first term

F Fi F j Fkluiku jl = F Fkl(Fi uik)(F j u jl)≥ 0.
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The second term Fi j Fkluiku jl is nonnegative as well. Indeed, we can write the
matrix (Fkl)k,l = OT3O for some orthogonal matrix O and diagonal matrix 3=
diag(µ1, µ2, . . . , µn) with µi ≥ 0 for any i = 1, 2, . . . , n. Set U = (ui j )i, j and
Ũ = OU OT

= (ũi j )i, j . Then we have

Fi j Fklul j uki = tr(OT3OU OT3OU )= tr(3OU OT3OU OT )

= tr(3Ũ3Ũ )= µiµ j ũ2
i j ≥ 0, �

When F(ξ)= |ξ |, (14) is the usual Kato inequality

|∇
2u|2 ≥ |∇|∇u||2.

The following inequality is crucial to apply the gradient comparison argument in
Section 3.

Lemma 2.3. At a point where ∇u 6= 0, we have

(15) ai j akluiku jl ≥
(ai j ui j )

2

n
+

n
n− 1

(
ai j ui j

n
− Fi F j ui j

)2

Proof. Let
A = Fi F j ui j and B = F Fi j ui j .

The right hand side of (15) equals

(A+B)2

n
+

n
n−1

( B
n
−

n−1
n

A
)2
= A2

+
1

n−1
B2.

The left hand side of (15) is

A2
+ 2F Fi F j Fkluiku jl + F2 Fi j Fkluiku jl .

Since (Fi j ) is semipositively definite, we know

F Fi F j Fkluiku jl = F Fkl(Fi uik)(F j u jl)≥ 0.

Using the same notations as in the proof of Lemma 2.2, we have

F2 Fi j Fkluiku jl = F2µiµ j ũ2
i j = F2µ2

i ũ2
i i + F2

∑
i 6=k

µiµk ũ2
ik ≥ F2µ2

i ũ2
i i ,

B = F Fi j ui j = tr(OT3OU )= tr(3OU OT )= µi ũi i .

We claim that (Fi j ) is a matrix of rank n − 1, that is, one of µi is zero. Firstly,
Fi j u j = 0. Secondly, for any nonzero V ⊥ Fξ (∇u), Fi j V i V j

= ai j V i V j > 0. The
claim follows easily. Thus the Hölder inequality gives

F2µ2
i ũ2

i i ≥
1

n−1
F2(µi ũi i )

2
=

1
n−1

B2. �
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When F(ξ)= |ξ |, (15) is

|∇
2u|2 ≥

(1u)2

n
+

n
n− 1

(
1u
n
−

ui u j ui j

|∇u|2

)2

.

We now recall the definition of F-mean curvature. Let � ⊂ Rn be a smooth
bounded domain whose boundary ∂� is an (n− 1)-dimensional, oriented, compact
submanifold without boundary in Rn . We denote by ν and dσ the outward normal
of ∂� and the area element, respectively. Let {eα}n−1

α=1 be a basis of the tangent
space Tp(∂�), and let gαβ = g(eα, eβ) and hαβ be the first and second fundamental
forms, respectively. ∂� is called weakly convex if (hαβ) is nonnegative definite.
Moreover, let (gαβ) be the inverse matrix of (gαβ) and ∇ the covariant derivative
in Rn . The F-second fundamental form hF

αβ and the F-mean curvature HF are
defined by

hF
αβ := 〈Fξξ ◦∇eαν, eβ〉 and HF =

n−1∑
α,β=1

gαβhF
αβ,

respectively. We call
−→
HF =−HFν the F-mean curvature vector (it is easy to check

that all definitions are independent of the choice of coordinates). ∂� is called
weakly F-convex (respectively F-mean convex) if (hF

αβ) is nonnegative definite
(respectively HF ≥ 0). It is well known that when we consider a variation of
∂� with variation vector field ϕ ∈ C∞0 (∂�,Rn), the first variation of the F-area
functional F(X) :=

∫
∂�

F(ν)dσ reads as

δϕF(X)=−
∫
∂�

〈
−→
HF , ϕ〉dσ.

It is easy to see from the convexity of F that hF
αβ being nonnegative definite is

equivalent to the ordinary second fundamental form hαβ being nonnegative definite.
In other words, there is no difference between weakly F-convex and weakly convex.
However, F-mean convex is different from mean convex. For more properties of
HF , we refer to [Wang and Xia 2011b] and the references therein. Here we will
use the following lemma, which interprets the relation between the anisotropic
Laplacian and the F-mean curvature of level sets of functions.

Lemma 2.4 [Wang and Xia 2011b, Theorem 3]. Let u be a C2 function with a
regular level set St := {x ∈� | u = t}. Let HF (St) be the F-mean curvature of the
level set St . We then have

Qu(x)=−F HF (St)+ Fi F j ui j =−F HF (St)+
∂2u
∂ν2

F

for x with u(x)= t , where νF := Fξ (ν)=−Fξ (∇u).
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We point out that we have used the inward normal in [Wang and Xia 2011b] and
there is an sign error in formula (5) there. Hence the term F HF (St) in formula (9)
there should be read as −F HF (St).

3. Sharp estimate of the first Neumann eigenvalue

It is well-known that the existence of the first Neumann eigenfunction can be
obtained from the direct method in the calculus of variations. We note that the first
Neumann eigenfunction must change sign, for its average vanishes.

In this Section we first prove the following gradient comparison theorem, which
is the most crucial part for the proof of the sharp estimate. For simplicity, we write
λ1 instead of λN

1 throughout this section.

Theorem 3.1. Let �, u, λ1 be as in Theorem 1.1. Let v be a solution of the 1-
dimensional model problem on some interval (a, b):

(16) v′′− T v′ =−λ1v, v′(a)= v′(b)= 0, v′ > 0

with T (t)=−(n− 1)/t or 0. Assume that [min u,max u] ⊂ [min v,max v]. Then

(17) F(∇u)(x)≤ v′
(
v−1(u(x))

)
.

Proof. First, since
∫

u=0, we know that min u<0 while max u>0. We may assume
that [min u,max u] ⊂ (min v,max v) by multiplying u by a constant 0< c < 1. If
we prove the result for this u, then, letting c→ 1, we have (17).

Under the condition [min u,max u] ⊂ (min v,max v), v−1 is smooth on a neigh-
borhood U of [min u,max u].

Consider P := ψ(u)( 1
2 F(∇u)2−φ(u)), where ψ, φ ∈ C∞(U ) are two positive

smooth functions to be determined later. We first assume that P attains its maximum
at x0 ∈ �. Then we consider the case where x0 ∈ ∂�. If ∇u(x0) = 0, P ≤ 0 is
obvious. Hence we assume ∇u(x0) 6= 0. From now on we compute at x0. As in
Section 2, we use the notation (11). Since x0 is the maximum of P , we have

Pi (x0)= 0,(18)

ai j (x0)Pi j (x0)≤ 0.(19)

Equality (18) gives

(20) ∂

∂xi

(1
2 F2(∇u)−φ(u)

)
=−

ψ(u))i
ψ2 P, Fi F j ui j = φ

′
−
ψ ′

ψ2 P.

Then we compute ai j Pi j .

ai j Pi j =
P
ψ

ai j (ψ(u))i j +ψai j
∂

∂xi x j

(1
2 F2(∇u)− (φ(u))

)
+ 2ai j (ψ(u))i

∂

∂x j

( 1
2 F2(∇u)−φ(u)

)
.
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It is easy to see from Proposition 2.1 that

(21) ∂

∂ξi

( 1
2 F2)(∇u)ui = F2(∇u), ai j ui u j = F2(∇u), ai jkuk = 0.

By using (20), (21), the Bochner formula (13), and eigenvalue equation (2), we get

(22) ai j Pi j

=

(
−λ1u

ψ ′

ψ
+F2ψ

′′

ψ
−2F2ψ

′2

ψ2

)
P+ψ(ai j akluiku jl−λ1 F2)+ψ(λ1uφ′−F2φ′′).

Applying Lemma 2.3 to (22), replacing F2 by 2P/ψ +φ, and using (20), (2), and
(19), we deduce

(23) 0≥ ai j Pi j

≥

(
−λ1u

ψ ′

ψ
+ F2ψ

′′

ψ
− 2F2ψ

′2

ψ2

)
P +ψ(λ1uφ′− F2φ′′)

+ψ

(
(ai j ui j )

2

n
+

n
n− 1

(
ai j ui j

n
− Fi F j ui j

)2

− λ1 F2
)

=
1
ψ

[
2
ψ ′′

ψ
− (4−

n
n− 1

)
ψ ′2

ψ2

]
P2

+

[
2φ
(
ψ ′′

ψ
− 2

ψ ′2

ψ2

)
−

n+ 1
n− 1

ψ ′

ψ
λ1u−

2n
n− 1

ψ ′

ψ
φ′− 2λ1− 2φ′′

]
P

+ψ
[ 1

n−1
λ2

1u2
+

n+1
n−1

λ1uφ′+ n
n−1

φ′2− 2λ1φ− 2φφ′′
]

:= a1 P2
+ a2 P + a3.

We are lucky to observe that the coefficients ai , i = 1, 2, 3, coincide with those
appearing in the ordinary Laplacian case; see, for example, [Bakry and Qian 2000,
Lemma 1]. The next step is to choose suitable positive functions ψ and φ such that
a1, a2 > 0 everywhere and a3 = 0, which has already be done in [Bakry and Qian
2000]. For completeness, we sketch the main idea here.

Choose φ(u)= 1
2v
′(v−1(u))2, where v is a solution of the 1-dimensional problem

(16). One can compute that

φ′(u)= v′′(v−1(u)), φ′′(u)= v
′′′

v′
(v−1(u)).

Setting t = v−1(u) and u = v(t), we have

a3(t)
ψ
=

1
n−1

λ2
1v

2
+

n+1
n−1

λ1vv
′′
+

n
n−1

v′′2− λ1v
′2
− v′v′′′

=−v′(v′′− T v′+ λ1v)
′
+

1
n−1

(v′′− T v′+ λ1v)(nv′′+ T v′+ λ1v)= 0.
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Here we have used the fact that T satisfies T ′= T 2/(n−1). For a1, a2, we introduce

X (t)= λ1
v(t)
v′(t)

, ψ(u)= exp
(∫

h(v(t))
)
, f (t)=−h(v(t))v′(t).

With these notations, we have

f ′ =−h′v′2+ f (T − X),

v′|2
v−1a1ψ = 2 f (T − X)− n−2

n−1
f 2
− 2 f ′ := 2(Q1( f )− f ′),

a2 = f
(3n−1

n−1
T − 2X

)
− 2T

( n
n−1

T − X
)
− f 2

− f ′ := Q2( f )− f ′.

We may now use [Bakry and Qian 2000, Corollary 3], which says that there
exists a bounded function f on [min u,max u] ⊂ (min v,max v) such that f ′ <
min{Q1( f ), Q2( f )}.

In view of (23), we know that, by our choice of ψ and φ, P(x0)≤ 0, and hence
P(x)≤ 0 for every x ∈�, which leads to (17).

Now we consider the case x0 ∈ ∂�. Suppose that P attains its maximum at
x0 ∈ ∂�. We introduce a new vector field V (x)= (V i (x))ni=1 defined on ∂� by

V i (x)=
n∑

j=1

ai j (∇u(x))ν j (x).

Because (ai j ) is positive, V (x) must point outward. Hence

∂P
∂V

(x0)≥ 0.

On the other hand, we see, from the Neumann boundary condition and homo-
geneity of F , that

∂u
∂V

(x0)= ui ai j (∇u(x))ν j
= F F jν

j
= 0.

Thus we have

(24) 0≤ ∂P
∂V

(x0)= ψF Fi ui j a jkν
k .

We now choose a local coordinate {ei }i=1,...,n around x0 such that en = ν and
{eα}α=1,...,n−1 is the orthonormal basis of the tangent space of ∂�. Denote by hαβ
the second fundamental form of ∂�. By the assumption that ∂� is weakly convex,
we know the matrix (hαβ)≥ 0.

The Neumann boundary condition implies that

(25) Fiν
i (x0)= Fn(x0)= 0.



AN OPTIMAL ANISOTROPIC POINCARÉ INEQUALITY 317

By taking the tangential derivative of (25), we get

Deβ

( n∑
i=1

Fiν
i
)
(x0)= 0

for any β = 1, . . . , n− 1. Computing Deβ (
∑n

i=1 Fiν
i )(x0) explicitly, we have

(26) 0= Deβ

( n∑
i=1

Fiν
i
)
(x0)=

n∑
i, j=1

Fi j u jβν
i
+

n∑
i=1

Fiν
i
β

=

n∑
i, j=1

Fi j u jβν
i
+

n∑
i=1

n−1∑
γ=1

Fi hβγ ei
γ

=

n∑
j=1

Fnj u jβ +

n−1∑
γ=1

Fγ hβγ .

In the last equality, we used νn = 1, and νβ = 0 for β = 1, . . . , n− 1 in the chosen
coordinate.

Combining (24), (25), and (26), we obtain

0≤ ∂P
∂V

(x0)=

n∑
i, j,k=1

ψF Fi ui j a jkν
k
= ψF

n−1∑
α=1

n∑
j=1

Fαuα j a jn

= ψF
n−1∑
α=1

n∑
j=1

Fαuα j F jn =−ψF
n−1∑
α,γ=1

FαFγ hαγ ≤ 0.

Therefore we obtain that (∂P/∂V )(x0)= 0. Since the tangent derivatives of P also
vanish, we have ∇P(x0)= 0. It is also the case that (19) holds. Thus the previous
proof for an interior maximum also works in this case. This finishes the proof of
Theorem 3.1. �

Following the idea from [Bakry and Qian 2000], besides the gradient comparison
with the 1-dimensional models, in order to prove the sharp estimate on the first
eigenvalue of the anisotropic Laplacian, we need to study many properties of the
1-dimensional models, such as the difference δ(a) = b(a)− a as a function of
a ∈ [0,+∞], where b(a) is the first number for which v′(b(a)) = 0 (Note that
v′ > 0 in (a, b(a))). As we already saw in Theorem 3.1, the 1-dimensional model
(16) appears the same as that in the Laplacian case. Therefore, we can directly use
the results of [Bakry and Qian 2000] on the properties of 1-dimensional models.
Here we use some simpler statement from [Valtorta 2012].

We define δ(a) as a function of a ∈ [0,+∞] as follows. On the one hand, we
denote δ(∞) = π/

√
λ1. This number comes from the 1-dimensional model (16)
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with T = 0. In fact, it is easy to see that solutions of (16) with T = 0 can be
explicitly written as

v(t)= sin
√
λ1t

up to dilations. Hence in this case, b(a)− a = π/
√
λ1 for any a ∈ R. On the

other hand, we denote δ(a)= b(a)− a as a function of a ∈ [0,+∞) relative to the
1-dimensional model (16) with T =−(n− 1)/x .

We have the following property of δ(a).

Lemma 3.1 [Bakry and Qian 2000; Valtorta 2012, Theorem 5.3, Corollary 5.4].
The function δ(a) : [0,∞]→ R+is a continuous function such that

δ(a) > π
√
λ1

and δ(∞)=
π
√
λ1
.

m(a) := v(b(a)) < 1, lima→∞m(a)= 1, and m(a)= 1 if and only if a =∞.

In order to prove the main result, we also need the following comparison the-
orem on the maximum values of eigenfunctions. This theorem is obtained as a
consequence of a standard property of the volume of small balls with respect to
some invariant measure; see [Bakry and Qian 2000, Section 6].

Lemma 3.2. Let �, u, λ1 be as in Theorem 1.1. Let v be a solution of the 1-
dimensional model problem on some interval (0,∞):

v′′ =−
n−1

t
v′− λ1v, v(0)=−1, v′(0)= 0.

Let b be the first number after 0 with v′(b) = 0 and denote m = v(b). Then
max u ≥ m.

The proof of Lemma 3.2 is similar to that of [Bakry and Qian 2000, Theorem 11].
The essential part is the gradient comparison theorem 3.1. We omit it here.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let u be an eigenfunction with eigenvalue λ1. Since
∫

u = 0,
we may assume min u = −1 and 0 ≤ k = max u ≤ 1. Given a solution v to (16),
denote m(a)= v(b(a)) with b(a) the first number with v′(b(a))= 0 after a.

Lemmas 3.1 and 3.2 imply that for any eigenfunction u, there exists a solution v
to (16) such that min v =min u =−1 and max v =max u = k ≤ 1.

We now get the expected estimate by using Theorem 3.1. Choosing x1, x2 ∈�

with u(x1) = min u = −1, u(x2) = max u = k and γ (t) : [0, 1] → � the minimal
geodesic from x1 to x2. Consider the subset I of [0,1] such that (d/dt)u(γ (t))≥ 0.
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By the gradient comparison estimate (17) and Lemma 3.1, we have

dF ≥

∫ 1

0
F0(γ̇ (t)) dt ≥

∫
I

F0(γ̇ (t)) dt

≥

∫ 1

0

1
F(∇u)

〈∇u, γ̇ (t)〉 dt =
∫ k

−1

1
F(∇u)

du

≥

∫ k

−1

1
v′(v−1(u))

du =
∫ b(a)

a
dt = δ(a)≥ π

√
λ1
,

which leads to
λ1 ≥

π2

d2
F
.

It remains to prove the equality case. The idea of the proof follows from [Hang
and Wang 2007]. Here we must pay more attention to the points with vanishing ∇u.

Assume that λ1 = π
2/d2

F . It can be easily seen from the proof of Theorem 1.1
that a =∞, which leads to max u =max v = 1 by Lemma 3.1. We will prove that
� is in fact a segment in R. We divide the proof into several steps.

Step 1. S := {x ∈� | u(x)=±1} ⊂ ∂�.
Let P= F(∇u)2+ λ1u2. After a simple calculation using the Bochner formula

(13) and the Kato inequality (14), we obtain

1
2ai j Pi j = ai j akluiku jl −

1
2ai jlui j Pl − λ

2
1u2

≥ ai j Fk Fluiku jl −
1
2ai jlui j Pl − λ

2
1u2

=−
1
2ai jlui j Pl +

1
4F2 (ai j Pi P j − 4λ1uui Pi )

on � \C. Namely,

(27) 1
2ai j Pi j + bi Pi ≥ 0

on � \C for some bi ∈ C0(�). If P attains its maximum on x0 ∈ ∂�, then arguing
as in Theorem 3.1, we have ∇P(x0) = 0. However, from the Hopf Theorem,
∇P(x0) 6= 0, a contradiction. Hence P attains its maximum at C, and therefore,

P≤ λ1.(28)

Take any two points x1, x2 ∈ S with u(x1)=−1, u(x2)= 1. Let

γ (t)=
(

1− t
F0(x2−x1)

)
x1+

t
F0(x2−x1)

x2 : [0, l] →�

be the straight line from x1 to x2, where l := F0(x2− x1) is the distance from x1

to x2 with respect to F . Denote f (t) := u(γ (t)). It is easy to see F0(γ̇ (t))= 1. It
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follows from (28) and the Cauchy–Schwarz inequality (7) that

(29) | f ′(t)| = |∇u(γ (t)) · γ̇ (t)| ≤ F(∇u)(γ (t))≤
√
λ1(1− f (t)2).

Here we have used the Cauchy–Schwarz inequality (7) again. Hence

(30) dF ≥ l ≥
∫
{0≤t≤l, f ′(t)>0}

dt ≥
∫ l

0

1
√
λ1

f ′(t)√
1− f (t)2

dt

=
1
√
λ1

∫ 1

−1

1
√

1−x2
dx = π

√
λ1
.

Since dF = π/
√
λ1, we must have dF = l, which means S ⊂ ∂�.

Step 2. P= F2(∇u)+ λ1u2
≡ λ1 in �. Hence S ≡ C.

From Step 1, we know that�∗ :=�\S is connected. Let E := {x ∈�∗ :P= λ1}.
It is clear that E is closed. In view of (27), thanks to the strong maximum principle,
we know that E is also open. We now show that E is nonempty. Indeed, from the
fact that all inequalities in (29) and (30) are equalities, we obtain f (t)= u(γ (t))=
− cos

√
λ1t for t ∈ (0, l). Hence

P(γ (t))= f ′(t)2+ λ1 f (t)2 = λ1.

Thus E is nonempty, open, and closed in �∗. Therefore, we obtain P≡ λ1 in �
(for x ∈ S, P= λ1 is obvious).

Step 3: Define X = ∇u/F(∇u) in �∗ and X∗ the cotangent vector given by
X∗(Y )= 〈X, Y 〉 for any tangent vector Y . Then, in �∗, we claim that

(31) D2u =−λ1u X∗⊗ X∗,

and, moreover, X = Ec for some constant vector Ec.
First, taking the derivative of F2(∇u)+ λ1u2

≡ λ1 gives

(32) Fi F j ui j =−λ1u.

On the other hand, since P≡ λ1, the proof of (27) leads to

(33) ai j akluiku jl = λ
2
1u2
= (Fi F j ui j )

2.

Equation (33) in fact gives that

(34) Fi j Fkluiku jl = 0.

Set X⊥ := {V ∈ Rn
| V ⊥ X}. X⊥ is an (n − 1)-dimensional vector subspace.

Note that (Fi j ) is exactly a matrix of rank n− 1 (see the proof of Lemma 2.3) and
Fi j X j

= 0. It follows from this fact and (34) that

(35) ui j V i V j
= 0 for any V ∈ X⊥.
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Equations (32) and (35) imply (31), which in turn implies

ui j =
−λ1uui u j

F2(∇u)
.(36)

By differentiating X , we obtain from (36) that

∇i X j
=

ui j

F(∇u)
−

u j

F2(∇u)
Fkuki = 0.

Thus X = Ec in �∗.

Step 4: The maximum point and the minimum point are unique.
We already knew that f (t) = u(γ (t)) = − cos

√
λ1t and ∇u(γ (t)) 6= 0 for

t ∈ (0, l). Hence u is C2 along γ (t) for t ∈ (0, l), and it follows that

(37) D2u(γ̇ (t), γ̇ (t)) |γ (t) = λ1 cos t for any t ∈ (0, l).

On the other hand, we deduce from (31) that

(38) D2u(γ̇ (t), γ̇ (t)) |γ (t) =−λ1u(γ (t))〈X, γ̇ (t)〉2.

Combining (37) and (38), and taking t→ 0, we get

|〈X, γ̇ (t)〉| = 1= F(X)F0(γ̇ (t)),

which means equality in the Cauchy–Schwarz inequality (7) holds. Hence X =
±F0

ξ (γ̇ (t)). Noting that γ̇ (t)= x2− x1/F0(x2− x1), we have

X = F0
ξ (x2− x1).

Suppose there is some point x3 with u(x3)= 1. Using the same argument, we obtain
X = F0

ξ (x3− x1). In view of F0(x3− x1)= F0(x2− x1), we conclude that x3 = x2.
Therefore, there is only one maximum point and only one minimum point.

Step 5: n = 1 and � is a segment.
From Step 4, we have ∇u 6= 0 for most points of ∂�, and at these points

X =∇u/F(∇u) lies in the tangent spaces due to the Neumann boundary condition.
This is impossible unless n = 1, because X is a constant vector. This completes the
proof. �

4. Estimate of the first Dirichlet eigenvalue

As in Section 3, for simplicity, we write λ1 instead of λD
1 throughout this section.

It is well-known that the existence of first Dirichlet eigenfunction can be easily
proved by using the direct method in the calculus of variations. Moreover, by the
assumption that F is even, the first Dirichlet eigenfunction u does not change sign;
see [Belloni et al. 2003, Theorem 3.1]. We may assume u is nonnegative. By
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multiplying u by a constant, we can also assume that sup� u = 1 and inf� u = 0
without loss of generality.

For any α, β ∈ R with α > 0, β2 > sup(α+ u)2, consider the function

P(x)= F2(∇u)
2(β2−(α+u)2)

.

Suppose that P(x) attains its maximum at x0 ∈�.
With the assumption that � is F-mean convex, we first exclude the possibility

x0 ∈ ∂� with ∇u(x0) 6= 0. Indeed, suppose we have x0 ∈ ∂� with ∇u(x0) 6= 0.
Define

νF := Fξ (ν)

on ∂�= {x ∈� | u(x)= 0}. In view of 〈νF , ν〉 = F(ν) > 0, νF must point outward.
From the Dirichlet boundary condition, we know that

ν =−∇u/|∇u|

for ∇u 6= 0. Hence νF =−Fξ (∇u). Since P attains its maximum at x0, we have

0≤ ∂P
∂νF

(x0)=
F Fi ui jν

j
F

β2− (α+ u)2
+ F2 α(∂u/∂νF )

(β2− (α+ u)2)2

Hence

−
∂2u
∂ν2

F
+

Fα(∂u/∂νF )

β2−α2 ≥ 0.

Note that ∂u/∂νF = −F(∇u). Since ∂� itself is a level set of u, we can apply
Lemma 2.4 to obtain

∂2u
∂ν2

F
= Qu+ F HF .

In view of Qu(x0)=−λ1u(x0)= 0, we obtain that

−F HF − F2 α

β2−α2 ≥ 0.

This contradicts the fact that HF (∂�)≥ 0.
On the other hand, if ∇u(x0)= 0, F(∇u)(x0)= 0 and P(x0)= 0, which implies

F(∇u)= 0, that is, u is constant, a contradiction.
Therefore we may assume x0 ∈� and ∇u(x0) 6= 0. Since ai j is positively definite

on � \C, where C := {x | ∇u(x)= 0}, it follows from the maximum principle that

Pi (x0)= 0,(39)

ai j (x0)Pi j (x0)≤ 0.(40)
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From now on we will compute at the point x0. Equality (39) gives

(41) ∂

∂xi

( 1
2 F2(∇u)

)
=−

F2(∇u)(α+ u)ui

β2− (α+ u)2
.

Then we compute ai j (x0)Pi j (x0).

ai j (x0)Pi j (x0)=
1

β2−(α+u)2
ai j

∂2

∂xi∂x j

( 1
2 F2(∇u)

)
+ 2ai j

∂

∂xi

( 1
2 F2(∇u)

) ∂
∂x j

( 1
β2−(α+u)2

)
+ ai j

∂2

∂xi∂x j

( 1
β2−(α+u)2

)
1
2 F2(∇u)

= I + II + III.

By using (41), (21), the Bochner formula (13), and Equation (2), we obtain

I = 1
β2−(α+u)2

[ai j akluiku jl − λ1 F2
],(42)

II =− 4F4(α+u)2

(β2−(α+u)2)3
,(43)

III = F4

(β2−(α+u)2)2
+

4F4(α+u)2

(β2−(α+u)2)3
−

λ1 F2u(α+ u)
(β2− (α+ u)2)2

.(44)

We now apply Lemma 2.2 to (42) and obtain

ai j akluiku jl ≥ ai j Fk Fluiku jl

=
1

F2 ai j
∂

∂xi

(1
2 F2(∇u)

) ∂
∂x j

( 1
2 F2(∇u)

)
=

F4(α+u)2

(β2−(α+u)2)2
.

Here we have used (41) and (21) again in the last equality. Therefore, we have

(45) I ≥
F4(α+ u)2

(β2− (α+ u)2)3
−

λ1 F2

β2− (α+ u)2
.

Combining (40), (43), (44), and (45), we obtain

0≥ ai j Pi j ≥
F4β2

(β2− (α+ u)2)3
−

λ1 F2

β2− (α+ u)2
−

λ1 F2u(α+ u)
(β2− (α+ u)2)2

.

It follows that

(46) F2(∇u)
β2−(α+u)2

(x0)≤
λ1

β2 (β
2
−α(α+ u)).
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Noting that sup� u = 1, we choose α > 0 and β = α+ 1. Then estimate (46)
becomes

F2(∇u)
(α+1)2−(α+u)2

(x0)≤ λ1

(
1− α(α+u)

(α+1)2
)
≤ λ1.

Hence we conclude that

(47) F2(∇u)
(α+1)2−(α+u)2

≤ λ1.

for any x ∈�.
Choose x1 ∈� with u(x1)= sup u = 1 and x2 ∈ ∂� with

dF (x1, x2)= dF (x1, ∂�)≤ iF

and γ (t) : [0, 1] → � the minimal geodesic connecting x1 with x2. Using the
gradient estimates (47), we have

π

2
− arcsin

(
α

α+1

)
=

∫ 1

0

1√
(α+1)2−(α+u)2

du ≤
√
λ1

∫ 1

0

1
F(∇u)

du

≤

√
λ1

∫ 1

0

1
F(∇u(γ (t)))

〈∇u(γ (t)), γ̇ (t)〉 dt

≤

√
λ1

∫ 1

0
F0(γ̇ (t)) dt ≤

√
λ1iF .

Here we have used the Cauchy–Schwarz inequality (7). Letting α→ 0, we obtain

λ1 ≥
π2

4i2
F
.

Thus we finish the proof of Theorem 1.2.
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EINSTEIN METRICS AND EXOTIC SMOOTH STRUCTURES

MASASHI ISHIDA

We prove new existence theorems of 4-manifolds admitting infinitely many
distinct smooth structures for which no Einstein metric exists.

1. Introduction

A Riemannian metric g is called Einstein if its Ricci curvature, considered as a
function on the unit tangent bundle, is constant. It is known that any closed oriented
Einstein 4-manifold X satisfies

(1) 2χ(X)≥ 3|τ(X)|,

where χ(X) and τ(X) denote respectively the Euler characteristic and signature
of X . This is called the Hitchin–Thorpe inequality [Hitchin 1974; Thorpe 1969;
Besse 1987]. Hitchin [1974] proved that any closed oriented Einstein 4-manifold
satisfying 2χ(X)=3|τ(X)| is finitely covered by either a K3 surface or the 4-torus.

On the other hand, by using Seiberg–Witten invariants [Witten 1994], LeBrun
[1996] constructed the first example of a simply connected closed 4-manifold X
without Einstein metrics that nonetheless satisfies the strict Hitchin–Thorpe in-
equality 2χ(X) > 3|τ(X)|. It is now well-known [LeBrun 1995a; 1995b; 2001;
2009] that the existence of monopole classes (see Definition 2 below) gives rise
to obstructions to the existence of Einstein metrics on 4-manifolds. In particular,
any Einstein 4-manifold X with a nonzero special monopole class (see Section 2
below) must satisfy the inequality

(2) χ(X)≥ 3τ(X).

This equality occurs only if X is a compact quotient of the complex hyperbolic
plane equipped with a constant multiple of its standard Kähler–Einstein metric.
For Kähler surfaces, this inequality reduces to the celebrated Miyaoka–Yau in-
equality. We shall call (2) the Miyaoka–Yau–LeBrun inequality. Moreover, an
obstruction found in [LeBrun 1996; 2001] provided the first means of exhibiting
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the dependence of Einstein metrics on smooth structures of underlying topological
4-manifolds [Kotschick 1998]. In particular, we know that there exist infinitely
many topological 4-manifolds which often admit infinitely many smooth structures
for which Einstein metrics do not exist, but nevertheless satisfy the Hitchin–Thorpe
inequality. For instance, see [LeBrun 2001; 2003; Ishida and LeBrun 2002; 2003;
Brunnbauer et al. 2009].

In this article, we shall prove the following general existence theorem of 4-
manifolds without Einstein metrics, which nicely highlights how much there is
to be said about the subject beyond the Hitchin–Thorpe inequality (1) and the
Miyaoka–Yau–LeBrun inequality (2).

Theorem A. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2), there
exist infinitely many nonhomeomorphic topological nonspin 4-manifolds with

(χ, τ )= (m, n),

and all such topological nonspin 4-manifolds admit infinitely many distinct smooth
structures for which nonzero special monopole classes exist and Einstein metrics
do not exist. In particular:

(1) If 2m > 3|n|, there are nonspin 4-manifolds admitting infinitely many distinct
smooth structures for which no Einstein metric exists, but that nevertheless
satisfy the strict Hitchin–Thorpe inequality.

(2) If m > 3n, there are nonspin 4-manifolds admitting infinitely many distinct
smooth structures for which nonzero special monopole classes exist and Ein-
stein metrics do not exist, but nevertheless satisfy the strict Miyaoka–Yau–
LeBrun inequality.

Notice that any closed 4-manifold X always satisfies χ(X)+τ(X)≡ 0 (mod 2).
Therefore, m+n≡0 (mod 2) in the above theorem is the best possible. Theorem A
follows from Theorem 11 proved in Section 4. Theorem 11 provides us a way
to construct new examples of 4-manifolds without Einstein metrics. See also
Remark 12 at the end of Section 4.

One of motivations for Theorem A comes from an interesting result due to
Sambusetti [1998]. Using a remarkable inequality of Besson, Courtois, and Gallot
[Besson et al. 1995] concerning the volume entropy, Sambusetti [1998] proved a
topological obstruction to the existence of Einstein metrics on a 4-manifold admit-
ting a nonzero degree map onto compact real or complex hyperbolic 4-manifolds.
By applying the obstruction, Sambusetti proved an interesting existence result for
4-manifolds without Einstein metrics.

Theorem 1 [Sambusetti 1998, Theorem 4.4]. Any pair of integers (m, n) satisfying
m + n ≡ 0 (mod 2) can be realized as the Euler characteristic χ and signature τ
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of infinitely many nonhomeomorphic closed smooth 4-manifolds without Einstein
metrics.

We notice that Sambusetti’s obstruction actually depends only on the homotopy
type of the manifold, and therefore in principle applies to all smooth structures.
However, it appears to be unknown if most of the examples considered by Sam-
busetti actually admit exotic smooth structures. For instance, Theorem 1 is proved
by considering the following connected sum Y p

m,n [Sambusetti 1998, Remarks 4.5]:

(|m| + |n| + p)M # (|m| + |n| − n+ p)CP2 #
(
|m| + |n| − m+n

2
+ 1+ p

)
Y,

where p is any nonnegative integer, M is a Mumford fake projective plane [1979]
and Y := S2

×T 2. We also remark that there is a vanishing theorem of Witten [1994]
which asserts that all the Seiberg–Witten invariants of a connected sum X1#X2 of 4-
manifolds with b+2 (X1)≥ 1 and b+2 (X2)≥ 1 vanish, where b+(X) is the dimension
of a maximal linear subspace of H 2(X,R) on which the cup product pairing is
positive definite. Hence, all the Seiberg–Witten invariants of the connected sum
Y p

m,n vanish in general. At least, the present author does not know how to detect
the existence or nonexistence of monopole classes of Y p

m,n , and, to the best of our
knowledge, it is also unknown whether the underlying topological manifold of
Y p

m,n admits infinitely many smooth structures for which no Einstein metric exists.
Hence, Theorem A can be seen as a natural generalization of Sambusetti’s result
and actually contains several new aspects which were not covered by Sambusetti’s
result. Moreover, our method of proof is totally different from that of Theorem 1.
In particular, we use the Seiberg–Witten monopole equations [Witten 1994] to
prove Theorem A.

We mention that a Seiberg–Witten refinement of Theorem 1 was first proved
by Del Rio Guerra [2002, Theorem D], who showed the existence of non-Einstein
4-manifolds with free fundamental group. Our Theorem A can be seen as a natural
generalization of that result, because our method of proof implies the existence
of topological 4-manifolds with free fundamental group and admitting infinitely
many distinct smooth structures for which Einstein metrics do not exist. (See also
Remark 12 below.)

Theorem A is a result on the nonspin case. The second main result of the present
article tells us that a similar result still holds in the spin case:

Theorem B. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2) and
n ≡ 0 (mod 16), there exist infinitely many nonhomeomorphic topological spin
4-manifolds with (χ, τ ) = (m, n) and all such topological spin 4-manifolds ad-
mit infinitely many distinct smooth structures for which nonzero special monopole
classes exist and Einstein metrics do not exist. In particular:
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(1) If 2m > 3|n|, there are spin 4-manifolds admitting infinitely many distinct
smooth structures for which no Einstein metric exists, but nevertheless satisfy
the strict Hitchin–Thorpe inequality.

(2) If m>3n, there are spin 4-manifolds admitting infinitely many distinct smooth
structures for which nonzero special monopole classes exist and Einstein met-
rics do not exist, but nevertheless satisfy the strict Miyaoka–Yau–LeBrun in-
equality.

By Rohlin’s theorem, any spin 4-manifold X must satisfy τ(X) ≡ 0 (mod 16).
Therefore, we cannot remove the condition n ≡ 0 (mod 16) from Theorem B.

2. Obstruction to the existence of Einstein metrics

By using several nice results proved in [LeBrun 2009], we shall prove an obstruc-
tion to the existence of Einstein metrics on 4-manifold; see Theorem 7 below. We
shall use the obstruction to prove the main results.

Let X be a closed oriented Riemannian 4-manifold with b+(X)≥2. Recall that a
spinc-structure 0X on a smooth Riemannian 4-manifold X induces a pair of spinor
bundles S±0X

which are Hermitian vector bundles of rank 2 over X . A Riemannian
metric on X and a unitary connection A on the determinant line bundle L0X :=

det(S+0X
) induce the twisted Dirac operator DA : 0(S+0X

) → 0(S−0X
). Seiberg–

Witten monopole equations over X are the following nonlinear partial differential
equations for a unitary connection A of the complex line bundle L0X and a spinor
φ ∈ 0(S+0X

):

(3) DAφ = 0, F+A = iq(φ),

where F+A is the self-dual part of the curvature of A and q : S+0X
→∧

+ is a certain
natural real-quadratic map satisfying

|q(φ)| = 1
2
√

2
|φ|2,

where ∧+ is the bundle of self-dual 2-forms. We recall some background.

Definition 2 [Kronheimer 1999; Ishida and LeBrun 2003; LeBrun 2009]. Let X
be a closed oriented smooth 4-manifold with b+(X)≥ 2. An element

a ∈ H 2(X,Z)/torsion⊂ H 2(X,R)

is called the monopole class of X if there exists a spinc-structure 0X with

cR
1 (L0X )= a,
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which has the property that the corresponding Seiberg–Witten monopole equations
(3) have a solution for every Riemannian metric on X . Here cR

1 (L0X ) is the image
of the first Chern class c1(L0X ) of the complex line bundle L0X in H 2(X,R).

In what follows, we shall usually denote cR
1 (L0X ) by c1(L0X ) for short. A

monopole class c1(L0X ) of X is called special [Kotschick 2004] if c2
1(L0X ) ≥

2χ(X)+ 3τ(X) holds. We shall also denote the set of all monopole classes on X
by C(X). Then we have the following fundamental result on C(X).

Proposition 3 [Ishida and LeBrun 2003, Proposition 3]. Let X be a closed oriented
smooth 4-manifold with b+(X)≥ 2. Then the set C(X) is a finite set.

Now recall that, for any subset W of a real vector space V , one can consider the
convex hull Hull(W ) ⊂ V , meaning the smallest convex subset of V containing
W . Finiteness of C(X) implies that the convex hull

Hull(C(X))⊂ H 2(X,R)

is compact. Moreover, it is known that the convex hull Hull(C(X)) is symmetric,
that is, Hull(C(X))=−Hull(C(X)). See [LeBrun 2009] for more details.

Since C(X) is a finite set, we are able to write C(X) = {a1, a2, . . . , an}. The
convex hull Hull(C(X)) is then expressed as

(4) Hull(C(X))=
{ n∑

i=1

tiai | ti ∈ [0, 1],
n∑

i=1

ti = 1
}
.

Notice that the symmetric property tells us that Hull(C(X)) contains the zero ele-
ment. Let us consider the self-intersection function

Q : H 2(X,R)→ R,

which is defined by x 7→ x2
:= 〈x ∪ x, [X ]〉, where [X ] is the fundamental class

of X . Since the function Q is a polynomial function, it is a continuous function on
H 2(X,R). Therefore, the restriction Q|H to the compact subset H :=Hull(C(X))
of H 2(X,R) achieves its maximum.

Definition 4 [LeBrun 2009]. Suppose X is a closed oriented smooth 4-manifold
with b+(X) ≥ 2. Let Hull(C(X)) ⊂ H 2(X,R) be the convex hull of the set C(X)
of all monopole classes on X . If C(X) 6=∅, define

β2(X) :=max{Q(x) := x2
| x ∈ Hull(C(X))}.

If instead C(X)=∅, simply define β2(X) := 0.

We are now in a position to recall the following theorem.
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Theorem 5 [LeBrun 2009]. Suppose that X is a closed oriented smooth 4-manifold
with b+(X)≥ 2. If X admits an Einstein metric g,

2χ(X)+ 3τ(X)≥ 2
3β

2(X)

with equality only if both sides vanish, in which case g must be a hyper-Kähler
metric, and X must be diffeomorphic to K3 or T 4.

There are several ways to detect the existence of monopole classes. For any
closed oriented smooth 4-manifold X with b+(X) ≥ 2, one can define the integer
valued Seiberg–Witten invariant SWX (0X ) ∈Z for any spinc-structure 0X by inte-
grating a cohomology class on the moduli space of solutions of the Seiberg–Witten
monopole equations associated with 0X :

SWX : Spin(X)→ Z,

where Spin(X) is the set of all spinc-structures on X . For more details, see [Witten
1994; Morgan 1996]. We call the first Chern class c1(L0X ) a Seiberg–Witten basic
class of X if SWX (0X ) 6= 0 for a spinc-structure 0X . Notice that Seiberg–Witten
basic classes are monopole classes.

On the other hand, there is a sophisticated refinement of the idea of the con-
struction of the Seiberg–Witten invariant due to Bauer and Furuta [2004] (see also
[Bauer 2004a; 2004b]). We call it the stable cohomotopy Seiberg–Witten invariant
and denote it by BFX . This invariant detects the presence of a monopole class via
an element of a certain complicated stable cohomotopy group π0

S1,U
(Q):

BFX (0X ) ∈ π
0
S1,U

(Q).

(See [Bauer 2004a] for the construction of the stable cohomotopy group.) Under
the assumption that b+(X)≥ 2, it is also known that there is the homeomorphism

(5) t BF
: π0

S1,U
(Q)→ Z,

which maps BFX (0X ) to SWX (0X ) [Bauer 2004a, Theorem 4.1 and Proposi-
tion 4.4]. In particular, this map tells us that, if BFX (0X ) = 0 for some spinc-
structure 0X , we have SWX (0X ) = 0. At the same time, it is known that the
nontriviality of BFX (0X ) implies that there are solutions of the following perturbed
equations associated with 0X for all metrics and all self-dual 2-forms η:

DAφ = 0, F+A = iq(φ)+ iη.

Namely, c1(L0X ) is a generic monopole class in the sense of [Kotschick 2004,
Definition 7]. Then, by the standard argument of gauge theory, we know that
c1(L0X ) becomes a special monopole class [Kotschick 2004, Lemma 8]. Hence
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the nontriviality of BFX (0X ) implies the existence of a special monopole class
c1(L0X ). We shall use this fact to prove the main results.

By using BFX , we are able to prove the following result:

Proposition 6. Let X be a closed oriented smooth 4-manifold with b+(X) ≥ 2.
Suppose that SWX (0X ) 6= 0 holds for a spinc-structure 0X . Let N be a closed
oriented smooth 4-manifold with b+(N ) = 0. Then a connected sum M := X # N
has monopole classes and satisfies the bound

(6) β2(M)≥ 2χ(X)+ 3τ(X).

Proof. As was already mentioned, there is a comparison map (5) between BFX and
SWX , where we used the assumption that b+(X)≥2. In particular, if SWX (0X ) 6=0
for some spinc-structure 0X , then BFX (0X ) 6=0. Then the proofs of [Ishida and Le-
Brun 2003, Proposition 6 and Corollary 8] (see also [Bauer 2004a, Theorem 8.8])
tell us that

(7) ±c1(L0X )+

k∑
i=1

± Ei

are monopole classes of the connected sum M := X # N , where c1(L0X ) is the
first Chern class of the complex line bundle L0X associated with 0X . Additionally
E1, E2, . . . , Ek is a set of generators for H 2(N ,Z)/torsion relative to which the
intersection form is diagonal and the ± signs are arbitrary and independent of one
another. In particular, by (7), we have the following two monopole classes of M :

b1 := c1(L0X )+

k∑
i=1

Ei , b2 := c1(L0X )−

k∑
i=1

Ei .

By (4), we obtain
c1(X)= 1

2b1+
1
2b2 ∈ Hull(C(M)).

We therefore get the following bound (see also Definition 4):

(8) β2(M)≥ c2
1(L0X ).

On the other hand, the assumption that SWX (0X ) 6= 0 forces the dimension d of
Seiberg–Witten monopole moduli space to be nonnegative; that is,

d = 1
4(c

2
1(L0X )− 2χ(X)− 3τ(X))≥ 0.

Equivalently, we have

(9) c2
1(L0X )≥ 2χ(X)+ 3τ(X).

It is clear that (8) and (9) imply the desired bound (6). �
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Theorem 5 and Proposition 6 imply the next result, a particular case of which,
for N = kCP2 # `(S1

× S3), was proved in [LeBrun 2001, Theorem 3.3].

Theorem 7. Let X be a closed oriented 4-manifold with b+(X)≥ 2. Suppose that
SWX (0X ) 6= 0 holds for a spinc-structure 0X on X. Let N be a closed oriented
smooth 4-manifold with b+(N ) = 0. Then a connected sum M := X # N cannot
admit any Einstein metric if

(10) 4b1(N )+ b2(N ) > 1
3(2χ(X)+ 3τ(X)).

In particular, suppose that N is not an integral homology 4-sphere whose funda-
mental group has no nontrivial finite quotient. Then a connected sum M := X # N
cannot admit any Einstein metric if

(11) 4b1(N )+ b2(N )≥ 1
3(2χ(X)+ 3τ(X)).

Proof. Suppose that the connected sum M := X # N admits an Einstein metric.
Then Theorem 5 tells us that

2χ(M)+ 3τ(M)≥ 2
3β

2(M).

This bound with (6) implies

(12) 2χ(M)+ 3τ(M)≥ 2
3(2χ(X)+ 3τ(X)).

On the other hand, a direct computation tells us that

(13) 2χ(M)+ 3τ(M)= 2χ(X)+ 3τ(X)− (4b1(N )+ b2(N )).

By the bounds (12) and (13), we have

2χ(X)+ 3τ(X)− (4b1(N )+ b2(N ))≥ 2
3(2χ(X)+ 3τ(X)).

Equivalently,

(14) 4b1(N )+ b2(N )≤ 1
3(2χ(X)+ 3τ(X)).

By contraposition, we are able to conclude that M cannot admit any Einstein metric
if (10) holds.

Now suppose that N is not an integral homology 4-sphere whose fundamental
group has no nontrivial finite quotient. Then the equality cannot occur in (14).
We shall prove this as follows. First of all, notice that Theorem 5 tells us that
the equality can occur only in the case where the connected sum M := X # N is
diffeomorphic to K3 or T 4. Both K3 and T 4 are minimal Kähler surfaces. At
the same time, [Kotschick 1997, Theorem 5.4] tells us that if a minimal Kähler
surface with b+ > 1 admits the connected sum decomposition X # N , then N must
be an integral homology 4-sphere whose fundamental group has no nontrivial finite
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quotient. Hence equality never occurs in (14) as desired. Therefore we conclude
that, in this case, M cannot admit any Einstein metric if (11) holds. �

3. Smooth structures and the geography of spin 4-manifolds

The main result of this section is Proposition 10 below. We start by recalling a nice
result of Park [2002] on the geography of spin symplectic 4-manifolds.

Let X be a simply connected closed 4-manifold. We define the quantities

χh(X) : =
χ(X)+ τ(X)

4
=

b+(X)+ 1
2

,(15)

c(X) : = c2
1(X)= 2χ(X)+ 3τ(X)= 4+ 5b+(X)− b−(X).(16)

Now suppose that X is a spin symplectic 4-manifold with b+ > 1. Then [Taubes
1994] tells us that X must satisfy

(17) c(X)≥ 0.

Moreover, Rohlin’s theorem forces τ(X) ≡ 0 (mod 16). As mentioned in [Park
2002, Lemma 2.1], this is equivalent to

(18) c(X)≡ 8χh(X) (mod 16).

The above facts tell us that the only lattice points (χh, c) satisfying both (17)
and (18) can possibly be realized as (χh(X), c(X)) of a simply connected spin
symplectic 4-manifold X . Such pairs (χh, c) of integers are called allowed lattice
points.

We are now in a position to recall the following result on the geography of the
spin symplectic 4-manifolds:

Theorem 8 [Park 2002, Theorem 1.1]. There is a line c = f (χh) with a slope
> 8.76 in the (χh, c)-plane such that any allowed lattice point satisfying c≤ f (χh)

in the first quadrant can be realized as (χh, c2
1) of a simply connected spin non-

complex symplectic 4-manifold which admits infinitely many distinct smooth struc-
tures, all of which admit a symplectic form. In particular, all allowed lattice points
(χh, c) except finitely many lying in the region 0≤ c ≤ 8.76χh satisfy c ≤ f (χh).

On the other hand, let Kg be a fibered knot in S3 with a punctured genus g
surface as fiber. Let MKg be the 3-manifold obtained by performing 0-framed
surgery on Kg. Let m be a meridional circle to Kg. Then the meridional circle
m can be seen as a circle in MKg . The 3-manifold MKg can be consider as a
fiber bundle over the circle m with a closed Riemann surface 6g as a fiber. In
MKg × S1, there is a smoothly embedded torus Tm =m× S1 of self-intersection 0.
A famous result of Thurston [1976] tells us that the 4-manifold MKg × S1 admits
a symplectic structure with symplectic section Tm . For any symplectic 4-manifold
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X with a symplectically embedded torus T of self-intersection 0, we can consider
the symplectic fiber sum X MKg

of X with MKg × S1 as follows:

X Kg := X #T=Tm (MKg × S1)= [X − (T × D2)] ∪ [(MKg × S1)− (Tm × D2)],

where T × D2 is a tubular neighborhood of the torus T in the manifold X . Under
a certain condition on X , Fintushel and Stern proved that X Kg is homeomorphic to
X and provided a way to compute the Seiberg–Witten invariants of X Kg :

Theorem 9 [Fintushel and Stern 1998, Theorem 1.5]. Let X be a simply connected
symplectic 4-manifold that contains a symplectically embedded torus T of self-
intersection 0 in a cusp neighborhood with π1(X − T ) = 1 and representing a
nontrivial homology class [T ]. If Kg is a fibered knot, X Kg := X #T=Tm (MKg× S1)

is a symplectic 4-manifold which is homeomorphic to X and whose Seiberg–Witten
polynomial is given by

SWKg = SWX ·1X Kg
(t),

where 1X Kg
(t) is the Alexander polynomial of Kg and t = exp(2[T ]).

The polynomial SWX is defined as follows. Let {±β1,±β2, . . . ,±βn} be the
set of nonzero Seiberg–Witten basic classes of X . Then we set b0 = SWX (0),
b j = SWX (β j ), and tβ j = exp(β j ). Then we define the Seiberg–Witten polynomial
SWX as follows:

SWX = b0+

n∑
j=1

b j
(
tβ j + (−1)(χ(X)+τ(X))/4t−1

β j

)
.

Since any two smooth 4-manifolds which have different Seiberg–Witten polyno-
mials are nondiffeomorphic, one can apply Theorem 9 to construct 4-manifolds
admitting infinitely many distinct smooth structures. Indeed, Park [2002] proved
that every symplectic 4-manifold W in Theorem 8 admits infinitely many distinct
smooth structures by showing that the 4-manifold W contains a symplectically
embedded torus T of self-intersection 0 in a cusp neighborhood with π1(X−T )=1
and representing a nontrivial homology class [T ], that is, the 4-manifold W satisfies
the assumption in Theorem 9. See [Park 2002, Claim 1] for more details.

To prove the main results of the present article, we need to refine Park’s result
on the existence of exotic smooth structures:

Proposition 10. Let W be any symplectic 4-manifold in Theorem 8 and let N be
any closed smooth 4-manifold with b+(N ) = 0. Then the underlying topological
4-manifold of W # N admits infinitely many distinct smooth structures.
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Proof. As was already proved in [Park 2002, Claim 1], every symplectic 4-manifold
W in Theorem 8 contains a symplectically embedded torus T of self-intersection 0
in a cusp neighborhood with π1(X−T )=1 and representing a nontrivial homology
class [T ]. On the other hand, for any fibered knot Kg in S3 with a punctured genus
g surface as fiber, consider the 3-manifold MKg obtained by performing 0-framed
surgery on Kg. As was already mentioned above, we are able to consider the
symplectic fiber sum

WKg =W #T=Tm (MKg × S1).

Then, Theorem 9 tells us that WKg is homeomorphic to W . Now, let N be any
closed smooth 4-manifold with b+(N ) = 0. Then we consider a connected sum
WKg #N . Of course, WKg #N is homeomorphic to W #N . Notice that the connected
sum WKg # N is not necessarily symplectic in general.

Next, we show that there are monopole classes of WKg # N . In fact, [Bauer
2004a, Proposition 5.4] tells us that the comparison map (5), that is,

t BF
: π0

S1,U
(Q)→ Z,

becomes an isomorphism for any symplectic 4-manifold M with b+(M) > 1. This
fact and a result of Taubes [1994] on the nontriviality of Seiberg–Witten invariants
of any symplectic 4-manifold M with b+(M) > 1 imply the nontriviality of the
stable cohomotopy Seiberg–Witten invariants of M . In particular, we can conclude
that the symplectic 4-manifold WKg has

±c1(KWKg
)

as its monopole classes, where KWKg
is the canonical line bundle of WKg . Since the

nontriviality of the stable cohomotopy Seiberg–Witten invariants does not change
under the connected sum with N [Ishida and LeBrun 2003, Proposition 6], we can
conclude that the connected sum WKg # N also has monopole classes [Ishida and
LeBrun 2003, Proposition 6 and Corollary 8], that is, the cohomology classes

(19) ±c1(KWKg
)+

k∑
i=1

±Ei

become monopole classes of the connected sum WKg # N , where E1, E2, . . . , Ek

is a set of generators for H 2(N ,Z)/torsion relative to which the intersection form
is diagonal and the ± signs are arbitrary and independent of one another.

On the other hand, following the argument at the beginning of the proof of
[Fintushel and Stern 1998, Corollary 1.7], we are able to express c1(KWKg

) more
explicitly. For the reader, let us explain it here. First of all, notice that the homology
H2(MKg×S1) is generated by the classes of the symplectic curves Tm and6g. This
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tells us that the first Chern class c1(KMKg×S1) of the canonical line bundle KMKg×S1

of the symplectic 4-manifold MKg × S1 has the form

c1(KKg×S1)= α[Tm] +β[6g].

Since we have [Tm]
2
= [6g]

2
= 0 and [Tm] · [6g] = 1,

c1(KKg×S1) · [6g] = α, c1(KWKg
) · [Tm] = β.

These facts and the adjunction formula tell us that α = 2g − 2 and β = 0 hold.
Therefore, we conclude that

c1(KKg×S1)= (2g− 2)[Tm] = (2g− 2)[T ].

On the other hand, c1(KWKg
) = c1(KW )+ c1(KKg×S1)+ 2[T ] holds by the con-

struction of WKg . Therefore,

(20) c1(KWKg
)= c1(KW )+ c1(KKg×S1)+ 2[T ] = c1(KW )+ 2g[T ].

By (19) and (20), we conclude that

±(c1(KW )+ 2g[T ])+
k∑

i=1

± Ei

are monopole classes of WKg # N .
By considering an infinite sequence {Kg`}`∈N of fibered knots with g`≥1, where

the genus g` is strictly increasing with respect to `, that is, g`→∞ when `→∞,
we have an infinite sequence {WKg`

# N }`∈N of smooth 4-manifolds which are
homeomorphic to W # N and, for each `,

(21) ±(c1(KW )+ 2g`[T ])+
k∑

i=1

± Ei

are monopole classes of WKg`
# N . Suppose now that the sequence

{WKg`
# N }`∈N

contains only finitely many diffeomorphism types. Specifically, suppose that there
exists a positive integer `0 such that WKg`0

#N is diffeomorphic to WKg`i
#N for any

`i ≥ `0. Then, by the expression (21) of the monopole classes and taking `i→∞,
we conclude that the set of monopole classes of 4-manifold WKg`0

#N is unbounded.
However, this is a contradiction because the set of monopole classes of any given
smooth 4-manifold with b+ > 1 must be finite by Proposition 3. Therefore, the
sequence {WKg`

# N }`∈N actually contains infinitely many diffeomorphism types.
As was already mentioned above, since each 4-manifold WKg`

#N is homeomorphic
to W # N , the underlying topological 4-manifold of W # N admits infinitely many
distinct smooth structures as desired. �
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4. Proof of Theorem A

Theorem 11. Let Z be a closed oriented smooth 4-manifold satisfying b+(Z)= 0,
b1(Z) 6= 0, and

(22) 0<
b2(Z)
b1(Z)

<
19
50
,

where b1(Z) and b2(Z) denote the first and second Betti numbers of Z , respec-
tively. Let M be any closed oriented smooth 4-manifold with b1(M)= 0, b+(M)=
0, and b2(M)= 1.

For such 4-manifolds as Z and M , and for any pair of integers (m, n) satisfying
m+n ≡ 0 (mod 2), there exist infinitely many nonhomeomorphic topological non-
spin 4-manifolds Xm,n

Z ,M with (χ, τ ) = (m, n), and all such topological nonspin
4-manifolds admit infinitely many distinct smooth structures for which nonzero
special monopole classes exist and Einstein metrics do not exist.

Proof. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2), it is easy to
see that there exist infinitely many pairs (k, `) of sufficiently large positive integers
satisfying the following three conditions:

(x, y) :=
(

m+ n+ 2b1(Z)`
4

, 2m+ 3n+ k+ (4b1(Z)+ b2(Z))`
)
∈ D,

n+ k+ b2(Z)`≡ 0 (mod 16),(23)

k+ (4b1(Z)+ b2(Z))` > 1
3 y,(24)

where D is the set of all pairs of integers satisfying the conditions of Theorem 8.
Notice that the condition (23) is equivalent to

y ≡ 8x (mod 16).

Moreover, the condition (22) was already used, that is,

8.76>
(4b1(Z)+ b2(Z))`
(2b1(Z)`)/4

= 8+ 2
b2(Z)
b1(Z)

,

or, equivalently,
b2(Z)
b1(Z)

< 0.38= 19
50
.

By Theorem 8, for each (x, y) above, there is a simply connected spin noncomplex
symplectic 4-manifold W with

(25)

χh(W ) :=
χ(W )+ τ(W )

4
= x =

m+ n+ 2b1(Z)`
4

,

c2
1(W ) := 2χ(W )+ 3τ(W )= y = 2m+ 3n+ k+ (4b1(Z)+ b2(Z))`.
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Hence we obtain

m+ n = χ(W )+ τ(W )− 2b1(Z)`,(26)

2m+ 3n = 2χ(W )+ 3τ(W )− k− (4b1(Z)+ b2(Z))`.(27)

Consider the connected sum

(28) Xm,n
Z ,M =W # M # (k− 1)CP2 # `Z .

Notice that Xm,n
Z ,M is nonspin. On the other hand, by a direct computation, we obtain

χ(M # (k− 1)CP2 # `Z)= k+χ(`Z)= k+ 2+ b2(Z)`− 2b1(Z)`.

Notice that χ(M) = 3 because we assume that b1(M) = 0, b+(M) = 0, and
b2(M)= 1. Therefore we get

(29) χ(Xm,n
Z ,M)=χ(W )+χ(M #(k− 1)CP2)−2=χ(W )+k+b2(Z)`−2b1(Z)`.

Similarly, we have

τ(M # (k− 1)CP2 # `Z)= τ(M)+ τ((k− 1)CP2)+ τ(`Z)

=−1+ (1− k)− b2(Z)`

=−k− b2(Z)`.

Notice that b+(Z)= 0, so we have τ(Z)=−b2(Z). Therefore

(30) τ(Xm,n
Z ,M)= τ(W )+ τ(M # (k− 1)CP2 # `Z)= τ(W )− k− b2(Z)`.

By (29) and (30), we get

χ(Xm,n
Z ,M)+ τ(X

m,n
Z ,M)= χ(W )+ τ(W )− 2b1(Z)`,(31)

2χ(Xm,n
Z ,M)+ 3τ(Xm,n

Z ,M)= 2χ(W )+ 3τ(W )− k− (4b1(Z)+ b2(Z))`.(32)

Then (26), (27), (31), and (32) immediately tell us that

(33) χ(Xm,n
Z ,M)= m, τ (Xm,n

Z ,M)= n.

On the other hand, by b1(W )= b1(M)= b1(CP2)= 0, we have

(34) b1(X
m,n
Z ,M)= b1(Z)`.

Since there are infinitely many choices of `, (33) and (34) tell us that, for (m, n)
satisfying m+ n ≡ 0 (mod 2), there exist infinitely many nonhomeomorphic non-
spin 4-manifolds Xm,n

Z ,M with (χ, τ )= (m, n). Now set N := M # (k− 1)CP2 #`Z .
We write Xm,n

Z ,M =W # N . Notice that N satisfies b+(N )= 0.
By considering an infinite sequence {Kgi }i∈N of fibered knots with gi ≥ 1 as

the proof of Proposition 10 above, we obtain the sequence {WKgi
# N }i∈N which
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contains infinitely many diffeomorphism types by Proposition 10, and every 4-
manifold Xgi := WKgi

# N is homeomorphic to Xm,n
Z ,M = W # N . To prove that

the 4-manifold Xm,n
Z ,M admits infinitely many distinct smooth structures for which

nonzero monopole classes exist and Einstein metrics do not exist, it is enough to
prove that the smooth 4-manifold Xgi has nonzero special monopole classes and
cannot admit any Einstein metric. It is clear that Xgi has nonzero special monopole
classes by the proof of Proposition 10, where the nontriviality of BF implies the
existence of a special monopole class. On the other hand, since any symplectic
4-manifold with b+ > 1 has nontrivial Seiberg–Witten invariants by a result of
Taubes [1994] and N satisfies b+(N )= 0, Theorem 7 tells us that if

(35) k+ (4b1(Z)+ b2(Z))` > 1
3(2χ(WKgi

)+ 3τ(WKgi
)),

the manifold Xgi := WKgi
# N cannot admit any Einstein metric. By Park’s con-

struction of W and Theorem 9, WKgi
is homeomorphic to W and we therefore

have
2χ(WKgi

)+ 3τ(WKgi
)= 2χ(W )+ 3τ(W ).

So the bound (35) is equivalent to

(36) k+ (4b1(Z)+ b2(Z))` > 1
3(2χ(W )+ 3τ(W )).

However, the bound (36) automatically holds because we have (24) and (25).
Therefore, Xgi :=WKgi

# N cannot admit any Einstein metric as desired. �

Theorem A immediately follows from Theorem 11. Indeed, it is enough to find a
smooth closed 4-manifold satisfying (22) and a closed oriented smooth 4-manifold
M with b1(M) = 0, b+(M) = 0, and b2(M) = 1. For example, set M := CP2

and Z := 11K # 4CP2, where K is a secondary Kodaira surface; cf. [Barth et al.
1984]. We have b1(K )= 1, b+(K )= 0, and b2(K )= 0. It is clear that M satisfies
b1(M) = 0, b+(M) = 0, and b2(M) = 1. We also have b1(Z) = 11, b+2 (Z) = 0,
and b2(Z)= 4. Therefore, we get

b2(Z)
b1(Z)

=
4
11
<

19
50
.

Hence Z := 11K # 4CP2 is a 4-manifold satisfying (22). Hence we have proved
Theorem A by considering the connected sum

Xm,n
11K #4CP2, CP2

=W # kCP2 # `(11K # 4CP2);

see (28).

Remark 12. We are able to use another negative definite 4-manifold satisfying
(22) to prove Theorem A. For example, we are able to use another connected sum
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aT #bY , or aT #bCP2 as Z above by taking a suitable pair of positive integers (a, b)
for which the condition (22) is satisfied. Here Y is a Mumford fake projective plane
[Mumford 1979] with the reversed orientation, and T is S1

× S3, or a secondary
Kodaira surface. If we take Z as a(S1

× S3)# bCP2, then the resulting 4-manifold
Xm,n

Z ,CP2
has a free fundamental group. See also [Del Rio Guerra 2002].

5. Proof of Theorem B

A method similar to that used in the proof of Theorem 11 enables us to prove
Theorem B:

Theorem 13. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2) and
n ≡ 0 (mod 16), there exist infinitely many nonhomeomorphic topological spin
4-manifolds with (χ, τ ) = (m, n) and all such topological spin 4-manifolds ad-
mit infinitely many distinct smooth structures for which nonzero special monopole
classes exist and Einstein metrics do not exist.

Proof.
For any pair of integers (m, n) satisfying m+n≡0 (mod 2) and n≡0 (mod 16),

we are able to see that there exist infinitely many, sufficiently large positive integers
` satisfying

(x, y) : =
(m+n+2`

4
, 2m+ 3n+ 4`

)
∈ D,

4` > 1
3 y,(37)

where D is the set of all pairs of integers satisfying the conditions of Theorem 8.
In particular, notice that y ≡ 8x (mod 16) must be satisfied, that is,

2m+ 3n+ 4`≡ 8
(m+n+2`

4

)
(mod 16).

Specifically, we have

2m+ 3n+ 4`≡ 2m+ 2n+ 4` (mod 16).

This is nothing but n ≡ 0 (mod 16). By Theorem 8, for each (x, y) above, there is
a simply connected spin noncomplex symplectic 4-manifold W with

χh(W ) : =
χ(W )+ τ(W )

4
= x =

m+ n+ 2`
4

,

c2
1(W ) : = 2χ(W )+ 3τ(W )= y = 2m+ 3n+ 4`.(38)

We obtain

m+ n = χ(W )+ τ(W )− 2`,(39)

2m+ 3n = 2χ(W )+ 3τ(W )− 4`.(40)
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Let us consider the connected sum

Xm,n
=W # `(S1

× S3).

Notice that Xm,n is spin. We also get

χ(Xm,n)+ τ(Xm,n)= χ(W )+ τ(W )− 2`,(41)

2χ(Xm,n)+ 3τ(Xm,n)= 2χ(W )+ 3τ(W )− 4`.(42)

By (39), (40), (41), and (42), we obtain

(43) χ(Xm,n)= m, τ (Xm,n)= n.

On the other hand, we have b1(W )= 0 and b1(S1
× S3)= 1. Therefore, we get

(44) b1(Xm,n)= `.

Since there are infinitely many choices of `, (43) and (44) implies that, for (m, n)
satisfying m + n ≡ 0 (mod 2) and n ≡ 0 (mod 16), there exist infinitely many
nonhomeomorphic spin 4-manifolds Xm,n with (χ, τ )= (m, n).

We set N := `(S1
× S3) and write Xm,n

= W # N . Notice that N satisfies
b+(N ) = 0. By considering an infinite sequence {Kgi }i∈N of fibered knots with
gi ≥ 1 as proof of Theorem 11, we obtain the sequence {WKgi

# N }i∈N which
contains infinitely many diffeomorphism types. Every 4-manifold Xgi :=WKgi

# N
is homeomorphic to Xm,n

= W # N and has nonzero special monopole classes.
Moreover, Xgi cannot admit any Einstein metric as follows. By Theorem 7, if

(45) 4` > 1
3(2χ(WKgi

)+ 3τ(WKgi
)),

the manifold Xgi :=WKgi
# N cannot admit any Einstein metric. Since

2χ(WKgi
)+ 3τ(WKgi

)= 2χ(W )+ 3τ(W ),

the bound (45) is equal to

(46) 4` > 1
3(2χ(W )+ 3τ(W )).

However, the bound (46) automatically holds because of (37) and (38). Therefore,
we conclude that Xgi :=WKgi

# N cannot admit any Einstein metric as desired. �

6. Remarks on the simply connected case

NonEinstein 4-manifolds constructed in Theorem A, Theorem B, and Theorem 1
are not simply connected. It is natural to ask whether one can prove simply con-
nected versions of these theorems. This is an open problem, and is closely related
to the following.
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Question 14 [LeBrun 2001, Question 3.5]. For every q ∈ (−1, 1) ∩Q, are there
smooth, compact simply connected 4-manifolds with τ/χ = q which do not admit
Einstein metrics?

LeBrun [2001] gives a partial affirmative answer to this question under 0.351≤
|q|<1 [LeBrun 2001, Corollary 3.6]. However, a complete solution to this question
is still unknown.

On the other hand, in the present article, we have seen that 4-manifolds often
admit infinitely many distinct smooth structures for which no Einstein metric ex-
ists. In light of this phenomenon, we would like to consider a generalization of
Question 14:

Question 15. For every q ∈ (−1, 1) ∩ Q, are there compact simply connected
topological 4-manifolds with τ/χ = q which admit infinitely many distinct smooth
structures for which no Einstein metrics exist?

To prove a result in this direction, we need to recall the following:

Theorem 16 [Park 2003, Theorem 1.1]. There is an increasing sequence {mi } with
mi → 9 such that every simply connected closed, nonspin, irreducible smooth 4-
manifold X satisfying 0 ≤ c(X) ≤ miχh(X) and b+(X) ≥ Ci , where Ci is an odd
constant depending on mi , admits infinitely many, both symplectic and nonsym-
plectic, exotic smooth structures.

Applying the idea of the proof of [LeBrun 2001, Corollary 3.6] and the preceding
result, we obtain:

Corollary 17. For any rational number q ∈Q satisfying

1
3 < |q|< 1,

there exist compact simply connected topological 4-manifolds with τ/χ = q admit-
ting infinitely many distinct smooth structures for which no Einstein metric exists.

Proof. We will actually prove that there is an increasing sequence {ni } such that
ni →−1/3 satisfying the following property: For any rational number q with

−1< q ≤ ni ,

there exist compact simply connected topological 4-manifolds with τ/χ = q ad-
mitting infinitely many distinct smooth structures for which no Einstein metrics
exists.

Let α and β be any positive integers satisfying
s
t
∈ (0, mi ],

where mi is an increasing sequence with mi→9 in Theorem 16. Then, Theorem 16
specifically tells us that, for any sufficiently large integers `, there is a simply
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connected nonspin 4-manifold X admitting infinitely many distinct symplectic
structures and with

χh(X)=
χ(X)+ τ(X)

4
= t`,(47)

c2
1(X)= 2χ(X)+ 3τ(X)= s`.(48)

We denote the infinite family of symplectic 4-manifolds which are homeomorphic
to X by {Yn}. For each symplectic 4-manifold Yn which is homeomorphic to X ,
consider the k-times blow-up Mk

n := Yn # kCP2 of Yn where k satisfies

k ≥ 1
3(2χ(Yn)+ 3τ(Yn))=

1
3(2χ(X)+ 3τ(X)).

By (48), this is equivalent to
k
s`
≥

1
3 .

Theorem 7 tells us that Mk
n cannot admit any Einstein metric. Moreover, for each

k, the infinite family {Mk
n } of symplectic 4-manifolds also contains infinitely many

diffeomorphism types because the difference of smooth structures survives under
blow-ups. This means that, for each k, the underlying topological 4-manifold of
Xk := X # kCP2 admits infinitely many smooth structures {Mk

n } without Einstein
metrics.

On the other hand, we have χh(Mk
n )= χh(X) and c2

1(M
k
n )= c2

1(X)− k because
Yn is homeomorphic to X . Using this fact, (47), and (48), we have

c2
1(M

k
n )

χh(Mk
n )
=

c2
1(X)− k
χh(X)

=
s`−k

t`
=

s
t

(
1− k

s`

)
.

Since k/s` ∈ [1/3,∞)∩Q, we get

1− k
s`
∈ (−∞, 2

3 ] ∩Q.

Since we also have s/t ∈ (0,mi ], the following holds.

(49)
c2

1(M
k
n )

χh(Mk
n )
∈ (−∞, 2

3 mi ] ∩Q.

On the other hand, as was already mentioned in the proof of [LeBrun 2001, Corol-
lary 3.6], we get

τ(Mk
n )

χ(Mk
n )
=

(
3− 1

4
c2

1(M
k
n )

χh(Mk
n )

)−1

− 1.

By (49), we have (
3− 1

4
c2

1(M
k
n )

χh(Mk
n )

)−1

∈

(
0, 6

18−mi

]
∩Q.
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This tells us that
τ(Mk

n )

χ(Mk
n )
∈

(
−1,−1+ 6

18−mi

]
∩Q.

Since the sequence mi→9 is increasing, we have an increasing sequence {ni } such
that

ni →−
1
3

by setting

ni := −1+ 6
18−mi

.

Since we have τ(Mk
n ) = τ(Xk) and χ(Mk

n ) = τ(Xk), the above tells us that, for
any rational number q with

−1< q ≤ ni ,

there exist compact simply connected topological 4-manifolds Xk with τ/χ = q
admitting infinitely many distinct smooth structures {Mk

n } for which no Einstein
metrics exists. The case where q is positive then follows by reversing the orienta-
tion of the above examples. �
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NOETHER’S PROBLEM FOR yS4 AND yS5

MING-CHANG KANG AND JIAN ZHOU

Let k be a field, let G be a finite group and let k.xg W g 2G / be the rational
function field over k, on which G acts by the k-automorphisms defined by
h � xg D xhg for any g;h 2 G . Noether’s problem asks whether the fixed
subfield k.G / WDk.xg Wg 2G /G is k-rational, that is, purely transcendental
over k. If bS n is the double cover of the symmetric group Sn, in which the
liftings of transpositions and products of disjoint transpositions are of order
4, Serre shows that Q.bS 4/ and Q.bS 5/ are not Q-rational. We will prove
that if k is a field such that char k¤ 2 ; 3, and k.�8/ is a cyclic extension of
k, then k.bS 4/ is k-rational. If it is assumed furthermore that char k D 0,
then k.bS 5/ is also k-rational.

1. Introduction

Let k be a field, and L be a finitely generated field extension of k. L is called
k-rational (or rational over k) if L is purely transcendental over k; that is, L is
isomorphic to some rational function field over k. L is called stably k-rational if
L.y1; : : : ;ym/ is k-rational for some y1; : : : ;ym that are algebraically independent
over L. L is called k-unirational if L is k-isomorphic to a subfield of some k-
rational field extension of k. It is easy to see that

k-rational) stably k-rational) k-unirational:

A notion of retract rationality was introduced in [Saltman 1984] (see also [Kang
2012]). It is known that if k is an infinite field, then

stably k-rational) retract k-rational) k-unirational:

Let k be a field and G a finite group. Let G act on the rational function field
k.xg W g 2 G/ by k-automorphisms defined by h � xg D xhg for any g; h 2 G.

Both authors were partially supported by the National Center for Theoretic Sciences (Taipei Office).
The work of this paper was finished when the second-named author visited National Taiwan Univer-
sity under the support of the National Center for Theoretic Sciences (Taipei Office).
MSC2010: primary 14E08, 14M20; secondary 12F12, 13A50.
Keywords: Noether’s problem, rationality problem, binary octahedral groups.
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Denote by k.G/ the fixed subfield, that is, k.G/ D k.xg W g 2 G/G . Noether’s
problem asks under what conditions is the field k.G/ k-rational.

Noether’s problem is related to the inverse Galois problem and the existence
of generic G-Galois extensions over k. For the details, see Swan’s survey paper
[Swan 1983]. The purpose of this paper is to study Noether’s problem for some
double covers of the symmetric group Sn.

It is known that there are four different double covers of Sn when n � 4, that
is, groups G that fit into a short exact sequence 1! C2!G! Sn! 1; see, for
example, [Serre 1984, p. 653].

Definition 1.1 [Garibaldi et al. 2003, pp. 58, 90; Hoffman and Humphreys 1992,
p. 18; Karpilovsky 1985, pp. 177–181]. Let C2 D f˙1g be the cyclic group of
order 2. When n � 4, the group ySn is the unique central extension of Sn by C2,
that is,

1! C2!
ySn! Sn! 1;

satisfying the condition that the transpositions and the product of two disjoint trans-
positions in Sn lift to elements of order 4 in ySn. On the other hand, the group zSn

is the central extension

1! C2!
zSn! Sn! 1;

such that a transposition in Sn lifts to an element of order 2 of zSn, but a product
of two disjoint transpositions in Sn lifts to an element of order 4.

Note that we follow the notation of ySn and zSn adopted by Serre.

Theorem 1.2 (Serre [Garibaldi et al. 2003, p. 90]). Both Q. yS4/ and Q. yS5/ are not
retract Q-rational. In particular, they are not Q-rational.

Serre proves this using cohomological invariants and trace forms over Q — the e-
invariant method, in short. In pp. 89–90 of the same book, he proves that Rat.G=Q/

is false for G D yS4 and yS5. Actually he proves a bit more. From Serre’s proof it is
easy to find that Q. yS4/ and Q. yS5/ are not retract Q-rational (see [Kang 2012, Sec-
tion 1] for the relationship of the property Rat.G=k/ and the retract k-rationality of
k.G/). This is the reason why we formulate Serre’s theorem in the version above.
In fact, Theorem 1.2 can be perceived also from Serre’s own remark in [Garibaldi
et al. 2003, p. 13, Remark 5.8].

We don’t know whether Theorem 1.2 is valid for fields k other than the field
Q; for example, the field k satisfying the condition that k.�8/ is not cyclic over
k. In fact, in a private communication, Serre told us that the e-invariant method
remains valid (under the assumption that k.�8/ is not cyclic over k) if k is an
algebraic number field of odd degree over Q, or if k D Q.

p
n/, where n � 1

.mod 8/. However, if k DQ.x;y/ with x2Cy2 D�1, the assumption that k.�8/
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is not cyclic over k is valid while the e-invariant method doesn’t work any more
[Serre 2011].

On the other hand, we have:

Theorem 1.3 [Plans 2007; 2009]. (1) For any field k, k. zS4/ is k-rational. Thus,
if k is a field with char k D 0, k. zS5/ is also k-rational.

(2) For any infinite field k with char k ¤ 2 such that
p
�1 2 k, both k. yS4/ and

k. yS5/ are k-rational.

The main result of this article is the following rationality criterion for k. yS4/ and
k. yS5/.

Theorem 1.4. Let k be a field with char k ¤ 2 or 3, and �8 be a primitive eighth
root of unity in some extension field of k. If k.�8/ is a cyclic extension of k, then
k. yS4/ is k-rational; if it is assumed furthermore that char k D 0, then k. yS5/ is also
k-rational.

When k is a field with char k D p > 0 and p¤ 2, the assumption that k.�8/ is a
cyclic extension of k is satisfied automatically. Thus k. yS4/ is k-rational provided
that k is any field with char k ¤ 2 or 3.

Besides the groups yS4 and yS5, Serre shows that Q.G/ is not retract Q-rational if
G is any one of the groups SL2.F7/, SL2.F9/ and the generalized quaternion group
of order 16; see [Garibaldi et al. 2003, p. 90, Example 33.27]. In case G is the
generalized quaternion group of order 16 and k.�8/ is cyclic over k, it is known
that k.G/ is k-rational [Kang 2005]. We don’t know whether analogous results as
Theorem 1.4 are valid when the groups are SL2.F7/ and SL2.F9/.

The main idea of the proof of Theorem 1.4 is to use the method of Galois descent,
namely we first enlarge the field k to k.�8/, solve the rationality of k.�8/. yS4/, and
then descend the ground field to k.

The proof that k.�8/. yS4/ is k.�8/-rational requires at least two techniques. In
order to decrease the number of variables (by applying Theorem 2.2), we will
construct a 4-dimensional faithful representation V of yS4 defined over the field k.
It seems the representation and the idea to find it are not well-known. Once we
have this representation, we adjoin �8 to the field k and write � D Gal.k.�8/=k/.
We will prove that k.�8/.V /

h yS4;�i is k-rational.
The rationality problem of k.�8/.V /

h yS4;�i is not straightforward. In several
steps of computations we use computers to facilitate the process of symbolic com-
putation. However, we emphasize that computers play only a minor role; we don’t
use particular codes of data bases such as GAP.

On the other hand, we point out that the first several steps in proving that
k.�8/.V /

h yS4;�i is k-rational are rather similar to those in [Kang and Zhou 2012,
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Section 5]. This seems unsurprising because the group zS4 considered in [Kang
and Zhou 2012, Section 5] and the group yS4 here have a common subgroup zA4.

For the rationality problem of k. yS5/, we apply Theorem 2.5 of Plans, which
asserts that k. yS5/ is a rational extension of k. yS4/, whence the result.

We organize this paper as follows. We recall some preliminaries in Section 2
that will be used in the proof of Theorem 1.4. In Section 3, several low-dimensional
faithful representations of yS4 over a field k with char k ¤ 2 will be constructed
(the reader may find another explicit construction in [Karpilovsky 1985, p. 177–
179]). Theorem 1.4 will be proved in Section 4. In Section 5 we will consider the
rationality problem of k.Gn/ (see Definition 5.1 for the group Gn).

Throughout this article, whenever we write k.x1;x2;x3;x4/ or k.x;y/ without
explanation, it is understood that it is a rational function field over k. We will
denote by �8 (or simply by �) a primitive eighth root of unity.

2. Preliminaries

We recall several results that will be used in tackling the rationality problem.

Theorem 2.1 [Ahmad et al. 2000, Theorem 3.1]. Let L be any field, L.x/ the
rational function field of one variable over L and G a finite group acting on L.x/.
Suppose that for any � 2G, �.L/�L and �.x/D a� �xC b� , where a� ; b� 2L

and a� ¤ 0. Then L.x/G D LG.f / for some polynomial f 2 LŒx�. In fact, if
mDminfdeg g.x/ W g.x/ 2LŒx�G ; deg g.x/� 1g, any polynomial f 2LŒx�G with
degf Dm satisfies the property that L.x/G DLG.f /.

Theorem 2.2 [Hajja and Kang 1995, Theorem 1]. Let G be a finite group acting
on the rational function field L.x1; : : : ;xn/ of n variables over a field L. Suppose
that:

(i) For any � 2G, �.L/�L.

(ii) The restriction of the action of G to L is faithful.

(iii) For any � 2G, 0BBB@
�.x1/

�.x2/
:::

�.xn/

1CCCADA.�/ �

0BBB@
x1

x2
:::

xn

1CCCACB.�/;

where A.�/ 2 GLn.L/ and B.�/ is a n� 1 matrix over L.

Then there exist elements z1; : : : ; zn 2 L.x1; : : : ;xn/ that are algebraically inde-
pendent over L and satisfy L.x1; : : : ;xn/DL.z1; : : : ; zn/ and �.zi/D zi for any
� 2G and 1� i � n.
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Theorem 2.3 [Yamasaki 2009]. Let k be a field with char k ¤ 2, let a 2 knf0g, and
define a k-automorphism � of the rational function field k.x;y/ by �.x/ D a=x

and �.y/ D a=y. Then k.x;y/h�i D k.u; v/, where u D .x � y/=.a� xy/ and
v D .xCy/=.aCxy/.

Theorem 2.4 [Masuda 1955, Theorem 3; Hoshi and Kang 2010, Theorem 2.2]. Let
k be a field and let � be the k-automorphism of the rational function field k.x;y; z/

defined by � W x 7! y 7! z 7! x. Then k.x;y; z/h�i D k.s1;u; v/ D k.s3;u; v/,
where s1, s2, s3 are the elementary symmetric functions of degree one, two and
three in x, y, z and u and v are defined by

uD
x2yCy2zC z2x� 3xyz

x2Cy2C z2�xy �yz� zx
and v D

xy2Cyz2C zx2� 3xyz

x2Cy2C z2�xy �yz� zx
:

Theorem 2.5 [Plans 2009, Theorem 11]. Let n� 5 be an odd integer and let k be
a field with char k D 0. Then k. ySn/ is rational over k.bSn�1/.

Theorem 2.6 [Kang and Plans 2009, Theorem 1.9]. Let k be a field and let G1 and
G2 be two finite groups. If both k.G1/ and k.G2/ are k-rational, so is k.G1�G2/.

3. Faithful representations of yS4

In this and the next section, the field k we consider is of char k ¤ 2 or 3. We will
denote by �8 D .1C

p
�1/=

p
2 a primitive eighth root of unity.

In [Springer 1977, p. 92] a generating set of yS4 is given (where the group is
called the binary octahedral group): yS4Dha

0; b; ci with relations a0
8
Db4D c6D1,

ba0b�1 D a0
�1, cbc�1 D a0

2 and .a0c/2 D �a0
2
b (here �1 is the element that is

equal to a0
4
D b2 D c3). Note that we have a short exact sequence of groups

1! f˙1g ! yS4

p
! S4! 1;

and that p.a0/ D .1; 2; 3; 4/, p.b/ D .1; 4/.2; 3/ and p.c/ D .1; 2; 3/. Note that
p.ba0/D .1; 4/.2; 3/.1; 2; 3; 4/D .1; 3/.

If �8 2 k, a faithful 2-dimensional representation ˆ W yS4! GL2.k/ is given in
[Springer 1977, p. 92] as follows (we write � D �8),

ˆ.a0/D

�
� 0

0 �7

�
; ˆ.b/D

�
0
p
�1

p
�1 0

�
; ˆ.c/D

1
p

2

�
�7 �7

�5 �

�
:(3-1)

Suppose that
p

2 2 k (but not necessarily that
p
�1 2 k). We may obtain a

4-dimensional representation yS4! GL4.k/ by making in (3-1) the substitutions

p
�1 7!

�
0 �1

1 0

�
and ˛ 7!

�
˛ 0

0 ˛

�
;
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where k0 is the prime field of k and ˛ 2k0.
p

2/. This process is an easy application
of Weil’s restriction [Weil 1956; Voskresenskii 1998, p. 38]. Thus we get

(3-2) a0 7!
1
p

2

0BB@
1�1

1 1
1 1

�1 1

1CCA ; b 7!

0BB@
�1

1

�1

1

1CCA ; c 7!
1

2

0BB@
1 1 1 1

�1 1�1 1

�1 1 1�1

�1�1 1 1

1CCA :
Similarly, when

p
�2 is in k (but possibly

p
�1 is not in k), write

p
�2 D

p
�1 �
p

2. Thus represent
p

2 as �
p
�1 �
p
�2 and � D .1C

p
�1/=

p
2 becomes

p
�2.1�

p
�1/=2. Make in (3-1) the substitutions

p
�1 7!

�
0 �1

1 0

�
and ˛ 7!

�
˛ 0

0 ˛

�
;

where k0 is the prime field of k and ˛ 2 k0.
p
�2/. We get

(3-3) a0 7!

p
�2

2

0BB@
1 1

�1 1
�1 1

�1�1

1CCA; b 7!

0BB@
�1

1

�1

1

1CCA; c 7!
1

2

0BB@
1 1 1 1

�1 1�1 1

�1 1 1�1

�1�1 1 1

1CCA:
The same way, if

p
�12 k (but possibly

p
2… k), make in (3-1) the substitutions

p
2 7!

�
0 2

1 0

�
and ˛ 7!

�
˛ 0

0 ˛

�
;

where k0 is the prime filed of k and ˛ 2 k0.
p
�1/. We get

a0 7!

0BBBB@
0 1C

p
�1

1C
p
�1

2
0

0 1�
p
�1

1�
p
�1

2
0

1CCCCA ;

b 7!

0BBB@
p
�1 0

0
p
�1

p
�1 0

0
p
�1

1CCCA; c 7!

0BBBB@
1�
p
�1

2
0 1�

p
�1

2
0

0 1�
p
�1

2
0 1�

p
�1

2
�1�
p
�1

2
0 1C

p
�1

2
0

0 �1�
p
�1

2
0 1C

p
�1

2

1CCCCA:
(3-4)

Finally, from (3-2) we may get a faithful 8-dimensional representation of yS4 into
GL8.k0/, where k0 is the prime field of k. Explicitly, make in (3-2) the substitutions

p
2 7!

�
0 2

1 0

�
and ˛ 7!

�
˛ 0

0 ˛

�
;
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where ˛ 2 k0. We get

a0 7!
1

2

0BBBBBBBBBBB@

0 2 0 �2

1 0 �1 0

0 2 0 2

1 0 1 0

0 2 0 2

1 0 1 0

0 �2 0 2

�1 0 1 0

1CCCCCCCCCCCA
;

b 7!

0BBBBBBBBBBB@

�1 0

0 �1

1 0

0 1

�1 0

0 �1

1 0

0 1

1CCCCCCCCCCCA
;(3-5)

c 7!
1

2

0BBBBBBBBBBB@

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

�1 0 1 0 �1 0 1 0

0 �1 0 1 0 �1 0 1

�1 0 1 0 1 0 �1 0

0 �1 0 1 0 1 0 �1

�1 0 �1 0 1 0 1 0

0 �1 0 �1 0 1 0 1

1CCCCCCCCCCCA
:

4. Proof of Theorem 1.4

By Theorem 2.5, in case char k D 0 and it is known that k. yS4/ is k-rational, it
follows immediately that k. yS5/ is also k-rational. Hence, in proving Theorem 1.4,
it suffices to prove the rationality of k. yS4/.

By assumption, k.�8/ is a cyclic extension of k. Hence at least one of
p
�1,

p
2 or
p
�2 belongs to k.

Case 1: �8 2 k. Since char k ¤ 2 or 3, the group algebra kŒ yS4� is semisimple.
Hence the 2-dimensional faithful representation provided by Equation (3-1) can be
embedded into the regular representation whose dual space is VregD˚g2 yS4

k �x.g/,

where yS4 acts on Vreg by h �x.g/D x.hg/ for any g; h 2 yS4. By Theorem 2.2, we
find that k. yS4/D k.x.g/ W g 2 yS4/

yS4 is rational over k.x;y/
yS4 , where the actions
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given by Equation (3-1) are

a0 W x 7! �x; y 7! �7y;

b W x 7!
p
�1y; y 7!

p
�1x;

c W x 7! .�7xC �5y/=
p

2; y 7! .�7xC �y/=
p

2:

Set z D x=y. Then k.x;y/ D k.z;x/. By applying Theorem 2.1 we get that
k.z;x/

yS4 D k.z/
yS4.t/ for some element t fixed by yS4. The field k.z/

yS4 is k-
rational by Lüroth’s theorem. Hence k.z;x/

yS4 and k. yS4/ are k-rational.

Case 2:
p

22 k but
p
�1… k. We will use the 4-dimensional faithful representation

of yS4 over k provided by Equation (3-2). This representation provides an action
of yS4 on k.x1;x2;x3;x4/ given by

(4-1)

a0 W x1 7! .x1Cx2/=
p

2; x2 7! .�x1Cx2/=
p

2;

x3 7! .x3�x4/=
p

2; x4 7! .x3Cx4/=
p

2;

b W x1 7! x4 7! �x1; x2 7! �x3;

x3 7! x2;

c W x1 7! .x1�x2�x3�x4/=2; x2 7! .x1Cx2Cx3�x4/=2;

x3 7! .x1�x2Cx3Cx4/=2; x4 7! .x1Cx2�x3Cx4/=2:

� Step 1. Apply Theorem 2.2 and use the arguments of Case 1. We find that k. yS4/

is rational over k.x1;x2;x3;x4/
yS4 . It remains to show that k.x1;x2;x3;x4/

yS4 is
k-rational.

� Step 2. Write � DGal.k.
p
�1/=k/D h�i, where �.

p
�1/D�

p
�1. Extend the

actions of � and yS4 on k.
p
�1/ and k.x1;x2;x3;x4/ to k.

p
�1/.x1;x2;x3;x4/

by requiring that �.xi/D xi for 1� i � 4 and g.
p
�1/D

p
�1 for all g 2 yS4. It

follows that

k.x1;x2;x3;x4/
yS4 D fk.

p
�1/.x1;x2;x3;x4/

h�i
g
ha0;b;ci

D k.
p
�1/.x1;x2;x3;x4/

ha0;b;c;�i:

Define y1;y2;y3;y4 2 k.
p
�1/.x1;x2;x3;x4/ by

y1 D
p
�1x1C

p
�1x2�x3Cx4; y2 D�

p
�1x1C

p
�1x2Cx3Cx4;

y3 D x1�x2�
p
�1x3�

p
�1x4; y4 D x1Cx2�

p
�1x3C

p
�1x4:

Then

k.
p
�1/.x1;x2;x3;x4/D k.

p
�1/.y1;y2;y3;y4/
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and the actions in (4-1) become

(4-2)

a0 W y1 7! .y1Cy2/=
p

2; y2 7! .�y1Cy2/=
p

2;

y3 7! .y3Cy4/=
p

2; y4 7! .�y3Cy4/=
p

2;

b W y1 7!
p
�1y1; y2 7! �

p
�1y2;

y3 7!
p
�1y3; y4 7! �

p
�1y4;

c W y1 7!
y1�

p
�1y2

1C
p
�1

; y2 7!
y1C

p
�1y2

1C
p
�1

;

y3 7!
y3�

p
�1y4

1C
p
�1

; y4 7!
y3C

p
�1y4

1C
p
�1

;

� W y1 7! �
p
�1y4; y2 7!

p
�1y3;

y3 7!
p
�1y2; y4 7! �

p
�1y1:

Note that the action of a0
2 is given by

a0
2
W y1 7! y2 7! �y1; y3 7! y4 7! �y3:

The reader might find interesting to compare the actions in (4-2) with those in
[Kang and Zhou 2012, Section 4]. It turns out that the formulae for b, a0

2, c2 are
completely the same as those for �1, �2, � in [Kang and Zhou 2012, Formula (4.3)].
As mentioned before, both the subgroups hb; a02; c2i and h�1; �2; �i are isomor-
phic to zA4 (where zA4 D p�1.A4/ in the notation of Section 3) as abstract groups.

� Step 3. Define z1 D y1=y2, z2 D y3=y4, z3 D y1=y3. By Theorem 2.1, we find
that

k.
p
�1/.y1;y2;y3;y4/

h yS4;�i D k.
p
�1/.z1; z2; z3/.y4/

h yS4;�i

D k.
p
�1/.z1; z2; z3/

h yS4;�i.z0/;

where z0 is fixed by the actions of yS4 and � . There remains to show the k-ration-
ality of k.

p
�1/.z1; z2; z3/

h yS4;�i is
Before we find k.

p
�1/.z1; z2; z3/

h yS4;�i, we will find k.
p
�1/.z1; z2; z3/

hb;a0
2
i.

The method is the same as in Steps 3 and 4 in [Kang and Zhou 2012, Section 4].
We will write down the details for the convenience of the reader.

Define u1 D z1=z2, u2 D z1z2, u3 D z3. Then

k.
p
�1/.z1; z2; z3/

hbi
D k.
p
�1/.u1;u2;u3/:

The action of a0
2 is given by

a0
2
W u1 7! 1=u1; u2 7! 1=u2; u3 7! u3=u1:
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Define

v1 D
u1�u2

1�u1u2

; v2 D
u1Cu2

1Cu1u2

; v3 D u3

�
1C

1

u1

�
:

Then

k.
p
�1/.u1;u2;u3/

ha0
2
i
D k.
p
�1/.u1;u2; v3/

ha0
2
i
D k.
p
�1/.v1; v2; v3/

by Theorem 2.3 (note that a0
2
.v3/D v3). In summary,

k.
p
�1/.z1; z2; z3/

hb;a0
2
i
D k.
p
�1/.v1; v2; v3/:

� Step 4. The action of c on v1, v2, v3 is given by

c W v1 7! 1=v2; v2 7! v1=v2; v3 7! v3.v1C v2/=Œv2.1C v1/�:

Define X3 D v3.1C v1C v2/=Œ.1C v1/.1C v2/�. Then c.X3/DX3 and

k.
p
�1/.v1; v2; v3/D k.

p
�1/.v1; v2;X3/:

Thus we may apply Theorem 2.4 (regarding v1, 1=v2, v2=v1 as x, y, z in its
statement). More precisely, define

X1 D .v
3
1v

3
2 C v

3
1 C v

3
2 � 3v2

1v
2
2/=.v

4
1v

2
2 C v

4
2 C v

2
1 � v

2
1v

3
2 � v1v

2
2 � v

3
1v2/;

X2 D .v1v
4
2 C v1v2C v

4
1v2� 3v2

1v
2
2/=.v

4
1v

2
2 C v

4
2 C v

2
1 � v

2
1v

3
2 � v1v

2
2 � v

3
1v2/:

By Theorem 2.4 we get k.
p
�1/.v1; v2;X3/

hci D k.
p
�1/.X1;X2;X3/.

� Step 5. With the aid of computers, we find that the actions of a0 and � on X1,
X2, X3 are given by

a0 WX1 7!
X1

X 2
1
�X1X2CX 2

2

; X2 7!
X2

X 2
1
�X1X2CX 2

2

; X3 7!X3;

� WX1 7!
X2

X 2
1
�X1X2CX 2

2

; X2 7!
X1

X 2
1
�X1X2CX 2

2

; X3 7! �2A=X3;

where AD g1g2g�1
3

and

g1 D .1CX1/
2
�X2.1CX1/CX 2

2 ;

g2 D .1CX2/
2
�X1.1CX2/CX 2

1 ;

g3 D 1CX1CX2CX 3
1 CX 3

2 CX1X2.3X1X2� 2X 2
1 � 2X 2

2 C 2/CX 4
1 CX 4

2 :

Note that �.g1/Dg2=.X
2
1
�X1X2CX 2

2
/ and a0.g1/Dg1=.X

2
1
�X1X2CX 2

2
/.

Define Y1 DX1=X2, Y2 DX1, Y3 DX1X3=g1. We find that

a0 W Y1 7! Y1; Y2 7! Y 2
1 =.Y2.1�Y1CY 2

1 //; Y3 7! Y3:
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Thus

k.
p
�1/.X1;X2;X3/

ha0i
D k.
p
�1/.Y1;Y2;Y3/

ha0i
D k.
p
�1/.Z1;Z2;Z3/;

where Z1 D Y1, Z2 D Y2C a0.Y2/, Z3 D Y3.

� Step 6. Using computers, we find that the action of � is given by

� WZ1 7! 1=Z1; Z2 7!Z2=Z1; Z3 7! �2Z3
1=.A

0Z3/;

where A0 is defined to be

�2Z2
1CZ1Z2CZ2

2C4Z3
1�2Z1Z2

2�2Z4
1C3Z2

1Z2
2CZ4

1Z2�2Z3
1Z2

2CZ4
1Z2

2 :

Define U1DZ2C�.Z2/, U2D
p
�1.Z2��.Z2//, U3DZ3C�.Z3/ and U4Dp

�1.Z3 � �.Z3//. We see that k.
p
�1/.Z1;Z2;Z3/

h�i D k.U1;U2;U3;U4/

with a relation

U 2
3 CU 2

4 C 32.U 2
1 CU 2

2 /=B D 0;

where B D .U 2
1
� 3U 2

2
/2C 4U1.U

2
1
� 3U 2

2
/C 32U 2

2
.

Dividing this relation by 16.U 2
1
CU 2

2
/2=B2, we get�

BU3=.4U 2
1 C 4U 2

2 /
�2
C
�
BU4=.4U 2

1 C 4U 2
2 /
�2
C 2B=.U 2

1 CU 2
2 /D 0:

Multiply this relation by U 2
1
CU 2

2
and use the identity

.˛2
Cˇ2/.
 2

C ı2/D .˛ıCˇ
 /2C .˛
 �ˇı/2

to obtain the simplification

(4-3) V 2
3 CV 2

4 C 2B D 0;

where

V3 D B
U1U3CU2U4

4U 2
1
C 4U 2

2

and V4 D B
U1U4�U2U3

4U 2
1
C 4U 2

2

:

Note that k.U1;U2;U3;U4/DK.U1;U2;V3;V4/.
Define w1D 8U1=.U

2
1
�3U 2

2
/, w2D 8U2=.U

2
1
�3U 2

2
/, w3D V3=.U

2
1
�3U 2

2
/,

w4 D V4=.U
2
1
� 3U 2

2
/. Then k.U1;U2;V3;V4/ D k.w1; w2; w3; w4/ and the

relation (4-3) becomes

w2
3 Cw

2
4 C 2Cw1Cw

2
2 D 0:

Hence w1 2 k.w2; w3; w4/. Thus k.
p
�1/.Z1;Z2;Z3/

h�i D k.w2; w3; w4/ is
k-rational.
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Case 3:
p
�2 2 k but

p
�1 … k. We use the 4-dimensional faithful representation

of yS4 over k provided by (3-3). This representation provides an action of yS4 on
k.x1;x2;x3;x4/ given by

a0 W x1 7!
p
�2.x1�x2/=2; x2 7!

p
�2.x1Cx2/=2;

x3 7!
p
�2.�x3�x4/=2; x4 7!

p
�2.x3�x4/=2;

b W x1 7! x4 7! �x1; x2 7! �x3;

x3 7! x2;

c W x1 7! .x1�x2�x3�x4/=2; x2 7! .x1Cx2Cx3�x4/=2;

x3 7! .x1�x2Cx3Cx4/=2; x4 7! .x1Cx2�x3Cx4/=2:

The proof of this case is very similar to that of Case 2.

� Step 1. Apply Theorem 2.2. We see that k. yS4/ is rational over k.x1;x2;x3;x4/
yS4 .

Hence the proof is reduced to proving that k.x1;x2;x3;x4/
yS4 is k-rational.

� Step 2. Write � D Gal.k.
p
�1/=k/ D h�i, where �.

p
�1/ D �

p
�1. Extend

the actions of � and yS4 to k.
p
�1/.x1;x2;x3;x4/ as in Step 2 of Case 2. We find

that
k.x1;x2;x3;x4/

yS4 D k.
p
�1/.x1;x2;x3;x4/

ha0;b;c;�i:

Define y1;y2;y3;y4 2 k.
p
�1/.x1;x2;x3;x4/ by

y1 D�x1�
p
�1x2Cx3C

p
�1x4; y2 D

p
�1x1�x2C

p
�1x3�x4;

y3 D x1�
p
�1x2Cx3�

p
�1x4; y4 D

p
�1x1Cx2�

p
�1x3�x4:

We get k.
p
�1/.x1;x2;x3;x4/D k.

p
�1/.y1;y2;y3;y4/ and the actions are

(4-4)

a0 W y1 7! .�y1�y2/=
p

2; y2 7! .y1�y2/=
p

2;

y3 7! .y3Cy4/=
p

2; y4 7! .�y3Cy4/=
p

2;

b W y1 7!
p
�1y1; y2 7! �

p
�1y2;

y3 7!
p
�1y3; y4 7! �

p
�1y4;

c W y1 7!
y1�

p
�1y2

1C
p
�1

; y2 7!
y1C

p
�1y2

1C
p
�1

;

y3 7!
y3�

p
�1y4

1C
p
�1

; y4 7!
y3C

p
�1y4

1C
p
�1

;

� W y1 7!
p
�1y4; y2 7! �

p
�1y3;

y3 7! �
p
�1y2; y4 7!

p
�1y1:

Note that the action of a0
2 is

a0
2
W y1 7! y2 7! �y1; y3 7! y4 7! �y3:
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(Compare with (4-2) and (4-4).) The actions of a0
2, b, c in both cases are the same.

� Step 3. Define z1 D y1=y2, z2 D y3=y4, z3 D y1=y3. As in Step 3 of Case 2, it
suffices to prove that k.

p
�1/.z1; z2; z3/

h yS4;�i is k-rational.
Define u1, u2, u3, v1, v2, v3, X1, X2, X3 by the same formulae as in Step 3 and

Step 4 of Case 2. We find that k.
p
�1/.z1; z2; z3/

hb;a0
2
;ciD k.

p
�1/.X1;X2;X3/.

� Step 4. The actions of a0, � on X1, X2, X3 are slightly different from Step 5 of
Case 2. In the present case, we have

a0 WX1 7!
X1

X 2
1
�X1X2CX 2

2

; X2 7!
X2

X 2
1
�X1X2CX 2

2

; X3 7! �X3;

� WX1 7!
X2

X 2
1
�X1X2CX 2

2

; X2 7!
X1

X 2
1
�X1X2CX 2

2

; X3 7! �2A=X3;

where AD g1g2g�1
3

and

g1 D .1CX1/
2
�X2.1CX1/CX 2

2 ;

g2 D .1CX2/
2
�X1.1CX2/CX 2

1 ;

g3 D 1CX1CX2CX 3
1 CX 3

2 CX1X2.3X1X2� 2X 2
1 � 2X 2

2 C 2/CX 4
1 CX 4

2 :

Note that the action of � is the same as in Step 5 of Case 2.
Define Y1 DX1=X2, Y2 DX1, Y3 DX1X3=g1. We get

a0 W Y1 7! Y1; Y2 7! Y 2
1 =
�
Y2.1�Y1CY 2

1 /
�
; Y3 7! �Y3:

Thus k.
p
�1/.X1;X2;X3/

ha0iDk.
p
�1/.Y1;Y2;Y3/

ha0iDk.
p
�1/.Z1;Z2;Z3/,

where Z1 D Y1, Z2 D Y2C a0.Y2/, Z3 D Y3.Y2� a0.Y2//.

� Step 5. Using computers, we find that the action of � is given by

� WZ1 7! 1=Z1; Z2 7!Z2=Z1; Z3 7! C=Z3;

where C is defined to be

2Z2
1
.�4Z2

1
CZ2

2
�Z1Z2

2
CZ2

1
Z2

2
/=.1�Z1CZ2

1
/

�2Z2
1
CZ1Z2CZ2

2
C4Z3

1
�2Z1Z2

2
�2Z4

1
C3Z2

1
Z2

2
CZ4

1
Z2�2Z3

1
Z2

2
CZ4

1
Z2

2

:

Define U1DZ2C�.Z2/, U2D
p
�1.Z2��.Z2//, U3DZ3C�.Z3/ and U4Dp

�1.Z3 � �.Z3//. We find that k.
p
�1/.Z1;Z2;Z3/

h�i D k.U1;U2;U3;U4/

with a relation

(4-5) U 2
3 CU 2

4 D 8.U 2
1 CU 2

2 /
2.�16CU 2

1 � 3U 2
2 /=B.U

2
1 � 3U 2

2 /;

where B D .U 2
1
� 3U 2

2
/2C 4U1.U

2
1
� 3U 2

2
/C 32U 2

2
.
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Note that the above formula of B is identically the same as that in Step 6 of
Case 2. It remains to simplify the relation (4-5). Dividing both sides by .U 2

1
C

U 2
2
/2, we get�

U3=.U
2
1 CU 2

2 /
�2
C
�
U4=.U

2
1 CU 2

2 /
�2
D 8.�16CU 2

1 � 3U 2
2 /=B.U

2
1 � 3U 2

2 /:

Divide both sides of the above identity by .2.U 2
1
� 3U 2

2
/=B/2. We get a relation

(4-6) V 2
3 CV 2

4 D 2.1�V 2
1 C 3V 2

2 /.1CV1C 2V 2
2 /;

where

V1 D
4U1

U 2
1
� 3U 2

2

; V3D
BU3

.U 2
1
� 3U 2

2
/.2U 2

1
C 2U 2

2
/
;

V2 D
4U2

U 2
1
� 3U 2

2

; V4D
BU4

.U 2
1
� 3U 2

2
/.2U 2

1
C 2U 2

2
/
:

Note that k.U1;U2;U3;U4/D k.V1;V2;V3;V4/.
Define w1 D 1=.1 C V1/, w2 D V2=.1 C V1/, w3 D V3=.1 C V1/

2, w4 D

V4=.1C V1/
2. We get k.V1;V2;V3;V4/ D k.w1; w2; w3; w3/ and the relation

(4-6) becomes

w2
3 Cw

2
4 D 2.�1C 2w1C 3w2

2/.w1C 2w2
2/:

Divide the above identity by .w1C 2w2
2
/2. We get�

w3=.w1C 2w2
2/
�2
C
�
w4=.w1C 2w2

2/
�2
D 2.�1C 2w1C 3w2

2/=.w1C 2w2
2/:

Since 2.�1C 2w1C 3w2
2
/=.w1C 2w2

2
/ is a “fractional linear transformation”

of w1 and it belongs to k.w2; w3=.w1C 2w2
2
/; w4=.w1C 2w2

2
//, we find that w1

is in k.w2; w3=.w1C 2w2
2
/; w4=.w1C 2w2

2
//. Thus

k.w1; w2; w3; w4/D k.w2; w3=.w1C 2w2
2/; w4=.w1C 2w2

2//:

We find that k.
p
�1/.Z1;Z2;Z3/

h�i is k-rational.

Case 4:
p
�1 2 k but

p
2 … k. This is similar to Cases 2 or 3, so the detailed

proof is omitted. In the case char k D 0, we may apply Plans’ result, Theorem 1.3.
�

5. Other double covers of Sn

In this section we consider the rationality problem of Gn, which is a double cover
of the symmetric group and different from both ySn and zSn.

There are four double covers of the symmetric group Sn when n� 4. The trivial
case is the split group Sn �C2. The rationality problem of the group Sn �C2 is
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easy because we may apply Theorem 2.6. It remains to consider the non split cases:
they are ySn, zSn, and the group Gn defined below.

Definition 5.1. For n� 3, consider the group Gn such that the short exact sequence
1!f˙1g!Gn

p
!Sn! 1 is induced by the cup product "n["n 2H 2.Sn; f˙1g/,

(see, for example, [Serre 1984, page 654]) where "n W Sn ! f˙1g is the signed
map, that is, "n.�/D �1 if and only if � 2 Sn is an odd permutation. Note that
the group Gn is denoted by Sn in [Plans 2009].

The group Gn can be constructed explicitly as follows. Let

1! f˙1g ! C4 D f˙
p
�1;˙1g

p0
! f˙1g ! 1

be the short exact sequence defined by p0.
p
�1/ D �1. The group Gn can be

realized as the pullback of the diagram

Sn

# "n

C4

�0
�! f˙1g:

Explicitly, as a subgroup of Sn �C4,

Gn D f.�; .
p
�1/i/ 2 Sn �C4 W "n.�/D p0..

p
�1/i/g

D .An � f˙1g/[f.�;˙
p
�1/ 2 Sn �C4 W � …Ang:

If k is a field with char k ¤ 2, a faithful 2n-dimensional representation can be
defined as follows. Let X D

�L
1�i�n k �xi

�
˚
�L

1�i�n k �yi

�
and let Gn act on

X by, for 1� i � n,

(5-1)
t W xi 7! �xi ; yi 7! �yi ;

� W xi 7! x�.i/; yi 7! y��1��.i/;

� W xi 7! yi 7! �xi ;

where t D .1;�1/ 2 Gn � Sn �C4, � 2 An and � is identified with .�; 1/ 2 Gn,
� D .1; 2/ 2 Sn and � D .�;

p
�1/ 2Gn.

The next result was proved in [Plans 2009, Theorem 14(b)] under the assump-
tions that char k D 0 and

p
�1 2 k. Our proof is different from Plans’ even in the

situation when char k D 0.

Theorem 5.2. Assume that k is a field that satisfies:

(i) Either char k D 0 or char k D p > 0 with p − 2n.

(ii)
p
�1 2 k.

Then k.Gn/ is k-rational for n� 3.
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Proof. The reader will find that (i) the assumption char k ¤ 2 is used throughout
the proof; (ii) the assumption char k − n is used in Step 2; (iii) the assumption
p
�1 2 k is used in Step 3.

� Step 1. Apply Theorem 2.2. We find that k.Gn/ is rational over

k.xi ;yi W 1� i � n/Gn ;

where Gn acts on the rational function field k.xi ;yi W 1� i � n/ by (5-1).

� Step 2. Define u0 D
P

1�i�n xi , v0 D
P

1�i�n yi and ui D xi=u0, vi D yi=v0

for 1 � i � n. Note that k.xi ;yi W 1 � i � n/ D k.uj ; vj W 0 � j � n/ with the
relations

P
1�i�n ui D

P
1�i�n vi D 1. The action of Gn is given by

t W u0 7! �u0; v0 7! �v0; ui 7! ui ; vi 7! vi ;

� W u0 7! u0; v0 7! v0; ui 7! u�.i/; vi 7! v��1��.i/;

� W u0 7! v0 7! �v0; ui 7! vi 7! ui ;

where 1� i � n and t , � , � are defined in (5-1).
Define w1 D u0v0, w2 D u0=v0. Then

k.uj ; vj W 0� j � n/hti D k.ui ; vi W 1� i � n/.w1; w2/:

Note that �.wi/ D wi for 1 � i � 2, �.w1/ D �w1, �.w2/ D �1=w2. By
Theorem 2.1,

k.ui ; vi W 1� i � n/.w1; w2/
Gn=hti D k.ui ; vi W 1� i � n/.w2/

Gn=hti.w0/

for some w0 fixed by the action of Gn=hti. Moreover, we may identify Gn=hti with
Sn and identify � (modulo hti) with � .

Define Ui D ui � .1=n/;Vi D vi � .1=n/ for 1� i � n. We find thatX
1�i�n

Ui D

X
1�i�n

Vi D 0

and the action of Sn on k.Ui ;Vi W 1 � i � n/ becomes linear. We will consider
k.Ui ;Vi W 1� i � n/.w2/

Sn . The action of Sn is given by

(5-2)
� W Ui 7! U�.i/; Vi 7! V��1��.i/; w2 7! w2;

� W Ui 7! Vi 7! Ui ; w2 7! �1=w2;

where 1� i � n, � 2An, � D .1; 2/ and
P

1�i�n Ui D
P

1�i�n Vi D 0.

� Step 3. Since
p
�1 2 k, define w D .

p
�1�w2/=.

p
�1Cw2/. We find that

�.w/D w for � 2An and �.w/D�w. Apply Theorem 2.1. We find that

k.ui ; vi W 1� i � n/.w2/
Sn D k.Ui ;Vi W 1� i � n/Sn.w00/

for some w00 fixed by the action of Sn.
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It remains to show that k.Ui ;Vi W 1 � i � n/Sn is k-rational. The following
proof of this fact is due to the referee.

Define W ˙i DUi˙V�.i/. It is easy to verify that for �.W ˙i /DW ˙
�.i/

for � 2An;

and that for � D .1; 2/, �.W Ci /DW C
�.i/

and �.W �i /D�W �
�.i/

.

Define subspaces W and W 0 by W D
P

1�i�n k �W Ci and W 0D
P

1�i�n k �W �i .
Note that X

1�i�n

k �Ui ˚

X
1�i�n

k �Vi DW ˚W 0:

Moreover, W is the standard representation of Sn, that is, W '
P

1�i�n k � si withP
1�i�n si D 0 and �.si/D s�.i/ for all �2Sn, for all 1� i � n. On the other hand,

W 0 is the representation space of the tensor product of the standard representation
and the linear character "n W Sn! f˙1g.

� Step 4. Apply Theorem 2.2 to k.Ui ;Vi W 1� i � n/Sn . We find that

k.Ui ;Vi W 1� i � n/Sn D k.W ˚W 0/Sn D k.W Ci W 1� i � n�1/Sn.t1; : : : ; tn�1/;

where each ti is fixed by Sn. Obviously the field k.W Ci W 1 � i � n � 1/Sn is
k-rational, whence the result. �

In the following theorem the assumption
p
�1 2 k from Theorem 5.2 will be

dropped. The first part of the following theorem was proved by Plans [2009, The-
orem 14 (b)]; there he assumed that char k D 0.

Theorem 5.3. (1) If k is a field with char k ¤ 2 or 3, then k.G3/ is k-rational.

(2) If k is a field with char k ¤ 2, then k.G4/ is k-rational. Moreover, if char k D

0, then k.G5/ is also k-rational.

Proof. Case 1: n D 3. By Step 2 in the proof of Theorem 5.2, it suffices to
consider k.Ui ;Vi W 1� i � 3/.w2/

S3 , where
P

1�i�3 Ui D
P

1�i�3 Vi D 0. Define
� D .1; 2; 3/ 2 S3. The actions are given by

� W U1 7! U2 7! �U1�U2; V2 7! V1 7! �V1�V2;

� W U1$ V1; U2$ V2:

Define w3 D U1=V2, w4 D U2=V1, w5 D V1=V2. It follows that

k.Ui ;Vi W 1� i � 3/.w2/
S3 D k.wj W 2� j � 5/.V1/

S3 D k.wj W 2� j � 5/S3.w0/

for some w0 by Theorem 2.1.
It remains to show that k.wj W 2� j � 5/S3 is k-rational. Note that

� W w2 7! w2; w3 7! w4 7! .w3Cw4w5/=.1Cw5/;

� W w2 7! �1=w2; w3 7! 1=w4; w4 7! 1=w3; w5 7! w3=.w4w5/:
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Define w6 D .w3Cw4w5/=.1Cw5/. Note that k.w3; w4; w5/D k.w3; w4; w6/

and

� W w3 7! w4 7! w6 7! w3 and � W w6 7! 1=w6:

Definew7D .1�w3/=.1Cw3/,w8D .1�w4/=.1Cw4/,w9D .1�w6/=.1Cw6/.
Then k.w3; w4; w6/D k.w7; w8; w9/ and

� W w7 7! w8 7! w9 7! w7;

� W w7 7! �w8; w8 7! �w7; w9 7! �w9:

By Theorem 2.4 we find that k.w2; w3; w4; w5/
h�iD k.w2;X1;X2;X3/, where

X1 D w7Cw8Cw9 and

X2 D
w2

7
w8Cw

2
8
w9Cw

2
9
w7� 3w7w8w9

w2
7
Cw2

8
Cw2

9
�w7w8�w7w9�w8w9

;

X3 D
w7w

2
8
Cw8w

2
9
Cw9w

2
7
� 3w7w8w9

w2
7
Cw2

8
Cw2

9
�w7w8�w7w9�w8w9

:

Moreover, the action of � is given by

� W w2 7! �1=w2; X1 7! �X1; X2 7! �X3; X3 7! �X2:

Apply Theorem 2.2. We find that k.w2;X1;X2;X3/
h�iD k.w2/

h�i.Y1;Y2;Y3/

for some Y1, Y2, Y3 fixed by � . Since k.w2/
h�i is k-rational, it follows that

k.w2;X1;X2;X3/
h�i is k-rational.

Case 2: nD 4. Once again we use Step 2 in the proof of Theorem 5.2. It suffices
to consider k.Ui ;Vi W 1� i � 4/.w2/

S4 , where
P

1�i�4 Ui D
P

1�i�4 Vi D 0. Set
�1 D .1; 2/.3; 4/, �2 D .1; 3/.2; 4/, � D .1; 2; 3/ and � D .1; 2/ as before. Then
S4 is generated by �1, �2, � and � .

Define t1DU1CU2, t2D V1CV2, t3DU1CU3, t4D V2CV3, t5DU2CU3

and t6 D V1CV3. The action of S4 is given by

�1 W t1 7! t1; t2 7! t2; t3 7! �t3; t4 7! �t4; t5 7! �t5; t6 7! �t6;

�2 W t1 7! �t1; t2 7! �t2; t3 7! t3; t4 7! t4; t5 7! �t5; t6 7! �t6;

� W t1 7! t5 7! t3 7! t1; t2 7! t6 7! t4 7! t2;

� W t1$ t2; t3$ t6; t4$ t5:

It follows that k.ti W 1 � i � 6/.w2/
<�1;�2> D k.Ti W 1 � i � 6/.w2/, where

T1 D t1=t2, T2 D t3=t4, T3 D t5=t6, T4 D t2t6=t4, T5 D t4t6=t2, T6 D t2t4=t6.



NOETHER’S PROBLEM FOR yS4 AND yS5 367

Moreover, the actions of � and � are given by

� W T1 7! T3 7! T2 7! T1; T4 7! T5 7! T6 7! T4;

� W T1 7! 1=T1; T2 7! 1=T3; T3 7! 1=T2;

T4 7! .T1T2=T3/T6; T5 7! .T2T3=T1/T5; T6 7! .T1T3=T2/T4:

By Theorem 2.2, it suffices to show that k.Ti W 1� i � 3/.w2/
<�;�> is k-rational.

Define w3D .1�T1/=.1CT1/; w4D .1�T2/=.1CT2/; w5D .1�T3/=.1CT3/.
Then we find

� W w2 7! w2; w3 7! w5 7! w4 7! w3;

� W w2 7! �1=w2; w3 7! �w3; w4 7! �w5; w5 7! �w4:

Use Theorem 2.4 to find that k.Ti W 1� i � 3/.w2/
<�>. The remaining part of the

proof is very similar to the last part of Case 1. The details are omitted.

Case 3: nD 5. By [Plans 2009, Theorem 11], k.G5/ is rational over k.G4/. Since
k.G4/ is k-rational by Case 2, we are done. �
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REMARKS ON THE BEHAVIOR OF NONPARAMETRIC
CAPILLARY SURFACES AT CORNERS

KIRK E. LANCASTER

Consider a nonparametric capillary or prescribed mean curvature surface
z= f (x) defined in a cylinder�×R over a two-dimensional region�whose
boundary has a corner at O with an opening angle of 2α. Suppose the con-
tact angle approaches limiting values γ1 and γ2 in (0, π) as O is approached
along each side of the opening angle. We will prove the nonconvex Concus–
Finn conjecture, determine the exact sizes of the radial limit fans of f at O

when (γ1, γ1) ∈ D±1 ∪ D±2 and discuss the continuity of the Gauss map.

1. Introduction

Let �⊂ R2 be a connected, open set. Consider the classical capillary problem in a
cylinder

N f = κ f + λ in �,(1)

T f · ν = cos γ (a.e.) on ∂�,(2)

and, more generally, the prescribed mean curvature problem in a cylinder

N f = H( · , f ( · )) in �,(3)

T f · ν = cos γ (a.e.) on ∂�,(4)

where T f = ∇ f/
√

1+ |∇ f |2, N f = ∇ · T f , ν is the exterior unit normal on
∂�, H(x, t) is a weakly increasing function of t for each x ∈ � and γ = γ (x)
is in [0, π]. We will let S f denote the closure in R3 of the graph of f over �.
When H(x, t)= κt + λ (i.e., f satisfies (1)–(2)) with κ and λ constants such that
κ ≥ 0, then the surface S f ∩ (�×R) represents the stationary liquid-gas interface
formed by an incompressible fluid in a vertical cylindrical tube with cross-section
� in a microgravity environment or in a downward-oriented gravitational field, the
subgraph U = {(x, t) ∈�×R : t < f (x)} represents the fluid filled portion of the
cylinder and γ (x) is the angle (within the fluid) at which the liquid-gas interface
meets the vertical cylinder at (x, f (x)); Paul Concus and Robert Finn have made

MSC2010: primary 76B45, 35J93; secondary 53A10, 35J62.
Keywords: capillary graph, Concus–Finn conjecture, Gauss map, sizes of fans.
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fundamental contributions to the mathematical theory of capillary surfaces and have
discovered that capillary surfaces can behave in unexpected ways (cf. [Concus and
Finn 1996; Finn 1986; 1999; 2002b; 2002a]). For a function f ∈ C2(�), we let

En(X)= En f (X)= (∇ f (x),−1)√
1+|∇ f (x)|2 , X = (x, t) ∈�,

denote the downward unit normal to the graph of f ; when f is a solution of (1)–(2)
and κ ≥ 0, En represents the inward unit normal with respect to the fluid region. Of
interest here is the behavior of capillary surfaces and prescribed mean curvature
surfaces over domains � ⊂ R2 whose boundaries contain corners (e.g., [Concus
and Finn 1996; Finn 1996]).

Let us suppose O= (0, 0) ∈ ∂� and � is a connected, simply connected open
set in R2 such that ∂� \ {O} is a piecewise C1 curve, � has a corner of size
2α at O and the tangent cone to ∂� at O is L+ ∪ L−, where polar coordinates
relative to O are denoted by r and θ , L+ = {θ = α} and L− = {θ =−α}. We will
assume there exist δ∗ > 0, ρ∗ ∈ (0, 1] such that ∂+� = ∂�∩ B(O, δ∗)∩ T+ and
∂−�= ∂�∩B(O, δ∗)∩T− are connected, C1,ρ∗ arcs, where T+={x ∈R2 : x2≥ 0},
T− = {x ∈R2 : x2 ≤ 0} and B(O, ε)= {x ∈R2 : |x |< ε}; hence the tangent rays to
∂+� and ∂−� at O are L+ and L− respectively. Set �0 =�0(δ

∗)=�∩ B(O, δ∗).
Let γ+(s) and γ−(s) denote γ along the arcs ∂+�0 and ∂−�0, respectively, where
s = 0 corresponds to the point O; here we have parametrized ∂+�0 and ∂−�0 by,
for example, arclength s from O and write these parametrizations as x+ and x−
respectively. We will assume there exist γ1, γ2 ∈ (0, π) such that

(5) lim
∂+�3x→O

γ (x)= γ1 and lim
∂−�3x→O

γ (x)= γ2.

Suppose first that 2α ≤ π (i.e., the corner is convex or ∂� is C1 at O); such an
� is illustrated in Figure 1. Figure 2 can then be used to illustrate our knowledge

θ = α

θ = −α

∂−�

�

∂+�

Figure 1. � with 2α < π .
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2α
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Figure 2. The Concus–Finn rectangle for convex corners.

of the behavior of a solution f of (3)–(4) at the corner O; here let R, D±1 , D±2 be
the indicated open regions in the (open) square (0, π)× (0, π). If (γ1, γ2) is in
R ∩ (0, π)× (0, π), then f is continuous at O [Concus and Finn 1996, Theorem 1;
Lancaster and Siegel 1996b; 1996a, Corollary 4; Tam 1986]. If (γ1, γ2) ∈ D±1 , then
f is unbounded in any neighborhood of O and the capillary problem has no solution
if κ = 0 [Concus and Finn 1996; Finn 1996]. If (γ1, γ2) ∈ D±2 , then f is bounded
[Lancaster and Siegel 1996a, Proposition 1] but its continuity at O was unknown
until recently. Concus and Finn discovered bounded solutions of (1)–(2) in domains
with corners whose unit normals (i.e., Gauss maps) cannot extend continuously as
functions of x to a corner on the boundary of the domain [Finn 1988a, page 15;
1988b; 1996; Concus and Finn 1996, Example 2]. They formulated the conjecture
that the solution f of (1)–(2) must be discontinuous at O when (γ1, γ2) ∈ D±2 .
Writing the conditions required for a pair of angles to be in D±2 yields the following
formulation of their conjecture:

Concus–Finn conjecture. Suppose 0< α < π/2, that the limits (5) exist and 0<
γ1, γ2<π . If 2α+|γ1−γ2|>π , then any solution of (3)–(4), with H(x, z)= κz+λ,
κ ≥ 0, has a jump discontinuity at O.

This conjecture was proven for solutions of (3)–(4) (i.e., without the restriction
that H(x, z)= κz+ λ) in [Lancaster 2010].1

Thus, when 2α ≤ π , (γ1, γ2) ∈ D±2 , and f satisfies (3)–(4), f is discontinuous at
O and there is a countable set I⊂ (−α, α) such that the radial limit function of f at

1For convenience, we will abbreviate this reference as [L]. Similarly, [Lancaster and Siegel 1996a]
and [Lancaster and Siegel 1996b] will be abbreviated [LS a] and [LS b], respectively.
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−∂+�

∂+�

θ = −α

θ = α

Figure 3. � with 2α > π .

O, R f , defined by R f (α)= lim∂+�3x→O f (x), R f (−α)= lim∂−�3x→O f (x) and

(6) R f (θ)= lim
r↓0

f (r cos θ, r sin θ), −α < θ < α,

is well-defined and continuous on [−α, α] \I and behaves as in Proposition 1(i) of
[LS b]; if H(x, z) is strictly increasing in z [LS a, §5] or real-analytic [LS b] for x
in a neighborhood of O, then I=∅. (See [LS a], Step 3 of the proof of Theorem 1
and §5, and [LS b] regarding the sets I and cusp solutions.) We may assume for the
moment that (γ1, γ2) ∈ D+2 since the other case follows by interchanging x1 and
x2; then Theorems 1 and 2 of [LS a] and Proposition 1 and Theorem 1 of [LS b]
imply there is a countable set I⊂ [α1, α2] such that

R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1],

with α1 < α2, α−α2 ≥ γ1 and α1− (−α)≥ π − γ2. In fact, determining the exact
sizes of these radial limit fans when f is discontinuous at O follows easily from
[L]. (Notice that D±1 =∅ if 2α = π .)

Proposition 1.1. Let � be as above with 2α < π and f be a bounded solution
to (3)–(4). Suppose that (γ1, γ2) ∈ D±2 and that there exist constants γ ±, γ ±,
0< γ ± ≤ γ ± < π , satisfying

γ++ γ− > π − 2α and γ ++ γ − < 2α+π,

so that γ± ≤ γ±(s)≤ γ ± for all s, 0< s < s0, for some s0. Then R f (θ) exists for
θ ∈ [−α, α] \I and R f (θ) is a continuous function of θ ∈ [−α, α] \I, where I is
a countable subset of (−α, α).



BEHAVIOR OF NONPARAMETRIC CAPILLARY SURFACES AT CORNERS 373

Case (I). If (γ1, γ2)∈ D+2 (i.e., γ1−γ2<2α−π ) then α1=−α+π−γ2, α2=α−γ1

and

R f is


constant on [α− γ1, α],
strictly increasing on [−α+ (π − γ2), α− γ1] \I,
constant on [−α,−α+ (π − γ2)],

where I is a countable subset of [−α+ (π − γ2), α− γ1].
Case (D). If (γ1, γ2)∈D−2 (i.e., γ1−γ2>π−2α) then α1=−α+γ2, α2=α−π+γ1

and

R f is


constant on [α− (π − γ1), α],
strictly decreasing on [−α+ γ2, α− (π − γ1)] \I,
constant on [−α,−α+ γ2],

where I is a countable subset of [−α+ γ2, α−π + γ1].
Proof. Using the information from [LS b] and [LS a] given above and assuming
(γ1, γ2) ∈ D+2 , we will argue by contradiction. Suppose that α2 < α− γ1. Let

�0 ⊂
{
(r cos θ, r sin θ) ∈� : r > 0, α2 < θ < α− γ1/2

}
.

be an open set whose boundary ∂�0 contains {θ = α − γ1/2} and is tangent to
{θ = α2} at O so that the appropriate analogue of [L, (43)] tends to zero. Then f is
continuous on � and, from Theorem 2.1 of [L], we obtain

lim
r↓0
En f
(
r cos(α− 1

2γ1), r sin(α− 1
2γ1)

)= (−sin(α− γ1), cos(α− γ1), 0
)
,(7)

lim
x→O

x∈∂�0\{θ=α− 1
2γ1}
En f (x)= (−sinα2, cosα2, 0).(8)

Notice that the limiting contact angles at O are 1
2γ1 (on θ = α− 1

2γ1) and π (on
θ = α2). Now, using Theorem 2.1 of [L], we see that the arguments in §3 of [L]
yield a contradiction to the assumption that α2 < α− γ1. (If γ2 = π were allowed
in Theorem 1.1 of [L], then a contradiction would follow immediately since 2α
= α−α2− 1

2γ1, |γ1− γ2| = π − 1
2γ1 and 2α+ |γ1− γ2| = π +α− γ1−α2 > π .)

In the case that α1 >−α+π − γ2 or (γ1, γ2) ∈ D−2 , the proof follows in a similar
manner. �

The focus of this note is to give a direct proof of the nonconvex Concus–Finn
conjecture and, when (γ1, γ1) ∈ D±1 ∪ D±2 , establish the exact sizes of radial limit
fans at reentrant corners and discuss the continuity of the Gauss map. We note that
Danzhu Shi assumes the (convex) Concus–Finn conjecture holds when γ1 ∈ {0, π}
or γ2 ∈ {0, π} and then, in her extremely interesting paper [Shi 2006], gives an
argument for the proof of the nonconvex Concus–Finn conjecture. Unfortunately,
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these cases (e.g., γ j ∈ {0, π}, j = 1, 2) are not covered in [L]. Our interest in proving
the nonconvex Concus–Finn conjecture arises from our need, when determining
the exact sizes of fans at reentrant corners, for the information developed during
its proof (e.g., analogs of Theorem 2.1 of [L]) and from a belief in the value of
presenting a proof which directly uses the ideas and techniques in [L].

2. The nonconvex Concus–Finn conjecture

The following theorem implies that the nonconvex Concus–Finn conjecture (cf.
[Shi 2006]) is true; the proof will be given in Section 2B.

Theorem 2.1. Let � and γ be as above with α ∈ [π2 , π]. Let

f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O})
be a bounded solution of (3)–(4) with

|H |∞ = sup
x∈�
|H(x, f (x))|<∞

for some δ > 0 and ρ ∈ (0, 1). Suppose (5) holds and γ1, γ2 ∈ (0, π). Then f is
discontinuous at O whenever |γ1− γ2|> 2α−π or |γ1+ γ2−π |> 2π − 2α (i.e.,
(γ1, γ2) ∈ D±1 ∪ D±2 ).

Throughout this section, we will consider f to be a fixed solution of (3)–(4) that
satisfies the hypotheses of this theorem. We may parametrize the graph of f as
in [LS a], using the unit disk E = {(u, v) : u2+ v2 < 1} as our parameter domain.
From Step 1 of the proof of Theorem 1 of [LS a] and §3 of [L], we see that there is
a parametric description X : E→ R3 of the closure S of S0 = {(x, f (x)) : x ∈�},

X (u, v)= (x(u, v), y(u, v), z(u, v)), (u, v) ∈ E,

such that:

(i) X ∈ C2(E : R3)∩W 1,2(E : R3).

(ii) X is a homeomorphism of E onto S0.

(iii) X maps ∂E onto {(x, f (x)) : x ∈ ∂�} ∪ ({O}× [z1, z2]), where

z1 = lim inf
�3x→O

f (x) and z2 = lim sup
�3x→O

f (x).

(iv) X is conformal on E : Xu · Xv = 0, |Xu| = |Xv| on E .

(v) Let H̃(u, v) = H(X (u, v)) denote the prescribed mean curvature of S f at
X (u, v). Then 4X := Xuu + Xvv = H̃ Xu × Xv.

(vi) X ∈ C0(E).
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Figure 4. The Concus–Finn rectangle for nonconvex corners.

(vii) Writing G(u, v) = (x(u, v), y(u, v)),G(cos t, sin t) moves clockwise about
∂� as t increases, 0≤ t ≤ 2π , and G is an orientation reversing homeomorphism
from E onto �; G maps E onto � and, if f is continuous at O, then G is a
homeomorphism from E onto �.

(viii) Let πS : S2→ C denote the stereographic projection from the North Pole and
define g(u+ iv)= πS(En f (G(u, v))), (u, v) ∈ E . Then

(9) |gζ̄ | = 1
2 |H̃ |(1+ |g|2)|Xu|,

where ζ = u + iv, ∂/∂ζ = 1
2

(
∂/∂u − i∂/∂v

)
and ∂/∂ζ̄ = 1

2

(
∂/∂u + i∂/∂v

)
. For

convenience when working with complex variables, set E1 = {ζ ∈ C : |ζ |< 1}.
(ix) The parametric Gauss map N : E → S2 is N = (Xu × Xv)/|Xu × Xv| and
satisfies N (u, v)= En f (G(u, v)), (u, v)∈ E ; the domain of N is taken as the largest
subset of E on which N extends continuously.

It is convenient to introduce some notation. Suppose V ⊂ R2 with O ∈ ∂V . For
t > 0, set Vt = {(x, y) ∈ V : x2+ y2 < t2}. Let s(V ) denote the set of sequences in
V that converge to O. If h ∈ C1(V ), we define 5h(V )=⋂t>0 Enh(Vt); then

5h(V )=
{
Y ∈ S2 : there exists (x j ) ∈ s(V ) such that Y = lim

j→∞
Enh(x j )

}
.

Without assuming that f is or is not continuous at O, we have:

Lemma 2.2. Let 3 be an open, connected, simply connected subset of � with O in
∂3 and suppose that there is a rotation M of R2 about O such that

{(M(y1, y2), y3) : Y ∈5 f (3)}
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is contained in a compact subset of {Y ∈ S2 : y2 > 0, y3 ≤ 0}. Let φ be a conformal
map from E to G−1(3) and define

(10) g̃(u+ iv)= πS(En f (G ◦φ(u, v))), (u, v) ∈ E .

Then there exists p > 2 such that

(11) g̃(ζ )= ψ(ζ )+ h(ζ ), ζ ∈ E1,

where ψ is a holomorphic function on E1 and h ∈ L∞(E1) is a Hölder continuous
function on E1 with Hölder exponent µ= (p− 2)/p.

Proof. In §3 of [L], the fact that the limits at O of the Gauss map are contained in a
compact subset of {Y ∈ S2 : y2 > 0, y3 ≤ 0} implies that (u, v) 7→ (z(u, v), x(u, v))
is quasiconformal and has a quasiconformal extension to R2; Gehring’s lemma and
the isothermal parametrization imply X ∈W 1,p for some p > 2 and the classical
literature implies g = ψ + h with ψ and h as above. We can argue as in §3 of [L];
we find that X ∈W 1,p(E : R3) for some p > 2 and

(12) g̃(ζ )= ψ(ζ )+ h(ζ ),

where ψ is a holomorphic function and h ∈ L∞(E1) is an uniformly Hölder contin-
uous function on E1 with Hölder exponent µ. �

Remark 2.3. Notice that g̃ = g ◦φ1, where φ1 is a conformal map from E1 onto
{u+ iv : (u, v) ∈ G−1(3)}.
2A. Image of the Gauss map. The (nonparametric) Gauss map on S f is the (down-
ward) unit normal map to S f when this is defined and equals En f on S f ∩ (�×R);
here we consider En f :�×R→ S2− by letting (x, t) 7→ En f (x). In this section, we char-
acterize in Theorems 2.4 and 2.5 the behavior of the limits at points of {O}×R of the
Gauss map for the graph of f when (γ1, γ2) /∈ R. Let S2−={ω∈R3 : |ω|=1, ω3≤0}
be the (closed) lower half of the unit sphere.

Theorem 2.4. Let 2α > π and � and γ be as in Section 1 and suppose (5) holds
with γ1, γ2 ∈ (0, π). Let β ∈ (−α, α) and (x j ) ∈ s(�) such that

(13) lim
j→∞

x j

|x j | = (cosβ, sinβ).

Let us write ω(θ)= (cos θ, sin θ, 0) for θ ∈ R.

(D+2 ) If (γ1, γ2) ∈ D+2 (i.e., γ1− γ2 < π − 2α) then

lim
j→∞
En f (x j )=


ω(α− γ1+ π

2 ) if β ∈ [α− γ1, α),
ω(β + π

2 ) if β ∈ [−α+ (π − γ2), α− γ1],
ω(−α− γ2+ 3π

2 ) if β ∈ (−α,−α+ (π − γ2)].
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(D−2 ) If (γ1, γ2) ∈ D−2 (i.e., γ1− γ2 > 2α−π ) then

lim
j→∞
En f (x j )=


ω(α+ γ1− 3π

2 ) if β ∈ [α+ γ1−π, α),
ω(β − π

2 ) if β ∈ [−α+ γ2, α+ γ1−π ],
ω(−α+ γ2− π

2 ) if β ∈ (−α,−α+ γ2].
Proof. Let us assume (γ1, γ2) ∈ D±2 . Let β ∈ (−α, α) and (x j ) be an arbitrary
sequence in � converging to O and satisfying (13). Since (En f (x j ) : j ∈ N) is a
sequence in the compact set S2−, there is a subsequence of (x j : j ∈N), still denoted
(x j : j ∈N), and θ ∈ (−π2 , 3π

2 ], τ ∈ [0, 1] such that (En f (x jk ) : k ∈N) is convergent
and

lim
k→∞
En f (x jk )= (τ cos θ, τ sin θ,−

√
1− τ 2).

Using [Jeffres and Lancaster 2008] and the techniques and arguments in §2 of
[L], we see that τ = 1, limk→∞ En f (x jk ) = ω(θ), and ω(θ) is normal to ∂P and
points into P, where ω(β) ∈ ∂P and P is given in Theorem 2.2 of [Jeffres and
Lancaster 2008]. (In §2 of [L], the function u(x)= f (x)−R f (β) is blown up about
(0, 0, 0); that is, the graphs of a subsequence of the sequence (u j ) in C2(�), where
u j is defined by u j (x)= ( f (ε j x)− R f (β))/ε j and ε j = |x j | for j ∈N, are shown
to converge to the intersection of �×R with a vertical plane π1. The (downward)
unit normal to π1 is shown to be normal to the vertical plane ∂P which contains
(cosβ, sinβ, 0) and point into P, where P satisfies Theorem 2.1 of [Jeffres and
Lancaster 2007].)

If (γ1, γ2) ∈ D+2 , then the conclusions of Theorem 2.4 follow from Corollary 2.4
of [Jeffres and Lancaster 2008]; Figure 5 illustrates the graph of the argument
of En(β) = limr↓0 En f (r cosβ, r sinβ). If (γ1, γ2) ∈ D−2 , then the conclusions of
Theorem 2.4 follow from Corollary 2.5 of [ibid.]. �

Suppose that α ∈ (π2 , π], γ1, γ2 ∈ (0, π) and γ1+ γ2 < 2α− π . Let us define
F= F(α, γ1, γ2) as follows: Set

F1 = [−α,−α− γ2+π ]× {−α− γ2−π/2},
F2 = [−α,−α+ γ2+π ]× {−α+ γ2−π/2},

F3 = [α− γ1−π, α]× {α− γ1− 3π/2},
F4 = [α+ γ1−π, α]× {α+ γ1− 3π/2},

F5 = {(β, β −π/2) : β ∈ [−α+ γ2, α+ γ1−π ]},
F6 = {(β, β − 3π/2) : β ∈ [−α+ γ2+π, α− γ1]},

F7 =
{
(β + t,−α+ γ2−π/2+ t) : β ∈ [−α+ γ2,−α+ γ2+π ]

t ∈ [0, 2α−π − γ1− γ2]
}
,

and define F=⋃7
j=1 F j = F1 ∪ · · · ∪F7 (see Figures 6, 7 and 8 for illustrations).
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Theorem 2.5. Let 2α > π and � and γ be as in Section 1 and suppose (5) holds
with γ1, γ2 ∈ (0, π). Let β ∈ (−α, α) and (x j ) ∈ s(V ) such that

(14) lim
j→∞

x j

|x j | = (cosβ, sinβ).

Continuing to write ω(θ)= (cos θ, sin θ, 0) for θ ∈ R, we see:

(i) Suppose (γ1, γ2) ∈ D+1 (i.e., γ1+ γ2 < 2α−π ), lim j→∞ En f (x j ) exists and

lim
j→∞
En f (x j )= ω(θ) for some θ ∈ R.

Then (β, θ) ∈ F.

(ii) Suppose (γ1, γ2) ∈ D−1 (i.e., γ1+ γ2 > 2α+π ), lim j→∞ En f (x j ) exists and

lim
j→∞
En f (x j )= ω(θ) for some θ ∈ R.

Then (−β, θ) ∈ F.

(iii) Connectedness at β: Suppose (γ1, γ2) ∈ D+1 and (x j ), (y j ) ∈ s(�) such that

lim
j→∞

x j

|x j | = lim
j→∞

y j

|y j | = (cosβ, sinβ),

lim
j→∞
En f (x j )= ω(θ1) and lim

j→∞
En f (x j )= ω(θ2),

for some θ1≤θ2 such that (β, θ1), (β, θ2)∈F. Then the set {θ ∈[θ1, θ2] : (β, θ)∈F}
must be connected.

(iv) Connectedness: Suppose (γ1, γ2) ∈ D+1 . Let β1, β2 ∈ (−α, α) with β1 ≤ β2.
Suppose (x j ), (y j ) ∈ s(�) such that

lim
j→∞

x j

|x j | = (cosβ1, sinβ1), lim
j→∞

y j

|y j | = (cosβ2, sinβ2),

lim
j→∞
En f (x j )= ω(θ1) and lim

j→∞
En f (x j )= ω(θ2),

for some θ1, θ2 such that (β1, θ1), (β2, θ2) ∈ F. Set L = [min{θ1, θ2},max{θ1, θ2}].
Then the set F∩ ([β1, β2]× L) must be connected.

Proof. The proof of Theorem 2.5 (i) and (ii) is essentially the same as that of
Theorem 2.4 with Corollaries 2.6 and 2.7 of [Jeffres and Lancaster 2008] replacing
Corollaries 2.4 and 2.5 respectively. Conclusion (iii) follows from (i) by standard
arguments (e.g., proof of Lemma 4.2). Conclusion (iv) follows from (i) by standard
arguments which take into account the specific geometry of F. �
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2B. Proof of Theorem 2.1. Assume (γ1, γ2) ∈ D±1 ∪ D±2 , f satisfies (3) in �
and (4) on B(O, δ∗)∩ ∂� \ {O} and f is continuous at O; then f is bounded in a
neighborhood of O. Since f is continuous at O, we have the following modifications
of (i)–(viii) in Section 2A:

(iii)′ X maps ∂E strictly monotonically onto {(x, f (x)) : x ∈ ∂�}.
(vi)′ X ∈ C0(E) and X (1, 0)= (0, 0, z0), where z0 = f (0, 0).

(vii)′ Continuing to write G(u, v)= (x(u, v), y(u, v)),G(cos t, sin t) moves clock-
wise about ∂� as t increases, 0 ≤ t ≤ 2π , and G is an orientation reversing
homeomorphism from E onto �.

We will prove Theorem 2.1 in the cases (γ1, γ2) ∈ D+2 and (γ1, γ2) ∈ D+1 ; this will
suffice to prove the lemma since the mapping

R3→ R3, (x1, x2, x3) 7→ (x1,−x2,−x3),

converts a D−2 corner into a D+2 corner and converts a D−1 corner into a D+1 corner.
Suppose (γ1, γ2) ∈ D+2 . Set θ1 = (π − (γ1+ γ2))/2 and let θ2 ∈ (α− γ1, α). By

choosing δ0 > 0 small, we may assume

�∗ = {(r cos θ, r sin θ) : 0< r < δ0, θ1 < θ < θ2} ⊂�.
Notice that Theorem 2.4 (D+2 ) implies

5 f (�
∗)= {(cos θ, sin θ, 0) : θ1+ 1

2π ≤ θ ≤ α− γ1+ 1
2π}.

Since α− γ1− θ1 = 1
2 (2α−π − γ1+ γ2) ∈ (2α−π, α)⊂ (0, π), the hypotheses

of Lemma 2.2 are satisfied (with M a rotation through an angle of π/2− α). If
φ is a conformal map from E onto G−1(�∗) which maps (1, 0) to (1, 0) and g̃ is
defined by (10), then Lemma 2.2 implies there exists p > 2 such that

(15) g̃(ζ )= ψ(ζ )+ h(ζ ),

where ψ is a holomorphic function and h ∈ L∞(E1) is a Hölder continuous function
on E1 with Hölder exponent µ= (p− 2)/p. The assumption that f is continuous
at O yields a contradiction as in §3 of [L] (i.e., the Phragmén–Lindelöf theorem is
violated).

Now suppose (γ1, γ2) ∈ D+1 . Let θ1 ∈ (−α,−α+ γ2) and θ2 ∈ (α− γ1, α) and
choose δ0 > 0 small enough that

�∗ = {(r cos θ, r sin θ) : 0< r < δ0, θ1 < θ < θ2} ⊂�.
Using Theorem 2.5, we see that

5 f (�
∗)⊂ {(cos θ, sin θ, 0) : β ∈ (−α, α), (β, θ) ∈ FL},
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where FL is one of the sets FA, FB or FC illustrated in Figures 9, 10 and 11
respectively. When FL is FA or FC , the proof is essentially that same as that above
for the case in which (γ1, γ2) ∈ D+2 . When FL is FB , the proof is essentially that
same as that in §3 of [L]. �
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3. The exact sizes of fans

We recall that a solution f ∈C2(�)∩C1,ρ(B(O, δ)∩�\{O}) of (3)–(4) is unbounded
if α < π/2 and (γ1, γ2) ∈ D±1 , for some δ > 0 and ρ ∈ (0, 1). The following lemma
justifies the definition of Em f : (−α, α)→ S2−, given by

Em f (β)= lim
j→∞
En f (x j ) whenever (x j ) ∈ s(�) with lim

j→∞
x j

|x j | = (cosβ, sinβ),

when (γ1, γ2) ∈ D±1 ∪ D±2 .

Lemma 3.1. Let � and γ be as in Section 1, with α ∈ [0, π]. For some ρ ∈ (0, 1)
and δ > 0, suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of
(3)–(4) with |H |∞ = supx∈� |H(x, f (x))|<∞. Suppose (5) holds, γ1, γ2 ∈ (0, π)
and (γ1, γ2) ∈ D±1 ∪ D±2 ; that is, either α ∈ [0, π2 ) and |γ1− γ2|> π − 2α holds or
α ∈ [π2 , π] and one of |γ1− γ2|> 2α−π or |γ1+ γ2−π |> 2π − 2α holds. Then
the Gauss map from S f to S2− is continuous on S f ∩ (�(ε)×R) for each ε > 0,
where �(ε) = {(r cos θ, r sin θ) ∈ � : r > 0, |θ | < α − ε}. In particular, Em f (β)

exists for all β ∈ (−α, α) and Em f ∈ C0((−α, α) : S2−).

Proof. Using Theorem 2.1 of [LS a] when α < π/2 and (γ1, γ2) ∈ D±2 and The-
orems 2.4 and 2.5 and the proof of Theorem 2.1 when α ≥ π/2 and (γ1, γ2) is
in D±1 ∪ D±2 , we see that the hypotheses of Lemma 2.2 are satisfied when ε > 0
and 3=�(ε). Therefore the restriction of the Gauss map to S f ∩ (�(ε)×R) is
continuous. �
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Figure 12. Radial limits: Side fans at a convex corner.

Now we wish to determine the exact sizes of the side fans (illustrated in Figure 12)
when (γ1, γ2) ∈ D±1 ∪ D±2 . From [LS a], Theorems 1 and 2, we know that if f is
discontinuous at O, then R f and the limits at O of the Gauss map behave in the
following ways; here I denotes a countable subset of the appropriate interval(s)
and ω(θ)= (cos θ, sin θ, 0) for θ ∈ R.

Case (I) R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1].

This case can only occur when (γ1, γ2) ∈ R ∪ D+2 ∪ D±1 . Theorem 2 of [LS a]
implies α2≤ α−γ1 and α1≥−α+π−γ2. If β ∈ (α1, α2) then Em f (β)=ω(β+ π

2 ).

Case (D) R f is


constant on [α2, α],
strictly decreasing on [α1, α2] \I,
constant on [−α, α1].



BEHAVIOR OF NONPARAMETRIC CAPILLARY SURFACES AT CORNERS 385

This case can only occur when (γ1, γ2)∈ R∪D−2 ∪D±1 . Theorem 2 of [LS a] implies
α2 ≤ α−π + γ1 and α1 ≥−α+ γ2. If β ∈ (α1, α2), then Em f (β)= ω(β − π

2 ).

Case (DI) There exists θ0 ∈ (−α+ γ2, α− γ1−π) such that

R f is



constant on [α2, α],
strictly increasing on [θ0+π, α2] \I,
constant on [θ0, θ0+π ],
strictly decreasing on [α1, θ0] \I,
constant on [−α, α2].

This case can only occur when (γ1, γ2) ∈ D+1 . Theorem 2 of [LS a] implies α2 ≤
α− γ1 and α1 ≥−α+ γ2. If β ∈ (−α, α), then

Em f (β)=

ω(β + π

2 ) if β ∈ (θ0+π, α2),
ω(θ0− π

2 ) if β ∈ [θ0, θ0+π ],
ω(β − π

2 ) if β ∈ (α1, θ0).

Case (ID) There exists θ0 ∈ (−α+π − γ2, α+ γ1− 2π) such that

R f is



constant on [α2, α],
strictly decreasing on [θ0+π, α2] \I,
constant on [θ0, θ0+π ],
strictly increasing on [α1, θ0] \I,
constant on [−α, α1].

This case can only occur when (γ1, γ2) ∈ D−1 . Theorem 2 of [LS a] implies α2 ≤
α−π + γ1 and α1 ≥−α+π − γ2. If β ∈ (−α, α), then

Em f (β)=

ω(β − π

2 ) if β ∈ (θ0+π, α2),
ω(θ0+ π

2 ) if β ∈ [θ0, θ0+π ],
ω(β + π

2 ) if β ∈ (α1, θ0).

Theorem 3.2. Let� and γ be as in Section 1, with α ∈ [π2 , π]. For some ρ ∈ (0, 1)
and δ > 0, suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of
(3)–(4) with |H |∞<∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and (γ1, γ2)∈ D±1 ∪D±2 .
Then:

(i) In Case (I), α1 =−α+π − γ2 and α2 = α− γ1.

(ii) In Case (D), α1 =−α+ γ2 and α2 = α−π + γ1.

(iii) In Case (DI), α1 =−α+ γ2 and α2 = α− γ1.

(iv) In Case (ID), α1 =−α+π − γ2 and α2 = α−π + γ1.
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Proof. Suppose (γ1, γ2) ∈ D±2 ; the argument is the same when α < π/2 and when
α ≥ π/2. Let us assume (γ1, γ2) ∈ D+2 ; hence Case (I) holds. Then Figure 5
illustrates the conclusions of Theorem 2.1 of [L] and Theorem 2.4. Suppose there
exists α2 < α− γ1 (and α1 ≥−α+π − γ2) such that

R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1].

If we define

�′ = {(r cosβ, r sinβ) ∈� : 0< r < δ, α2 < β < π}

for δ > 0 sufficiently small, then f ∈ C0(�′) and we may apply the arguments in
the proof of Theorem 2.1, using �′ as our domain, to obtain a contradiction. If
α1 >−α+π − γ2, a similar argument yields a contradiction.

Now suppose (γ1, γ2) ∈ D+1 , Case (I) holds and there exist α2 < α − γ1 and
α1 ≥−α+π − γ2 such that

R f is


constant on [α2, α],
strictly increasing on [α1, α2] \I,
constant on [−α, α1].

Let θ1 ∈ (−α,−α1+π − γ2) and θ2 ∈ (α− γ1, α). By choosing δ0 > 0 small, we
may assume �∗ = {(r cos θ, r sin θ) : 0 < r < δ0, θ1 < θ < θ2} is a subset of �.
Set �′ = {(r cosβ, r sinβ) : 0< r < δ0, α2 < θ < θ2} and notice that f ∈ C0(�′).
Now Theorem 2.5, Lemma 3.1 and the fact that

lim
j→∞
En f (x j )= ω(β + π

2 )

when β ∈ (α1, α2) and (x j ) ∈ s(�) such that lim j→∞ x j/|x j | = (cosβ, sinβ)
implies that

5 f (�
∗)⊂ {ω(θ) : β ∈ [θ1, θ2], (β, θ) ∈ FC}

and Em f ( · ) ∈ C0((−α, α)). If Em f (α2) 6= ω(α − γ1 + π
2 ), then we may apply

the arguments in the proof of Theorem 2.1, using �′ as our domain, to get a
contradiction. If Em f (α2)= ω(α− γ1+ π

2 ), then Em f is discontinuous at α2, which
is a contradiction. Therefore α2 = α− γ1. The argument that α1 =−α+π − γ2 is
similar.

The proof of the theorem when (γ1, γ2) ∈ D+1 and one of Cases (D), (DI) or (ID)
occurs follows in a similar manner. The situation where (γ1, γ2)∈ D−1 follows from
this. �
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4. Continuity of the Gauss map

Notice that Lemma 3.1 and the proof of Theorem 3.2 imply that the (nonparametric)
Gauss map is continuous on S f ∩ (�ε ×R) for each ε > 0 and, in each case, we
have:

(I): limβ→α Em f (β)= ω(α2+π/2) and limβ→−α Em f (β)= ω(α1+π/2).
(D): limβ→α Em f (β)= ω(α2−π/2) and limβ→−α Em f (β)= ω(α1−π/2).

(DI): limβ→α Em f (β)= ω(α2+π/2) and limβ→−α Em f (β)= ω(α1−π/2).
(ID): limβ→α Em f (β)= ω(α2−π/2) and limβ→−α Em f (β)= ω(α1+π/2).

In order to conclude that the Gauss map is in C0(S f ∩(B(O, δ)×R) : S2−), it would be
sufficient to blow up the graph of u(x)= f (x)−R f (α) (or u(x)= f (x)−R f (−α))
about (0, 0, 0) tangent to ∂+� (or ∂−� respectively) and know that a subsequence
converges to an appropriate cone. If one is willing to accept this hypothesis, then
the claim that the Gauss map is in C0(S f ∩ (B(O, δ)×R) : S2−) can be proven.

Hypothesis (B±). For all (x j )∈ s(�) with lim j→∞ x j/|x j | = (cos(±α), sin(±α)),
there is a subsequence (x jk ) and a function u∞ : �∞→ [−∞,∞] such that the
subgraph U∞ = {(x, t) ∈ �∞ ×R : t < u∞(x)} of u∞ is a cone with respect to
(0, 0, 0), there exists Eξ ∈ S2− such that limk→∞ En(x jk )= Eξ = (ξ1, ξ2, ξ3),

lim
k→∞

dist
({(x, u jk (x)) ∈� jk (δ, b)}, ∂U∞ ∩� jk (δ, b)

)= 0

for each δ > 0 and b > 0, where ε j = |x j |, u j (x) = ( f (ε j x)− R f (±α))/ε j and
� j (δ, b)= {(x, t) ∈ R3 : x ∈ B(O, δ), ε j x ∈�, t ∈ (−b, b)} for j ∈ N, and

(a) if ξ3 < 0, then ∂U∞ = π1∩ (�∞×R), π1 is a nonvertical plane with downward
unit normal Eξ ∈ S2−, Eξ makes an angle of γ1 with the exterior unit normal to
∂+�∞ × R and an angle of γ2 with the exterior unit normal to ∂−�∞ × R and
Enu jk
→ Eξ uniformly on compacta in �×R as k→∞,

(b) if ξ3= 0, then ∂U∞= ∂P∩(�∞×R), P={(r cos θ, r sin θ) : r > 0, θ ∈2} and,
for each x ∈ ∂P∩�∞, Enu jk

(x)→ Eξ(x)×{0}, where P= {x ∈�∞ : u∞(x)=∞},
Eξ(x) is the interior (with respect to P) unit normal vector to ∂P at x and 2 is
one of the following sets: (α− γ1, α), (−α,−α+ γ2), (−α+π − γ2, α−π + γ1)

(provided (α − π + γ1)− (−α + π − γ2) ≥ π) or (−α,−α + γ2) ∪ (α − γ1, α)

(provided (α− γ1)− (−α+ γ2)≥ π ).

Theorem 4.1. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D±2 or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D±2 . Suppose that Hypotheses (B±) are
true. Then En f :S f × (�×R) extends to be continuous on S f ∩ (B(O, δ)×R)) and
N ∈ C0(E ∪ {(u, v) ∈ ∂E : G(u, v) ∈ ∂�∩ B(O, δ)}).
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The proof of this theorem will follow from the information at the beginning of this
section about the behavior of Em f and from Lemmas 4.2–4.5. Set

C(x)= {X ∈ S2
− : X · ν(x)= cos γ (x)},

01 = {X ∈ S2
− : X · (cos(α+ π

2 ), sin(α+ π
2 ), 0)= cos γ1},

02 = {X ∈ S2
− : X · (cos(−α− π

2 ), sin(−α− π
2 ), 0)= cos γ2},

EξA = ω(α− γ1+ π
2 ) ∈ 01, EξB = ω(α+ γ1− 3π

2 ) ∈ 01,

EξC = ω(−α− γ2+ 3π
2 ) ∈ 02, EξD = ω(−α+ γ2− π

2 ) ∈ 02,

�∞ = {(r cos(θ), r sin(θ)) : r > 0,−α < θ < α},
61
∞ = {(r cos(α), r sin(α)) : r > 0}, 62

∞ = {(r cos(α), −r sin(α)) : r > 0},
ν+∞ = (cos(α+ π

2 ), sin(α+ π
2 ), 0) and ν−∞ = (cos(−α− π

2 ), sin(−α− π
2 ), 0).

Lemma 4.2. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D+2 , so that R f behaves as in Case (I), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D+2
and R f behaves as in Case (I) or Case (DI). Assume Hypothesis (B+) is true. Then

(16) lim
j→∞
En(x j )= (cos(α− γ1+π/2), sin(α− γ1+π/2), 0)= EξA

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cosα, sinα).

Proof. Since γ (x)→ γ1 and ν(x)→ ν+∞ as x ∈ ∂+� converges to O, we see that
dist(C(x), 01)→ 0 as x ∈ ∂+� converges to O. Similarly, γ (x)→ γ2, ν(x)→ ν−∞
and dist(C(x), 02)→ 0 as x ∈ ∂−� converges to O. Thus

(17) dist(En(x+(s)), 01)→ 0 and dist(En(x−(s)), 02)→ 0

as s→ 0+.
Suppose that (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cosα, sinα); then there is

a subsequence, still denoted (x j ), and Eξ ∈ S2− such that lim j→∞ En(x j , y j )→ Eξ .
Notice that Eξ ∈ 01 since f ∈ C1,ρ(B(O, δ)∩� \ {O}) and (17) holds.

Assume first that Eξ = (ξ1, ξ2, ξ3) with ξ3 < 0. For each j ∈ N, define ε j = |x j |,
� j = {x ∈ R2 : ε j x ∈�} and u j ∈ C∞(� j )∩C1(� j \ {O}) by

(18) u j (x)= 1
ε j
( f (ε j x)− R f (α)).
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Let γ j be defined on ∂� j\{O} by γ j (x) = γ (ε j x) and let ν j denote the outward
unit normal to ∂� j . Then u j satisfies the prescribed mean curvature problem

Nu j (x)= ε j H(ε j x, f (ε j x)), x ∈� j ,(19)

T f j · ν j = cos γ j on ∂� j\{O}.(20)

Hypothesis (B+) implies that there is a nonvertical plane π1 with downward unit
normal Eξ which meets ∂+�∞ in an angle of γ1 and ∂−�∞ in an angle of γ2 in the
sense described in (a); however this is impossible since (γ1, γ2) ∈ D±1 ∪ D±2 . Thus
ξ3 = 0 and so either Eξ = EξA or Eξ = EξB . The intermediate value theorem implies that

if Eξ = EξA, then En(x)→ EξA as x ∈ ∂+� converges to O,(21)

if Eξ = EξB, then En(x)→ EξB as x ∈ ∂+� converges to O.(22)

Suppose (22) holds. Notice then that

(23) lim
s→0+

d
ds

f +(s)=−∞,

since (cosα, sinα, 0) · EξB =− sin(γ1) < 0, and so f +(s)= f (x+(s)) is a strictly
decreasing function of s for 0 ≤ s ≤ s0, where s0 > 0 is sufficiently small. Since
Em f (β)= ω(α− γ1+ π

2 ) when β ∈ [α− γ1, α), we have

(24) lim
r→0+

∇ f (r cosβ, r sinβ) · (cosβ, sinβ)=+∞ for β ∈ (α− γ1, α).

Since R f behaves as in Case (I) or (DI), we have

(25) R f (β) < R f (α)= f +(0) if β ∈ [α−π, α− γ1).

Let �H be the connected component of

{(r cosβ, r sinβ) ∈� : r > 0, α−π < β < 5π/4}
that contains {(r cosβ, r sinβ) : 0 < r < δ, α − γ1 < β < α − ε} for sufficiently
small ε, δ > 0. Consider the k = f +(0) (= R f (α)) level set of f in �H . From
(23), we see that there is a component C of {x ∈�H : f (x) < k} whose boundary
contains ∂+�∩ B(O, τ ) for τ > 0 sufficiently small; let cα be the component of
�H ∩∂C whose closure contains O. Then (23) and (24) imply that for every β1 <α

and β2 > α, there exists ε > 0 such that

cα ∩ B(O, ε)⊂ {(r cos θ, r sin θ) : 0< r < ε, β1 < θ < β2};
in this sense, cα is tangent to θ = α at O. Similarly, using (24) and (25), we see that
there is a k-level curve of f , denoted cα−γ1 , which is tangent to θ = α− γ1 at O in
the sense that for every β1 < α− γ1 and β2 > α− γ1, there exists ε > 0 such that

cα−γ1 ∩ B(O, ε)⊂ {(r cos θ, r sin θ) : 0< r < ε, β1 < θ < β2}.
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Now pick τ > 0 small enough that the region bounded by cα, cα−γ1 and {r = τ }
is well-defined, connected and simply connected; let us rotate this region about O

through an angle (π + γ1)/2− α and denote this open set as �τ , so that ∂�τ is
tangent to θ = (π±γ1)/2 at O. Notice that f̃ = f ◦ R−1 ∈C0(�τ ) if R denotes the
rotation above. We will let a particular portion of a suitable nodoid be the graph of
a comparison function h over a domain U τ ⊂�τ with B(O, ε)∩U τ = B(O, ε)∩�τ
for some ε > 0. Now ∂U τ will be consist of two disjoint, connected curves,
∂1U τ ⊂ ∂�τ \ {r = τ } and ∂2U τ , with O ∈ ∂1U τ and O /∈ ∂2U τ . The comparison
function h∈C0(U τ )∩C1(U τ∪∂1U τ )will have the properties h(O)=k, ∂h

∂x2
(O)<∞,

h ≥ k = f̃ on ∂1U τ , Nh ≤ infx∈� N f (x) on U τ and ∂h
∂η
=∇ f · η =+∞ on ∂2U τ ,

where η is the exterior unit normal to ∂2U τ . The comparison principle then implies
f̃ ≤ h on U τ . This yields a contradiction of (22) since (24) implies

lim
x2↓0

∂ f̃
∂x2

(0, x2)=+∞,

and the facts that f̃ (O)= h(O), ∂h
∂x2

(O) <∞ and f̃ ≤ h imply

lim inf
x2↓0

∂ f̃
∂x2

(0, x2) <∞.

This implies (21) holds and completes the proof of Lemma 4.2 except for the
construction of the comparison function h.

Let C be a nodary in {x ∈ R2 : x2 > 0} which, when rotated about the x1-axis,
generates a nodoid in R3 with constant mean curvature HD = |H |∞, which we
assume is positive; if not, set HD = 1. (See, for example, [Eells 1987; Mladenov
2002; Rossman 2005] for discussions of Delaunay surfaces and nodoids.) Let
the minimal and maximal radii of the nodary be r0 and R0 respectively, so that
r0 ≤ x2 ≤ R0 whenever (x1, x2) ∈C; we will assume (0, r0) ∈C. Now let D⊂C be
the particular open inner loop of the nodary which contains (0, r0) (i.e., (0, r0) ∈D

and D does not contain endpoints); notice that the unit normal to the nodary at the
endpoints of D are parallel to the axis of rotation of the nodoid and the surface

SD = {(x1, x2 cos θ, x2 sin θ) : (x1, x2) ∈ D,−π ≤ θ ≤ 0}
obtained by partially rotating D about the x1-axis has constant mean curvature−HD

with respect to its upward unit normal.
Now fix t , 0< t < r0, large enough that 81 = {(x1, x2+ t) : x ∈ ∂�τ ∩ R(cα)}

and 82 = {(x1, x2+ t) : x ∈ ∂�τ ∩ R(cα−γ1)} both intersect D. Let 6 denote the
component of81∪82\D that contains (0, t) and let W be the region bounded by6
and D. Set W τ = {(x1, x2) : (x1, x2+ t) ∈W }, ∂1W τ = {(x1, x2) : (x1, x2+ t) ∈6}
and ∂2W τ = ∂W τ \ ∂1W τ . Notice that ∂2W τ ⊂ {(x1, x2) : (x1, x2+ t) ∈ D}. Now
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define h ∈ C0(W τ )∩C1(W τ ∪ ∂1W τ ) by

h(x1, x2)= w(x1, x2+ t)−w(0, t)+ k

for x ∈W τ , where w :D→ R such that SD is the graph of w. It follows that h has
the properties mentioned previously. �

In a similar manner, we can prove each of the following lemmas.

Lemma 4.3. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D−2 , so that R f behaves as in Case (D), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D−2
and R f behaves as in Case (D) or Case (ID). Assume Hypothesis (B+) is true. Then

(26) lim
j→∞
En(x j )= (cos(α+ γ1− 3π/2), sin(α+ γ1− 3π/2), 0)

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cosα, sinα).

Lemma 4.4. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D+2 , so that R f behaves as in Case (I), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D+2
and R f behaves as in Case (I) or Case (ID). Assume Hypothesis (B-) is true. Then

(27) lim
j→∞
En(x j )= (cos(−α− γ1+ 3π/2), sin(−α− γ1+ 3π/2), 0)

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cos(−α), sin(−α)).
Lemma 4.5. Let � and γ be as in Section 1. For some ρ ∈ (0, 1) and δ > 0,
suppose f ∈ C2(�)∩C1,ρ(B(O, δ)∩� \ {O}) is a bounded solution of (3)–(4) with
|H |∞ <∞. Suppose (5) holds, γ1, γ2 ∈ (0, π) and either α < π/2 and (γ1, γ2) is
in D−2 , so that R f behaves as in Case (D), or α ≥ π/2 and (γ1, γ2) is in D±1 ∪ D−2
and R f behaves as in Case (D) or Case (DI). Assume Hypothesis (B-) is true. Then

(28) lim
j→∞
En(x j )= (cos(−α+ γ1−π/2), sin(−α+ γ1−π/2), 0)

for every (x j ) ∈ s(�) with lim j→∞ x j/|x j | = (cos(−α), sin(−α)).
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GENERALIZED NORMAL RULINGS AND INVARIANTS OF
LEGENDRIAN SOLID TORUS LINKS

MIKHAIL LAVROV AND DAN RUTHERFORD

For Legendrian links in the 1-jet space of S1 we show that the 1-graded
ruling polynomial may be recovered from the Kauffman skein module. For
such links a generalization of the notion of normal ruling is introduced.
We show that the existence of such a generalized normal ruling is equiva-
lent to sharpness of the Kauffman polynomial estimate for the Thurston–
Bennequin number as well as to the existence of an ungraded augmentation
of the Chekanov–Eliashberg DGA. Parallel results involving the HOMFLY-
PT polynomial and 2-graded generalized normal rulings are established.

1. Introduction

In R3 interesting connections exist between the 2-variable knot polynomials and
invariants of Legendrian knots. With respect to the standard contact structure on
R3, Fuchs and Tabachnikov [1997] showed that an upper bound for the Thurston–
Bennequin number arises from the Kauffman and HOMFLY-PT knot polynomials.
Furthermore, when this estimate is sharp some nonclassical invariants exhibit nice
properties. Specifically, combining results from [Fuchs 2003; Fuchs and Ishkhanov
2004; Sabloff 2005; Rutherford 2006] we have:

Theorem 1.1. For a Legendrian link L ⊂R3 the following three statements are all
equivalent:

(1) The estimate tb(L) ≤ −dega FL (respectively tb(L) ≤ −dega PL ) is sharp,
where FL , PL ∈ Z[a±1, z±1

] denote the Kauffman and HOMFLY-PT polynomials.

(2) A front diagram for L has a 1-graded (respectively 2-graded) normal ruling.

(3) The Chekanov–Eliashberg DGA of L has a 1-graded (respectively 2-graded)
augmentation.

In this article, we establish analogous results for Legendrian knots in the 1-jet
space of the circle, J 1S1. The manifold J 1S1 is topologically an open solid torus
and carries a standard contact structure. Legendrian knots in J 1S1 have attracted

Lavrov received support from NSF CAREER grant number DMS-0846346.
MSC2010: 57M27, 57R17.
Keywords: Legendrian knot, Kauffman polynomial, skein module, normal ruling.
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a fair amount of attention in the literature; see [Ding and Geiges 2010; Ng and
Traynor 2004; Traynor 1997]. The 1-jet space setting comes with convenient pro-
jections from which Legendrian knots may be presented via front or Lagrangian
diagrams and Legendrian isotopy may be described in a combinatorial manner.
1-jet spaces also provide a natural setting for the use of generating families.

A convenient formal way to define a normal ruling, ρ, of L is as a family of
fixed-point-free involutions of the strands of the front diagram of L subject to
many restrictions. At least locally, this may be viewed as a decomposition of the
front diagram into pairs of paths. Chekanov and Pushkar [2005] introduced normal
rulings — albeit with different terminology — as well as related Legendrian isotopy
invariants which have become known as ruling polynomials. In connection with
augmentations, Fuchs independently defined normal rulings of knots in R3 and, in
the case of the Kauffman polynomial, already conjectured the equivalence of (1)
and (2) in [Fuchs 2003]. This conjecture was verified in [Rutherford 2006], where
it was shown that in fact the 1-graded and 2-graded ruling polynomials appear as
coefficients of the Kauffman and HOMFLY-PT polynomials respectively.

Relationships between the Kauffman/HOMFLY-PT invariants and Legendrians
knots in J 1S1 have already begun to be studied, and several factors make the situ-
ation more interesting. For instance, the HOMFLY-PT polynomial, PL , of a solid
torus link, L , belongs to a polynomial algebra over R = Z[a±1, z±1

] with a count-
ably infinite number of generators Ak, k ∈ Z\ {0}; the Kauffman polynomial has a
similar form. Chmutov and Goryunov [1997] proved Thurston–Bennequin number
estimates analogous to those appearing in (1) of Theorem 1.1 using these many
variable Kauffman and HOMFLY-PT polynomials. In the case of the HOMFLY-PT
polynomial, it was shown in [Rutherford 2011] that the 2-graded ruling polynomial
can be recovered from the HOMFLY-PT polynomial, but this requires first special-
izing via an R-module homomorphism R[A±1, A±2, . . .] → R. In the present
work we develop analogous results involving the 1-graded ruling polynomial and
the Kauffman skein module. (See Theorems 3.4 and 3.6.)

The need to specialize the Kauffman and HOMFLY-PT invariants in order to re-
cover the ruling polynomials has an interesting consequence. There are many solid
torus links where the Kauffman or HOMFLY-PT polynomial estimate is sharp, yet
the corresponding ruling polynomial vanishes. As a result, for Legendrians in J 1S1

some adjustment is required to statement (2) of Theorem 1.1. For this purpose, we
introduce a quite natural notion of generalized normal ruling where the fixed-point-
free condition is relaxed. Our main result is the following analog of Theorem 1.1:

Theorem 1.2. Let L ⊂ J 1S1 be a Legendrian link.

(1) The estimate tb(L)≤−dega FL (respectively tb(L)≤−dega PL ) is sharp if and
only if L has a 1-graded (respectively 2-graded) generalized normal ruling.
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(2) Suppose L has been assigned a Z/p-valued Maslov potential. The Chekanov–
Eliashberg DGA of L has a p-graded augmentation if and only if a front diagram
for L admits a p-graded generalized normal ruling.

Remark 1.3. (i) Aside from allowing the more general p-graded condition in (2),
it is natural to organize the three statements into these two equivalences. Even in
R3, the authors do not know of any proof of an implication between the statements
about the knot polynomial estimates and existence of augmentations which is able
to avoid using normal rulings. There are settings, for instance certain contact
lens spaces, where Legendrian contact homology [Licata 2011] and HOMFLY-
PT polynomial estimates [Cornwell 2012a; 2012b] for tb have been established
while an appropriate notion of normal ruling has yet to be formulated. For this
reason, establishing a more direct link between Bennequin type inequalities and
augmentations could prove interesting.

(ii) For Legendrians in R3, there is another interesting condition connected with
the equivalent statements in Theorem 1.1. Specifically, the existence of a 0-graded
normal ruling is equivalent to the existence of a linear at infinity generating family
for L; see [Chekanov and Pushkar 2005; Fuchs and Rutherford 2011]. This state-
ment remains true in J 1S1. However, it is interesting to ask if links with 0-graded
generalized normal rulings always admit reasonable (say, linear or quadratic at
infinity) generating families. To allow for fixed point strands, it seems necessary
to consider generating families F : E→R defined on bundles E→ S1 whose fiber
has nontrivial homology. As an example, the basic front Am defined in Section 2A
may be generated by a function on an m-fold cover of S1.

Organization. The article is arranged as follows: In Section 2, we provide the
necessary background about normal rulings and the Kauffman and HOMFLY-PT
invariants and also introduce generalized normal rulings.

Section 3 runs parallel to the results on the HOMFLY-PT skein module and
2-graded rulings from [Rutherford 2011]. We show how to recover the 1-graded
ruling polynomial from an appropriate specialization of the Kauffman skein mod-
ule. A natural basis for the Kauffman skein module is indexed by partitions, and
for this basis we provide an explicit formula for the specialization.

In Section 4 we prove part (1) of Theorem 1.2 by combining the results of
Section 3 (and of [Rutherford 2011] for the HOMFLY-PT case) with a linear inde-
pendence argument.

Section 5 deals with part (2) of Theorem 1.2. For the forward implication we
base all of our arguments on linear algebraic results from [Barannikov 1994], from
which the reason behind the normality conditions, with or without fixed points,
becomes clear.
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2. Background on Legendrian solid torus links

We assume familiarity with basic concepts about Legendrian knots such as front
projections, Legendrian Reidemeister moves, Thurston–Bennequin number, and
rotation number, at least for knots in R3. See, for instance, [Geiges 2008], and
also note that [Rutherford 2011] contains an alternate discussion of the case of
Legendrian knots in J 1S1.

We view the 1-jet space of the circle, J 1S1, as S1
×R2 equipped with the contact

structure ξ = ker(dz − y dx), where x is a circle-valued coordinate. We occa-
sionally refer to a (Legendrian) link L ⊂ J 1S1 as a (Legendrian) solid torus link.
The front projection of a Legendrian solid torus link consists of some number of
closed curves in the xz-annulus which we view as [0, 1]×R with the identification
(0, z)∼ (1, z). Generically, front projections are immersed and embedded except at
semicubical cusps and transverse double points, and two such projections represent
Legendrian isotopic links if and only if they are related by a sequence of Legendrian
Reidemeister moves.

We make the convention of extending the Thurston–Bennequin number to ho-
mologically nontrivial links by using the front projection formula

tb(L)= w(L)− c(L),

where w(L) denotes the writhe of L (a signed sum of crossings) and c(L) is half
the number of cusps of L .

Similarly, for a Legendrian knot L ⊂ J 1S1 we define the rotation number as

r(L)= 1
2(d(L)− u(L)),

where d(L) denotes the number of downward oriented cusps and u(L) the number
of upward oriented cusps.

2A. Products of basic fronts. Given two annular front diagrams, K and L , we
define the product, K ·L , by stacking K above L . In contrast to the case of smooth
knot diagrams, this product is noncommutative as the Legendrian isotopy types of
K · L and L · K will not agree in general; see [Traynor 1997; Rutherford 2011].

In this article the basic fronts, Am , will play an important role. Given m ∈ Z>0,
Am is the front diagram that winds m times around the annulus with m−1 crossings
and no cusps; see Figure 1. When it is necessary to pay attention to orientations,
for m > 0, we will use Am (respectively A−m) for the basic front oriented in the
direction of the positive (respectively negative) x-axis.

If λ=(λ1, . . . , λ`) is an `-tuple of positive integers we write Aλ= Aλ1 Aλ2 · · · Aλ`
for the product of basic fronts and A−λ for the product with all orientations re-
versed.
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Figure 1. The basic front A5.

2B. Kauffman polynomial in J1 S1. We now describe a generalization from [Tu-
raev 1988] of the Kauffman polynomial to smooth links (not necessarily Legen-
drian) in the solid torus. In practice, this invariant is computed by reducing a link
diagram to products of basic fronts via skein relations. Whenever appropriate, we
will view a front diagram of a Legendrian link as a smooth link diagram by placing
the strand with lesser slope on top at crossings and smoothing cusps.

Let D denote the set of regular isotopy classes of unoriented link diagrams
in the annulus. That is, we consider link diagrams up to the equivalence gen-
erated by Type II and Type III Reidemeister moves. Using the coefficient ring
R = Z[a±1, z±1

] we define the Kauffman skein module F as the quotient of the
free R-module RD by the submodule generated by the Kauffman skein relations

− = z

(
−

)
,(2-1)

= a ( ) , = a−1 ( ) and(2-2)

⊔
L =

(a−a−1

z
+ 1

)
· L .(2-3)

The product of diagrams gives a well defined product on F which is commu-
tative as we now consider diagrams of smooth links rather than front diagrams
of Legendrian links. Turaev [1988] showed that F is a polynomial R-algebra
in the basic fronts. Thus, to a link diagram L we may associate a polynomial
DL(a, z; A1, A2, . . .) according to

F∼= R[A1, A2, . . .], [L] ↔ DL .

The Kauffman polynomial of an oriented link L ⊂ J 1S1 is then defined by the
normalization FL = a−w(L)DL , where w(L) denotes the writhe of L .

Chmutov and Goryunov [1997] proved that for any Legendrian link L ⊂ J 1S1,

(2-4) tb(L)≤−dega FL .
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While Chmutov and Goryunov [1997] use a different projection annulus for com-
puting FL , a proof of (2-4) matching our conventions for FL may be given precisely
as in the case of the HOMFLY-PT polynomial addressed in Section 6.2 of [Ruther-
ford 2011].

Remark 2.1. (i) Recall that a possibly empty sequence λ= (λ1, . . . , λ`) of positive
integers is called a partition if λ1 ≥ . . . ≥ λ`. The integers λi are called the parts
of λ and we sometimes use the notation λ = 1 j12 j2 . . . n jn to indicate that λ is the
partition with jr parts equal to r , r = 1, . . . , n. We note that the collection of
products Aλ with λ a partition forms an R-module basis for F.

(ii) The HOMFLY-PT skein module is defined in a similar manner using oriented
link diagrams and an appropriate modification of the skein relations (2-1)–(2-3)
(see, for instance [Rutherford 2011]). The result is a polynomial algebra generated
by the oriented basic fronts [Turaev 1988]. For a given oriented link L ⊂ J 1S1 we
denote the corresponding HOMFLY-PT polynomial as

PL ∈ R[A±1, A±2, . . .].

2C. Normal rulings in J1 S1. Let L ⊂ S1
×R be the front projection of a Legen-

drian link in the solid torus satisfying the additional assumption that all crossings
and cusps have distinct x-coordinates none of which equals 0. A normal ruling
can be viewed locally as a decomposition of L into pairs of paths. We make some
notational preparation before giving the formal definition.

Denote by 6 ⊂ S1 those x-coordinates which coincide with a crossing or cusp
of L . We can write

S1
\6 =

M⊔
m=1

Im

with each Im an open interval (or all of S1 if 6 = ∅). Making the convention
that I0 = IM , we assume that the Im are ordered so that Im−1 appears immediately
to the left of Im and IM contains x = 0. On subsets of the form Im × R the
front projection L consists of some number of nonintersecting components which
project homeomorphically onto Im . We refer to these components as the strands
of L above Im , and we number them from top to bottom as 1, . . . , N (m). Finally,
for each m = 1, . . . ,M we choose a point xm ∈ Im .

Definition 2.2. A normal ruling of the front diagram L is a sequence of involutions
ρ = (ρ1, . . . , ρM),

ρm : {1, . . . , N (m)} → {1, . . . , N (m)}, (ρm)
2
= id,

satisfying the following restrictions:

(1) Each ρm is fixed-point-free.
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(2) If the strands above Im labeled k and k + 1 meet at a left cusp in the interval
(xm−1, xm), then ρm(k)= k+ 1 and when n /∈ {k, k+ 1},

ρm(n)=
{
ρm−1(n) if n < k,
ρm−1(n− 2) if n > k+ 1.

(3) A condition symmetric to (2) at right cusps.

(4) If strands above Im labeled k and k + 1 meet at a crossing on the interval
(xm−1, xm), then ρm−1(k) 6= k+ 1 and either

(a) ρm = (k k+1)◦ρm−1◦(k k+1), where (k k+1) denotes the transposition, or

(b) ρm = ρm−1.

In the second case we refer to the crossing as a switch of ρ. Finally, we have a
requirement at switches that is known as the normality condition.

(5) If there is a switch on the interval (xm−1, xm) then one of the following three
orderings holds:

ρm(k+ 1) < ρm(k) < k < k+ 1,

ρm(k) < k < k+ 1< ρm(k+ 1),

k < k+ 1< ρm(k+ 1) < ρm(k).

Remark 2.3. This definition is a slight variation on those found elsewhere in the
literature. Letting π : S1

×R→ S1 denote the projection, Chekanov and Pushkar
defined a normal ruling as a continuous, fixed-point-free involution of L \π−1(6)

that preserves the x-coordinate and is subject to some requirements for continuous
extension near crossings or cusps as well as a normality condition at switches. Such
an involution is recovered from our definition by viewing the set {1, 2, . . . , N (m)}
that ρm permutes as the set of strands above Im .

From this perspective, the fixed-point-free condition causes the ρm to divide the
strands above Im into pairs, and in our figures we will present normal rulings by
indicating this pairing. Beginning at x = 0 and working to the right, one may cover
the front diagram with pairs of continuous paths with monotonically increasing
x-coordinates, so that a given pair of paths corresponds to strands paired by the
involutions. If a path proceeds all the way around the annulus, then it will not
necessarily end up where it started. However, the division of the front diagram
into pairs of points at x = 0 and x = 1 should match up.

Paired paths are only allowed to meet at common cusp endpoints. In particular,
at any crossing the two paths of the ruling that meet should belong to different pairs
and, for values of x near the crossing, each will have a “companion path” located
somewhere above or below the crossing. The two paths can either follow the link
diagram and cross each other (this corresponds to (4) (a) above) or they may switch
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Figure 2. The normality condition.

strands by each turning a corner at the crossing. The normality condition provides a
restriction on the location of the companion paths near a switch; out of six possible
configurations for the switching strands and their companion strands only three are
allowed. See Figure 2 for the normality condition and the right half of Figure 4 for
an example of a normal ruling.

2D. Maslov potentials and graded normal rulings. Further grading restrictions
may be placed on a normal ruling after the introduction of a Maslov potential for
L . Let p be a divisor of 2r(L i ) for each component L i of a Legendrian link L . A
Z/p-valued Maslov potential µ for L is a function from L to Z/p that is constant
except at cusp points, where it increases by 1 when moving from the lower strand
to the upper strand. Note that a chosen orientation provides L with a Z/2-valued
Maslov potential by following the convention that strands oriented to the right
(respectively left) are assigned the value 0 (respectively 1) mod 2.

We say that a normal ruling ρ is p-graded with respect to a Z/p-valued Maslov
potential µ if whenever two strands S1 and S2 of L are paired by one of the ρm

with S1 above S2 we have µ(S1)= µ(S2)+ 1.

2E. Ruling polynomials. Suppose µ is a Z/p-valued Maslov potential for a Leg-
endrian link L . The p-graded ruling polynomial of L with respect to µ is

R p
(L ,µ)(z)=

∑
ρ

z j (ρ),

where the sum is over all normal rulings of L that are p-graded with respect to µ
and

j (ρ)= # switches− # right cusps.

The ruling polynomial does not depend on the choice of Maslov potential when
p = 1; p = 2 and L is oriented; or L is connected. In any of these cases we
denote the ruling polynomial simply as R p

L . The ruling polynomials are Legendrian
isotopy invariants [Chekanov and Pushkar 2005].

2F. Generalized normal rulings. In the following definition we relax the require-
ments from Definition 2.2 in a manner appropriate for Theorem 1.2 to hold.

Definition 2.4. A generalized normal ruling consists of a sequence of involutions
ρ = (ρ1, . . . , ρM) as in Definition 2.2 subject to the following modifications:
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(1) We remove the requirement that the ρm be fixed-point-free.

(2) If a crossing occurs in the interval (xm−1, xm) between the k and k+ 1 strands
above Im−1 with exactly one of these two strands a fixed point of ρm , then we decide
if the crossing is a switch precisely as in (4) of Definition 2.2. If the crossing is
indeed a switch then we require the additional normality condition that either

ρm(k)= k < k+ 1< ρm(k+ 1) or ρm(k) < k < k+ 1= ρm(k+ 1).

(See Figure 3.)

Figure 3. The normality condition for generalized rulings: The
strand pictured in bold is a fixed point of ρm .

Remark 2.5. (i) If a crossing involving the k and k+1 strands occurs on (xm−1, xm)

with both of the crossing strands fixed by the ruling, that is, ρm−1(k) = k and
ρm−1(k + 1)= k + 1, then ρm−1 = (k k+ 1) ◦ ρm−1 ◦ (k k+ 1). Consequently, we
will not consider such crossings to be switches.

(ii) In the presence of an appropriate Maslov potential, we can consider p-graded
generalized normal rulings precisely as in Section 2D.

(iii) The number of generalized normal rulings of a Legendrian link is not invariant
under Legendrian isotopy. However, in view of Lemma 2.6 below, the polynomials
R p

L·Aλ serve as some form of substitute for a “generalized ruling polynomial”.

For establishing (1) of Theorem 1.2 we will use the following equivalent char-
acterization of front diagrams that admit generalized rulings.

Lemma 2.6. A front diagram L has a 1-graded (respectively 2-graded) general-
ized normal ruling if and only if there exists partitions λ and µ so that R1

L·Aλ(z) 6= 0
(respectively R2

L·AλA−µ(z) 6= 0).

Proof. For simplicity, we treat the 1-graded case first. If R1
L·Aλ(z) 6= 0, then the

diagram L · Aλ has a normal ruling, ρ. This produces a generalized normal ruling
of L by restricting ρ to L and treating any strands of L which are paired with Aλ
as fixed point strands. The normality condition from Definition 2.4 follows from
that of Definition 2.2.

Now suppose that L has a generalized normal ruling. If one of the ρm has a
fixed point strand, then we can continuously follow the fixed point strand around
the diagram turning corners only at switches. The result is a portion of the front
diagram, Ci , without cusps that we suppose winds λi times around the annulus.
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There may be several fixed point components of this type. We may assume the λi

are ordered so that they form a partition, λ. The product L · Aλ has a normal ruling
where each Ci is paired with the component Aλi of λ. Such a ruling is completely
determined once we specify the pairing between Ci and Aλi at a single point of Ci .
Now, the normality condition of Definition 2.2 follows from that of Definition 2.4,
and the ordering of the factors of Aλ is not important here since we do not have
switches between any of the Ci ; see Remark 2.5 and Figure 4.

→

Figure 4. A generalized ruling with three fixed point strands pro-
ducing a normal ruling of L · Aλ with λ= (2, 1).

For the 2-graded case, observe that in a 2-graded ruling the orientation of strands
meeting at a switch must agree. Therefore, the Ci each have a consistent orienta-
tion, and we choose an orientation on the component Aλi accordingly. �

3. Kauffman polynomial and computation of 1-graded ruling polynomials

An analysis of how to compute 2-graded ruling polynomials of Legendrian solid
torus links from the HOMFLY-PT polynomial is done in [Rutherford 2011]. In this
section, we will perform a similar analysis of the 1-graded case. We will derive
formulas for the 1-graded ruling polynomial of Aλ, and then relate the general case
to a coefficient of an appropriate specialization of the Kauffman polynomial.

3A. Normal rulings of the product Aλ. Given a front diagram L with normal
ruling ρ we define the decomposition of L with respect to ρ as the Legendrian link
Lρ obtained by resolving the switches of L into parallel horizontal strands as

→ .

The involutions of the strands of L piece together to provide an involution, which
we also denote as ρ, now defined on all of Lρ . The involution ρ is continuous
where we now view Lρ as a subset of J 1S1 rather than just a front diagram, and its
only fixed points correspond to the cusps of the front projection of Lρ . (Compare
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with Remark 2.3.) The normal ruling of L induces a normal ruling of Lρ where
none of the crossings are switches.

We record some observations about normal rulings of the products Aλ.

Lemma 3.1. Suppose ρ is a normal ruling of L = Aλ.

(1) The decomposition, Lρ , is also a product of basic fronts.

(2) The involution ρ must take a component of Lρ isotopic to Am to another com-
ponent isotopic to Am .

(3) If components C1 and C2 of Lρ share a common switch of L , with C1 above C2

on the z-axis, then the vertical ordering of the four components C1, C2, ρ(C1), and
ρ(C2) must be one of

[ρ(C2), . . . , ρ(C1), . . . ,C1,C2],

[ρ(C1), . . . ,C1,C2, . . . , ρ(C2)],

[C1,C2, . . . , ρ(C2), . . . , ρ(C1)].

(4) The restriction of ρ to a pair of components of Lρ , C1 and C2 = ρ(C1), is
completely determined by its value at a single point, w∈C1. Moreover, if C1∼= Am

then there are precisely m choices for ρ(w) ∈ C2, and any one of them extends
continuously to all of C1.

(5) Two components of Lρ of the form C1 and ρ(C1) cannot correspond to subsets
of the same component of L.

Proof. Item (1) is clear; (2) follows from continuity of ρ; and (3) is a consequence
of the normality condition. The first assertion of (4) follows from continuity of ρ.
The second follows since ρ(w) and w must have the same x-coordinate and C2

also consists of m strands. That any such choice of ρ(w) extends to all of C1 is
easily seen.

We prove (5) by contradiction. Suppose C1 and ρ(C1) did come from the same
component of L , and without loss of generality assume ρ(C1) is below C1. They
cannot meet at a switch as this would violate the normality condition. Thus, there
is some other component C2 on the other end of the switch below C1. The only
possible position of ρ(C2) is then between C2 and ρ(C1). Then C2 and ρ(C2) also
came from the same component of L . They cannot meet at a switch, so there is
some further component C3 immediately below C2, which is paired with a com-
ponent ρ(C3) between C3 and ρ(C2). We can continue this argument to produce
arbitrarily many components of Lρ between C1 and ρ(C1). �

3B. Computing R1
Am Am

. The results in the previous section are sufficient to com-
pute the ruling polynomial for the simplest possible product, Am Am (the ruling
polynomial of a single basic front Am is 0 by (5) of Lemma 3.1). Although this
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agrees with R2
Am A−m

which is computed in Lemma 4.1 of [Rutherford 2011], the
form of the answer given here is simplified and the proof is quite different.

Lemma 3.2. The ruling polynomial of L = Am Am is

m−1∑
k=0

(
m+ k
2k+ 1

)
z2k .

Proof. Normal rulings of Am Am with 2k switches are in bijection with subdivisions
of m ordered objects into k+ 1 consecutive parts, with a marked object chosen in
each part.

The subdivision corresponds to choosing the location of k switches within the
first Am factor. Specifically, dividing m into parts (λ1, . . . , λk+1) corresponds to
choosing k switches so that in the decomposition, Lρ , the first Am factor becomes
Aλ1 . . . Aλk+1 . In Lρ , the Aλi must be paired with k+1 components of the same size
from the second Am factor, by parts (2) and (5) of Lemma 3.1. Then, Lemma 3.1(3)
determines the order of the components: they must be in the reverse order of the
components from the first factor. The total number of switches is 2k.

The choice of marked object within a part λi corresponds to choosing which
strand within the Aλi component is paired with the top strand of ρ(Aλi ) at x = 0.
These choices may be arbitrary, and they uniquely determine a ruling by part (4)
of Lemma 3.1. See Figure 5.

Figure 5. The bijection between rulings of A5 A5 with 2 switches,
divisions of 5 objects into 2 parts with a marked object in each part,
and compositions of 7 into 4 positive parts.

To complete the proof, observe that subdivisions of this type are in bijection with
compositions of m + (k + 1) into 2(k + 1) positive parts (a1, b1, . . . , ak+1, bk+1):
two consecutive parts of size ai and bi correspond to a part λi = ai + bi − 1 with
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the ai -th object marked in a subdivision of m. The number of ways to decompose
m+ k+ 1 objects into 2(k+ 1) parts of positive size is well-known to be(

(m+ k+ 1)− 1
2(k+ 1)− 1

)
=

(
m+ k
2k+ 1

)
.

This gives us the sum for the ruling polynomial. �

This formula will be used in the next section, so we will write 〈m〉 for the ruling
polynomial RAm Am (z), following the convention in [Rutherford 2011].

3C. A formula for arbitrary products of basic fronts. We will use the formula
for 〈m〉 to calculate the ruling polynomial of Aλ for an arbitrary λ.

Given a normal ruling ρ of L = Aλ, define the block Bi j to consist of those
components of the decomposition Lρ which originated in the i-th component of
L , and are paired by ρ with components that originated in the j-th component
of L . The size of the block, bi j , is the number of points in Bi j with some fixed
x-coordinate, away from crossings.

Lemma 3.3. Given a normal ruling of

L = Aλ = Aλ1 Aλ2 . . . Aλn ,

the blocks in the i-th component of L consist of vertically consecutive components
of Lρ , and are themselves vertically ordered as

Bi,i−1 Bi,i−2 . . . Bi,1 Bi,n Bi,n−1 . . . Bi,i+1,

where some blocks may be empty.

Proof. Suppose that when we resolve Aλi at switches, we get the components
C1,C2, . . . ,Ck , in that vertical order. If, for some j , ρ(C j ) is above C j , then the
normality condition demands that ρ(C j−1) is between ρ(C j ) and C j−1. Similarly,
if ρ(C j ) is below C j , then ρ(C j+1) must be between C j+1 and ρ(C j ).

As a result, if ρ(C j1) and ρ(C j2) come from the same component of L , then
ρ(C j ) for j1 ≤ j ≤ j2 are between ρ(C j1) and ρ(C j2). This implies each block is
made up of some number of consecutive components. And due to the normality
condition, the ordering of any two consecutive blocks must be either Bi, j+1 Bi, j ,
with j > i , or Bi, j−1 Bi, j , with j < i (with the caveat that some of the blocks may
be empty, if ρ does not pair two components of L at all). Putting this together
yields the block ordering above. �

This means that once we pick the sizes of the blocks bi,1, . . . , bi,n , the locations
of the blocks are determined. To complete the calculation of the ruling polynomial,
observe that the choice of a normal ruling of the blocks Bi j and B j i , with sizes
bi j = b j i = m, is equivalent to the choice of a normal ruling of Am Am .
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Theorem 3.4. Let 〈m〉 denote the ruling polynomial of Am Am , with 〈0〉 taken to
be z−2. Then the ruling polynomial of Aλ = Aλ1 Aλ2 . . . Aλn is given by

zn(n−2)
∑

(bi j )∈Mλ

∏
i< j

〈bi j 〉,

where Mλ is the set of all symmetric matrices (bi j ) with nonnegative integer entries
such that the row sums

∑n
j=1 bi j = λi and the trace tr (bi j )= 0.

Proof. The choice of a matrix in Mλ is equivalent to the choice of block sizes bi j .
By Lemma 3.3, this also fixes the locations of the blocks. A normal ruling of Aλ
is then completely determined by its restriction to pairs of blocks Bi j and B j i .

If the block size bi j is nonzero, then 〈bi j 〉 describes the possible restrictions of
the normal rulings to the union Bi j ∪ B j i . We take the product to combine these
normal rulings, but we have to account for the switches between the blocks. If
all block sizes are nonzero, then there will be n − 2 switches in each of the n
components of L , giving us a factor of zn(n−2). Any block Bi j of size 0 will reduce
this number by 1 in component j , but the corresponding block B j i will reduce
the number of switches by 1 in component i ; this gives a factor of z−2 which is
accounted for by the convention of 〈0〉 = z−2. �

Corollary 3.5. The 1-graded ruling polynomial is commutative in front diagram
products: that is, the ruling polynomials of

Aλ1 Aλ2 . . . Aλi Aλi+1 . . . Aλn and Aλ1 Aλ2 . . . Aλi+1 Aλi . . . Aλn

are equal.

Proof. There is an easy bijection between the possibilities for the matrix Mλ and
the new matrix Mλ′ : we simply exchange the i-th and (i+1)-th columns and rows;
the summands

∏
i< j 〈bi j 〉 do not change. �

3D. Calculating the ruling polynomial from the Kauffman polynomial. In R3,
the 1-graded and 2-graded ruling polynomial of arbitrary Legendrian links may be
easily recovered from the Kauffman and HOMFLY-PT polynomials. The second
author shows in [Rutherford 2011] that the 1-graded (respectively 2-graded) ruling
polynomial of a link L is the coefficient of a−tb(L) in the Kauffman polynomial
(respectively HOMFLY-PT polynomial) of L . In the case of Legendrian solid torus
links we first need to specialize the extra variables in a nonmultiplicative manner.

Using the notation of Section 2B, we consider the R-module homomorphism
9 : F ∼= R[A1, A2, . . .] → R determined by Aλ 7→ R1

Aλ(z) when λ is a partition.
(Compare with Remark 2.1.) Given a link diagram L , we let D̂L(a, z) = 9(DL),
and F̂L(a, z)= a−w(L) D̂L(a, z).
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Theorem 3.6. Let L⊂ J 1S1 be any Legendrian solid torus link. Then the 1-graded
ruling polynomial R1

L(z) is equal to the coefficient of a−tb(L) in F̂L(a, z).

This result is analogous to Theorem 6.3 of [Rutherford 2011], where it is shown
that we can recover the 2-graded ruling polynomial from such a specialization
of the HOMFLY-PT polynomial. The proof, via induction on a certain measure
of complexity of a front diagram, carries through in the 1-graded case as well.
The base case consists of all products of basic fronts where the result follows
from the crucial Corollary 3.5. Next, it is observed that the ruling polynomial and
the coefficient of a−tb(L) in F̂L share common skein relations that are Legendrian
analogs of equations (2-1)–(2-3) (see [Rutherford 2006; Rutherford 2011]). Then,
just as in [Rutherford 2011], the inductive step is completed by an algorithm which
uses these skein relations to evaluate the invariants in terms of front diagrams of
lesser complexity.

Example. Consider the Legendrian knots L1 and L2 = L1 · A2 A1 pictured in
Figure 4, and suppose orientations are chosen so that all strands are oriented to the
right when they pass through the vertical line x = 0. The Kauffman polynomials
are given by

FL1 = A1×
[
a−1(−z− z3)+ a−2z4

+ a−3(z+ 2z3)+ a−4z2]
+A3×

[
a−1(z+ z3)+ a−2(−z2

− z4)+ a−3(−z− z3)
]

+A2 A1×
[
a−1(1+ z2)− a−2z3

− a−3z2] ,
and FL2 = a−1 A2 A1 FL1 . We have tb(L1)= 1 and tb(L2)= 2, so in both cases the
estimate (2-4) is sharp.

Theorem 3.4 gives R1
A(2,1,1)(z) = z, R1

A(3,2,1)(z) = 2z + z3, and R1
A(2,2,1,1)(z) =

2+ 3z2. This allows us to compute

F̂L2=a−2(2+6z2
+5z4
+z6)+a−3(−4z3

−5z5
−z7)+a−4(−3z2

−4z4
−z6)+a−5z3,

and Theorem 3.6 gives R1
L2
(z)= 2+6z2

+5z4
+ z6, which can be verified directly.

4. Generalized normal rulings and the Thurston–Bennequin estimates

In this section we establish the equivalence (1) of Theorem 1.2 which follows from
Lemma 2.6 together with the following:

Theorem 4.1. Let L be a Legendrian link in the solid torus. Then the equality

tb(L)=−dega FL

holds if and only if there exists a partition λ so that L · Aλ has a normal ruling.
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Proof of Theorem 4.1. One direction is straightforward. Suppose that, for some λ,
L ′ = L · Aλ has a normal ruling. Then the ruling polynomial of L ′ is nontrivial,
so the coefficient of a−tb(L) is nonzero. Therefore tb(L ′) ≥ −dega FL ′ which,
combined with the inequality (2-4), gives us an equality tb(L ′)=−dega FL ′ . How-
ever, tb(L ′) = tb(L · Aλ) = tb(L)+w(Aλ), since Aλ has no cusps. In addition,
DL ′ = Aλ · DL , so FL ′ = a−w(Aλ)Aλ · FL , and we compute

−dega FL =−w(Aλ)− dega(FL ′)=−w(Aλ)+ tb(L ′)= tb(L).

Now suppose tb(L)=−dega FL . We will find a λ such that L · Aλ has a normal
ruling.

Let
∑

µ pµ(z)Aµ be the coefficient of a−tb(L) in FL , where the pµ(z) are poly-
nomials in z and z−1. This coefficient is nonzero, or else the degree equality would
not hold, so pµ(z) 6= 0 for at least one µ. Let k be the smallest integer such that at
least one pµ has a nonzero coefficient of zk .

By Theorem 3.6, the ruling polynomial of L · Aλ is∑
µ

pµ(z)RAµAλ(z).

We will prove that for some λ, this polynomial is nonzero (and therefore a normal
ruling exists) by looking at the zk coefficient of this polynomial. Since RAµAλ(z)
is a polynomial in z with no terms of z−1 or lower degree, the only way to get
a zk coefficient is from the product of pµ(z)[zk

] and RAµAλ(z)[z
0
] for some µ

(here, f (z)[zi
] denotes the coefficient of zi in f (z)). Denote pµ(z)[zk

] by aµ, and
RAµ(z)[z

0
] (which is the number of switchless rulings of Aµ) by C(µ).

The quantity C(µ) is easy to calculate. Without switches, each component of
size k must simply be paired with another component of size k in one of k ways.
In particular, this is only possible if there is an even number of each component
size. Define the double factorial by

(2k− 1)!! = (2k− 1)(2k− 3)(· · · )(3)(1)= (2k)!/(2kk!).

It counts the number of ways to divide 2k objects into pairs. It is clear that

C(µ)=
{∏n

k=1 kak (2ak − 1)!! if µ= 12a122a2 . . . n2an ,

0 else.

We wish to prove that for some λ,
∑

µ aµC(µ · λ) 6= 0. Here, if

µ= 1a12a2 . . . nan and λ= 1b12b2 . . . nbn ,

we will denote by µ · λ the partition

1a1+b12a2+b2 . . . nan+bn .
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Let M be the collection of all partitions such that:

(1) The parts of the partition are all no larger than n, for some n.

(2) Parts of each size occur between 0 and 2m− 1 times, for some m.

We choose the parameters m and n such that we include all partitionsµwith aµ 6=0.
Let V be a n2m-dimensional real vector space with basis vectors eλ for λ ∈ M .

For each µ ∈ M , consider the vectors

vµ =
∑
λ∈M

C(µ · λ)eλ

in V . We will show that these vectors also form a basis of V , and are therefore
linearly independent. From there, observe that∑

λ∈M

(∑
µ∈M

aµC(µ · λ)
)

eλ =
∑
µ∈M

aµ
(∑
λ∈M

C(µ · λ)eλ
)
=

∑
µ∈M

aµvµ.

If the coefficients aµ on the right are not all 0, then because the vµ are linearly
independent the resulting sum is a nonzero vector of V . Therefore the coefficients
in terms of eλ are not all 0 as well — that is, for some λ,

∑
µ aµC(µ · λ) 6= 0. So

once we have the result of linear independence, we are done.
From the formula for C(µ), it’s easy to calculate that C(µ ·λ) can be written as

a product of C(kak ·kbk ), over all k, where ak and bk are the number of parts of size
k in λ and µ respectively. Suppose we write V as the tensor product

⊗n
i=1 R2m ,

identifying the basis vector e j1⊗ e j2⊗· · ·⊗ e jn on the left with the basis vector eλ
on the right, where λ= 1 j12 j2 . . . n jn . Here we use a slightly nonstandard basis of
R2m : it is 0-indexed and consists of {e0, e1, . . . , e2m−1}, for ease of notation.

Then, if µ= 1a12a2 . . . nan ,

vµ =
∑
λ∈M

C(µ · λ) eλ =
∑

1b1 ···nbn∈M

( n∏
i=1

C(iai · ibi )
)( n⊗

i=1

ebi

)

=

∑
1b1 ···nbn∈M

( n⊗
i=1

C(iai · ibi ) ebi

)
=

n⊗
i=1

(2m−1∑
j=0

C(iai · i j ) e j

)
.

Therefore, rather than prove that the vectors vµ are a basis of V , it suffices to
prove that the vectors uk =

∑2m−1
j=0 C(ik

· i j )e j , as k goes from 0 to 2m− 1, are a
basis of R2m . There are three simplifying observations to be made:

(1) C(ik
· i j ) = 0 if k 6≡ j (mod 2). Therefore uk is a linear combination only

of the odd-indexed e j if k is odd, and only of the even-indexed e j if k is even.
Furthermore, C(ik

·i j )=C(ik−1
·i j+1), so u2k and u2k−1 have the same coefficients,

just shifted over by one index. As a result, we will only show the independence of
the vectors u0, u2, . . . , u2m−2 — the result for u1, u3, . . . , u2m−1 is similar.
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(2) By the first observation, we have

u2k =

m−1∑
j=0

C(i2k
· i2 j )e2 j = ik

m−1∑
j=0

C(12k
· 12 j )(i j e2 j ).

This corresponds to starting in the case i = 1, then scaling both the u2k and the e2 j

by powers of i – a scaling which doesn’t change the question of linear independence
one way or the other. Therefore it suffices to consider the case i = 1.

(3) Finally, we can scale each u2k by C(12k) (which, too, doesn’t affect linear
independence). Now we want to look at

u′2k =

m−1∑
j=0

C(12k
· 12 j )/C(12k)e2 j =

m−1∑
j=0

( j∏
`=1

(2k+ 2`− 1)
)

e2 j .

If we put the coefficients of u′2k as columns of a matrix, (that is, j indexes the
rows and k indexes the columns), we get

1 1 . . . 1
1 3 . . . 2m− 1

1 · 3 3 · 5 . . . (2m− 1)(2m+ 1)
...

...
. . .

...

1 · 3 · · · (2m− 1) 3 · 5 · · · (2m+ 1) . . . (2(m− 1)+ 1)(· · · )(4(m− 1)− 1)


Here, the entries in the j-th row are given by f j (k) =

∏ j
`=1(2k + 2`− 1), which

is a degree j polynomial function. In particular, f j (k) can be written as (2k) j plus
lower-order terms; these lower-order terms are necessarily a linear combination of
f1(k), . . . , f j−1(k). Therefore, we can use row operations to eliminate the lower-
order terms, so that the resulting matrix is

1 1 . . . 1
1 2 . . . m
1 4 . . . m2

...
...

. . .
...

1 2m−1 . . . mm−1


This is a Vandermonde matrix whose determinant is

∏
j 6=k( j − k) 6= 0. Therefore

the vectors u′2k (and u2k) form a basis of R2m , which completes the proof. �

4A. The 2-graded case and the HOMFLY-PT estimate. A similar approach ap-
plies in the case of the HOMFLY-PT polynomial, PL . The proof of the reverse
implication is identical. For the forward implication, we suppose tb(L)=−dega PL

and consider the coefficient of the lowest power zk that appears in the a−tb(L) term
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of PL , ∑
α,β

b(α,β)AαA−β .

Fix parameters m and n so that the set

M =
{
(µ, ν)

∣∣ µ= 1a1 · · · nan , ν = 1b1 · · · nbn , 1≤ ai , bi ≤ m
}

contains all (α, β) such that b(α,β) 6= 0.
Using Theorem 6.3 in [Rutherford 2011], for any (µ, ν) ∈ M the coefficient of

zk in the 2-graded ruling polynomial of L · AµA−ν is given by∑
α,β

b(α,β)R2
Aα·µA−β·ν (0).

It suffices to show that the coefficient matrix

A =
(
R2

Aα·µA−β·ν (0)
)
(α,β),(µ,ν)∈M

is nonsingular. Writing α = 1a1 . . . nan , β = 1b1 . . . nbn , µ = 1c1 . . . ncn , and ν =
1d1 . . . ndn , one has

R2
Aα·µA−β·ν (0)=

n∏
k=1

δak+ck ,bk+dk kak+ck (ak + ck)!.

Thus, A is a tensor product (Kronecker product) of matrices

Ak =
(
δa+c,b+dka+c(a+ c)!

)
(a,b),(c,d) .

Due to the Kronecker delta, each Ak is a direct sum (block matrix) of matrices Bl ,
l ∈Z∩[−n, n] obtained from keeping rows and columns satisfying a−b=d−c= l.

The proof is completed by showing that each Bl is nonsingular. We treat the
case l ≥ 0 as l < 0 is similar. Then, l ≤ a, d ≤ n and Bl =

(
ka+d−l(a+ d − l)!

)
.

Dividing rows by ka−l and columns by kd
· d! leaves

(a+ d − l)!
d!

= ( fa(d)) ,

where fa(x) =
∏a−l

j=1( j + x) is a polynomial of degree a − l. Elementary row
operations reduce this to a nonsingular Vandermonde matrix. �

5. Augmentations and generalized normal rulings

In this final section we complete the proof of Theorem 1.2 by establishing that:

For any Legendrian link L ⊂ J 1S1 with Z/p-graded Maslov potential, µ, the
following are equivalent:

(A) The Chekanov–Eliashberg algebra (A(L), d) admits a p-graded augmentation.

(B) The front projection of L has a p-graded generalized normal ruling.
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We begin by briefly recalling the aspects of the Chekanov–Eliashberg DGA that
are important for the proof. The reader is referred to [Ng and Traynor 2004] for
the original, more detailed treatment of this DGA in the J 1S1 setting.

Given a Legendrian knot or link L ⊂ J 1S1, the Lagrangian projection πxy(L)
of L to the xy-annulus is an immersed curve. The Chekanov–Eliashberg DGA
(A(L), d) is a graded algebra A(L) with a degree −1 differential d, defined via a
generic Lagrangian projection of L .

After a small Legendrian isotopy, we may assume πxy(L) to have only finitely
many transverse double points which we label as q1, . . . , qn . Then the algebra
A(L) is the free associative Z/2-algebra with unit generated by the double points
q1, . . . , qn . The set of monic noncommutative monomials in the qi forms a linear
basis for A(L). If L is connected, then A(L) has a Z/2r(L) grading. In general,
the grading depends on a choice of Maslov potential for L . The differential d
is defined by counting certain immersed discs in the xy-annulus with boundary
mapped to the Lagrangian projection of L .

Definition 5.1. An augmentation of (A(L), d) is an algebra homomorphism

ε :A(L)→ Z/2

satisfying

(i) ε(1)= 1, and

(ii) ε ◦ d = 0.

In addition, ε is p-graded if ε(qi ) 6= 0 implies |qi | = 0 mod p.

The existence of an augmentation of (A(L), d) is a property that is invariant
under Legendrian isotopy. This follows from the fact that the “stable tame iso-
morphism type” (see [Chekanov 2002; Ng and Traynor 2004]) of (A(L), d) is
unchanged by a Legendrian isotopy. Therefore, in establishing the equivalence of
(A) and (B) we may work with the Chekanov–Eliashberg algebra of a Legendrian
isotopic link L ′. The links L ′ which we will consider have a standard form so that
(A(L ′), d) may be described in a formulaic manner from the front projection of L ′

(and this front projection is combinatorially the same as that of L). For this reason
we do not present the differential or the grading of the Chekanov–Eliashberg DGA
in full generality here.

5A. The DGA of a resolved front diagram with splashes. Given a Legendrian
L ⊂ J 1S1 we begin by modifying the front diagram of L via (a slight variation
of) the resolution procedure of Ng and Traynor [2004]. Beginning near x = 0
and working from left to right, we alter the front projection of L by an isotopy in
the xz-annulus as follows. We arrange so that, except for intervals near x = 1 or
immediately prior to a crossing or right cusp, the slopes of the strands are constant
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and strictly decreasing as we move from the top to bottom. Further, we will assume
that all strands usually have nonpositive slope. It is no problem to produce these
conditions after a left cusp, but with crossings and right cusps the slopes of the two
relevant strands will need to be interchanged prior to the crossing or cusp. As the
y-coordinate is given by the slope dz/dx , this has the effect of producing double
points on the Lagrangian projection corresponding to (but located to the left of)
the crossings and right cusps of the front projection of L . Finally, when we near
x = 1 the strands have become very spread out and moved below their original z
values at x = 0. Beginning with the top strand and then proceeding successively
to the lowest strands, we return each strand back to its initial position via a steep
upward step. This creates several new crossings on the Lagrangian projection; see
Figure 6.

Figure 6. The front projection (left) and Lagrangian projection
(right) of L ′ in an interval immediately to the left of x = 1.

Next, we add “splashes”. This is a variant of a technique introduced in [Fuchs
2003]; see Remark 5.2. We view the S1 factor of J 1S1 as [0, 1] with 0 and 1
identified. In notation similar to that of Section 2, let 0= x0< x1< · · ·< xM = 1 be
a partitioning of the interval [0, 1] such that no xm coincides with the x-coordinate
of a crossing or cusp and each interval (xm−1, xm) contains exactly one crossing or
cusp. For each m=1, . . . ,M−1, we add a miniature version of the steps appearing
in the part of the resolution procedure near x = 1 into a small interval centered at
xm . That is, beginning at the top strand and then working downward add a brief
but steep (smooth) upward step into the diagram. This has a minimal effect on
the front projection but alters the Lagrangian projection at each xm by replacing
what had been several parallel lines with a collection of crossings similar to those
pictured in the right half of Figure 6. Denote the Legendrian link resulting from
the combination of these two procedures as L ′.

We now give a complete description of the Chekanov–Eliashberg DGA of L ′.
For each 1≤m ≤ M , let N (m) denote the number of intersection points of L with
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the plane x = xm . The generators of A(L ′) come from two sources. First, we have
generators corresponding to the crossings and right cusps of the front projection
of L via the resolution procedure. In addition, for each 1 ≤ m ≤ M we have two
upper triangular matrices worth of generators, xm

i j and ym
i j with 1≤ i < j ≤ N (m).

These correspond to the double points created by the splashes and the final step of
the resolution procedure.

The grading. If L is equipped with a Z/p-graded Maslov potential, µ, then A(L ′)
is Z/p-graded. We will describe the degree |qi | ∈ Z/p assigned to the generators
of A(L ′); degrees then extend additively as |x · y| = |x | + |y|.

In the following, µ(m, i) denotes the value of the Maslov potential on the i-th
strand at xm . (As in Section 2, we label strands from top to bottom.) The generators
of A(L ′) coming from splashes have degrees

(5-1) |xm
i j | = µ(m, i)−µ(m, j) and |ym

i j | = µ(m, i)−µ(m, j)− 1.

In addition, a crossing bm between the k and k+1 strands occurring in the interval
(xm−1, xm) has |bm | = µ(m, k+ 1)−µ(m, k), and all right cusps have degree 1.

The differential. Formulas for the differential d are most efficiently provided by
placing the generators xm

i j and ym
i j into strictly upper triangular matrices

Xm = (xm
i j ) and Ym = (ym

i j )

for each m. (Here, xm
i j = ym

i j = 0 if i ≥ j .) As the x-coordinate is S1-valued, it is
important to make the convention that X0 = X M and Y0 = YM . Then, applying the
differential to each entry, we have the formulas

(5-2)
dYm = (Ym)

2 and

d Xm = Ym(I + Xm)+ (I + Xm−1)Ỹm−1

with I an identity matrix of the appropriate size. The precise form of Ỹm−1 depends
on the tangle appearing on the interval (xm−1, xm) and is described presently.

Suppose that (xm−1, xm) contains a crossing, bm , between the strands labeled k
and k+ 1. Then

dbm = ym−1
k,k+1 and Ỹm−1 = Bk,k+1Ŷm−1 B−1

k,k+1,

where Bk,k+1 and B−1
k,k+1 agree with the identity matrix except for a 2× 2 block

along the diagonal in rows k and k+1, having the form
[ 0

1
1

bm

]
for Bk,k+1 and

[ bm
1

1
0

]
for B−1

k,k+1, and Ŷm−1 is the matrix Ym−1 with 0 replacing the entry ym−1
k,k+1.

Next, we suppose (xm−1, xm) contains a single left cusp between the strands
labeled k and k+ 1 at xm . Then,

Ỹm−1 = JkYm−1 J T
k + Ek,k+1,
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where Jk is the N (m)× N (m) identity matrix with columns k and k+ 1 removed
and Ek,k+1 is a matrix with a single nonzero entry in the k, k+ 1 position.

Finally, we suppose (xm−1, xm) contains a single right cusp, cm , between the
strands labeled k and k+ 1 at xm−1. Then

dcm = 1+ ym−1
k,k+1,

and the matrix Ỹm−1 is most easily described entry by entry. Let

τ : {1, . . . , N (m)} → {1, . . . , N (m− 1)}, τ (i)=
{

i if i < k,
i + 2 if i ≥ k.

The i, j entry of Ỹm−1 is given by ỹm−1
i j = ym−1

τ(i),τ ( j)+ ai j , where

ai j = ym−1
i,k+1 ym−1

k,τ ( j)+ ym−1
i,k cm ym−1

k,τ ( j)+ ym−1
i,k+1 cm ym−1

k+1,τ ( j)+ ym−1
i,k+1(cm)

2 ym−1
k+1,τ ( j)

when i < k ≤ j and ai j = 0 otherwise.

Remark 5.2. The technique of adding some variation of splashes to simplify the
differential first appeared in [Fuchs 2003] and has been used in several places in the
literature. The version employed here is the same as that of [Fuchs and Rutherford
2011], to which we refer the reader for more details. For an alternate approach,
we expect that a DGA of the same form would arise from iterating the “bordered
Chekanov–Eliashberg algebra” construction introduced in [Sivek 2011].

5B. Proof of Theorem 1.2(2). We begin by introducing notation. Given an invo-
lution τ of {1, . . . , N }, τ 2

= id, we let Bτ = (bi j ) denote the N × N matrix with
entries

bi j =

{
1 if i < τ(i)= j,
0 else.

(B)⇒ (A). Suppose that L the diagram admits a generalized normal ruling ρ =
(ρ1, . . . , ρm). An augmentation ε of the algebra A(L ′) is defined as follows: on
all right cusps cm , ε(cm) = 0; at crossings bm , ε(bm) is 1 if bm is a switch and 0
otherwise; for all m, ε(Ym)= Bρm ; and ε(xm

i, j )= 0 for all i, j except when a switch
occurs between xm−1 and xm . Assume the switch involves the k and k+1 strands.
If one of the switching strands is also a fixed point strand, then of the generators
xm

i j augment only xm
k,k+1. Else, note that due to the normality condition, near the

switch the intervals connecting the switching strands and their companion strands
(Remark 2.3) are either disjoint or nested. Assume that the switch occurs between
the strands labeled k and k + 1. If the switch is disjoint, augment only xm

k,k+1. If
the switch is nested, augment xm

k,k+1 and also xm
τ(k),τ (k+1) or xm

τ(k+1),τ (k), depending
on whether τ(k) < τ(k+ 1) or τ(k+ 1) < τ(k).
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It is straightforward to verify from the formulas of the previous section that ε is
an augmentation. If ρ is p-graded with respect to a Maslov potential µ, then ε is
as well.

(A)⇒ (B). The proof of the reverse implication is based on some canonical form
results from linear algebra due to Barannikov [1994].

Definition 5.3. An M-complex, (V,B, d) is a vector space V over a field F with
a chosen ordered basis B = {v1, . . . , vN } together with a differential d : V → V ,
d2
= 0, of the form dvi =

∑
i< j ci jv j .

Proposition 5.4. If (V,B, d) is an M-complex, then there exists a triangular
change of basis {ṽ1, . . . , ṽN }, with ṽi =

∑
i≤ j ai jv j , and an involution

τ : {1, . . . , N } → {1, . . . , N }

such that

d ṽi =

{
ṽ j if i < τ(i)= j,
0 else.

Moreover, the involution τ is unique.

Remark 5.5. (i) Suppose in addition that the basis elements vi are assigned degrees
|vi | ∈Z/p so that V is Z/p-graded and d has degree−1. Then, the change of basis
may be assumed to preserve degree. Hence, if i < τ(i)= j , then |vi | = |v j | + 1.

(ii) The classes [ṽi ] such that τ(i)= i form a basis for the homology H(V, d).

(iii) Proposition 5.4 has the following matrix interpretation: There is a unique
function, D 7→ τ(D) which assigns to every strictly upper triangular N×N matrix
D with D2

= 0 an involution τ = τ(D) such that there exists an invertible upper
triangular matrix P so that P D P−1

= Bτ . Notice that the uniqueness assertion
implies that τ(Q DQ−1)= τ(D) if Q is nonsingular and upper triangular.

Proposition 5.6 [Barannikov 1994]. Suppose that (V,B, d) is an M-complex, and
k ∈ {1, . . . , N } is such that dvk =

∑
k+1< j ck jv j so that the triple (V,B′, d) with

B′ = {v1, . . . , vk+1, vk, . . . , vN } is also an M-complex. Then, the associated invo-
lutions τ and τ ′ are related as follows.

(1) It is always possible to have τ ′ = (k k + 1) ◦ τ ◦ (k k + 1), where (k k + 1)
denotes the transposition.

(2) In the following cases, it is also possible to have τ ′ = τ :
(a) If τ(k+ 1) < τ(k) < k < k+ 1, or

τ(k) < k < k+ 1< τ(k+ 1), or
k < k+1< τ(k+1) < τ(k).

(b) If τ(k) < k < k+ 1= τ(k+ 1) or τ(k)= k < k+ 1< τ(k+ 1).
(c) If τ(k)= k < k+ 1= τ(k+ 1).
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Remark 5.7. (i) From the matrix perspective, Proposition 5.6 puts restrictions
on τ(Pk,k+1 D Pk,k+1) when Pk,k+1 is the permutation matrix of the transposition
(k k+ 1) and the k, k+ 1-entry of D is 0.

(ii) Propositions 5.4 and 5.6 are essentially the same as Lemma 2 and Lemma 4 of
[Barannikov 1994]. Proposition 5.6 is proven quite directly by considering cases.

Proof of (A)⇒ (B). Suppose now that ε is an augmentation of A(L ′).
For each m, the matrix ε(Ym) is strictly upper triangular and satisfies

[ε(Ym)]
2
= ε ◦ d(Ym)= 0.

Letting τm = τ(ε(Ym)) as in Remark 5.5 produces a sequence, τ1, . . . , τM , with
τm an involution of {1, . . . , N (m)}. We show that τ = (τ1, . . . , τM) satisfies the
requirements of a generalized normal ruling. This requires establishing that the
restrictions provided by Definitions 2.2 and 2.4 on consecutive involutions τm−1

and τm are satisfied.
Recall that each interval (xm−1, xm) contains a single crossing or cusp.

If (xm−1, xm) contains a left cusp, then (5-2) and the definition of augmentation
allow us to compute

(5-3) ε(Ym)= (I + ε(Xm))ε(Ỹm−1)(I + ε(Xm))
−1.

Using Remark 5.5 we conclude that

τm = τ(ε(Ym))= τ(ε(Ỹm−1)).

The M-complex associated with ε(Ỹm−1) is related to that of ε(Ym−1) by adding
two new generators vk and vk+1 to B. The complex is the split extension of that of
ε(Ym−1) by span{vk, vk+1} with the differential dvk = vk+1. It can then be checked
from the definition that the involutions τm−1 and τm satisfy Definition 2.2(2).

If (xm−1, xm) contains a right cusp, let

C= (Vm−1,B= {vi | i = 1, . . . , N (m− 1)}, d)

denote the M-complex associated with the matrix ε(Ym−1) by the formula

(5-4) dvi =
∑
i< j

ε(ym−1
i j )v j .

Note that τm−1 is precisely the involution associated to C by Proposition 5.4. From
0= ε ◦ d(cm) we deduce that 1= ε(ym−1

k,k+1), and it follows that τm−1(k)= k+ 1.
Next, one observes that ε(Ỹm−1) is the matrix of the M-complex

C̃=
(
Ṽm−1, B̃= {[vi ] | i 6= k, k+ 1}, d̃

)
,
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where Ṽm−1 is the quotient of Vm−1 by the subcomplex

{vk + ε(cm)vk+1, d(vk + ε(cm)vk+1)}

and d̃ is the differential induced by d. If {ṽi } is a triangular change of basis for
C satisfying the conditions of Proposition 5.4, then {[ṽi ] | i 6= k, k + 1} will be
such a basis for C̃, so that the involution associated with ε(Ỹm−1) is related to τm−1

as required in Definition 2.2(3). Finally, we get τm = τ(ε(Ym)) = τ(ε(Ỹm−1)) by
using (5-3).

If (xm−1, xm) contains a crossing bm , we have 0 = ε ◦ d(bm) = ε(ym−1
k,k+1). Thus,

ε(Ŷm−1) = ε(Ym−1) with both matrices having 0 as their (k, k + 1) entry. Then,
compute that

ε(Bk,k+1)ε(Ŷm−1)ε(B−1
k,k+1)

= Pk,k+1[I + ε(bm)Ek,k+1]ε(Ym−1)[I + ε(bm)Ek,k+1]Pk,k+1.

Regardless of the value of ε(bm), the (k, k+ 1)-entry of

[I + ε(bm)Ek,k+1]ε(Ym−1)[I + ε(bm)Ek,k+1]

is 0, so the matrix A = ε(Bk,k+1)ε(Ŷm−1)ε(B−1
k,k+1) is strictly upper triangular and

τ(A) is related to

τ
(
(I + ε(bm)Ek,k+1)ε(Ym−1)(I + ε(bm)Ek,k+1)

)
= τ(Ym−1)= τm−1

as in Proposition 5.6. It follows that

τm = τ(ε(Ym))= τ((I + ε(Xm))A(I + ε(Xm))
−1)= τ(A)

and τm−1 satisfy the requirements near crossings (including the normality condi-
tions) of Definition 2.4.

The statement that τ is p-graded if ε is p-graded follows from (i) of Remark 5.5.
As in (5-4), ε(Ym) is the matrix of an M-complex with basis v1, . . . , vN (m) corre-
sponding to the strands of L at xm . If ε is p-graded with respect to µ, then we can
assign a grading by |vi | = µ(m, i) and the differential will have degree −1. �
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CLASSIFICATION OF SINGULAR Q-HOMOLOGY PLANES
II: C1- AND C∗-RULINGS

KAROL PALKA

A Q-homology plane is a normal complex algebraic surface having trivial
rational homology. We classify singular Q-homology planes that are C1-
or C∗-ruled. We analyze their completions, the number of different rulings
they have, and the number of affine lines on them; and we give constructions.
Together with previously known results, this completes the classification of
Q-homology planes with smooth locus of nongeneral type. We show also
that the dimension of a family of homeomorphic but nonisomorphic singu-
lar Q-homology planes having the same weighted boundary, singularities
and Kodaira dimension can be arbitrarily big.

We work with complex algebraic varieties.

1. Main results

A Q-homology plane is a normal surface whose rational cohomology is the same as
that of C2. This paper is the last piece of the classification of Q-homology planes
having smooth locus of nongeneral type. The classification is built on the work
of many authors; for a summary of what is known about smooth and singular Q-
homology planes, see [Miyanishi 2001, §3.4] and [Palka 2011b]. In [Palka 2008],
we classified singular Q-homology planes with nonquotient singularities, showing
in particular that they are quotients of affine cones over projective curves by actions
of finite groups that respect the set of lines through the vertex. In [Palka 2011a], we
classified singular Q-homology planes whose smooth locus is of nongeneral type
and admits no C1- or C∗-ruling (exceptional planes). Here we classify singular
Q-homology planes that admit a C1- or a C∗-ruling. We analyze completions and
boundaries rather than the open surfaces themselves. To deal with nonuniqueness
of these, we use the notions of a balanced and a strongly balanced weighted bound-
ary and completion of an open surface (see Definitions 2.7 and 2.10).

We classify C1- and C∗-ruled Q-homology planes by giving necessary and suf-
ficient conditions for a C1- or C∗-ruled open surface to be a Q-homology plane

The author was supported by Polish Grant NCN N N201 608640.
MSC2010: primary 14R05; secondary 14J17, 14J26.
Keywords: acyclic surface, homology plane, Q-homology plane.
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(see Lemmas 2.12, 3.2 and 4.4 and the remarks before the latter) and then giv-
ing general constructions (see Construction 3.3 and Section 4D). We compute the
Kodaira dimension of a C∗-ruled singular Q-homology plane and of its smooth
locus (Theorem 4.9) in terms of properties of singular fibers, and we list the planes
with smooth locus of Kodaira dimension zero (Section 4C). As a corollary of the
classification, we obtain the following result.

Theorem 1.1. Let S′ be a singular Q-homology plane, and let S0 be its smooth
locus. Assume that S′ is not affine-ruled and that κ(S0) 6= 2.

(1) Either S′ has a unique balanced completion up to isomorphism, or it admits
an untwisted C∗-ruling with base C1 and more than one singular fiber. In the
latter case, S′ has exactly two strongly balanced completions.

(2) If S′ has more than one singular point, then it has exactly two singular points,
both of Dynkin type A1, and there is a twisted C∗-ruling of S′ such that both
singular points are contained in a unique fiber isomorphic to C1.

(3) If S′ contains a quotient noncyclic singularity, then either S′ ∼= C2/G for a
small finite noncyclic subgroup of GL(2,C), or S′ has a twisted C∗-ruling.
In the latter case, the unique fiber isomorphic to C1 is of type (A)(iv) (see
Theorem 4.9) and contains a singular point of Dynkin type Dk for some k ≥ 4.

We now comment on other corollaries of the classification. First, the case can
occur when S′ has exactly one singular point and it is a cyclic singularity. Second,
we show that if S′ is affine-ruled, then its strongly balanced weighted boundary is
unique unless it is a chain, but that even if it is unique, there still may be infinitely
many strongly balanced completions (see Example 3.6). Third, the singularities of
affine-ruled S′ are necessarily cyclic, but there may be arbitrarily many of them (see
[Miyanishi and Sugie 1991] or Section 3). Regarding the remaining case κ(S0)= 2,
which we do not analyze here, let us mention that it follows from the logarithmic
Bogomolov–Miyaoka–Yau inequality (see [Palka 2008], for example) that S′ has
only one singular point and it is of quotient type.

It is known that smooth Q-homology planes can have moduli [Flenner and Zaı̆-
denberg 1994]. The same is true for singular ones. We prove the following result.

Theorem 1.2. There exist arbitrarily high-dimensional families of nonisomorphic
singular Q-homology planes having smooth locus of negative Kodaira dimension
and having the same singularities, same homeomorphism type, and same weighted
strongly balanced boundary.

An important property of any Q-homology plane with smooth locus of general
type is that it does not contain topologically contractible curves. In fact, the number
of contractible curves on a Q-homology plane is known except in the case when the
surface is singular and the smooth locus has Kodaira dimension zero (see Section 6).
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In Theorem 6.1, we compute the number of different C∗-rulings a Q-homology
plane can have. The computation of the number of contractible curves follows
from it.

Theorem 1.3. If a singular Q-homology plane has smooth locus of Kodaira dimen-
sion zero, then it contains one or two irreducible topologically contractible curves
if the smooth locus admits a C∗-ruling, and no such curves otherwise.

The notion of a balanced weighted boundary of an open surface (see Definition
2.10) is a more flexible version of the notion of a standard graph from [Flenner
et al. 2007], which has its origin in [Daigle 2008]. It follows from above that
every Q-homology plane admits up to isomorphism one or two strongly balanced
boundaries, but this is not so for the standard ones. The set of such boundaries is
a useful invariant of the surface.

Integral homology groups and necessary conditions for singular fibers of C1- and
C∗-ruled Q-homology planes have already been analyzed in [Miyanishi and Sugie
1991]. For C∗-rulings, however, these conditions are not sufficient (see Examples
4.2 and 4.3), and a more detailed analysis is necessary. Also, some formulas for
the Kodaira dimension in terms of singular fibers from [Miyanishi and Sugie 1991]
require nontrivial corrections (see Section 4B).

2. Preliminaries

We follow the notational conventions and terminology of [Miyanishi 2001], [Fujita
1982] and [Palka 2008]. We recall some of them for the convenience of the reader.

2A. Divisors and normal pairs. Let T =
∑

ti Ti be an snc-divisor on a smooth
complete surface with distinct irreducible components Ti . Then T =

∑
Ti , where

the sum runs over i with ti 6= 0, is the reduced divisor with the same support as T ,
and βT (Ti ) = T · (T − Ti ) is the branching number of Ti . A tip has βT (Ti ) ≤ 1.
By Q(T ) we denote the intersection matrix of T ; we put d(0) = 1 and d(T ) =
det(−Q(T )) for T 6= 0. The symbol “≡” denotes numerical equivalence of divisors.

If T is reduced and its dual graph is linear, it is called a chain, and in writing it
as a sum of irreducible components T = T1+· · ·+Tn , we assume that Ti ·Ti+1 = 1
for 1≤ i ≤ n−1. We put T t

= Tn+· · ·+T1. If T is a rational chain, then we write
T = [−T 2

1 , . . . ,−T 2
n ]. A rational chain with all T 2

i ≤−2 is called admissible. A
fork is a rational tree for which the branching component is unique and has β = 3.

Let D be some reduced snc-divisor that is not an admissible chain. A rational
chain with support contained in D, not containing branching components of D and
containing one of its tips, is called a twig of D. For an admissible (ordered) chain,
we put

e(T )= d(T−T1)

d(T )
and ẽ(T )= e(T t).
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In general, e(T ) and ẽ(T ) are defined as the sums of respective numbers computed
for all maximal admissible twigs of T . Here we use the convention that the tip of
the twig is the first component.

If X is a complete surface and D is a reduced snc-divisor contained in the smooth
part of X , then we call (X, D) an snc-pair and we write X −D for X \D. The pair
is normal (resp. smooth) if X is normal (resp. smooth). If X is a normal surface,
then an embedding ι : X→ X , where (X , X \X) is a normal pair, is called a normal
completion of X . If X is smooth, then X is smooth and (X , D, ι) is called a smooth
completion of X . A morphism of two completions ι j : X→ X j , with j = 1, 2, of
a given surface X is a morphism f : X1→ X2 such that ι2 = f ◦ ι1.

Let π : (X, D)→ (X ′, D′) be a birational morphism of normal pairs. We put
π−1 D′ = π∗D′; that is, π−1 D′ is the reduced total transform of D′. Assume
π−1 D′ = D. If π is a blow-up, then we call it subdivisional (resp. sprouting) for
D′ if its center belongs to two (resp. one) components of D′. In general, we say
that π is subdivisional for D′ (and for D) if for any component T of D′ we have
βD′(T )= βD(π

−1T ). The exceptional locus of a birational morphism between two
surfaces η : X→ X ′, denoted by Exc(η), is defined as the locus of points in X for
which η is not a local isomorphism.

A b-curve is a smooth rational curve with self-intersection b. A divisor is snc-
minimal if all of its (−1)-curves are branching. We write K X for the canonical
divisor on a complete surface X .

Definition 2.1. A birational morphism of surfaces π : X → X ′ is a connected
modification if it is proper, π(Exc(π)) is a smooth point on X ′, and Exc(π) contains
a unique (−1)-curve. If π is a morphism of pairs π : (X, D)→ (X ′, D′) such that
π−1(D′)= D and π(Exc(π)) ∈ D′, we call it a connected modification over D′.

A sequence of blow-downs (and its reversing sequence of blow-ups) whose com-
position is a connected modification is called a connected sequence of blow-downs
(blow-ups).

2B. Rational rulings. A surjective morphism p0 : X0→ B0 of a normal surface
onto a smooth curve is a rational ruling if general fibers are rational curves. By a
completion of p0, we mean a triple (X, D, p), where (X, D) is a normal completion
of X0 and p : X→ B is an extension of p0 to a P1-ruling, with B being a smooth
completion of B0. We say that p is a minimal completion of p0 if p does not
dominate any other completion of p0. In this case we also say that D is p-minimal.
It is easy to check that D is p-minimal if and only if all of its nonbranching (−1)-
curves are horizontal. Let F be a fiber of p. An irreducible curve G ⊆ X is an
n-section of p if G · F = n. A section is a 1-section. We call p0 a C(n∗)-ruling if
F · D = n + 1 for n ≥ 1. In the case n = 0, we call p0 a C1-ruling or an affine
ruling; the arithmetic genus of F (pa(F) = 1

2 F · (K X + F) + 1) vanishes and
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F2
= 0. Conversely, it is well-known that an effective divisor with these properties

on a complete surface is a fiber of such a ruling [Barth et al. 2004, V.4.3]. If
J is a component of F , then we denote by µF (J ) the multiplicity of J ; that is,
F = µF (J )J + F ′, where F ′ is effective and J 6⊆ F ′. The structure of fibers of a
P1-ruling is well known [Fujita 1982, §4].

Lemma 2.2. Let F be a singular fiber of a P1-ruling of a smooth complete surface.
Then F is a tree of rational curves and it contains a (−1)-curve. Each (−1)-curve
of F meets at most two other components. If F contains a unique (−1)-curve C ,
then:

(i) µ(C) > 1. There are exactly two components of F with multiplicity one, and
they are tips of the fiber.

(ii) If µ(C) = 2, then either F = [2, 1, 2] or C is a tip of F ; in the latter case
either F −C = [2, 2, 2] or F −C is a (−2)-fork of type (2, 2, n).

(iii) If F is not a chain, then the connected component of F −C not containing
curves of multiplicity one is a chain (possibly empty).

We define
6X−D =

∑
F*D

(σ (F)− 1),

where σ(F) is the number of (X − D)-components of a fiber F [Fujita 1982, 4.16].
If p is a P1-ruling as above, then we call an irreducible curve G vertical (for p)
if p∗G = 0; otherwise it is horizontal. A divisor is vertical (resp. horizontal) if
all of its components are vertical (resp. horizontal). We decompose D as D =
Dh + (D− Dh), where Dh is horizontal and D− Dh is vertical. The numbers h
and ν are defined respectively as the number of irreducible components of Dh and
as the number of fibers contained in D. We have [Fujita 1982, §4]

6X−D = h+ ν+ b2(X)− b2(D)− 2.

We call a connected component of F ∩ D a D-rivet (or rivet if this causes no
confusion) if it meets Dh at more than one point or if it is a node of Dh .

Definition 2.3. Suppose (X, D, p) is a completion of a C∗-ruling of a normal
surface X . We say that the original ruling p0 = p|X−D is twisted if Dh is a 2-
section. If Dh consists of two sections, we say that p0 is untwisted. Let F be a
singular fiber of p that does not contain singular points of X . We say that F is
columnar if F is a chain that can be written as

F = An + · · ·+ A1+C + B1+ · · ·+ Bm,

where C is a unique (−1)-curve and Dh meets F exactly in An and Bm . The chains
A = A1+ · · ·+ An and B = B1+ · · ·+ Bm are called adjoint chains.
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Remark. By expansion properties of determinants (see [Koras and Russell 2007,
2.1.1], for example) and the fact that d(A) and d(A− A1) are coprime, we have
e(A)+e(B)= 1 and d(A)= d(B)=µF (C). In fact, we have also ẽ(B)+ ẽ(A)= 1
[Fujita 1982, 3.7].

2C. Balanced completions.

Definition 2.4. A pair (D, w) consisting of a complete curve D and a rationally
valued function w defined on the set of irreducible components of D is called
a weighted curve. If (X, D) is a normal pair, then (D, w) with w defined by
w(Di )= D2

i is a weighted boundary of X − D.

Definition 2.5. Let (X, D) be a normal pair.

(i) Let L be a 0-curve that is a nonbranching component of D, and let c ∈ L be
chosen so that if L intersects two other components of D, then c is one of the
points of intersection. Make a blow-up of c and contract the proper transform
of L . The resulting pair (X ′, D′), where D′ is the reduced direct image of the total
transform of D, is called an elementary transform of (X, D). The pair8= (8◦,8•)
consisting of an assignment 8◦ : (X, D) 7→ (X ′, D′) together with the resulting
rational mapping 8• : X 99K X ′ is called an elementary transformation over D.
8 is inner ( for D) if βD(L)= 2, and outer ( for D) if βD(L)= 1. The point c ∈ L
is the center of 8.

(ii) For a sequence of (inner) elementary transformations

8◦i : (X i , Di ) 7→ (X i+1, Di+1),

with i = 1, . . . , n− 1, we put 8◦= (8◦1, . . . , 8
◦

n−1), 8
•
= (8•1, . . . , 8

•

n−1) and we
call 8= (8◦,8•) an (inner) flow in D1. We denote it by 8 : (X1, D1) (Xn, Dn).

8• = (8•1, . . . , 8
•

n−1) induces a rational mapping X1 99K Xn , which we also de-
note by 8•. There exists the largest open subset of X1 on which 8•1 is a morphism;
the complement of this subset is called the support of 8. Clearly, Supp81 ⊆ D1.
If Supp8=∅, then 8 is a trivial flow.

A weighted curve (D, w) determines the weighted dual graph of D. If (D, w) is
a weighted boundary coming from a fixed normal pair (X, D), we omit the weight
function w from the notation. For 8 as above, D1 and Dn are isomorphic as curves.
They have the same dual graphs, but usually different weights of components.

Example 2.6. Let T = [0, 0, a1, . . . , an]. Each chain of type [0, b, a1, . . . , an],
[a1, . . . , ak−1, ak − b, 0, b, ak+1, . . . , an] or [a1, . . . , an, b, 0], where 1 ≤ k ≤ n
and b ∈ Z, can be obtained from T by a flow. This follows from the observation
that an elementary transformation interchanges the chains [w, x, 0, y− 1, z] and
[w, x − 1, 0, y, z]. Looking at the dual graph, we see the weights can “flow” from
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one side of a 0-curve to another, and possibly vanish (b = 0 or b = ak). If they do,
then again the weights can flow through the new zero.

Definition 2.7. A rational chain D = [a1, . . . , an] is balanced if a1, . . . , an ∈

{0, 2, 3, . . . } or if D = [1]. A reduced snc-divisor whose dual graph contains
no loops (snc-forest) is balanced if all rational chains contained in D that do not
contain branching components of the divisor are balanced. A normal pair (X, D)
is balanced if D is balanced.

Recall that if (X i , Di ) for i = 1, 2 are normal pairs such that X1−D1∼= X2−D2,
then D1 is a forest if and only if D2 is a forest.

Proposition 2.8. A normal surface that admits a normal completion with a forest
as a boundary has a balanced completion. Two such completions differ by a flow.

As we discovered after completing the proof, a more general version of this
proposition was proved in a graph-theoretic context in [Flenner et al. 2007, Theo-
rem 3.1 and Corollary 3.36]. We therefore leave our more direct arguments to be
published elsewhere. In fact, some key observations were made earlier in [Daigle
2008, 4.23.1, 3.2, 5.2]. Let us restate some definitions from [Flenner et al. 2007]
on the level of pairs.

Definition 2.9. Let (X, D) be a normal pair and assume D is an snc-forest.

(i) Connected components of the divisor that remains after subtracting all nonra-
tional and all branching components of D are called the segments of D.

(ii) D is standard if for each of its connected components, either the component is
equal to [1] or all of its segments are of types [0], [0, 0, 0] or [02k, a1, . . . , an],
with k ∈ {0, 1} and a1, . . . , an ≥ 2.

(iii) Let D0= [0, 0, a1, . . . , an], with ai ≥ 2 for i = 1, . . . , n, be a segment of D. A
reversion of D0 is a nontrivial flow 8 : (X, D) (X ′, D′) that is supported in
D0, is inner for D0, and satisfies D′− (8•)∗(D− D0)= [a1, a2, . . . , an, 0, 0].

The condition that 8 be nontrivial is introduced for the following reason: we
want the reversion to transform the two zeros to the other end of the chain, and
the condition in necessary to force this in case D is symmetric, that is, when
[a1, . . . , an]

t
= [a1, . . . , an]. Standard chains are called canonical in [Daigle 2008].

The Hodge index theorem implies that if (X, D) is a smooth pair and D is a forest,
then it cannot have segments of type [02k+1

] or [02k, a1, . . . , an] for k > 1, and can
have at most one such segment for k = 1.

Clearly, not every balanced forest is standard, but by a flow one can easily make
it so. It follows from Proposition 2.8 that if D and D′ are two standard boundaries
of the same surface and D is a chain, then either D and D′ are isomorphic as
weighted curves or D′ is the reversion of D. Unfortunately, the notion of a standard
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boundary is not as restrictive as one may imagine, and the difference between two
standard boundaries can be more than just a reversion of some segments. An addi-
tional ambiguity is related to the existence of segments of type [02k+1

]. Specifically,
if [02k+1

] is a segment of D, then one can change by a flow the self-intersections
of the components of D intersecting the segment. For example, consider a surface
whose standard boundary is a rational fork with a dual graph

−2 b −2

0

for some b ∈ Z. Then for any b ∈ Z, there is a completion of this surface for which
the boundary is standard and has the dual graph as above.1 We therefore introduce
the following more restrictive conditions.

Definition 2.10. A balanced snc-forest D is strongly balanced if it is standard and
either D contains no segments of type [0] or [0, 0, 0], or for at least one such
segment there is a component B ⊆ D intersecting it such that B2

= 0. A normal
pair (X, D) for which D is a forest is strongly balanced if D is strongly balanced.

2D. Basic properties of Q-homology planes. We assume that S′ is a singular
Q-homology plane, that is, a normal nonsmooth complex algebraic surface with
H∗(S′,Q) ∼= Q. Let ε : S → S′ be a resolution such that the inverse image of
the singular locus is an snc-divisor, and let (S, D) be a smooth completion of S.
Denote the singular points of S′ by p1, . . . , pq and the smooth locus by S0. We
put Êi = ε

−1(pi ) and assume that Ê = Ê1+ Ê2+ · · ·+ Êq is snc-minimal. Recall
that S′ is called logarithmic if and only if every singular point of S′ is locally ana-
lytically isomorphic to C2/G for some finite subgroup G < GL(2,C) (a quotient
singularity). In [Palka 2008], we classified nonlogarithmic Q-homology planes.
In particular, it is known that they do not admit C1- or C∗-rulings. Therefore,
from now on we assume that S′ is logarithmic. It follows that each Êi is either an
admissible chain or an admissible fork (that is, an snc-minimal fork with negative
definite intersection matrix). By [Gurjar et al. 1997], S′ is rational. By the argument
in [Fujita 1982, 2.4], it is affine.

Proposition 2.11. Let the notation be as above.

(i) D is a rational tree with d(D)=−d(Ê) · |H1(S′,Z)|2.

(ii) The embedding D ∪ Ê→ S induces an isomorphism on H2(−,Q).

1This observation was missed in [Flenner et al. 2007], whose Corollary 3.33 is false. See [Flenner
et al. 2011] for corrections. In [Daigle 2008, Solution to problem 5] this ambiguity is implicitly taken
into account without restricting to balanced divisors.
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(iii) π1(S′)∼= π1(S) and Hk(S′,Z)= 0 for k > 1.

(iv) bi (S0)= 0 for i = 1, 2, 4 and b3(S0)= q.

(v) 6S0 = h+ ν− 2 and ν ≤ 1.

Proof. See [Palka 2008, 3.1, 3.2] and [Miyanishi and Sugie 1991, 2.2]. �

Lemma 2.12. Let (S, T ) be a smooth pair and let p : S → B be a P1-ruling.
Assume that

(i) there exists a unique connected component D of T that is not vertical,

(ii) D is a rational tree,

(iii) 6S−T = h+ ν− 2, and

(iv) d(D) 6= 0.

Then the surface S′ defined as the image of S− D after contraction of connected
components of T − D to points is a rational Q-homology plane, and p induces a
rational ruling of S′. Conversely, if p′ : S′→ B is a rational ruling of a rational
Q-homology plane S′, then any completion (S, T, p) of the restriction of p′ to the
smooth locus of S′ has the above properties.

Proof. Since the base of p has some component of D as a branched cover, it
is rational, and hence S is rational. We may assume that T is p-minimal. Put
Ê = T − D. Since Ê is vertical and since Ê ∩ D =∅, Q(Ê) is negative definite
and b1(Ê)= 0. Fujita’s equation

6S−T = h+ ν− 2+ b2(S)− b2(D+ Ê)

gives b2(S) = b2(T ), so by (iv), the inclusion T → S induces an isomorphism
on H2(−,Q). By [Palka 2008, 2.6], S′ is normal and affine, and in particular
b4(S′) = b3(S′) = 0. Since b1(D) = 0, the exact sequence of the pair (S, D)
together with the Lefschetz duality give

b2(S)= b2(S, D)= b2(S)− b2(D)= b2(Ê).

Since b1(Ê)= 0, we get from the exact sequence of the pair (S, Ê) that b2(S′)=
b2(S, Ê)= b2(S)− b2(Ê)= 0. Now

χ(S′)= χ(S)−χ(D ∪ Ê)+ b0(Ê)= b0(D)= 1,

so we obtain b1(S′)= b2(S′)= 0, and hence S′ is Q-acyclic.
Conversely, if p′ is as above, then let Ê be an exceptional divisor of a resolution

of singularities of S′, and let D = T − Ê . Since Ê is vertical for the P1-ruling p,
we have b1(Ê)= 0. Then the necessity of the above conditions follows from [ibid.,
3.1 and 3.2]. �
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3. Smooth locus of negative Kodaira dimension

Here we assume that the smooth locus S0 of the logarithmic Q-homology plane S′

has negative Kodaira dimension, implying that the Kodaira dimension of S′ is also
negative. This case was analyzed and a structure theorem given in [Miyanishi and
Sugie 1991, 2.5–2.8]. We recover these results in Lemma 3.2 and Proposition 3.1,
but we concentrate on analyzing possible completions and boundaries instead of
S′ itself. This gives more information, allowing us to give a construction and
to answer the question of uniqueness of an affine ruling of S0 (if it exists). The
information about completions is also used in the analysis of an example where
moduli occur.

Proposition 3.1. If a singular Q-homology plane has smooth locus of negative
Kodaira dimension, then it is affine-ruled or isomorphic to C2/G for some small
finite, noncyclic subgroup G < GL(2,C). The surfaces C2/G and C2/G ′ are
isomorphic if and only if G and G ′ are conjugate in GL(2,C). The minimal normal
completion of C2/G is unique and the boundary is a nonadmissible rational fork
with admissible twigs.

Proof. For the first part of the statement, we follow the arguments of [Koras and
Russell 2007, §3]. Assume that S′ is not affine-ruled. Then S0 is not affine-ruled.
Since S′ is affine, D+ Ê is not negative definite, so by [Miyanishi 2001, 2.5.1],
S0 contains a platonically C∗-fibered open subset U , which is its almost minimal
model. Also, χ(U )≤χ(S0) (see [Palka 2011a, 2.8]). The algorithm of construction
of an almost minimal model [Miyanishi 2001, 2.3.8, 2.3.11] implies that S0−U
is a disjoint sum of s curves isomorphic to C and s ′ curves isomorphic to C∗, for
some s, s ′ ∈ N. It follows that

0= χ(U )= χ(S0)− s = χ(S′)− q − s = 1− q − s,

so s = 0, q = 1, and s ′ ≤ 1. If s ′ 6= 0, then the boundary divisor of U is connected,
and hence U and S0 are affine-ruled. Thus s ′ = 0 and S0 =U , and by [Miyanishi
and Tsunoda 1984], S′ ∼= C2/G, where G is a small finite noncyclic subgroup of
GL(2,C).

Suppose G and G ′ are two subgroups of GL(2,C) such that C2/G ∼= C2/G ′.
Then ÔC2/G,(0)

∼= ÔC2/G ′,(0), so if G and G ′ are small then they are conjugate, by
[Prill 1967, Theorem 2]. The C∗-ruling of S0 does not extend to a ruling of S′,
so by [Palka 2008, 4.5], its boundary is a rational fork with admissible maximal
twigs and its minimal normal completion is unique up to isomorphism. (For the
description of the boundary, one could also use a more general result [Miyanishi
2001, 2.5.2.14].) �
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Figure 1. Affine-ruled S′.

3A. Affine-ruled planes. By Proposition 3.1, we may assume that S′ is affine-
ruled. This gives an affine ruling of S0. We assume that (S, D+ Ê, p) is a minimal
completion of the latter. This weakens our initial snc-minimality assumption on D;
that is, D is now p-minimal, but the unique section contained in D may be a
nonbranching (−1)-curve. The base of p is rational because it is isomorphic to a
section contained in D+ Ê .

Lemma 3.2. If S′ is affine-ruled, then there exists exactly one fiber of p contained
in D (see Figure 1). Each other singular fiber has a unique (−1)-curve, which is
an S0-component. The singularities of S′ are cyclic.

Proof. We have 6S0 = ν− 1 and ν ≤ 1 by Proposition 2.11, so 6S0 = 0 and there
is exactly one fiber F∞ contained in D. The fiber is smooth by the p-minimality
of D. Each singular fiber F of p contains exactly one (−1)-curve. Indeed, if
D0 ⊆ D is a vertical (−1)-curve, then by the p-minimality of D, it meets Dh and
two D-components, so µ(D0) > 1. This is impossible because Dh · F = 1. The
(−1)-curve, say C , has µ(C) > 1 and is the unique S0-component of F . There
are exactly two components of multiplicity one in F ; they are tips of F and Dh

intersects one of them. Thus the connected component of F −C not contained in
D is a chain, so S′ has only cyclic singularities. �

Remark. In Lemma 3.2, it was assumed (as in the whole paper — see Section 2D)
that S′ is logarithmic, but there is in fact no need for this. In any case Ê is vertical,
so it is a rational forest. Then D is a rational tree, and S and the base of p are
rational by [Palka 2008, 3.4(i)]. The rest of the argument goes through.

Construction 3.3. Let F1 = P(OP1 ⊕ OP1(−1)) be the first Hirzebruch surface
with a (unique) projection p̃ : F1→ P1. Denote the section coming from the in-
clusion of the first summand by D′h; then D′2h =−1. Choose n+ 1 distinct points
x∞, x1, . . . , xn ∈ D′h , and let F∞ be the fiber containing x∞. For each i = 1, . . . , n
starting from a blow-up of xi , create a fiber Fi over p̃(xi ) containing a unique
(−1)-curve Ci . Let Di be the connected component of Fi −Ci intersecting Dh ,
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the proper transform of D′h . By renumbering, we may assume there is m ≤ n such
that Ci is a tip of Fi if and only if i > m. Assume also that m ≥ 1 (for m = 0 we
would get a smooth surface). For i ≤m, put Êi = Fi −Di −Ci . Clearly, each Êi is
a chain. Let S be the resulting surface and let p : S→ P1 be the induced P1-ruling.
Put D = F∞+Dh+

∑n
i=1 Di , S = S−D and Ê =

∑m
i=1 Êi . We define ε : S→ S′

as the morphism contracting Êi ’s.

Remark 3.4. Let p : S → P1 be as in 3.3, and for a fiber F denote the great-
est common divisor of multiplicities of all S-components of F by µS(F). By
Proposition 2.11, we have H1(S′,Z)= H1(S,Z). By [Fujita 1982, 4.19, 5.9],

H1(S,Z)=

n⊕
i=1

ZµS(Fi ),

so H1(S′,Z) can be any finite abelian group. It is easy to see that µS(Fi ) =

µ(Ci )/d(Êi ), where d(Êi )= d(0)= 1 if i > m. In particular, S′ is a Z-homology
plane if and only if m = n and each Fi is a chain. In fact in the latter case π1(S)
vanishes and so S′ is contractible.

Theorem 3.5. The surface S′ in Construction 3.3 is an affine-ruled singular Q-
homology plane. Conversely, each singular Q-homology plane admitting an affine
ruling can be obtained by Construction 3.3. Its strongly balanced boundary is
unique if it is branched and is unique up to reversion if it is a chain. The affine
ruling of S′ is unique if and only if its strongly balanced boundary is not a chain.

Proof. By definition, Êi ’s are admissible chains, so S′ is normal and has only
cyclic singularities. We have d(D)=−

∏
i d(Di ) [Koras and Russell 1999, 2.1.1],

so d(D) 6= 0, and hence S′ is a singular Q-homology plane by Lemma 2.12. The
last part of the statement almost follows from Lemma 3.2. It remains to note that
by a flow (see Example 2.6), we can freely change the self-intersection of the
horizontal boundary component without changing the rest of D, so we can assume
that the construction starts with a negative section on F1. (We could, for instance,
start with D′h equal to the negative section on Fn , so that the resulting boundary
would be strongly balanced; see Definition 2.10). The uniqueness of a strongly
balanced boundary follows from Proposition 2.8.

We now consider the uniqueness of an affine ruling. Let (Vi , Di , pi ) be two
minimal completions of two affine rulings of S′ (see Section 2B). By Lemma 3.2,
both Di contain a 0-curve F∞,i as a tip. By flows with supports in F∞,i , we may
assume both Di are standard (see Definition 2.9).

Assume that D1 is not a chain. Then D1 and D2 are isomorphic as weighted
curves (see Proposition 2.8). Let Ti be the unique maximal twig of Di containing
a 0-curve. Then either Ti = F∞,i = [0], or we can write Ti = [0, 0, a1, . . . , an]

with [a1, . . . , an] admissible. Then there is a flow 8 : (V1, D1)  (V2, D2) by
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Proposition 2.8. Because D1 is branched, Supp8• ⊆ T1. Also, it follows from
Proposition 2.8 and Example 2.6 that Supp8• ⊆ F∞,i . For i = 1, 2, let fi be
some fiber of pi other than F∞,i . Since 8•( f1) is disjoint from F∞,2, we get
8•( f1) · f2 = 0, so p1 and p2 agree on S′.

Let (V1, D1) be a standard completion of S′ with D1 = [0, 0, a1, . . . , an]. We
may assume that [a1, . . . , an] is admissible and nonempty; if it is empty, then
S′ ∼= C2 is smooth, and if it is nonadmissible, then by the Hodge index theorem
we necessarily have D1 = [0, 0, 0], which disagrees with Proposition 2.11(i). Let
(V2, D2) be another completion of S′, with D2 being a reversion of D1. The 0-tip
Ti of each Di induces an affine ruling on S′. Let (V, D) be a minimal normal pair
dominating both (Vi , Di ), such that both affine rulings extend to P1-rulings of V .
We argue that these affine rulings are different by proving that σ ∗1 T1 · σ

∗

2 T2 6= 0,
where σi : (V, D)→ (Vi , Di ) are the dominations. Suppose σ ∗1 T1 · σ

∗

2 T2 = 0. Let
H be an ample divisor on V and let (λ1, λ2) 6= (0, 0) be such that T̃ · H = 0 for
T̃ = λ1σ

∗

1 T1+ λ2σ
∗

2 T2. We have (σ ∗i Ti )
2
= T 2

i = 0, so

T̃ 2
= 2λ1λ2σ

∗

1 T1 · σ
∗

2 T2 = 0,

and hence T̃ ≡ 0 by the Hodge index theorem. But D has a nondegenerate intersec-
tion matrix, because d(D)= d(D1) 6= 0, so T̃ is a zero divisor. Then σ ∗1 T1=[0], for
otherwise σ ∗1 T1 and σ ∗2 T2 would contain a common (−1)-curve, which contradicts
the minimality of (V, D). It follows that σ1 (and σ2) are identities. This contradicts
the fact that the reversion for nonempty [a1, . . . , an] is a nontrivial transformation
of the completion (even if [a1, . . . , an]

t
= [a1, . . . , an]). �

The following example shows that even if the strongly balanced boundary is
unique, there might be infinitely many strongly balanced completions.

Example 3.6. Let (V, D, ι) be an snc-minimal completion (ι is the embedding; see
Section 2A) of an affine-ruled singular Q-homology plane S′ as above. Assume
that Dh is branched and that D2

h =−1. The only change of D that can be made by a
flow is a change of the weight of Dh . If we now make an elementary transformation
(V, D) 7→ (Vx , Dx) with a center x ∈ F∞ \ Dh , then D becomes strongly balanced
(see Definition 2.10). Denote the resulting completion by (Vx , Dx , ιx) and let F∞,x
be the new fiber at infinity. The isomorphism type of the weighted boundary Dx

does not depend on x , but for different x the completions (triples) are clearly differ-
ent. In general, even the isomorphism type of the pair (Vx , Dx) depends on x . To
see this, let (Vx , Dx) ∼= (Vy, Dy). Because the isomorphism maps F∞,x to F∞,y ,
we get an automorphism of (V, D) mapping x to y. Taking a minimal resolution
S→ V , contracting all singular fibers to smooth fibers without touching Dh , and
contracting Dh , we see that for x 6= y, this automorphism descends to a nontrivial
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automorphism of P2 fixing points that are images of contracted S0-components
and of Dh . In general such an automorphism does not exist.

3B. Moduli. Repeating Construction 3.3 in a special case, we obtain arbitrarily
high-dimensional families of nonisomorphic singular Q-homology planes with
negative Kodaira dimension of the smooth locus and the same homeomorphism
type. Example 3.7 gives a proof of Theorem 1.2. For smooth Q-homology planes,
a similar example was considered in [Flenner and Zaı̆denberg 1994, 4.16].

Example 3.7. Put m = 2 and n = N + 2 for some N > 0, and let S, D, Ê , etc. be
created as in the construction above, so that D1 = [3], D2 = [2] and Di = [2, 2, 2]
for 3≤ i ≤ n. Then Ê1 = [2, 2] and Ê2 = [2] (see Figure 2).

Figure 2. Singular fibers in Example 3.7.

Denoting the contraction of
∑n

i=3 Ci by σ : S→ V , we can factor the contraction
S→ F1 (which reverses the construction) as the composition S

σ
−→ V

σ ′

−→ F1. Put
yi = σ(Ci ) and y = (y3, . . . , yn). While σ ′−1 is determined uniquely by the choice
of (x1, . . . , xn), σ−1 and the resulting surface S (and hence S′) can depend on the
choice of y. Let us write Sy and S′y to indicate this dependence. For 3≤ i ≤ n, let
D0

i be the open subset of the middle component of Di remaining after subtracting
two points belonging to other components of Di . Put

U = D0
4 × · · ·× D0

n
∼= CN−1.

The family
{S′y}y∈D0

3×U → D0
3 ×U

is N -dimensional. Since there is a compactly supported autodiffeomorphism of
the pair (C2,C∗ × {0}) mapping (p, 0) to (q, 0) for any p, q 6= 0, the choice of
y ∈ D0

3 ×U is unique up to a diffeomorphism fixing irreducible components of
σ∗(D+ Ê +C1+C2). Thus all S′y are homeomorphic.

Let π :X→U be the subfamily over {y0
3}×U . We show that the fibers of π are

nonisomorphic. Suppose that S′y ∼= S′z for y, z ∈ {y0
3} ×U . The isomorphism ex-

tends to snc-minimal resolutions. There is a flow 8• : Sy 99K Sz by Proposition 2.8,
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which is an isomorphism outside F∞. Clearly, 8• fixes Dh \ {x∞}, F1 and F2,
and hence restricts to an identity on Dh \ {x∞} and respects fibers. Since the Ci

are unique (−1)-curves of the fibers, they are fixed by 8•. Therefore 8•
|S−F∞−Dh

descends to an automorphism 8V of V − F∞− Dh fixing the fibers, such that

8V (yi )= zi .

Also, 8V descends to an automorphism 8F1 of F1 − F∞ − D′h fixing fibers. If
(x, y) are coordinates on F1− F∞−D′h ∼=C2 such that x is a fiber coordinate, then

8F1(x, y)= (x, λy+ P(x))

for some P ∈ C[x] and λ ∈ C. Introducing successive affine maps for the blow-ups,
one can check that in some coordinates 8V acts on D0

i as t → λµ(Ci )t . Now the
requirement y3 = y0

3 fixes λ2
= 1, so because µ(Ci )= 2 for each 3≤ i ≤ n, we get

that y = z.

Remark. By [Fujita 1982, 4.19 and 5.9], for S′ as above, π1(S′) is the N -fold
free product of Z2. It follows from Remark 3.4 that given a weighted boundary,
there exist only finitely many affine-ruled singular Z-homology planes with this
boundary. That is why in Example 3.7 we use branched fibers Fi for 3≤ i ≤ n; so
that the resulting surfaces are Q-, but not Z-homology planes.

4. C∗-ruled Q-homology planes

By [Palka 2008, 1.1(2) and 1.2] and Section 3A, to finish the classification of singu-
lar Q-homology planes with smooth locus of nongeneral type, one needs to classify
Q-homology planes that are C∗-ruled. Therefore, we assume here that S′ is C∗-
ruled (and logarithmic; see Section 2D). The first homology group of S′ and some
necessary conditions for singular fibers of such rulings are analyzed in [Miyanishi
and Sugie 1991, 2.9 and 2.10]. As before, we concentrate on completions rather
than the affine part itself, because this gives more information and allows us to
give a general method of construction. It also allows us to compute the number of
different C∗-rulings, and as a consequence the number of affine lines on S′.

4A. Properties of C∗-rulings. We can lift the C∗-ruling of S′ to a C∗-ruling of
the resolution and extend it to a P1-ruling p : S → P1 of a smooth completion.
Assume that D+ Ê is p-minimal. By Proposition 2.11(v), 6S0 = h + ν − 2 and
ν ≤ 1, so (h, ν,6S0)= (1, 1, 0), (2, 1, 1) or (2, 0, 0). The original C∗-ruling of S′

is twisted with base C1 in the first case, untwisted with base C1 in the second case,
and untwisted with base P1 in the third case.

Lemma 4.1. Denote by F1, . . . , Fn all the columnar fibers of p : S → P1 (see
Definition 2.3). Let F∞ be the fiber contained in D if ν = 1. There is exactly one
more singular fiber F0; it contains Ê. Moreover:
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(i) If (h, ν) = (1, 1), then F∞ = [2, 1, 2], σ(F0) = 1, and F0 and F∞ contain
branching points of p|Dh .

(ii) If (h, ν)= (2, 1), then F∞ is smooth and σ(F0)= 2.

(iii) If (h, ν)= (2, 0), then σ(F0)= 1 and F0 contains a D-rivet.

(iv) If h = 2, then the components of Dh are disjoint.

Proof. Let (h, ν)= (1, 1). Then 6S0 = 0, so by [Fujita 1982, 7.6], every singular
fiber other than F∞ is either columnar or contains a branching point of p|Dh . Now
Dh is rational and p|Dh has two branching points, one of them contained in F∞,
because D is a tree. Thus F0 is unique. The p-minimality of D implies that
F∞ = [2, 1, 2]. Now let h = 2. We have 6S0 = ν ∈ {0, 1}, and the p-minimality of
D gives (ii), (iii) and the uniqueness of F0. Suppose the components of Dh have a
common point. D is a tree, so in this case ν = 0, which gives σ(F0)= 1. Because
D is a simple normal crossing divisor, the common point belongs to the unique S0-
component of F0, which therefore has multiplicity one. The connectedness of D
implies that F0 contains no D-components. But then F0 has a unique (−1)-curve,
which is impossible by Lemma 2.2. �

Lemma 4.1 is essentially [Miyanishi and Sugie 1991, 2.10]. While the condi-
tions stated above are necessary, they are not sufficient. In the following exam-
ples the C∗-ruling satisfies them, but the C∗-ruled surface one obtains is not a
Q-homology plane.

Example 4.2. For n ≥ 0, let Fn be the n-th Hirzebruch surface, and let D0, D∞ be
sections with D2

0 = n and D2
∞
=−n. Let F∞ be a fiber and put D= D0+D∞+F∞.

Pick a point not belonging to D and make a connected sequence of blow-ups over
it. Let C0 be the unique (−1)-curve in the inverse image of the point, and let F0 and
C1 be the reduced total and the proper transform of the fiber. Denote the resulting
surface by S, put S= S−D and Ê = F0−C0−C1, and let S→ S′ be the morphism
contracting Ê . In particular, Ê might be any admissible chain, in which case S′ has
a unique cyclic singular point. S′ is not a Q-homology plane because d(D) = 0;
see Lemma 2.12(iv).

Example 4.3. Take the pair (F1, D0+D∞), where F1 is the first Hirzebruch surface
and D0 and D∞ are sections with D2

0 = 1 and D2
∞
=−1. Pick two points on D0 and

blow up over it to create two singular fibers F1 = [2, 1, 2], F2 = [2, 1, 2]. Denote
their (−1)-curves by C1, C2. These (−1)-curves separate two chains T0 = [2, 1, 2]
and T∞ = [2, 1, 2], where the middle (−1)-curves are D0 and D∞, respectively.
We have d(T0)= d(T∞)= 0. Pick a point on some Ci , say C1, that does not belong
to T0 + T∞, and make a connected sequence of blow-ups over it. Let C0 be the
unique (−1)-curve in the inverse image of the point, and let F0 be the total reduced
transform of the fiber. Denote the resulting complete surface by S. If C0 is not a
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tip of F0, then denote the connected component of F0−C0 not meeting D0+ D∞
by Ê . Let D be the reduced divisor with support T0 ∪ T∞ ∪ (F0 −C0 − Ê). Put
S = S− D and Ê = F0−C0−C1, and let S→ S′ be the morphism contracting Ê
(which is necessarily an admissible chain). Again, S′ is not a Q-homology plane
because d(D)= 0.

Theoretically, if X is a normal surface and p′ : X→ B is a C∗-ruling, then by
taking a completion of X and an extension of p′ to a P1-ruling, with Lemma 2.12
we can recognize when X is a Q-homology plane (B has to be rational). However,
to give constructions we need to reformulate the condition d(D) 6= 0 in a way that
is easier to verify by looking at the geometry of singular fibers. Recall that for
a family of subsets (Ai )i∈I of a topological space Y , a subset X ⊆ Y separates
the subsets (Ai )i∈I (inside Y ) if and only if each Ai is contained in a closure of
some connected component of Y \ X and none of these closures contains more than
one Ai . Recall also that by convention, a twig of a fixed divisor is ordered so that
its tip is the first component.

Lemma 4.4. Let (S, T, p) be a triple satisfying conditions (i)–(iii) of Lemma 2.12.
Assume also that T is p-minimal and that f ·T = 2 for a general fiber f of p. When
(h, ν)= (2, 0), let D0 be some horizontal component of D, let F0 be a unique fiber
containing a D-rivet, let B be a unique component of D separating D0, Dh − D0

and Ê inside D∪F0, and let D̃0 be a connected component of D−B containing D0.
Then d(D) 6= 0 if and only if the following conditions hold:

(i) The base of the fibration is P1 or C1 (that is, ν ≤ 1).

(ii) If (h, ν)= (2, 1), both S− T -components of the fiber with σ = 2 intersect D.

(iii) If (h, ν)= (2, 0), then d(D̃0) 6= 0.

The advantage of condition (iii) over d(D) 6= 0 is that D̃0 is simpler than D,
containing at most one branching component.

Proof. Clearly, if d(D) 6= 0, then S′ is a Q-homology plane by Lemma 2.12, which
implies (i) and (ii) (D meets each curve not contained in D+ Ê because S′ is affine).
Suppose now that (i) and (ii) are satisfied. We show that d(D) 6= 0 is equivalent
to (iii) (which is an empty condition if (h, ν) 6= (2, 0)). Note that d(D) 6= 0 is
equivalent to d(T ) 6= 0, because T − D is negative definite.

Consider the case h= 1. We have6S−T = ν−1, and hence ν= 1 and6= 0. The
horizontal component Dh meets the unique fiber F∞ contained in T in one point,
because T is a forest. Let T∞ be the component meeting Dh . We have d(F∞)= 0,
so by [Koras and Russell 1999, 2.1.1(i)],

d(D)= d(F∞)d(D− F∞)− d(F∞− T∞)d(D− F∞− Dh),
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and we obtain
d(D)=−d(F∞− T∞)d(D− F∞− Dh).

Since F∞ − T∞ and D − F∞ − Dh are vertical and do not contain whole fibers,
they are negative definite, and hence d(D) < 0.

We may now assume h = 2. Then 6 = ν ∈ {0, 1}. Put Ê = T − D. When
ν = 1, let F∞ be the unique fiber contained in D, and let F0 be the unique singular
fiber with σ(F0) = 2. When ν = 0, let F0 be the unique fiber containing a D-
rivet. All other singular fibers are columnar by [Fujita 1982, 7.6], so they contain
no components of Ê . We need to prepare some tools to proceed. Recall that the
Neron–Severi group of S− T is defined as the quotient of NS(S) by the subgroup
generated by components of T . We put ρ(S− T )= dim NS(S− T )⊗Q.

Let (X, R) be a smooth pair with X rational. Suppose R = R1+ R2, where R1

and R2 meet in unique components C1 ⊆ R1, C2 ⊆ R2 respectively. If at least one
of Ri is negative definite for i = 1, 2, then we call R−C1 a swap of R−C2 and
vice versa. Similarly, (X, R−Ci ) are by definition swaps of each other, and so are
X − (R−Ci ), for i = 1, 2. The basic property of this operation that we need is that

ρ(X − (R−C1))= ρ(X − (R−C2)).

To see this, it is enough to show that C1,C2 do not belong to the subspace V of
NS(X)⊗Q generated by components of R1 −C1 + R2 −C2. By symmetry, we
can assume that R2 is negative definite. Suppose that C1 ∈ V and write

C1 ≡U1+U2,

where Ui is in the subspace generated by components of Ri − Ci . Then 0 =
C1 · U2 = U1 · U2 + U 2

2 = U 2
2 , and hence U2 ≡ 0 by the negative definiteness

of R2. Then 0< C1 ·C2 =U1 ·C2 = 0, a contradiction. Suppose C2 ∈ V and write
C2 ≡U1+U2 as above. Then (C2−U2)

2
= (C2−U2) ·U1 = 0, so C2 ≡ U2 by

the negative definiteness of R2. Then 0 < C1 ·C2 = C1 ·U2 = 0, a contradiction.
Thus, swapping preserves ρ. Though the definition is of general use, we use only
a special kind of swapping, when C2 is a (−1)-curve and it is absorbed into the
boundary (keeping the assumption that R2 is negative definite); that is, we do the
swap one way, changing (X, R−C2) to (X, R−C1).

Take (S, T ) and interchangeably perform contractions of (−1)-curves in F0 (and
its images) that are nonbranching components of the boundary and swaps absorbing
vertical (−1)-curves in F0 (and its images) into the boundary. Denote the resulting
smooth pair by (X, T ′). By the properties of swaps and blow-ups, the rank of the
Neron–Severi group of the open part and the difference between b2 of the complete
surface and the number of components in the boundary remain constant. Also, T ′

is a rational forest. Crucially, d(T ) = 0 if and only if d(T ′) = 0. To see this, we
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may assume that (X, T ′) is simply a swap of (S, T ) as above. Since the number
of components of T equals b2(S), we know d(T ) 6= 0 if and only if ρ(S− T )= 0,
which is equivalent to ρ(X − T ′)= 0 and then to d(T ′) 6= 0.

Consider the case 6 = ν = 0. At some point, the process of swapping and
contracting makes B into a 0-curve or a (−1)-curve. It is easy to see that the
divisor D̃0+ D̃∞ is not affected by the process, so we have d(D) 6= 0 if and only
if d(D̃0) · d(D̃∞) 6= 0. All singular fibers of the induced P1-ruling at this stage
are columnar, so they can be written as Ri,0 + Ci + Ri,∞, where i = 1, . . . , n′

enumerates these fibers, C2
i equals −1, and Ri,0 and Ri,∞ are chains whose last

components meet D0 and D∞, respectively. For j = 0,∞, put ẽ j = ẽ(D̃ j ) (see
Section 2A). Then ẽ j =

∑
i ẽ(Ri, j ). We have d(D̃ j ) = (−D2

j − ẽ j ) ·
∏

i d(Ri, j ).
By the properties of columnar fibers,

d(D̃0)+ d(D̃∞)=−(D2
0 + D2

∞
+ n′) ·

∏
i

d(Ri,0).

When contracting singular fibers to smooth ones, D0+ D∞ is touched n′ times and
its image consists of two disjoint sections on a Hirzebruch surface. It follows that
D2

0 + D2
∞
+ n′ = 0, and hence d(D̃∞)+ d(D̃0)= 0. Thus d(D) 6= 0 if and only if

d(D̃0) 6= 0.
Consider the case 6 = ν = 1. We show that T ′ has at most one horizontal

component. Suppose that it has two. Then σ(F̃0) = σ(F0) = 2, so F̃0 contains
a (−1)-curve, say C1. Because T ′ is p-minimal, C1 6⊆ T . Because we assumed
that every S− T -component meets D, by the properties of swaps, every X − T ′-
component meets T ′. By the definition of X , absorbing the (−1)-curve by a swap
into the boundary is impossible. In particular, if F̃0 has no more (−1)-curves,
then C1 is not a tip of F̃0, so F̃0 is a chain. However, since σ(F̃0) = 2, a swap
absorbing C1 into the boundary is possible, which is a contradiction. Thus, F̃0 has
two (−1)-curves, C1 and C2. One of them meets some horizontal component of
T ′; otherwise, either C1 or C2 is a tip or F̃0 ∩ T ′ has three connected components,
and in either case a swap absorbing one of the Ci ’s into the boundary would be
possible. A similar argument shows that the second (−1)-curve also meets a hor-
izontal component of T ′. Thus, F̃ ′0 is a chain with C1 and C2 as tips, and again
a swap is possible, a contradiction. So T ′ has at most one horizontal component.
But after the first swap where σ of the image of F0 drops, the fiber has only one
(−1)-curve, which therefore has multiplicity greater than one, so no more swaps
of this kind are possible. Thus, T ′ has a unique horizontal component T ′h . Then

d(T ′)= d(F∞)d(T ′− F∞)− d(T ′− F∞− D∞)=−d(T ′− F∞− D∞).

Now T ′− F∞− D∞ is vertical and does not contain whole fibers, so it is negative
definite and we obtain d(T ′)= d(T ′− F∞− D∞) 6= 0. �
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Remark. By Proposition 2.11, for any Q-homology plane, we have Hi (S′,Z)= 0
for i > 1 and

|H1(S′,Z)|2 =
d(D)
d(Ê)

,

and hence S′ is a Z-homology plane if and only if d(D)= d(Ê). For a C∗-ruled S′,
more explicit computations are done in [Miyanishi and Sugie 1991], which we
do not repeat here. For example, by [ibid., 2.17], if a Z-homology plane with
κ(S0) 6= −∞ is C∗-ruled, then κ(S0)= 1 and the ruling is untwisted with base P1.
The conditions for S′ having such a ruling to be contractible are given in [ibid.,
2.11] (in particular n = 2).

4B. The Kodaira dimension. In [Miyanishi and Sugie 1991, 2.9–2.17] one can
find formulas for the Kodaira dimension of the smooth locus κ(S0) in terms of
properties of singular fibers of the C∗-ruling (there, κ(S′) is by definition equal to
κ(S0)). Unfortunately, their formulas 2.14(4), 2.15(2), and 2.16(2) are incorrect.
The corrections require splitting into cases depending on additional properties of
singular fibers. We also compute the Kodaira dimension of S′. We keep the notation
for singular fibers as in Lemma 4.1. When ν = 0, put F∞= 0. Let J be the reduced
divisor with support equal to D∪F0. For i = 1, . . . , n, denote the (−1)-curve of the
columnar fiber Fi by Ci and the multiplicity of Ci by µi . Put J+= J+C1+· · ·+Cn .

Lemma 4.5. The divisor J+ has simple normal crossings. Contract vertical (−1)-
curves in J+ and its images as long as the image is an snc-divisor. Let

ζ : (S, J+)→ (W, ζ∗ J+)

be the composition of these contractions. Then the ζ∗Fi are smooth for i = 1, . . . , n;
moreover:

(i) If h = 1, then ζ∗F0 = [2, 1, 2], (ζ∗Dh)
2
= 0, and one can further contract ζ∗F0

and F∞ to smooth fibers so that W maps to F1 and ζ∗Dh maps to a smooth
2-section of the P1-ruling of F1 disjoint from the negative section.

(ii) If h = 2, then ζ∗F0 is smooth, W is a Hirzebruch surface, and the components
of ζ∗Dh are disjoint. Also, at least one of the components of Dh has negative
self-intersection, and by changing ζ if necessary, one can assume that it is not
affected by ζ .

Proof. Suppose the crossings of J+ at x are not simple normal. By Lemma 4.1,
this only happens if h = 2. Also, x belongs to Dh ∩ F0 and is a branching point
of p|Dh , and two components of F0 of multiplicity one meet at x . Because D
has normal crossings, one of them is the unique S0-component of F0. By the p-
minimality of D, it has to be a unique (−1)-curve of F0 too, which is impossible
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by Lemma 2.2(i). Thus, J+ is an snc-divisor. Because Fi for i = 1, . . . , n are
columnar, ζ∗Fi are smooth.

Suppose h = 2. Write Dh = H + H ′. By Lemma 4.1, H and H ′ are disjoint.
Since H and H ′ meet F0 only in the components of multiplicity one, it follows
from the definition of ζ that the images of H ′ and H intersect the same component
of ζ∗F0. But this is possible only if ζ∗F0 is smooth. Since ζ∗ J+ is snc, these images
are disjoint. Say H ′2 ≤ H 2. Choosing the contracted (−1)-curves correctly, we
may assume that H ′ is not affected by ζ . Since ζ∗Dh consists of two disjoint
sections on a Hirzebruch surface, we have (ζ∗Dh)

2
= 0, so D2

h ≤ 0. Suppose
H 2
= H ′2 = 0. Then ζ does not affect Dh , so n = 0 and H and H ′ intersect

the same component B of F∞. If ν = 1, then B is an S0-component and the
second S0-component of F0 does not intersect D, a contradiction with the affineness
of S′. Thus ν = 0 and Lemma 4.4 is not satisfied (in other words, d(D) = 0), a
contradiction.

Suppose h = 1. By the definition of ζ , the image of Dh intersects the unique
(−1)-curve of ζ∗F0. It follows that ζ∗F0 = [2, 1, 2]. Now after the contraction of
F0 and F∞ to smooth fibers, the image of W is a Hirzebruch surface FN , where
N ≥ 0, and the image D′h of Dh is a smooth 2-section. Write D′h ≡ α f + 2H ,
where H is a section with H 2

=−N and f is a fiber of the induced P1-ruling of
FN . We compute

pa(α f + 2H)= α− N − 1,

so because D′h is smooth, its arithmetic genus vanishes and α = N + 1. Also,
D′h · H = α− 2N , and hence D′h · H + N = 1. Now if N = 0, then FN = P1

×P1,
and an elementary transformation with center equal to the point of tangency of D′h
and the image of F∞ (which corresponds to a different choice of components to
be contracted in F∞) leads to N = 1 and D′h · H = 0. �

Remark 4.6. Let (X, D) be a smooth pair, and let L be the exceptional divisor of
a blow-up σ : X ′→ X of a point in D. Then

K X ′ + σ
−1 D = σ ∗(K X + D)

if σ is subdivisional for D, and

K X ′ + σ
−1 D = σ ∗(K X + D)+ L

if σ is sprouting for D.

Decompose ζ into a sequence of blow-downs ζ = σk ◦ · · · ◦ σ1, and let m ≤ k
be the minimal number such that for j > m, the blow-up σ j is subdivisional for
(σ j ◦ · · · ◦ σ1)∗ J+. Define η : S→ S̃ and θ : S̃→W as

η = σm ◦ · · · ◦ σ1 and θ = σk ◦ · · · ◦ σm+1.
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Clearly, η is the identity outside F0. We denote a general fiber of a P1-ruling by f .

Lemma 4.7. Let η : S→ S̃ and θ : S̃→W be as above. Then

K S̃ + η∗ J ≡
(

n+ ν− 1−
n∑

i=1

1
µi

)
f +G+ θ∗ 1

2(U +U ′),

where G is a negative definite effective divisor with support contained in the support
of F∞+

∑n
i=1 Fi and U , U ′ are the (−2)-tips of ζ∗F0 if p is twisted and are zero

otherwise.

Proof. Let V ⊆W be defined as the sum of (four) (−2)-tips of F∞+ ζ∗F0 if p is
twisted and as zero otherwise. We check easily that

KW + Dh + F∞+ ζ∗F0 ≡ (ν− 1) f + 1
2 V .

Indeed, if p is untwisted, this is just KW+Dh+2 f ≡ 0 on a Hirzebruch surface, and
if p is twisted, then it follows from the numerical equivalences KW + Dh + f ≡ 0
and F∞+ ζ∗F0−

1
2 V ≡ f . By Remark 4.6,

K S̃ + η∗ J+ ≡ (n+ ν− 1) f + θ∗ 1
2 V .

For every i = 1, . . . , n, the divisor Gi = (1/µi )Fi −Ci is effective and negative
definite because Ci is not contained in its support. We get

K S̃ + η∗ J ≡ (n+ ν− 1) f +
n∑

i=1

(
Gi −

1
µi

Fi

)
+ θ∗ 1

2 V,

so

K S̃ + η∗ J ≡
(

n+ ν− 1− 1
µi

)
f +

n∑
i=1

Gi + θ
∗ 1

2 V . �

Remark 4.8. Because KS + D+ Ê and KS + D intersect trivially with a general
fiber, we can write KS + D+ Ê ≡ κ0 f +G0 and KS + D+ Ê ≡ κ f +G, where
G0 and G are some vertical effective and negative definite divisors and κ0, κ ∈Q.
It follows that κ(S0) and κ(S) are determined by the signs of κ0 and κ . More
explicitly, κ(S0) equals −∞, 0, or 1 depending on whether κ0 < 0, κ0 = 0, or
κ0 > 0, respectively. An analogous statement holds for κ(S) and κ .

It turns out that κ and κ0 depend in a quite involved way on the structure of F0.
This dependence can be stated in terms of the properties of η : S→ S̃ defined above.
Denote the S0-components of F0 by C , C̃ (or just C if there is only one) and their
multiplicities by µ, µ̃ respectively. Note that µ≥ 2 if σ(F0)= 1, but if σ(F0)= 2,
then it can happen that µ= 1 or µ̃= 1.
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Theorem 4.9. Let λ= n+ν−1−
∑n

i=1(1/µi ). The numbers κ and κ0 determining
the Kodaira dimension of a C∗-ruled singular Q-homology plane S′ and of its
smooth locus S0 defined in Remark 4.8 are as follows:

(A) Case (h, ν) = (1, 1). Denote the component of F0 intersecting the 2-section
contained in D by B.

(i) If η = id and F0 = [2, 1, 2], then κ = κ0 = λ−
1
2 .

(ii) If η= id, B is not a tip of F0, and C ·B>0, then (κ, κ0)= (λ−
1
2 , λ−1/2µ).

(iii) If η = id, C · B = 0, and F0 is a chain, then (κ, κ0)= (λ−
1
2 , λ).

(iv) If η = id and B is a tip of F0, then (κ, κ0)= (λ−
1
2 , λ− 1/µ).

(v) If η 6= id, then κ = κ0 = λ.

(B) Case (h, ν)= (2, 1).

(i) If η = id and C2
= C̃2

=−1, then (κ, κ0)= (λ− 1, λ− 1/min(µ, µ̃)).
(ii) If η = id and C2

6= −1 or C̃2
6= −1, then κ = κ0 = λ− 1/min(µ, µ̃).

(iii) If η 6= id, then assuming that C is the S0-component disjoint from Ê , we
have κ = κ0 = λ− 1/µ.

(C) Case (h, ν)= (2, 0). Then κ = κ0 = λ.

Proof. (A) The unique S0-component C of F0 is a (−1)-curve. Otherwise, the p-
minimality of D implies that B is the only (−1)-curve in F0 and that it intersects
two other D-components of F0, giving F0 = [2, 1, 2] ⊆ D, with no place for C . It
is now easy to check that the list of cases in (A) is complete. Because C2

= −1,
F0 − C has at most two connected components. The only case when Ê is not
connected is when F0 contains no D-components, which is only possible if C = B
and F0=[2, 1, 2]. Because C is the unique (−1)-curve in F0, we know that ζ = θ◦η
has at most one center on ζ∗F0, so by symmetry we can and do assume that it does
not belong to U ′ (see Lemma 4.7). Suppose η 6= id. The center of η belongs to a
unique component of η∗ J . Because Dh does not intersect components contracted
by η, this component is a proper transform of a D-component, so η∗(C + Ê)= 0
by the connectedness of Ê . If we now factor η as η= σ ◦η′, where σ is a sprouting
blow-up for η∗ J , then by Lemma 4.7 and Remark 4.6,

K + σ−1η∗ J ≡ λ f +G+ σ ∗θ∗ 1
2(U +U ′)+Exc(σ ),

where Exc(σ ) is the exceptional (−1)-curve contracted by σ and K is a canonical
divisor on a respective surface. Because η∗(C+ Ê)= 0, each component of C + Ê
appears with positive integer coefficient in η′∗ Exc(σ ), which gives KS+η

−1η∗ J ≡
λ f +G+G0, where G0 is a vertical effective and negative definite divisor for which
G0− Ê−C is still effective. Because η−1η∗ J = J = D+ Ê+C , we get κ = κ0= λ.
We can now assume that η = id, so

KS + D+ Ê +C ≡ λ f +G+ 1
2(U

′
+ θ∗U ).
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This can be written as

KS + D ≡ (λ− 1
2) f +G+ 1

2(U
′
+ F0+ θ

∗U − 2C − 2Ê).

All components of F0 appear in U ′+ F0+ θ
∗U with coefficients bigger than 1, so

U ′+ F0+ θ
∗U − 2C − 2Ê is effective and negative definite, because its support

does not contain the Ê-component that is a proper transform of U . This gives
κ = λ− 1

2 . We now compute κ0. If F0 = [2, 1, 2], then θ∗U =U and Ê =U +U ′,
so KS + D ≡ (λ− 1

2) f + G and we get κ0 = λ−
1
2 . Suppose B is a tip of F0.

Because µ(B)= 2, we know that F0 is a fork with two (−2)-tips as maximal twigs
(see Lemma 2.2(ii)) and that θ∗U = U (U and U ′ are components of Ê). The
divisor G0 =

1
2(U +U ′)+ (1/µ)F0−C is vertical effective and its support does

not contain C . Writing

KS + D+ Ê ≡
(
λ−

1
µ

)
f +G+G0,

we infer that κ0 = λ− 1/µ, and we obtain (iv). Consider the case (ii). Because B
is not a tip of F0, we know F0 is a chain. The assumption B ·C > 0 implies that
B2
6= −1 and θ∗U = C + Ê . We obtain

KS + D+ Ê ≡
(
λ−

1
2µ

)
f +G+ 1

2

(
U ′+ Ê + 1

µ
F0−C

)
,

and U ′+ Ê + (1/µ)F0−C is effective with support not containing C . This gives
κ0 = λ− (1/2µ). We are left with the case (iii). As in (ii), F0 is a chain, and we
have now

KS + D+ Ê ≡ λ f +G+ 1
2(U

′
+ θ∗U − 2C).

U ′+ θ∗U − 2C is effective and does not contain B, because B ·C = 0, so κ0 = λ.

(B) Suppose η 6= id. Note that η∗F0 contains a proper transform of one of C ,
C̃ , for otherwise, F0 would contain a D-rivet. It follows that η is a connected
modification and that its center lies on a birational transform of a D-component
(the S0-component contracted by η has to intersect D). Thus, η∗F0 is a chain
intersected by Dh in two different tips and containing C . Since D ∩ Ê = ∅, we
get η∗(C̃ + Ê)= 0. Writing η = σ ◦ η′, where σ is a sprouting blow-down, we see
that η′∗ Exc(σ ) is an effective negative definite divisor that does not contain C in
its support and for which η′∗ Exc(σ )− C̃ − Ê is effective. By Lemma 4.7, we have

K + σ−1η∗D+C ≡ λ f +G+Exc(σ ),

where K is a canonical divisor on a respective surface. It follows from Remark 4.6
and from arguments analogous to those in part (A) that κ = κ0 = λ− (1/µ). We
can now assume that η = id. By Lemma 4.7,

KS + D+C + Ê + C̃ ≡ λ f +G,
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which implies κ0 = λ− (1/min(µ, µ̃)). Writing

KS + D ≡
(
λ−

1
α

)
f +G+ 1

α

(
F0−α(C + Ê + C̃)

)
,

we see that κ = λ− (1/α), where α is the lowest multiplicity of a component
of C + Ê + C̃ in F0. Note that C + Ê + C̃ is a chain. Now if C2

6= −1, for
instance, then F0 is columnar, and factoring θ into blow-downs, we see that Ê is
contracted before C , and hence α = µ≤ µ̃. Suppose C2

= C̃2
=−1, and let θ ′ be

the composition of successive contractions of (−1)-curves in F0 different than C .
Now either θ ′

∗
F0 = θ

′
∗
C = [0] or θ ′

∗
F0 is columnar. Both possibilities imply that

C + Ê contains a component of multiplicity one, and hence α = 1.

(C) C is a (−1)-curve. Indeed, D ∩ F0 contains at most one (−1)-curve, and if
it does, then by the p-minimality of D, it meets both components of Dh and has
multiplicity one, so there is another (−1)-curve in F0. We infer that F0−C has
two connected components, one being Ê and the second containing a rivet. The
existence of a rivet in F0 implies that η 6= id, so η∗(C + Ê) = 0. Factoring out a
sprouting blow-down from η as above, we get

K + σ−1η∗D ≡ λ f +G+Exc(σ ).

The divisor η′∗ Exc(σ )−C − Ê is effective and does not contain all components
of F0, so by Remark 4.6, κ = κ0 = λ. �

Remark. In case (B)(iii), it is not true in general that µ=min(µ, µ̃).

4C. Smooth locus of Kodaira dimension zero. As a corollary, we obtain the fol-
lowing information in case κ(S0)= 0.

Corollary 4.10. Let S′ be a C∗-ruled singular Q-homology plane, and let D be a
p-minimal boundary for an extension p of this ruling to a normal completion, as
above. Let D be the p-minimal boundary, and let n be the number of columnar
fibers. Then κ(S0)= 0 exactly in the following cases:

(i) p is twisted, n = 0, and F0 is of type (A)(iii) or (A)(v).

(ii) p is twisted, n = 1, µ = µ1 = 2, and F0 is of type (A)(i) or (A)(iv) with no
D-components.

(iii) p is untwisted with base C1, n=1, µ1=2, min(µ, µ̃)=2, and some connected
component of F0 ∩ D is a (−2)-curve.

(iv) p is untwisted with base C1, n = 2, µ1 = µ2 = 2, and some S0-component of
F0 meets Dh .

(v) p is untwisted with base P1, n = 2, and µ1 = µ2 = 2.
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Proof. Note that n−
∑n

i=1(1/µi )≥ n/2 because µi ≥ 2 for each i . Suppose p is
twisted. Then µ≥ 2, and so by Theorem 4.9,

λ≥ κ0 ≥ λ−
1
2 ≥

n−1
2
.

If n = 0, then λ = 0, which gives κ0 = 0 exactly in cases (A)(iii) and (A)(v). If
n = 1, then κ0 = λ−

1
2 = 0, which is possible in case (A)(i) if µ1 = 2 and in case

(A)(iv) if µ= µ1 = 2. In both cases, Dh meets the S0-component, so F0 contains
no D-components. If p is untwisted with base P1, then

n− 1≥ λ= κ0 ≥
n
2
− 1,

so n = 2 (because λ = −1/µ1 < 0 for n = 1) and κ0 = 1− 1/µ1− 1/µ2, which
vanishes only if µ1 = µ2 = 2. Assume now that p is untwisted with base C1. Then

n > κ0 ≥ λ− 1≥ n
2
− 1,

so n ∈ {1, 2}. There are no (−1)-curves in D ∩ F0 by the p-minimality of D, so
at least one S0-component, say C , is a (−1)-curve. We can also assume that C is
contracted by η in case η 6= id and that µ≥ µ̃ in case η = id. Then κ0 = λ− 1/µ̃.
The composition ξ of successive contractions of all (−1)-curves in F0− C̃ and its
images is a connected modification. Suppose n = 2. The inequalities above give
λ= 1, so µ1 = µ2 = 2 and µ̃= 1. Then ξ∗F0 = [0], and because ξ is a connected
modification, C̃ is a tip of F0. So one of C , C̃ intersects Dh , because otherwise
F0− C̃ −C − Ê would be connected and would intersect both sections from Dh ,
and hence F0 would contain a rivet. This gives (iv). Suppose that n = 1. Then
µ1 = µ̃ = 2. By the choice of C , further contractions of F0 to a smooth fiber
are subdivisional for ξ∗D ∪ ξ∗F0, so we have ξ∗F0 = [2, 1, 2] with the birational
transform of C̃ in the middle, and the image of Dh intersects both (−2)-tips of
ξ∗F0. Since ξ is a connected modification, it does not touch one of these tips, so
one of the connected components of D∩ F0 is a (−2)-curve. If µ= 1, then µ< µ̃,
so by our assumption η 6= id. But then µ > 1, because C2

=−1 and C intersects
Ê and D. This contradiction ends the proof of (iii). �

4D. Constructions. Lemmas 4.5 and 2.12 give a practical method of reconstruct-
ing all C∗-ruled Q-homology planes. We summarize it in here. We denote irre-
ducible curves and their proper transforms by the same letters.

Construction 4.11. Case 1 (twisted ruling). Let Dh be a smooth conic on P2, let
L0, L∞ be tangents to Dh at distinct points x0, x∞, and let L i , for i = 1, . . . , n
and n ≥ 0, be distinct lines through L0 ∩ L∞, other than L0, L∞. Blow up once at
L0∩L∞; let p : F1→P1 be the P1-ruling of the resulting Hirzebruch surface. Over
each of p(L0), p(L∞), blow up on Dh twice, creating singular fibers F̃0= [2, 1, 2]
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and F∞ = [2, 1, 2]. For each i = 1, . . . , n, by a connected sequence of blow-ups
subdivisional for L i + Dh , create a column fiber Fi over p(L i ) and denote its
unique (−1)-curve by Ci . By some connected sequence of blow-ups with a center
on F̃0, create a singular fiber F0, and denote the newly created (−1)-curve by C
(if the sequence is empty, define C as the (−1)-curve of F̃0). Denote the resulting
surface by S, put

T = Dh + F∞+ (F1−C1)+ · · ·+ (Fn −Cn)+ F0−C,

and construct S′ as in Lemma 2.12. S′ is a Q-homology plane (singular as long as
T is not connected) because conditions 2.12(i)–(iii) are satisfied by construction
and (iv) by Lemma 4.4. To see that each S′ admitting a twisted C∗-ruling can be
obtained in this way, note that by the p-minimality of D, even if F0 contains two
(−1)-curves C and B ⊆ D, then B is not a tip of F0 and ζ does not touch it, so in
each case the modification F0→ ζ∗F0 induced by ζ is connected, and we are done
by Lemma 4.5.

Case 2 (untwisted ruling with base C1). Let x0, x1 . . . xn, x∞, y ∈ P2, for n ≥ 0,
be distinct points, such that all but y lie on a common line D1. Let L i be a line
through xi and y. Blow up y once and let D2 be the negative section of the P1-
ruling of the resulting Hirzebruch surface p : F1→ P1. For each i = 0, 1, . . . , n,
by a connected sequence of blow-ups (which can be empty if i = 0), with first
center xi and subdivisional for D1 + L i , create a column fiber Fi (F̃0 if i = 0)
over p(xi ) and denote its unique (−1)-curve by Ci if i 6= 0 and by C̃ if i = 0 (put
C̃ = L0 if the sequence over p(x0) is empty). Choose a point z ∈ F0 that lies on
D1+ F̃0− C̃ , and by a nonempty connected sequence of blow-ups with first center
z, create some singular fiber F0 over p(x0). Let C be the new (−1)-curve. Denote
the resulting surface by S, put

T = D1+ D2+ L∞+ (F1−C1)+ · · ·+ (Fn −Cn)+ F0−C − C̃,

and construct S′ as in Lemma 2.12. The surface S′ is a Q-homology plane by
Lemma 4.4, because Lemma 4.4(ii) is satisfied by the choice of z. To see that all
S′ admitting an untwisted C∗-ruling with base C1 can be obtained in this way, note
that by changing the completion of S′ by a flow if necessary, we can assume that
one of the components of Dh is a (−1)-curve. D ∩ F0 contains no (−1)-curves,
and as was shown in the proof of Theorem 4.9, η contracts at most one of C , C̃ .
Then by Lemma 4.5, we are done.

Case 3 (untwisted ruling with base P1). Let D2 be the negative section of the P1-
ruling of a Hirzebruch surface p : FN → P1, with N > 0. Let x0, x1, . . . , xn , with
n ≥ 0 be points on a section D1 of p disjoint from D2. For each i = 0, 1, . . . , n, by
a connected sequence of blow-ups (which can be empty if i = 0), with first center
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xi and subdivisional for D1+ p−1(p(xi )), create a column fiber Fi (F̃0 if i = 0)
over p(xi ) and denote its unique (−1)-curve by Ci if i 6= 0 and by B if i = 0 (put
B = p−1(p(x0)) if the sequence over p(x0) is empty). Assume that the intersection
matrix of at least one of two connected components of

D1+ D2+ (F1−C1)+ · · ·+ (Fn −Cn)+ (F̃0− B)

is nondegenerate. By a connected sequence of blow-ups starting from a sprouting
blow-up for D1+ F̃0 with center on B, create some singular fiber F0 over p(x0)

and let C be the new (−1)-curve. Denote the resulting surface by S, put

T = D1+ D2+ (F1−C1)+ · · ·+ (Fn −Cn)+ (F0−C),

and construct S′ as in Lemma 2.12. D is connected because the modification
F0+D1→ F̃0+D1 is not subdivisional, so S′ is a Q-homology plane by Lemma 4.4.
By Lemmas 4.5 and 4.4, each S′ with an untwisted C∗-ruling having a base P1 can
be obtained in this way.

5. Corollaries

5A. Completions and singularities. Recall that Q-homology planes with nonquo-
tient singularities have unique snc-minimal completions (and hence also balanced
ones) and unique singular points [Palka 2008, 1.2]. The completions and singulari-
ties in case κ(S0)=−∞ are described in Section 3. In case κ(S0)= 2, the singular
point is unique and of quotient type [ibid.]. Also, the snc-minimal boundary cannot
contain nonbranching b-curves with b ≥ 0, because these induce C1- or C∗-rulings
of S0, and hence the snc-minimal completion is unique. Theorem 1.1 summarizes
the remaining cases.

Proof of Theorem 1.1. (1) Suppose S′ has at least two different balanced com-
pletions. These differ by a flow, which implies that the boundary contains a non-
branching rational component F∞ with zero self-intersection. Then F∞ is a fiber
of a P1-ruling p of a balanced completion (V, D). We may assume that F∞ is not
contained in any maximal twig of D. Indeed, after moving the 0-curve by a flow
to a tip of a new boundary, it gives an affine ruling of S′, which is possible only
if κ(S0) = −∞. Because F∞ is nonbranching, the induced ruling restricts to an
untwisted C∗-ruling of S′. It follows from the connectedness of the modification
η (see the proof of Theorem 4.9) that n > 0, so this restriction has more than
one singular fiber. Both components of Dh are branching in D. Since F∞ is the
only nonbranching 0-curve in D, centers of elementary transformations lie on the
intersection of the fiber at infinity with Dh . If D is strongly balanced, then one
of the components of Dh is a 0-curve, and hence there are at most two strongly
balanced completions. Conversely, suppose that S′ has an untwisted C∗-ruling with
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base C1 and that n> 0, and let (V, D, p) be a completion of this ruling. Because S′

is not affine-ruled, the horizontal components H , H ′ of D are branching, so (V, D)
is balanced and we can assume H ′2 = 0. Because H , H ′ are proper transforms
of two disjoint sections on a Hirzebruch surface, we have H 2

+ H ′2+ n ≤ 0, so
H 2
6= 0 and we can obtain a different strongly balanced completion of S′ by a flow

that makes H into a 0-curve.

(2), (3) By [Palka 2008, 4.5] and [Palka 2011a], we may assume that S′ is C∗-ruled.
If this ruling is untwisted, it follows from the proof of Theorem 4.9 that S′ has a
unique singular point, and it is a cyclic singularity. In the twisted case, because
Ê ⊆ F0, if Ê is not connected then F0 is of type (A)(i), and if Ê is not a chain then
F0 is of type (A)(iv). �

Remark. The set of isomorphism classes of strongly balanced boundaries that
a given surface admits is an invariant of the surface, which allows us to easily
distinguish between many Q-acyclic surfaces.

5B. Singular planes of negative Kodaira dimension. As another corollary of
Theorem 4.9 we give a detailed description of singular Q-homology planes of
negative Kodaira dimension. We assume that κ(S0) 6= 2, but as we show in [Palka
and Koras 2010], this assumption is redundant.

Theorem 5.1. Suppose that S′ is a singular Q-homology plane of negative Kodaira
dimension and that S0 is its smooth locus. If κ(S0) 6= 2, then exactly one of the
following holds:

(i) κ(S0) = −∞; S′ is affine-ruled or isomorphic to C2/G for a small finite
noncyclic subgroup G < GL(2,C).

(ii) κ(S0)∈ {0, 1}; S′ is nonlogarithmic and is isomorphic to a quotient of an affine
cone over a smooth projective curve by an action of a finite group acting freely
off the vertex of the cone and preserving the set of lines through the vertex.

(iii) κ(S0) ∈ {0, 1}; S′ has an untwisted C∗-ruling with base C1 and two singular
fibers. One of them consists of two C1’s meeting in a cyclic singular point;
after taking a resolution and completion, the respective completed singular
fiber is of type (B)(i) with µ, µ̃≥ 2 (see Figure 3 and Theorem 4.9).

Proof. By [Palka 2011a; Palka 2008, 4.5] and Section 3, we may assume that S′ is
logarithmic and C∗-ruled and that κ(S0)≥ 0. We need to show (iii). Let (V, D, p)
be a minimal completion of the C∗-ruling. By Theorem 4.9, if p is twisted, then

0> κ0 ≥ λ−
1
2 ≥

n−1
2
,

so n = λ = 0. The inequalities κ < 0 and κ0 ≥ 0 can be satisfied only in case
(A)(iii), and then D2

h = 0 by Lemma 4.5, so Dh induces an untwisted C∗-ruling of
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Figure 3. Untwisted C∗-ruling, κ(S′)=−∞.

S′. Suppose p is untwisted. Because κ 6= κ0, p has base C1 and is of type (B)(i).
Because

0> κ = λ− 1≥ n
2
− 1,

we get n ≤ 1, but for n = 0 we get κ0 < λ < 0, so in fact n = 1. Then 0 ≤ κ0 =

1− 1/µ1− 1/min(µ, µ̃), and hence min(µ, µ̃)≥ 2. �

By Proposition 2.11, Hi (S′,Z) vanishes for i > 1. If S′ is of type C2/G or
of type (ii), then it is contractible. H1(S′,Z) for affine-ruled S′ was computed in
Remark 3.4. For completeness, we now compute the fundamental group of S′ of
type (iii), which by Proposition 2.11 is the same as π1(S). Let E0 be a component
of Ê intersecting C . Contract C̃ and successive vertical (−1)-curves until C is
the only (−1)-curve in the fiber (C cannot became a 0-curve, because it does not
intersect Dh), and denote this contraction by θ . Let θ ′ be the contraction of θ∗F0

and F1 to smooth fibers. Put U = S0 \ (C1 ∪C ∪ C̃) and let γ1, γ, t ∈ π1(U ) be
the vanishing loops of the images of F1, F0 under θ ′ ◦ θ and of some component of
Dh (see [Fujita 1982, 4.17]). We need to compute the kernel of the epimorphism
π1(U )→ π1(S). Because θ does not touch C , θ∗F0 is columnar and θ∗E0 6= 0.
Using [ibid., 7.17], one can show by induction on the number of components of a
columnar fiber that because E0 ·C 6= 0, the vanishing loops of E0 and C , which
are of type γ atb and γ ctd , satisfy ad − bc =±1. Thus γ and t are in the kernel,
and hence

π1(S)= 〈γ1 : γ
µ1〉 ∼= Zµ1 .

In particular, S′ is not a Z-homology plane.

6. Uniqueness of C∗-rulings

6A. The number of C∗-rulings. We consider the question of uniqueness of C∗-
rulings of S0 and S′. Recall that a C∗-ruling of S0 is extendable if it extends to
a ruling (morphism) of S′. Two rational rulings of a given surface are considered
the same if they differ by an automorphism of the base. When a C∗-ruling of S0
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exists, using the information on snc-minimal boundaries, we are able to compute
the number of different C∗-rulings.

Theorem 6.1. Let S′ be a singular Q-homology plane that is not affine-ruled. Let
p1, . . . , pr for r ∈ N∪ {∞} be all different C∗-rulings of the smooth locus S0 of S′.
Let D be an snc-minimal boundary of S′.

(1) If κ(S0)= 2 or if S′ is exceptional (so that κ(S0)= 0), then r = 0.

(2) If κ(S0)= 1 or if S′ is nonlogarithmic, then r = 1.

(3) If κ(S0) = −∞, then r ≥ 1 and p1 is nonextendable. Also, r 6= 1 only if the
fork that is an exceptional divisor of the snc-minimal resolution of S′ is of type
(2, 2, k). In this case we have:

(i) If k 6= 2, then r = 2, p2 is twisted, and it has a unique singular fiber,
which is of type (A)(iv).

(ii) If k = 2, then r = 4, p2, p3, p4 are twisted, and they have unique singular
fibers, which are of type (A)(iv).

(4) Assume that κ(S0) = 0 and that S′ is logarithmic and not exceptional. Then
all pi extend to C∗-rulings of S′ and the following hold:

(i) If the dual graph of D is

−2 −1 k −2

−2 −2

with k ≤−2, then r = 1 and p1 is twisted.
(ii) If the dual graph of D is

−2 −1 −1 −2

−2 −2

then r = 2 and p1, p2 are twisted.
(iii) If the dual graph of D is

−2 k 0 m −2

−2 −2

then r = 3, p1, p2 are twisted and p3 is untwisted with base C1.
(iv) In all other cases, r = 2, p1 is twisted and p2 is untwisted.
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Proof. (1) By definition, exceptional Q-homology planes are not C∗-ruled. If S0

is of general type, then by Iitaka’s easy addition formula [Iitaka 1982, 10.4], S0 is
not C∗-ruled.

(2) If S′ is nonlogarithmic, then by [Palka 2008, 4.1], the C∗-ruling of S′ is unique.
Assume that κ(S0)= 1. Let (S, D) be some normal completion of the snc-minimal
resolution S → S′. Denote the exceptional divisor of the resolution by Ê . By
[Fujita 1982, 6.11], for some n > 0, the base locus of |n(KS + D+ Ê)+| is empty
and the linear system gives a P1-ruling of S that restricts to a C∗-ruling of S0; see
also [Miyanishi 2001, 2.6.1]. Consider another C∗-ruling of S0. Modifying S if
necessary, we can assume that it extends to a P1-ruling of S. Let f ′ be a general
fiber of this extension. Then

f ′ · (KS + D+ Ê)= f ′ · KS + 2= 0,

and hence
f ′ · (KS + D+ Ê)++ f ′ · (KS + D+ Ê)− = 0.

However, (KS+ D+ Ê)− is effective and (KS+ D+ Ê)+ is numerically effective,
so

f ′ · (KS + D+ Ê)+ = f ′ · (KS + D+ Ê)− = 0,

and we see that the rulings are the same.

(3), (4) We need to understand how to find all twisted C∗-rulings of a given S′.
Consider a twisted C∗-ruling of S′ and let (Ṽ , D̃, p̃) be a minimal completion of
this ruling. By the p̃-minimality of D̃, the only component of D̃ that can be a non-
branching (−1)-curve is D̃h , so there is a connected modification (Ṽ , D̃)→ (V, D)
with snc-minimal D. Let D̃0 ⊆ D̃ be the (−1)-curve of the fiber at infinity (see
Lemma 4.1). D is not a chain; otherwise S′ would be affine-ruled. Let D0 ⊆ D
be the image of D̃0, and let T be the connected component of D − D0 contain-
ing the image of the horizontal component (which is a point if the modification
is nontrivial). In this way, a twisted C∗-ruling of S′ determines a pair (D0, T )
(with D0 + T contained in a boundary of some snc-minimal completion), such
that βD(D0)= 3, D2

0 ≥−1, T is a connected component of D− D0 containing the
image of the horizontal section, and both connected components of D−D0−T are
(−2)-curves. Conversely, if we have an snc-minimal normal completion (V, D)
and a pair as above, we make a connected modification (Ṽ , D̃)→ (V, D) over D
by blowing successively on the intersection of the total transform of T with the
proper transform of D0 until D0 becomes a (−1)-curve. The (−1)-curve together
with the transform of D− T − D0 induce a P1-ruling of V ′ and constitute the fiber
at infinity for this ruling. The restriction to S′ is a twisted C∗-ruling.
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Suppose κ(S0) = −∞. Since S0 is not affine-ruled, S′ ∼= C2/G for a finite
noncyclic small subgroup G < GL(2,C) (see Section 3). Let (V, D) be an snc-
minimal normal completion of S′ and let S → V be a minimal resolution with
exceptional divisor Ê . We saw in the proof of Proposition 3.1 that S0 admits a
platonic C∗-ruling, which extends to a P1-ruling of S. Also, D and Ê are forks
for which Dh and Êh are the unique branching components of D and E respec-
tively. In particular, the C∗-ruling does not extend to a ruling of S′, and because
nonbranching components of D have negative self-intersections, (S, D+ Ê) is a
unique snc-minimal smooth completion of S0 (and hence (V, D) is a unique snc-
minimal normal completion of S′). It follows from the proof of [Palka 2008, 4.1]
that the nonextendable C∗-ruling of S0 is unique. Suppose there is a C∗-ruling
of S0 that does extend to S′. Since Ê is not a chain, it follows from the proof of
Theorem 4.9 that this ruling is twisted. Since maximal twigs of Ê and D are adjoint
chains of columnar fibers, we see that a maximal twig of D−Dh is a (−2)-curve if
and only if the respective maximal twig of Ê− Êh is a (−2)-curve. Also, 0< d(Ê),
so Ê2

h ≤−2, and because Ê2
h + D2

h =−3, we have D2
h ≥−1. Therefore, S′ admits

a twisted C∗-ruling if and only if Ê is a fork of type (2, 2, k) for some k ≥ 2. If
k 6= 2, then the choice of (D0, T ) as above is unique, and if k = 2, then there are
three such choices. If (V ′, D′, p) is a minimal completion of such a ruling, then
D′ is a fork, so because κ0 < 0, we have n = 0 and F0 is of type (A)(iv) (see the
proof of Theorem 4.9). This gives (3).

We can now assume that κ(S0)= 0 and that S′ is logarithmic and not exceptional.
Then S0 is C∗-ruled and by [Palka 2008, 4.7(iii)], each C∗-ruling of S0 extends to
a C∗-ruling of S′. Let r ∈ {1, 2, . . . } ∪ {∞} be the number of different (up to
automorphism of the base) C∗-rulings of S′ and let (Vi , Di , pi ), for i ≤ r , be
their minimal completions. Minimality implies that nonbranching (−1)-curves in
Di are pi -horizontal. We add consequently an upper index (i) to objects defined
previously for any C∗-ruling when we refer to the ruling pi . If pi is untwisted, we
denote the horizontal components of D(i)

h by H (i), H ′(i).
Suppose p1 is untwisted with base P1. Then F (1)0 contains a rivet and by

Corollary 4.10, n(1)= 2, so D1 does not contain nonbranching b-curves with b≥−1.
Then (V1, D1) is balanced and S′ does not admit an untwisted C∗-ruling with
base C1, because it does not contain nonbranching 0-curves (see Lemma 4.1). By
Corollary 4.10, each component of D(1)

h has βD1 = 3 and intersects two (−2)-tips
of D1. Note that ζ (1) (see Lemma 4.5) touches D(1)

h two times if both components
of D(1)

h intersect the same horizontal component of F (1)0 and three times if not. By
Lemma 4.5 and the properties of Hirzebruch surfaces, we get −3≤ (D(1)

h )2 ≤−2.
In particular, one of the components of D(1)

h , say H (1), has (H (1))2 ≥ −1, so by
the discussion about twisted C∗-rulings above, H (1) together with two (−2)-tips
of D1 gives rise to a twisted C∗-ruling p2 of S′. Because H ′(1) together with two
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(−2)-tips of D1 intersecting it are contained in a fiber of p2, (H ′(1))2 ≤−2. Thus
p2 is the only twisted ruling of S′, because H (1) is the only possible choice for
a middle component of the fiber at infinity of a twisted ruling. Suppose r ≥ 3.
Then p3 is untwisted with base P1. Because D1 does not contain nonbranching 0-
curves, any flow in D1 is trivial, so V3 = V1. Because p3 and p1 are different after
restriction to S′, the S0-components C (1), C (3) contained respectively in F (1)0 , F (3)0
are different. Because they both intersect Ê , they are contained in the same fiber
of p2, which contradicts 6(2)S0

= 0. Because D contains no nonbranching 0-curves,
D is not of type (4)(iii). Since n(1) = 2, D contains at least seven components, so
D is not of type (4)(i) or (4)(ii).

We can now assume that each untwisted C∗-ruling of S′ has base C1. Suppose
p1 is such a ruling. By Corollary 4.10, both horizontal components of D1 have
βD1 = 3, and one of them, say H ′(1), intersects two (−2)-tips T and T ′ of D1.
In particular, D1 is snc-minimal. Because F (1)∞ = [0], changing V1 by a flow if
necessary, we may assume that H ′(1) is a (−1)-curve. Then

F (2)
∞
= T + 2H ′(1)+ T ′

induces a P1-ruling p2 : V1→ P1, which is a twisted C∗-ruling after restricting it
to S′. Suppose r ≥ 3. If p3 is untwisted, then its base is C1, and changing V3 by a
flow if necessary, we can assume that V3 = V1. But then F (1)∞ = F (3)∞ , because D1

contains only one nonbranching 0-curve, so p1 and p3 have a common fiber and
hence cannot be different after restriction to S′, which is a contradiction. Thus p3 is
twisted. By the discussion above, p3 can be recovered from a pair (D0, T ) on some
snc-minimal completion of S′. All such completions of S′ differ from (V1, D1) by
a flow, which is an identity on V1 − F (1)∞ , and hence the birational transform of
D0 on V1 is either H (1) or H ′(1). Because the restrictions of p1 and p2 to S′ are
different, it is H (1). It follows that r = 3 and that D1− H ′(1) has two (−2)-tips as
connected components, and hence the dual graph of D1 is as in (iii). Conversely, if
S′ has a boundary as in (iii), then besides the untwisted C∗-ruling induced by the
0-curve, it has also two twisted rulings, each with one of the branching components
as the middle component of the fiber at infinity.

We can finally assume that all C∗-rulings of S′ are twisted. Let (V, D) be a bal-
anced completion of S′. Because S′ does not admit untwisted C∗-rulings, D does
not contain nonbranching 0-curves, so (V, D) is a unique snc-minimal completion
of S′. Thus, to find all twisted C∗-rulings of S′, we need to determine all pairs
(D0, T ) such that D0+ T ⊆ D, D2

0 ≥−1, βD(D0)= 3, and D− T − D0 consists
of two (−2)-tips. Let (D0, T ) and (D′0, T ′) be two such pairs. Suppose D0 6= D′0
and, say, D′20 ≥ D2

0 . We have D0 · D′0 6= 0, for otherwise the chain D− T ′, which
is not negative definite, would be contained in (and not equal to, because ν ≤ 1) a
fiber of the twisted ruling associated with (D0, T ), which is impossible. Then D
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has six components and we check that

d(D)= 16((D2
0 + 1)(D′20 + 1)− 1),

so (D2
0 + 1)(D′20 + 1) ≤ 0, because d(D) < 0. Then D2

0 = −1 and D′0 is a 2-
section of the twisted ruling associated with (D0, T ). Because βD(D′0) = 3, by
Corollary 4.10 and Lemma 4.5 for this ruling n = 1, D′0 is a (−1)-curve and D has
dual graph as in (ii). Conversely, it is easy to see that S′ with such a boundary has
two twisted C∗-rulings. Therefore, we can assume that the choice of D0 for a pair
(D0, T ) as above is unique. Let p1 be a twisted C∗-ruling associated with some
pair (D0, T ). Suppose n(1) = 0. By Lemma 4.5, ζ∗D

(1)
h is a 0-curve, so

F = ζ ∗ζ∗D
(1)
h

induces a P1-ruling p of V . If ζ touches D(1)
h , then F contains the S0-component

of F (1)0 , so F * D and p restricts to an untwisted C∗-ruling of S′ with base P1.
If ζ does not touch D(1)

h , then p restricts to a C∗-ruling of S′ with base C1. This
contradicts the assumption. By Corollary 4.10 we get that n(1)= 1, F (1)0 contains no
D1-components, and µ1 = 2. In particular, D1 = D. By Lemma 4.5, (D(1)

h )2 ≤−1
because n(1) = 1, so D has a dual graph as in (i) or (ii). Conversely, if D is of type
(i) or (ii), then r = 2 if k =−1 and r = 1 if k ≤−2. �

6B. The number of affine lines. Theorem 6.1 has interesting consequences. It is
known [Zaı̆denberg 1987; Gurjar and Miyanishi 1992] that Q-homology planes
with smooth locus of general type (in particular the smooth ones) do not contain
topologically contractible curves. In fact, the number ` ∈ N∪ {∞} of contractible
curves on a Q-homology plane S′ is known except two cases: when S′ is non-
logarithmic and when S′ is singular and κ(S0) = 0 (see [Palka 2011b, 10.1] and
references there). Clearly, in the first case ` = ∞ by the main result of [Palka
2008]. The case when S′ is smooth and of Kodaira dimension zero has been con-
sidered in [Gurjar and Parameswaran 1995]. Theorem 1.3 is the missing piece of
information, and the method can be easily applied to recover the result of Gurjar
and Parameswaran.

Proof of Theorem 1.3. We can assume that S′ is logarithmic. Suppose S′ contains
a topologically contractible curve L . We show that L is vertical for some C∗-
ruling of S′. The proper transform of L on S meets each connected component
of Ê in at most one point. We use the logarithmic Bogomolov–Miyaoka–Yau
inequality as in [Koras and Russell 2007, 2.12] to show that κ(S0 − L) ≤ 1. In
case κ(S0− L)= 1, the surface S0− L is C∗-ruled [Fujita 1982, 6.11], so we may
assume that κ(S0− L)= 0. Let Z[D+ Ê] be a free abelian group generated by the
components of D+ Ê . Because

Pic S0 = Coker(Z[D+ Ê] → Pic S)
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is torsion, the class of L in Pic S0 is torsion. So there is a surjection f : S0−L→C∗,
and taking its Stein factorization, we get a C∗-ruling of S0 − L , which (because
κ(S0) 6= −∞) extends to a C∗-ruling of S0. Since S0 is logarithmic, each C∗-ruling
of S0 extends in turn to a C∗-ruling of S′. Therefore L is vertical for some C∗-
ruling of S′ and we are done. In particular, exceptional Q-homology planes do
not contain contractible curves. It follows from Corollary 4.10 that if the ruling
is twisted or untwisted with base P1, then the vertical contractible curve is unique
and is contained in the unique singular noncolumnar fiber. For an untwisted ruling
with base C1, there are at most two such curves. In particular, in cases (4)(i)
and (4)(ii) of Theorem 6.1, L needs to intersect the horizontal component of the
boundary, so we get respectively ` = 1 and ` = 2. In case (4)(iii), the unique
vertical contractible curves for the twisted rulings p1 and p3 are distinct and do
not intersect the horizontal components of respective rulings, and hence are both
vertical for the untwisted ruling p3, so `= 2. In the remaining case (4)(iv), r = 2,
p1 is twisted and p2 is untwisted. We can assume that the base of p2 is C1 and the
unique noncolumnar singular fiber contains two contractible curves, L1 and L2, for
otherwise ` ≤ 2 by the above remarks and we are done. Since the twisted ruling
is unique, there is exactly one horizontal component H of D(2)

h that meets two
(−2)-tips of D(1)

h (together with these tips it induces the twisted ruling). Clearly,
only one L i can intersect H , so the second one is vertical for p1 and we get `≤ 2
is this case too. �
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A DYNAMICAL INTERPRETATION OF THE PROFILE CURVE
OF CMC TWIZZLER SURFACES

OSCAR M. PERDOMO

Delaunay showed in 1841 that any surface of revolution of constant mean
curvature in R3 has as its profile curve a roulette — specifically, the curve
described by the focus of a quadric rolling on a line. Here we introduce a
notion similar to the roulette that we call the treadmill sled, and we use it
to provide a dynamical interpretation for the profile curves of twizzlers —
helicoidal surfaces of nonzero constant mean curvature.

The treadmill sled is connected with a change of variables that allows
us to solve the ordinary differential equation that produces twizzlers in a
fairly easy way. This allows us to prove that all twizzlers are isometric to
Delaunay surfaces; this is similar to work done by do Carmo and Dajczer.

We also provide a moduli space for twizzlers and Delaunay surfaces that
shows the connection of each surface with its dynamical interpretation, and
we explicitly show the foliation of our moduli space by curves of locally
isometric CMC “associated surfaces” analogous to the well-known helicoid-
to-catenoid deformation. Our dynamical interpretation for twizzlers also
allows us to naturally define the notion of a fundamental piece of the profile
curve of a twizzler, which yields the fact that, whenever a twizzler is not
properly immersed, it is dense in the region bounded by two concentric
cylinders if the twizzler does not contain the axis of symmetry, or dense
in the region bounded by a cylinder otherwise.

Using the change of coordinates induced by the notion of the treadmill
sled, we also provide a dynamical interpretation for helicoidal surfaces with
constant Gauss curvature, and we find an easy way to describe Delaunay
surfaces by a relatively simple first integral.

1. Introduction

Delaunay [1841] showed that if one rolls a conic section on a line in a plane and
then rotates about that line the trace of a focus, one obtains a surface of revolution
of constant mean curvature (CMC). When the conic is a parabola we obtain a
catenoid; when the conic is an ellipse, the surface is embedded and it is called an

MSC2010: 53A10, 53C42.
Keywords: twizzler, constant mean curvature, helicoidal surfaces, Delaunay surfaces.
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Figure 1. Dynamic interpretation of the profile curve of an unduloid.

Nodoid

Figure 2. A nodoid and the construction of its profile curve.

unduloid; and when the conic is a hyperbola the surface is not embedded and it is
called a nodoid. Unduloids and nodoids are called Delaunay surfaces. Figure 1
illustrates the relation between the ellipse and the trace of its focus. Notice that
only one focus is used to get the curve that needs to get rotated in order to generate
an unduloid. Figure 2 illustrates the relation between the hyperbola and the trace
of its foci. Notice that both foci are used to get the curve that needs to get rotated
in order to generate a nodoid.

Using the integrability of the Gauss equation and the Mainardi–Codazzi equa-
tion, Lawson [1970] showed that for any immersion f0 : U → R3 with constant
mean curvature H defined in a simple connected surface U , there exists a 2π -
periodic 1-parametric family of immersions { fθ : U → R3

: θ ∈ [0, 2π ]} with
constant mean curvature H and with the same induced metric. This family is
called the 2π -periodic isometric family associated to f0.

Remark 1.1. The map θ→ fθ is continuous with respect to the parameter θ .
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We can see this family of associated surfaces in the well-known deformation
from a helicoid to a catenoid. See Figure 3.

Figure 3. All these surfaces are isometric.

In this particular helicoid-to-catenoid deformation, the helicoid corresponds to
θ = 0 and the catenoid corresponds to θ =π/2. The images in Figure 3 were taken
by substituting θ = 0, π/10, π/5, 3π/10, 2π/5, π/2 in the parametrization

φθ (u, v)=
(
cos θ sinh v sin u+ cos u sin θ cosh v,

cosh v sin u sin θ − cos u cos θ sinh v, u cos θ + v sin θ
)
.

A direct verification shows that the first and second fundamental form of φθ are
given by

E = G = cosh2 v, F = 0, e =− sin θ, f = cos θ, g = sin θ,

from which we can infer that indeed all the elements in this family of surfaces are
isometric. It is not difficult to show that the surfaces from θ = π/2 to π are, up to
a rigid motion, in the Euclidean space, the same as the surfaces from θ = 0 to π/2.
In this way, up to a rigid motion, all the surfaces in the 2π -periodic Lawson family
of isometric surfaces to a helicoid are contained in those surfaces from θ = 0 to
θ = π/2. We see in this paper that something similar happens for the isometric
associated family to a Delaunay surface.

A surface is called helicoidal with pitch h ∈ (−∞,∞) if it is invariant under
the group gt : R

3
→ R3 of rigid motions

gt(x, y, z)=
(
x cos t + y sin t,−x sin t + y cos t, z+ ht

)
.

When h = 0, the group gt becomes a group of rotations and the helicoidal
surfaces become surfaces of revolution. A twizzler is an immersion of the form

(1-1) φ(s, t)=
(
x(s) cos(wt)+ z(s) sin(wt), t,−x(s) sin(wt)+ z(s) cos(wt)

)
,

with constant mean curvature. Assume that the curve (x(s), z(s)) is parametrized
by arc length and call it the profile curve of the twizzler. Notice that twizzlers
correspond to those helicoidal CMC surfaces with nonzero pitch. Geometrically,
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up to a rotation about the origin, the profile curve of a twizzler is the intersection
of the surface with a plane perpendicular to the axis of symmetry. Here we give an
interpretation of the profile curve of twizzlers similar to the interpretation for the
profile curves of Delaunay surfaces.

To do this, we introduce an operator taking curves into curves (like the roulette
operator), which we call the treadmill sled. Given a curve α, we imagine a movable
plane supporting α rigidly. The trace of the origin of this plane on a stationary plane
will be the new curve β, the treadmill sled of α. We now describe the motion of α
(and its supporting plane).

First, we choose a point of α and place it at the origin of the fixed plane, so that
α has a horizontal tangent there — the x-axis of the fixed plane. Then we move the
supporting plane of α in such a way that α always remains tangent to the x-axis
of the fixed plane at the origin. (Another way of thinking of this motion is to
imagine a treadmill placed under, and aligned with, the x-axis of the fixed plane.
The curve α rolls on the treadmill, always keeping one of its points at the origin.)

As already explained, β is described by the positions of the origin of α’s support-
ing plane in this process. Obviously, the choice of the moving plane’s origin plays
an important role in this definition. For example, if α is a circle of radius R, its
treadmill sled is just a point if the center of α is the origin and it is a circle of radius
r with center at (0, R) if the center of the circle is at a distance r from the origin.

Figure 4 shows the treadmill sled of an ellipse with center at the origin. The
dot represents the center of the ellipse. (The Electronic Supplement to this article
shows this example in motion.)
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Figure 4. Treadmill sled of an ellipse centered at the origin.

We prove that a parametrization of the treadmill sled of an arc-length parame-
trized curve (x(s), z(s)) is given by (ξ(s), ξ2(s)), where (ξ(s), ξ2(s)) are the coor-
dinates of the vector (x(s), z(s)) with respect to the orthonormal basis{

(x ′(s), z′(s)), (−z′(s), x ′(s))
}
.

It turns out that this treadmill sled notion is linked with the change of variables
x(s), z(s) to the variables ξ1(s), ξ2(s), which ends up being very convenient for
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Figure 5. Contours, for different values ofw, of the integral func-
tion hw(x, y)= x2

+ y2
+ y/
√

1+w2x2.

the study of helicoidal surfaces. This paper shows some of the applications of
this change of variables. We can relatively easily solve the ODE that generates
twizzlers, and as a bonus, we find a dynamical interpretation for their profile curve
similar to the dynamical interpretation of the profile curve of Delaunay surfaces
using conics. For twizzlers we do not use conics, but rather the level sets of the
function

hw(x, y)= x2
+ y2
+

y
√

1+w2x2
,

where w is a constant. It is not difficult to check that the range of the function hw
is the interval [− 1

4 ,∞), that h−1
w (−

1
4)= {(0,−

1
2)}, that every M >− 1

4 is a regular
value of hw, and that h−1

w (M) is a closed simple curve. We refer to these level sets
as heart-shaped curves. Figure 5 shows some of them.

Let us denote the origin of the profile curve of a twizzler by O; that is, O is
the intersection of the plane that contains the profile curve with the axis symmetry
of the twizzler. We prove that the level sets of the function hw are first integrals
of the ODE for twizzlers with CMC 1 written in the coordinates ξ1 and ξ2, and
therefore geometrically we can say that if we place the profile curve of a twizzler
on a treadmill located at the origin and oriented in the positive direction of the
x-axis, then the trace of the point O is a heart-shaped curve. In other words, the
treadmill sled of the profile curve is a heart-shaped curve. It can be shown that the
inverse of the treadmill sled of a curve is unique up to a rotation about the origin.
Therefore we have a one-to-one correspondence between twizzlers with CMC 1
and the level sets of the function hw. In this way, we can use the two parameters
w and M that define the heart-shaped curves to describe twizzlers with CMC 1.
Once we have all the twizzlers with CMC 1 described in terms of the treadmill
sled of their profile curves, we explicitly describe which twizzlers are in the same
associated family of isometric surfaces. Surprisingly for the author, the proof only
uses the basic fact that, since Gauss curvatures are invariant under isometries, the
quotient between the maximum and minimum of the Gauss curvature is the same
for two isometric surfaces. An interesting fact that showed up is that in each one
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of these families of isometric associated surfaces, there is a twizzler that contains
the axis of symmetry. Since such twizzlers are unique in each family and there is
an easy formula that relates them with the isometric nodoid and unduloid, we call
these twizzlers special twizzlers.

Lawson [1970] showed examples of helicoidal surfaces with nonzero pitch and
constant mean curvature by proving that the family of CMC surfaces associated
to a Delaunay surface is made out of helicoidal surfaces. It was known for a long
time [Graustein 1935] that all the isometric surfaces in the associated family of
a catenoid are helicoidal surfaces, and also that every helicoidal minimal surface
belongs to the associated family of isometric surfaces of a catenoid. This result was
generalized by do Carmo and Dajczer [1982] (see also [Haak 1998]), who showed
that every helicoidal surface with CMC is in the associated family of a Delaunay
surface. Do Carmo and Dajczer provided explicit parametrizations for almost all
helicoidal surfaces with CMC. As we pointed out before, we show here that there
are as many of these surfaces as unduloids, or as many as nodoids, by proving
that there is one in each associated family of a Delaunay surface. The unduloids
admit in their isometry group, besides the rotational symmetries, a discrete group
of translations. This translational group shows up because the profile curve is
periodic, and this periodicity happens because the profile curve is generated by an
ellipse, which is a closed curve. The new dynamical interpretation for twizzlers
allows us to easily visualize that, besides the helicoidal symmetry, twizzlers are in-
variant under a group of rotations about the axis of symmetry because the treadmill
sled of their profile curve is a closed curve — a heart-shaped curve. If we define
the fundamental piece of a twizzler as a connected part of the profile curve with the
property that, when placed on a treadmill, the point O traces a heart-shaped curve
exactly once, then we have that the whole profile curve is a union of fundamental
pieces. Two fundamental pieces differ by a rotation about the origin, and when
the angle made by the rays that connect the initial and final point of a fundamental
piece is a rational multiple of 2π , then the whole profile curve is the union of only
finitely many fundamental pieces, and therefore the twizzler is properly immersed.
Otherwise, the twizzler is dense in either the region bounded by two cylinders or
the region inside a cylinder. For twizzlers that do not contain the axes of symmetry,
this property was shown in [Hitt and Roussos 1991].

2. The treadmill sled of a curve

According to the description given in the introduction, we define the treadmill sled
of an arc-length parametrized curve α : [a, b] → R2 as

TS(α)=
{
Ts(0, 0) : Ts is an oriented isometry of R2,

Ts(α(s))= (0, 0), and dTsα
′(s))= (1, 0)

}
.
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As the following theorem shows, finding a parametrization for the treadmill sled
of a curve is not difficult.

Theorem 2.1. If α(s)= (x(s), z(s)) is a curve parametrized by arc length and

ξ1(s)= x(s) x ′(s)+ y(s) y′(s) and ξ2(s)=−x(s) y′(s)+ y(s) x ′(s),

then the treadmill sled of the curve α is −(ξ1(s), ξ2(s)).

Proof. Let θ(s) be such that α′(s) =
(
cos θ(s), sin θ(s)

)
. A direct computation

shows that the transformation

Ts(X, Y )=
(
cos θ(s) X + sin θ(s) Y,− sin θ(s) X + cos θ(s) Y

)
−
(
cos θ(s) x(s)+ sin θ(s) y(s),− sin θ(s)x(s)+ cos θ(s)y(s)

)
is the only oriented isometry of R that takes the point α(s) to the origin and for
which dTα(s)(α′(s))= (1, 0). From the definition of T S(α), it follows that

Ts(0, 0)=−
(
cos θ(s) x(s)+ sin θ(s) y(s),− sin θ(s) x(s)+ cos θ(s) y(s)

)
must be a point in the treadmill sled of α. When we allow s to move through the
domain of α we obtain the desired parametrization of T S(α). �

Remark 2.2. It easily follows, either from the geometric definition of treadmill
sleds or from Theorem 2.1, that the maximum distance from the origin to a curve
α equals the maximum distance from the origin to its treadmill sled. Likewise, the
minimum distance from the origin to a curve α equals the minimum distance from
the origin to its treadmill sled.

3. Treadmill sled coordinates on twizzlers: solution of the ODE

The following two results provide a solution for the ODE coming from the problem
of finding all twizzlers with CMC 1. As mentioned before, the ODE is greatly
simplified when we use treadmill sled coordinates.

Proposition 3.1. The immersions given by (1-1) have mean curvature 1 if and only
if the functions ξ1 and ξ2 defined in Theorem 2.1 satisfy the ordinary differential
equations ξ ′1(s)= f1(ξ1(s), ξ2(s)) and ξ ′2(s)= f2(ξ1(s), ξ2(s)), where

(3-1)

f1(x1, x2)=
−w2x2+ 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x2+ 1,

f2(x1, x2)=
w2x2− 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x1.

Moreover, the function hw is constant along all solutions (ξ1(s), ξ2(s)).
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Proof. Since the curve (x(s), z(s)) is parametrized by arc length, we can consider
a function θ(s) such that

x ′(s)= cos θ(s) and z′(s)= sin θ(s).

Let us define the functions ξ1(s) and ξ2(s) by

ξ1 = x cos θ + z sin θ and ξ2 =−x sin θ + z cos θ.

A direct verification shows that

(3-2) x = ξ1 cos θ − ξ2 sin θ, z = ξ1 sin θ + ξ2 cos θ, θ ′ = x ′z′′− z′x ′′.

Moreover, it is not difficult to check that

ξ ′1 = θ
′ξ2+ 1, ξ ′2 =−θ

′ξ1, ξ 2
1 + ξ

2
2 = x2

+ z2.

A direct verification shows that the first fundamental form of φ is given by

E = 〈φs, φs〉 = 1, F = 〈φs, φt 〉 = w(zx ′− xz′)= wξ2,

G = 〈φt , φt 〉 = 1+w2(x2
+ z2)= 1+w2(ξ 2

1 + ξ
2
2 ),

and therefore,

EG− F2
= 1+w2(ξ 2

1 + ξ
2
2 )−w

2ξ 2
2 = 1+w2ξ 2

1 .

The Gauss map of the immersion φ is given by ν= 1
√

EG−F2
φs×φt . A direct

verification shows that

ν(s, t)= 1
√

1+w2ξ 2
1 (s)

(
sin(wt − θ(s)), wξ1, cos(wt − θ(s))

)
.

A direct verification shows that the second fundamental form of φ is given by

e = 〈φss, ν〉 =
θ ′

√

1+w2ξ 2
1

, f = 〈φst , ν〉 =
−w

√

1+w2ξ 2
1

,

g = 〈φt t , ν〉 =
−w2ξ2
√

1+w2ξ 2
1

.

Therefore, if we assume that the mean curvature eG−2 f F+gE
2(EG−F2)

equals 1, we
obtain the ODE

(3-3) θ ′ =
−w2ξ2+ 2(1+w2ξ 2

1 )
3/2

1+w2(ξ 2
1 + ξ

2
2 )

.

Using this expression for θ ′ in the equations ξ ′1 = θ
′ξ2+ 1 and ξ ′2 = −θ

′ξ1, we
obtain that ξ1 and ξ2 satisfy the ODE

(3-4) ξ ′1 = f1(ξ1, ξ2), ξ ′2 = f2(x1, x2),
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where

f1(x1, x2)=
−w2x2+ 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x2+ 1,

f2(x1, x2)=
w2x2− 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x1.

A direct verification shows that if we define hw : R2
→ R as

hw(x1, x2)=
x2

√

1+w2x2
1

+ x2
1 + x2

2 ,

then hw is a first integral of the ODE for ξ1 and ξ2; that is, for any solution ξ1(s)
and ξ2(s) of this system, we have that hw(ξ1(s), ξ2(s))=M , where M is a constant.
This completes the proof of the proposition. �

As a consequence of the previous proposition, we have:

Theorem 3.2. The treadmill sled of the profile curve of a twizzler with constant
mean curvature 1 is a heart-shaped curve −h−1

w (M) for some M ≥−1
4 . The value

M =− 1
4 is achieved by a cylinder of radius 1

2 .

Figure 6 shows the profile curve of a twizzler and the heart-shaped curve asso-
ciated with it. Figure 7 illustrates that, for this twizzler, the treadmill sled of the
profile curve is indeed the negative of the heart-shaped curve.
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Figure 6. Profile curve, surface, and heart-shaped curve associ-
ated to a twizzler.
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Figure 7. Treadmill sled of the profile curve of a twizzler.
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4. Treadmill sled coordinates on flat surfaces

The following theorem gives us another application of the treadmill sled.

Theorem 4.1. A surface of the form (1-1) is flat if and only if either the treadmill
sled of the profile curve is a point in the y-axis other than the origin (in this case
the surface is a cylinder) or the treadmill sled of the profile curve is contained in
a vertical half-line that starts at a point in the x-axis other than the origin. The
functions x and z can be explicitly computed:

x(s)= 1
2 cos 2

√
as+b
a

+
√

as+ b sin 2
√

as+b
a

,

z(s)=
√

as+ b cos 2
√

as+b
a

−
1
2 sin 2

√
as+b
a

.

Proof. If we define the functions θ , ξ1, and ξ2 as in the previous theorem, then the
equation for Gauss curvature equal to zero, eg− f 2

= 0, reduces to θ ′ = −1/ξ2.
Substituting this equation in the equations ξ ′1= θ

′ξ2+1 and ξ ′2=−θ
′ξ1, we obtain

that ξ1 and ξ2 satisfy the ODE

(4-1) ξ ′1 = 0, ξ ′2 =
ξ1

ξ2
.

It follows that ξ1(s) = a/2 for some real number a. If a = 0, then ξ2 is also a
constant other than zero, and the surface φ is a cylinder. In the case that a is not
zero, then ξ2=±

√
as+ b and θ(s)=∓2

√
as+ b/a. This completes the proof. �

Figure 8 illustrates that the treadmill sled of the profile curve of a flat helicoidal
surface is a vertical half-line.

Figure 8. A surface with helicoidal symmetry is flat when its
treadmill sled is a vertical half-line.
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5. Treadmill sled coordinates on Delaunay surfaces

Extending the parallel between twizzlers and Delaunay surfaces, we now describe
all Delaunay surfaces with CMC 1 using treadmill sled coordinates, and we provide
an expression for the quotient of the maximum and minimum values of the Gauss
curvature. We use this ratio to find out which unduloid-nodoid pairs are isometric.

Theorem 5.1. For every nonzero real number M ∈ (− 1
4 ,∞), the Delaunay sur-

face D(M) generated by the conic {(x, y) : 4x2
− y2/M = 1} has constant mean

curvature 1. The quotient between the maximum value of the Gauss curvature and
the minimum value of the Gauss curvature of D(M) is given by

rs(M)=−
(

1−
√

1+ 4M

1+
√

1+ 4M

)2

.

Proof. Let us assume that D(M) is parametrized as

φ(s, t)=
(
x(s), z(s) sin t, z(s) cos t

)
,

where the profile curve (x(s), z(s)) is parametrized by arc length. A direct veri-
fication shows that if θ(s) is a continuous function such that x ′(s) = cos θ(s) and
z′(s)= sin θ(s), then the mean curvature of D(M) is

1
2

(
θ ′−

cos θ(s)
z(s)

)
.

Since the mean curvature of D(M) is 1, the functions θ(s) and z(s) satisfy

θ ′ = 2+ cos θ
z

and z′ = sin θ.

This ODE has as a first integral the function h(z, θ)= z(cos θ + z). Recall that
the function z(s) is always positive. Since the minimum of the function h is −1

4 ,
it follows that there exists a nonzero constant k >−1

4 such that h(z(s), θ(s))= k.
When k < 0, the level sets of h(z, θ) are bounded, and therefore D(M) represents
an unduloid. When k > 0, the level sets are not bounded, and D(M) represents a
nodoid. In any case, the z-values of the level sets of h(z, θ) are bounded. A direct
computation shows that the maximum and minimum of the z-values of the level
set h(z, θ)= k are

1+
√

1+ 4k
2

and
∣∣∣∣1−√1+ 4k

2

∣∣∣∣.
We can prove that k must be equal to M by comparing these critical values of
z(s) with the maximum and the minimum values of the profile curve viewed as
the trace of the focus of a conic when it is rolled on a line. A direct computation
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shows that the Gauss curvature is −(θ ′ cos θ)/z, and since θ ′ = 2+ (cos θ)/z, the
Gauss curvature reduces to

−
cos θ(2z+ cos θ)

z2 .

Using the Lagrange multiplier method, we see that the maximum and the minimum
of the Gauss curvature subject to the constraint h(z, θ)= k are

4
√

1+ 4k

(1+
√

1+ 4k)2
and −

4
√

1+ 4k

(−1+
√

1+ 4k)2
,

respectively. It follows that the quotient between the maximum of the Gauss cur-
vature and the minimum of the Gauss curvature is

−

(
−1+

√
1+ 4k

1+
√

1+ 4k

)2

.

Since k = M , the theorem follows. �

The function rs defines a bijection between the intervals (− 1
4 , 0) and (0, 1),

and it also defines a bijection between the intervals (0,∞) and (0, 1). On the other
hand, each unduloid is isometric to a nodoid [do Carmo and Dajczer 1982]. As a
consequence of Theorem 5.1, we have:

Corollary 5.2. Two Delaunay surfaces with CMC 1 are isometric if and only if
the quotients of the maximum and minimum values of the Gauss curvatures are
the same. In particular, for any u ∈ (0, 1), the unduloid D

(
−
√

u/(1+
√

u)2
)

is
isometric to the nodoid D

(√
u/(1−

√
u)2
)
.

6. Moduli space for twizzlers

If we exclude the cylinder and the value M = − 1
4 , Theorem 3.2 establishes a 1:1

correspondence between pairs (M, w) with M >− 1
4 and w> 0 and twizzlers with

mean curvature 1. Therefore, so far we have that the moduli space of all twizzlers
with CMC 1 other than the cylinder is the set {(M, w) :M >−1

4 , w > 0}. In order
to visualize better the boundary of the moduli space of twizzlers, we replace the
parameterw with the bounded parameter v= 1/(1+w2). Therefore, the parameter
v moves from 0 to 1 when w moves from∞ to 0. Figure 9 shows pictures from an
animation that produces a piece of the twizzler associated with values of M and v.
We refer to this twizzler as T(M, v) when the dependence of M and v is needed.

In [Perdomo 2011], a formula for the inverse of the treadmill sled of a curve
is provided. Therefore we can get a parametrization for all twizzlers if we have a
parametrization for all heart-shaped curves.
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Figure 9. Moduli space of twizzler with mean curvature one.

Lemma 6.1. For any M >− 1
4 and w > 0, the curve α(t)= (ρ1(t), ρ2(t)) defined

on the interval [0, 2π ] and given by

ρ1(u)= A cos u and ρ2(u)=
−1+

√
1+ 4M + B cos2 u sin u

2
√

1+w2 A2 cos2 u
,

where

A =

√
−1+Mw2+

√
1+ (1+ 2M)w2+M2w4

√
2w

,

B =
2+ 2M2w4

+w2
+ 2(Mw2

− 1)
√

1+ (1+ 2M)w2+M2w4

w2 ,

is a closed simple regular curve that parametrizes the heart-shaped curve h−1
w (M).

Proof. It is a direct verification. �

Since the maximum and minimum distances from a curve α to the origin agree
with the maximum and minimum distances from its treadmill sled to the origin
[Perdomo 2011], we have the following proposition.

Proposition 6.2. The maximum distance from a special twizzler with CMC 1 to its
axis of symmetry is 1. More generally, the maximum and minimum distances from
the twizzler T(M, v) to its axis of symmetry are given by

r1(M)=
∣∣∣∣√1+ 4M − 1

2

∣∣∣∣ and r2(M)=

√
1+ 4M + 1

2
.

Proof. Since the maximum and minimum distances from a twizzler to its axis of
symmetry are the same as the maximum and minimum distances from its profile
curve to the origin, we only need to show that for any M > −1

4 , the minimum
and maximum distances from the origin to the heart-shaped curve h−1

w (M) are
r1(M) =

∣∣(√1+ 4M − 1)/2
∣∣ and r2(M) = (

√
1+ 4M + 1)/2, respectively. We
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Figure 10. The maximum and minimum distances from the origin
to the profile curve of T(M, v) change with respect to M .

prove this by using the method of Lagrange multipliers to find the maximum and
minimum values of the function R(x1, x2) = x2

1 + x2
2 , subject to the restriction

hw = M . A direct verification shows that if (x1, x2) and λ1 satisfy the Lagrange
multiplier equations

∂R
∂x1
= λ1

∂hw
∂x1

and
∂R
∂x2
= λ1

∂hw
∂x2

,

then x1 = 0. Once we know that x1 must be zero, we obtain from the equation
hw = M that x2 is either −(

√
1+ 4M+1)/2 or (

√
1+ 4M−1)/2. Now the result

easily follows. �

Remark 6.3. From this proposition we can understand the twizzlers in the moduli
space that are near the boundary line M = −1

4 . Since the limit when M goes to
−

1
4 of the functions r1(M) and r2(M) is 1

2 (see Figure 10), then we have that when
M is near − 1

4 , the twizzlers T(M, v) are near the cylinder of radius 1
2 .

7. Fundamental piece of the profile curve of a twizzler
and the immersed versus dense property

The fact that the treadmill sled of the profile curve of a twizzler is a closed curve
allows us to define a fundamental piece of the profile curve as a connected piece
of profile curve with the property that the treadmill sled motion of this piece goes
exactly once over the heart-shaped curve. It is not difficult to see that the whole
profile curve is the union of fundamental pieces. Figure 11 shows the fundamental
piece of the profile curve of a properly immersed twizzler, along with the whole
profile curve made up of four pieces in this case and the graph of the twizzler.

For the sake of comparison, for an unduloid we could define a fundamental piece
as the trace of the focus of the ellipse when this ellipse rolls once. It is clear that
the whole profile curve is the union of fundamental pieces, and therefore Z acts on
the group of isometries of the unduloid in the form of translations. Theorem 7.2
shows that the group Z also acts on the set of isometries of twizzlers.
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Figure 11. Fundamental piece of the profile curve.

Using the parametrization for the heart-shaped curve in Lemma 6.1, we get the
following formula for the length of a fundamental piece of a twizzler. (This formula
was used in the production of Figure 11.)

Lemma 7.1. The length of the fundamental piece of the twizzler T(M, v) is∫ 2π

0

√
λ/µdu,

where λ(u)=
(dρ1

du

)2
+

(dρ2
du

)2
and µ(u)= f 2

1 (ρ1(u), ρ2(u))+ f 2
2 (ρ1(u), ρ2(u)).

The functions ρ1, ρ2, f1, and f2 are defined in Lemma 6.1 and Proposition 3.1.
Recall that w and v are related by the equation v = 1/(1+w2).

Proof. The proof is straightforward, and is actually included in the proof of the
next result, Theorem 7.2. �

In [Perdomo 2011] we showed that two curves with the same treadmill sled differ
only by a rotation about the origin. With this in mind, we have that two consecutive
fundamental pieces of the same twizzler differ by a rotation about the origin, and
therefore the whole profile curve is either a closed curve made out of a finite union
of fundamental pieces or the union of infinitely many disjoint fundamental pieces.
When the latter happens, it is not difficult to see that the profile curve is either
dense in a circle or dense in an annulus depending on whether or not the profile
curve passes through the origin. In order to better understand this property, given a
twizzler, without loss of generality, let us consider a fundamental piece starting at
a point p1 other than the origin and ending in a point p2. We have that |p1| = |p2|,
so in polar coordinates p1= reθ1 and p2= reθ2 . We prove that if θ2−θ1 is a rational
multiple of π , then the profile curve is a closed curve and the twizzler is properly
immersed, for otherwise the twizzler is dense in either the region bounded by two
concentric cylinders or dense in the region bounded by a cylinder.

The next theorem, along with Theorem 8.2 and Theorem 8.4, gives a precise
picture of the moduli space for twizzlers.
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Theorem 7.2. The angle between the final and initial points of a fundamental piece
of the twizzler T(M, v) is given by θ0 =

∫ 2π
0 ψdu, where

ψ(u)=
−w2ρ2(u)+ 2(1+w2ρ2

1(u))
3/2

1+w2(ρ2
1(u)+ ρ

2
2(u))

√
λ(u)
µ(u)

.

T(M, v) is invariant under a group of rotations of the form {R(nθ0) : n ∈ Z}.
If R(mθ0) = R(θ0) for some integer m, then the twizzler is properly immersed;
otherwise it is dense in the interior of a cylinder of radius 1 when M = 0, or dense
in the region bounded by two concentric cylinders of radii

r1(M)=
∣∣∣∣√1+ 4M − 1

2

∣∣∣∣ and r2(M)=

√
1+ 4M + 1

2

when M 6=0. More precisely, we have that T(M, v) is a properly immersed surface
with a profile curve consisting of b fundamental pieces if and only if θ0= 2π(a/b),
with a and b positive relatively prime integers. We also have another type of
density: the set of points (M, v) associated with properly immersed twizzlers is
uncountable and dense.

Proof. That the twizzler is bounded by a cylinder follows from Proposition 6.2.
Let us assume that (x(s), y(s)) are such that the surface (1-1) has constant mean
curvature 1. Since the curve (ρ1, ρ2) defined in Lemma 6.1 is regular, we see that

λ(u)=
(dρ1

du

)2
+

(dρ2

du

)2

is a periodic positive function. Likewise, since f1(x1, x2) and f2(x1, x2) only van-
ish simultaneously at (x1, x2)= (0,− 1

2), we see that

µ(u)= f 2
1 (ρ1(u), ρ2(u))+ f 2

2 (ρ1(u), ρ2(u))

is a positive periodic function. Notice that ξ1(s) = 0 and ξ2(s) = − 1
2 is the only

constant solution of the system (3-4). For any other solution, since hw is a first
integral of the system, there exist M >− 1

4 and a function σ(s) such that

ξ1(s)= ρ1(σ (s)) and ξ2(s)= ρ2(σ (s))

is a solution of the system (3-4). From the equations above, we have

(7-1) ξ ′1(s)
2
+ ξ ′2(s)

2
= λ(σ(s)) σ ′(s)2.

On the other hand,

ξ ′1(s)= f1(ξ1(s), ξ2(s))= f1(ρ1(σ (s)), ρ2(s)),

ξ ′2(s)= f2(ξ1(s), ξ2(s))= f2(ρ1(σ (s)), ρ2(s)).
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It follows that σ is either strictly increasing or strictly decreasing; without loss
of generality, we can assume that σ is strictly increasing. Therefore we get

σ ′(s)=

√
µ(σ(s))
λ(σ (s))

.

If κ(u) is the inverse of the function σ(s), we have that

(7-2) κ ′(u)=
1

σ ′(κ(u))
=

√
λ(u)
µ(u)

.

If we change from the variable s to the variable u, that is, if we consider the
functions

θ̃ (u)= θ(κ(u)), ξ̃1(u)= ξ1(κ(u)), ξ̃2(u)= ξ2(κ(u)),

x̃(u)= x(κ(u)), z̃(u)= z(κ(u)),

it follows from (7-2) and (3-3) that θ̃ ′(u)= ψ(u), where

ψ(u)=
−w2ρ2(u)+ 2(1+w2ρ2

1(u))
3/2

1+w2(ρ2
1(u)+ ρ

2
2(u))

√
λ(u)
µ(u)

.

Since the right side of this equation is a periodic function with period 2π , it
follows by the existence and uniqueness theorem of ODEs that if θ̃ (2π)= θ0, then
for any integer j ,

(7-3) θ̃ (u+ 2 jπ)= jθ0+ θ̃ (u).

Since
∣∣(x(s), z(s))

∣∣= ∣∣(ξ1(s), ξ2(s))
∣∣, the piece of profile curve

Cfp = Cfundamental piece = {(x̃(u), z̃(u)) : u ∈ [0, 2π ]}

also satisfies r1(M) = min{|q| : q ∈ Cfp} and r2(M) = min{|q| : q ∈ Cfp}. Using
(3-2) and (7-3), we get

(7-4)
(

x̃(u+ 2 jπ)
z̃(u+ 2 jπ)

)
= R j

θ0

(
x̃(u)
z̃(u)

)
, where Rθ0 =

(
cos θ0 − sin θ0

sin θ0 cos θ0

)
.

This equality implies that the image of the profile curve can be viewed as the
orbit of the group {R j

θ0
} j∈Z acting on Cfp, that is,

(7-5) C = {(x(t), z(t)) : t ∈ R} = {R j
θ0

p : j ∈ Z and p ∈ Cfundamental piece}.

It follows from this equation that if θ0/2π is a rational number, then C is a
properly immersed curve, and if θ0/2π is irrational, then C is dense in the annulus{

(x1, x2) : r1(M)≤
√

x2
1 + x2

2 ≤ r2(M)
}
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when M 6= 0, or dense in the circle of radius 1 when M = 0. Therefore, twizzlers
with constant mean curvature 1 have the following property: they are properly
immersed, or they are dense in the region contained between two concentric cylin-
ders, or they are dense in the interior of a cylinder of radius 1. We can prove that
a surface corresponding to an irrational value θ0/2π is dense by showing that the
profile curve is dense, and we can prove that the profile curve is dense by showing
that the intersection of this curve with a circle centered at the origin is either the
empty set or dense in the circle. The problem of proving this last statement reduces
to that of showing that for any irrational number ι, the set {ι−[nι] : n ∈Z} is dense
in the interval [0, 1], which is a known fact. To finish, we notice that since the
function (x(s), z(s)) is parametrized by arc length, the length of the fundamental
piece is

κ(2π)=
∫ 2π

0

√
λ(u)/µ(u)du.

Also, since θ̃ ′(u)=ψ(u), we have that

θ0 =

∫ 2π

0
ψ(u)du. �

For twizzlers that do not contain the axis of symmetry, the “properly immersed
versus dense” property established in Theorem 7.2 was proved in [Hitt and Roussos
1991]. By numerically solving the equation

∫ 2π
0 ψdu = 2π(a/b) in that theorem,

we can graph profile curves of twizzlers with any desired property.
In Figure 12, we solve the numerical equation

∫ 2π
0 ψdu=2π(a/b), fixing M=0

and taking several integer values for a and b. Since M = 0, these profile curves

Figure 12. Profile curves of properly immersed twizzlers that
contain the axis.
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Figure 13. Profile curves of properly immersed twizzlers that do
not contain their axis.

represent twizzlers that contain the axis of symmetry. In Figure 13, we take several
values for M 6= 0 and a and b integers to produce properly immersed twizzlers that
do not contain the axis of symmetry. In Figure 14, we take a and b such that a/b
is not rational, so that the twizzler is not properly immersed. In Figure 15, we take
a = 5, b = 4 and 4 values of M in order to produce properly immersed examples;
we also show the points (M, w) associated with these twizzlers.

8. Isometric associate family of surfaces

As pointed out before, each nodoid is isometric to an unduloid, and therefore we
can replace the word Delaunay by either the word unduloid or nodoid in the result
proved in [do Carmo and Dajczer 1982]; that is, we can say that each twizzler is
isometric to either a nodoid or an unduloid. Another family of surfaces that holds
the same property is the set of twizzlers that contain the axis of symmetry, that is,
the set of twizzlers corresponding to M = 0 in the moduli space. We call these
surfaces special twizzlers and we denote them by ST(v); that is, ST(v)=T(0, v).
Due to a singularity problem on the coordinates used so far to study helicoidal
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Figure 14. Profile curves of nonproperly immersed twizzlers.

Figure 15. Profile curves of twizzlers consisting of four funda-
mental pieces and their corresponding values M and w.

surfaces, twizzlers that contain the axis of symmetry have been overlooked until
now. The following theorem gives us the quotient of the maximum value and the
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minimum value of the Gauss curvature for special twizzlers. Figure 16 shows two
sets of isometric nodoid-unduloid-special twizzler surfaces.

Figure 16. Isometric nodoid, unduloid and special twizzler.
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Theorem 8.1. For every nonzero real number v ∈ (0, 1), the quotient between the
maximum value of the Gauss curvature and the minimum value of the Gauss cur-
vature of the special twizzler surface ST(v) is −v. Moreover, ST(v) is isometric
to the unduloid D

(
−
√
v/(1+

√
v)2
)

and the nodoid D
(√
v/(1−

√
v)2
)
.

Proof. The proof is contained in the proof of Theorem 8.2. �

We can generalize Theorem 8.1 as follows:

Theorem 8.2. If v = 1/(1 + w2), then the quotient between the maximum and
minimum values of the Gauss curvature of the twizzler surface T(M, v) is

−
2+ (1+ 2M −

√
1+ 4M)w2

2+ (1+ 2M +
√

1+ 4M)w2
.

Moreover, fixing c ∈ (0, 1), all the twizzlers in the set{
T

(
M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
: M ∈

(
−

√
c

(1+
√

c)2
,

√
c

(1−
√

c)2

)}
are isometric.

Proof. Using the same notation as in the proof of Proposition 3.1, we see that the
Gauss curvature K satisfies

K =
eg− f 2

EG− F2 =−
w2(1+ θ ′ξ2)

(1+w2ξ 2
1 )

2
=−

w2
(
1+ 2 ξ2

√
1+w2ξ 2

1

)
(1+w2ξ 2

1 )(ξ
2
1 + ξ

2
2 )

.

Taking ρ1(u) and ρ2(u) as in Lemma 6.1, we get the following expression for
the Gauss curvature in terms of the parameter u:

−4w2
√

1+ 4M + B cos2 u sin u(
4+w2

+ 4A4w4 cos4 u− 2w2
√

1+ 4M + B cos2 u sin u
+ (1+ 4M)w2 sin2 u+w2(8A2

+ B sin2 u) cos2 u
)

A direct computation shows that the derivative of the function K =K(u) is of the
form cos u po(u), where po(u) is a positive function, and therefore the maximum
of the Gauss curvature occurs when u = 3π/2 and is equal to

2w2
√

1+ 4M

2+ (1+ 2M +
√

1+ 4M)w2
,

and the minimum of the Gauss curvature occurs when u = π/2 and is equal to

−
2w2
√

1+ 4M

2+ (1+ 2M −
√

1+ 4M)w2
.
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We conclude that the quotient of the maximum value of the Gauss curvature and
the minimum value of the Gauss curvature is

−
2+ (1+ 2M −

√
1+ 4M) w2

2+ (1+ 2M +
√

1+ 4M) w2
.

This expression in terms of v transforms into

−
1+ 2M −

√
1+ 4M + v− 2Mv+ v

√
1+ 4M

1+ 2M +
√

1+ 4M + v− 2Mv− v
√

1+ 4M
.

A direct verification shows that this expression reduces to −c when we replace
v by √

1+ 4M − 1− 2M + c(
√

1+ 4M + 1+ 2M)
√

1+ 4M + 1− 2M + c(
√

1+ 4M − 1+ 2M)
,

and therefore, for any c ∈ (0, 1), all the twizzlers{
T

(
M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
: M ∈

(
−

√
c

(1+
√

c)2
,

√
c

(1−
√

c)2

)}
must be isometric. This follows because every twizzler with CMC 1 must be in
the isometric associated family of a Delaunay surface [Lawson 1970], and it can
be shown that the family of curves

�c =

{(
M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
: M ∈

(
−

√
c

(1+
√

c)2
,

√
c

(1−
√

c)2

)}
for c ∈ (0, 1) defines a partition of the set (− 1

4 ,∞)×(0, 1). Figure 17 shows these
curves �c for different values of c. We know that two twizzlers corresponding
to two points in different curves �c cannot be isometric because their ratios of
maximum to minimum Gauss curvatures are different. Using the continuity of
the curve �c and the fact that the 2π -periodic isometric family is continuous (see
Remark 1.1), we see that all the isometric surfaces of the 2π -periodic associated
family must be contained in a single �c curve, and therefore all twizzlers there are

Figure 17. Points in the moduli space that represent isometric twizzlers.
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isometric. As pointed out in the proof of Theorem 5.1, there are only two isometric
Delaunay surfaces whose quotient between maximum and minimum values of the
Gauss curvature is −c; they are the unduloid D(−

√
c/(1+

√
c)2) and the nodoid

D(
√

c/(1−
√

c)2), and they correspond to the limit surfaces of the twizzlers that
are in �c. �

Remark 8.3. Helicoidal surfaces in the deformation helicoid-catenoid shown in
Figure 3 are only a quarter of the whole 2π -periodic isometric family. All other
elements in the 2π -periodic family are, up to a rigid motion, contained in the
deformation shown in Figure 3. The same situation happens with twizzlers; the
family of twizzlers given by points in �c are only a quarter of the whole 2π -
periodic isometric family. All other elements in the 2π -periodic family are, up to
a rigid motion, contained in the twizzlers given in �c.

Since the curve

αc(M)=
(

M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
satisfies that αc

(
−
√

c/(1+
√

c)2
)
=
(
−
√

c/(1+
√

c)2, 0
)
, αc(0) = (0, c), and

αc
(√

c/(1−
√

c)2
)
=
(√

c/(1−
√

c)2, 0
)
, as a corollary of Theorems 8.1 and 8.2

and Remark 1.1, we have:

Theorem 8.4. Let�={M+iv ∈C :M ≥−1
4 , M 6= 0 and 0≤ v < 1}. The function

ρ from � to the set of immersions in R3 given by

ρ(M + iv)= T(M, v) for any v > 0 and M 6= − 1
4 ,

ρ(M)= D(M) for any M 6= 0 and M 6= − 1
4 ,

ρ(− 1
4 + iv)= {(x, y, z) ∈ R3

: x2
+ z2
=

1
4}

is continuous in the sense that for every point p in�, there exist a neighborhood U
of p in� and a continuous function f :U×R2

→R3 such that for any M+iv ∈U ,
the map (s, t)→ f (M+iv, s, t) defines a parametrization of the surface ρ(M+iv).
Moreover, the function ρ is one-to-one in the interior of �.

The continuity at the points of form− 1
4+iv follows from Theorem 7.2, because

each twizzler T(M, v) is contained in the region bounded by the two concentric
cylinders of radii r1(M) = |(

√
1+ 4M − 1)/2| and r2(M) = (

√
1+ 4M + 1)/2.

Figure 17 shows the trace of the curve αc for several values of c.

Summary. We collect some important facts on helicoidal surfaces with constant
mean curvature one. Figure 18 shows a picture of the moduli space.
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The origin corresponds

to a union of tangent

spheres

Points along this segment

correspond to unduloids

Points in this half-line that

starts at the origin correspond

to nodoids

Points along this curve correspond to

helicoidal surfaces that are isometric. The

curve starts with an unduloid, passes by a

special twizzler and ends with a nodoid

Points in this segment correspond to special twizzlers,

those that contain the axis of symmetry

All points in this segment

correspond to the cylinder

Figure 18. Moduli space of twizzler with CMC 1 and its boundary.

Dynamical interpretation of Delaunay surfaces. The trace of the focus of each
conic 4x2

− y2/M = 1 with M ∈ (− 1
4 , 0) ∪ (0,∞), when it is rolled on a line,

produces the profile curve of a Delaunay surface with constant mean curvature
one. Moreover, every Delaunay surface with CMC 1 but the cylinder corresponds
with one of these conics.

Dynamical interpretation of twizzlers. The treadmill sled of the profile curve of a
twizzler with CMC 1 other than a cylinder is the closed curve

x2
+ y2
−

y
√

1+w2x2
= M

for some M >− 1
4 and w > 0.

Moduli space of twizzlers. Denote by ρ(M, v) the twizzler whose treadmill sled
of its profile curve lies on the heart-shaped curve

x2
+ y2
−

y
√

1+w2x2
= M,

where v = 1/(1+w2). Then ρ generates a one-to-one correspondence between
the half-strip

�= {(M, v) : M >− 1
4 and 0< v < 1}

and all twizzlers with CMC 1 but the cylinder.
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Boundary of the moduli space of twizzlers. When M goes to − 1
4 , the surfaces

ρ(M, v) converge to a cylinder. When v goes to zero, the surfaces ρ(M, v) con-
verge to the Delaunay surface whose profile curve is traced by the focus of the
conic 4x2

− y2/M = 1. When M goes to zero, the Delaunay surface whose profile
curve is traced by the focus of the conic 4x2

− y2/M = 1 converges to a union of
infinitely many tangent spheres [Kapouleas 1990, Appendix A].

Fundamental piece of the profile curve. For every twizzler other than a cylinder,
we can define the fundamental piece of the profile curve as a connected part of
the profile curve whose treadmill sled goes exactly once over the closed curve
x2
+y2
−y/
√

1+w2x2=M . The function θ0(M, v) given in Theorem 7.2 provides
a formula for the angle between the initial and final positions of the fundamental
piece of the profile curve. The function θ0 defined on � is given in terms of an
integral of an expression involving only sine and cosine functions.

Properties of twizzlers. If M is nonzero, then the twizzler ρ(M, v) lies in the re-
gion Cr1r2 bounded by two concentric cylinders of radii r1(M)=|(

√
1+ 4M−1)/2|

and r2(M) = (
√

1+ 4M + 1)/2; also, ρ(M, v) is properly immersed if and only
if θ0(M, v)/2π is a rational number, and otherwise it is dense in Cr1r2 . If M = 0,
then, the twizzler ρ(M, v) contains the axis of symmetry and lies inside a cylinder
of radius 1; moreover, ρ(M, v) is properly immersed if and only if θ0(M, v)/2π
is a rational number, and otherwise it is dense in the interior of this cylinder.

Isometric surfaces. Theorem 8.2 provides an explicit formula for a foliation of the
moduli space � by curves with the property that all the twizzlers in each curve
are isometric. Each one of these curves starts with an unduloid, passes through a
special twizzler (a twizzler that contains the axis of symmetry), and ends with a
nodoid. In particular, every twizzler different other than cylinder is isometric to a
twizzler that contains the axis of symmetry.
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CLASSIFICATION OF ISING VECTORS IN
THE VERTEX OPERATOR ALGEBRA V+

L

HIROKI SHIMAKURA

Let L be an even lattice without roots. In this article, we classify all Ising
vectors in the vertex operator algebra V +

L associated with L.

Introduction

In vertex operator algebra (VOA) theory, the simple Virasoro VOA L( 1
2 , 0) of

central charge 1
2 plays important roles. In fact, for each embedding, an automor-

phism, called a τ -involution, is defined using the representation theory of L( 1
2 , 0)

[Miyamoto 1996]. This is useful for the study of the automorphism group of a
VOA. For example, this construction gives a one-to-one correspondence between
the set of subVOAs of the moonshine VOA isomorphic to L(1

2 , 0) and that of
elements in certain conjugacy class of the Monster [Miyamoto 1996; Höhn 2010].

Many properties of τ -involutions are studied using Ising vectors, which are ele-
ments of weight 2 generating L( 1

2 , 0). For example, the 6-transposition property of
τ -involutions was proved in [Sakuma 2007] by classifying the subalgebra gener-
ated by two Ising vectors. Hence it is natural to classify Ising vectors in a VOA. For
example, this was done in [Lam 1999; Lam et al. 2007] for code VOAs. However,
in general, it is hard to even find an Ising vector.

Let L be an even lattice and VL the lattice VOA associated with L . Then the
subspace V+L fixed by a lift of the −1-isometry of L is a subVOA of VL . There are
two constructions of Ising vectors in V+L related to sublattices of L isomorphic to
√

2A1 [Dong et al. 1994] and
√

2E8 [Dong et al. 1998; Griess 1998].
The main theorem of this article is this:

Theorem 2.3. Let L be an even lattice without roots and e an Ising vector in V+L .
There is a sublattice U of L isomorphic to

√
2A1 or

√
2E8 and such that e ∈ V+U .

This theorem was conjectured in [Lam et al. 2007], and proved there and in [Lam
and Shimakura 2007] in the case that L/

√
2 is even and L is the Leech lattice. We

H. Shimakura was partially supported by Grants-in-Aid for Scientific Research (grant number
23540013), JSPS.
MSC2010: 17B69.
Keywords: vertex operator algebra, lattice vertex operator algebra, Ising vector.
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note that if L has roots then the automorphism group of V+L is infinite, and V+L
may have infinitely many Ising vectors.

In this article, we prove Theorem 2.3, and hence we classify all Ising vectors in
V+L . Our result shows that the study of τ -involutions of V+L is essentially equivalent
to that of sublattices of L isomorphic to

√
2E8 (see [Griess and Lam 2011; 2012]).

The key is to describe the action of the τ -involution on the Griess algebra B of
V+L . Let e be an Ising vector in V+L and L(4; e) the norm 4 vectors in L which
appear in the description of e with respect to the standard basis of (V+L )2 (see
Section 2 for the definition of L(4; e)). By [Lam and Shimakura 2007], the τ -
involution τe associated to e is a lift of an automorphism g of L . We show in
Lemma 2.1 that g is trivial on {{±v} | v ∈ L(4; e)}. This lemma follows from
the decomposition of B with respect to the adjoint action of e [Höhn et al. 2012],
the action of τe on it [Miyamoto 1996] and the explicit calculations on the Griess
algebra [Frenkel et al. 1988]. By this lemma, we can obtain a VOA V containing e
on which τe acts trivially. By [Lam et al. 2007] e is fixed by the group A generated
by τ -involutions associated to elements in L(4; e). Hence e belongs to the subVOA
V A of V fixed by A. Using the explicit action of A, we can find a lattice N
satisfying e ∈ V+N and N/

√
2 is even. This case was done in [Lam et al. 2007].

1. Preliminaries

VOAs associated with even lattices. In this subsection, we review the VOAs VL

and V+L associated with even lattice L of rank n and their automorphisms. Our
notation for lattice VOAs here is standard (see [Frenkel et al. 1988]).

Let L be a (positive-definite) even lattice with inner product 〈 · , · 〉. Let also
H = C⊗Z L be an abelian Lie algebra and Ĥ = H ⊗C[t, t−1

] ⊕Cc be its affine
Lie algebra. Let Ĥ− = H⊗ t−1C[t−1

] and let S(Ĥ−) be the symmetric algebra of
Ĥ−. Then MH (1)= S(Ĥ−)∼=C[h(m) | h ∈ H,m < 0] ·1 is the unique irreducible
Ĥ -module such that h(m)·1= 0 for h ∈ H , m≥ 0 and c= 1, where h(m)= h⊗tm .
Note that MH (1) has a VOA structure.

The twisted group algebra C{L} can be described as follows. Let 〈κ〉 be a
cyclic group of order 2 and 1 → 〈κ〉 → L̂ → L → 1 a central extension of
L by 〈κ〉 satisfying the commutator relation [eα, eβ] = κ〈α,β〉 for α, β ∈ L . Let
L → L̂, α 7→ eα be a section and ε( , ) : L × L → 〈κ〉 the associated 2-cocycle,
that is, eαeβ = ε(α, β)eα+β . We may assume that ε(α, α) = κ〈α,α〉/2 and ε( , ) is
bilinear by [Frenkel et al. 1988, Proposition 5.3.1]. The twisted group algebra is
defined by

C{L} = C[L̂]/(κ + 1)∼= SpanC{e
α
| α ∈ L},

where C[L̂] is the usual group algebra of the group L̂ . The lattice VOA VL asso-
ciated with L is defined as MH (1)⊗C{L} [Borcherds 1986; Frenkel et al. 1988].
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For any sublattice E of L , let C{E} = SpanC{e
α
| α ∈ E} be a subalgebra of

C{L} and let HE = C⊗Z E be a subspace of H = C⊗Z L . Then the subspace
S(Ĥ−E )⊗C{E} forms a subVOA of VL and it is isomorphic to the lattice VOA VE .

Let O(L̂) be the subgroup of Aut L̂ induced by Aut L . By [Frenkel et al. 1988,
Proposition 5.4.1] there is an exact sequence of groups

1−→ Hom(L ,Z/2Z)−→ O(L̂)−→− Aut L −→ 1.

Note that for f ∈ O(L̂),

(1-1) f (eα) ∈
{
±e f (α)}.

By [Frenkel et al. 1988, Corollary 10.4.8], f ∈ O(L̂) acts on VL as an automor-
phism by

(1-2) f (hi1(n1)hi2(n2) . . . hik (nk)⊗ eα)

= f (hi1)(n1) f (hi2)(n2) . . . f (hik )(nk)⊗ f (eα),

where ni ∈ Z<0 and α ∈ L . Hence O(L̂) is a subgroup of Aut VL .
Let θ be the automorphism of L̂ defined by θ(eα) = e−α for α ∈ L . Then

θ̄ = −1 ∈ Aut L . Using (1-2) we view θ as an automorphism of VL . Let V+L be
the subspace {v ∈ VL | θ(v) = v} of VL fixed by θ . Then V+L is a subVOA of VL .
Since θ is a central element of O(L̂), the quotient group O(L̂)/〈θ〉 is a subgroup
of Aut V+L . Note that V+L is a simple VOA of CFT type.

Later, we will consider the subVOA of V+L generated by the weight 2 subspace.

Lemma 1.1 [Frenkel et al. 1988, Proposition 12.2.6]. Let L be an even lattice
without roots. Let N be the sublattice of L generated by L(4). Then the subVOA
of V+L generated by (V+L )2 is (VN ⊗MH ′(1))+, where H ′ = (〈N 〉C)⊥ in 〈L〉C.

Ising vectors and τ -involutions. In this subsection, we review Ising vectors and
corresponding τ -involutions.

Definition 1.2. A weight 2 element e of a VOA is called an Ising vector if the
vertex subalgebra generated by e is isomorphic to the simple Virasoro VOA of
central charge 1

2 and e is its conformal vector.

For an Ising vector e, the automorphism τe, called the τ -involution or Miyamoto
involution, was defined in [Miyamoto 1996, Theorem 4.2] based on the represen-
tation theory of the simple Virasoro VOA of central charge 1

2 [Dong et al. 1994].
Let V be a VOA of CFT type with V1=0. The first product (a, b) 7→a ·b=a(1)b

provides a (nonassociative) commutative algebra structure on V2. This algebra V2

is called the Griess algebra of V , and τe acts on it as follows:
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Lemma 1.3 [Höhn et al. 2012, Lemma 2.6]. Let V be a simple VOA of CFT type
with V1 = 0 and e an Ising vector in V . Then B = V2 has the decomposition

B = Ce⊕ Be(0)⊕ Be(1
2)⊕ Be( 1

16)

with respect to the adjoint action of e, where Be(k) = {v ∈ B | e · v = kv}. The
automorphism τe acts on B as

1 on Ce⊕ Be(0)⊕ Be( 1
2) and − 1 on Be( 1

16).

In the proof of our main theorem, we need:

Lemma 1.4 [Lam et al. 2007, Lemma 3.7]. Let V be a VOA of CFT type with
V1 = 0. Suppose that V has two Ising vectors e, f and that τe = id on V . Then e
is fixed by τ f , namely e ∈ V τ f .

Let L be an even lattice of rank n without roots, that is,

L(2)= {v ∈ L | 〈v, v〉 = 2} =∅.

Then (V+L )1 = 0, and we can consider the Griess algebra B = (V+L )2 of V+L . Let
{hi |1≤ i ≤n} be an orthonormal basis of the vector space H =C⊗Z L=〈L〉C. Set
L(4)={v∈ L | 〈v, v〉=4}. For 1≤ i≤ j≤n and α∈ L(4), set hi j =hi (−1)h j (−1)1
and xα = eα + e−α = eα + θ(eα). Note that xα = x−α.

Lemma 1.5 [Frenkel et al. 1988, Section 8.9]. (1) The set

{hi j , xα | 1≤ i ≤ j ≤ n, {±α} ⊂ L(4)}

is a basis of B.

(2) The products of the basis vectors of B given in (1) are

hi j · hkl = δikh jl + δilh jk + δ jkhil + δ jlhik,

hi j · xα = 〈hi , α〉〈h j , α〉xα,

xα · xβ =


ε(α, β)xα±β if 〈α, β〉 = ∓2,
α(−1)21 if α =±β,
0 otherwise.

Let α ∈ L(4). Then the elements ω+(α) and ω−(α) of V+L defined by

(1-3) ω±(α)= 1
16α(−1)2 · 1± 1

4 xα

are Ising vectors [Dong et al. 1994, Theorem 6.3]. The following lemma is easy:

Lemma 1.6. The automorphisms τω±(α) of V+L act by

u⊗ xβ 7→ (−1)〈α,β〉u⊗ xβ for u ∈ MH (1) and β ∈ L .
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More generally:

Proposition 1.7 [Lam and Shimakura 2007, Lemma 5.5]. Let L be an even lattice
without roots and e an Ising vector in V+L . Then τe ∈ O(L̂)/〈θ〉.

When L/
√

2 is even, our main theorem reduces to something proved earlier:

Proposition 1.8 [Lam et al. 2007, Theorem 4.6]. Let L be an even lattice and e an
Ising vector in V+L . Assume that the lattice L/

√
2 is even. There is a sublattice U

of L isomorphic to
√

2A1 or
√

2E8 and such that e ∈ V+U .

2. Classification of Ising vectors in V+

L

Let L be an even lattice of rank n without roots and e an Ising vector in V+L . Then
by Lemma 1.5(1),

(2-1) e =
∑
i≤ j

ce
i j hi j +

∑
{±α}⊂L(4)

de
{±α}xα,

where ce
i j , de

{±α} ∈ C. Set L(4; e) = {α ∈ L(4) | de
{±α} 6= 0}, H1 = 〈L(4; e)〉C

and H2 = H⊥1 in H . Note that if α ∈ L(4; e) then −α ∈ L(4; e). Without loss
of generality, we may assume that hi ∈ H1 if 1 ≤ i ≤ dim H1. Then we have
H2 = SpanC{h j | dim H1+ 1≤ j ≤ n}.

By Proposition 1.7, τe ∈ O(L̂)/〈θ〉. Since e ∈ VL , we regard τe as an automor-
phism of VL . Then τe ∈ O(L̂), and set g = τ̄e ∈Aut L . Since τe is of order 1 or 2,
so is g. We now state the key lemma in this article:

Lemma 2.1. Let β ∈ L(4; e). Then g(β) ∈ {±β}.

Proof. By (1-1) and (1-2),

(2-2) τe(xβ) ∈ {±xg(β)}.

On the other hand, τe(e)= e, (1-2) and (2-1) show that

(2-3) τe(de
{±β}xβ)= de

{±g(β)}xg(β).

By (2-2) and (2-3),

(2-4) de
{±g(β)}/d

e
{±β} ∈ {±1}.

Suppose g(β) /∈ {±β}. Then xβ − τe(xβ) is nonzero, and it is an eigenvector of
τe with eigenvalue −1. By Lemma 1.3, we have

(2-5) e · (xβ − τe(xβ))= 1
16(xβ − τe(xβ)).

We calculate the image of both sides of (2-5) under the canonical projection
µ : (V+L )2 → SpanC{hi j | 1 ≤ i ≤ j ≤ n} with respect to the basis given in
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Lemma 1.5(1). By (2-2) the image of the right side of (2-5) under µ is

(2-6) µ
( 1

16(xβ − τe(xβ))
)
= 0.

Let us discuss the left side of (2-5). By Lemma 1.5(2) and (2-4), we have

e · (xβ − τe(xβ))=
(∑

i≤ j

ce
i j hi j +

∑
{±α}⊂L(4)

de
{±α}xα

)
·
(
xβ − τe(xβ)

)
∈ de
{±β}

(
β(−1)21− g(β)(−1)21

)
+SpanC

{
xγ
∣∣ {±γ } ⊂ L(4)

}
.

Thus

µ(e · (xβ − τe(xβ)))= de
{±β}

(
β(−1)21− g(β)(−1)21

)
= de
{±β} (β − g(β)) (−1)(β + g(β))(−1)1.

This is not zero since g(β) /∈ {±β}, which contradicts (2-5) and (2-6). Therefore
g(β) ∈ {±β}. �

For ε ∈ {±}, set

L(4; e, ε)= {v ∈ L(4; e) | g(v)= εv}, Le,ε
= 〈L(4; e, ε)〉Z, H ε

1 = 〈L
e,ε
〉C.

Since g preserves the inner product, H1 = H+1 ⊥ H−1 and g acts on H2 = H⊥1 . Let
H±2 be ±1-eigenspaces of g in H2. For ε ∈ {±}, let W ε be a lattice of full rank in
H ε

2 isomorphic to an orthogonal direct sum of copies of 2A1. Then

(2-7) MH ε
2
(1)⊂ VW ε .

Lemma 2.2. The Ising vector e belongs to the VOA

V+Le,+⊕W+ ⊗ V+Le,−⊕W−,

and τe = id on this VOA.

Proof. By Lemma 2.1, L(4; e)= L(4; e,+)∪L(4; e,−). Hence, by (2-1) and (2-7),

(2-8) e ∈ (VLe,+ ⊗MH+2
(1)⊗ VLe,− ⊗MH−2

(1))+ ⊂ V+Le,+⊕W+⊕Le,−⊕W− .

Since g acts by ±1 on Le,±
⊕W±, the subspace of (2-8) fixed by τe is

V+Le,+⊕W+ ⊗ V+Le,−⊕W− .

Since e is fixed by τe, we have the desired result. �

We now prove the main theorem.

Theorem 2.3. Let L be an even lattice without roots and e an Ising vector in V+L .
There is a sublattice U of L isomorphic to

√
2A1 or

√
2E8 and such that e ∈ V+U .
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Proof. Set V = V+Le,+⊕W+⊗V+Le,−⊕W− . By Lemma 2.2, e belongs to V and τe = id
on V . Let A = 〈τω±(β) | β ∈ L(4; e)〉. By Lemma 1.4, e belongs to the subVOA
V A of V fixed by A. Since e is a weight 2 element, it is contained in the subVOA
generated by (V A)2. By Lemmas 1.1 and 1.6 and (2-7) (see (2-8)),

e ∈ V+N+⊕K+ ⊗ V+N−⊕K− ⊂ V+N ,

where for ε ∈ {±}, N ε
= SpanZ{v ∈ L(4; e, ε) | 〈v, L(4; e)〉 ∈ 2Z}, K ε is a lattice

of full rank in (〈N ε
〉C)
⊥
∩ (H ε

1 ⊕ H ε
2 ) isomorphic to an orthogonal direct sum of

copies of 2A1, and N = N+ ⊕ K+ ⊕ N− ⊕ K−. Since N is generated by norm
4 and 8 vectors, and the inner products of the generator belong to 2Z, the lattice
N/
√

2 is even. By Proposition 1.8, there is a sublattice U of N isomorphic to
√

2A1 or
√

2E8 such that e ∈ V+U . It follows from K+(4) = K−(4) = ∅ that
N (4) = N+(4) ∪ N−(4) ⊂ L . Since

√
2A1 and

√
2E8 are spanned by norm 4

vectors as lattices, we have U ⊂ L . Hence V+U is a subVOA of V+L . �

As an application of the main theorem, we count the total number of Ising vec-
tors in V+L for even lattice L without roots.

Let us describe Ising vectors in V+L . The Ising vector ω±(α) associated to α in
L(4) was described in (1-3) as

ω±(α)= 1
16α(−1)2 · 1± 1

4 xα.

Let E be an even lattice isomorphic to
√

2E8 and {ui | 1≤ i ≤ 8} an orthonormal
basis of C ⊗Z E . We consider the trivial 2-cocycle of C{E} for VE . Then for
ϕ ∈ Hom(E,Z/2Z)(∼= (Z/2Z)8),

ω(E, ϕ)= 1
32

8∑
i=1

ui (−1)2 · 1+ 1
32

∑
{±α}⊂E(4)

(−1)ϕ(α)xα

is an Ising vector in V+E [Dong et al. 1998; Griess 1998]. Since E(4) spans E as a
lattice, ω(E, ϕ)=ω(E, ϕ′) if and only if ϕ = ϕ′. Hence V+E has 256 Ising vectors
of form ω(E, ϕ). Thus V+√

2A1
and V+√

2E8
have exactly 2 and 496 Ising vectors,

respectively [Lam et al. 2007, Propositions 4.2 and 4.3].

Corollary 2.4. Let L be an even lattice without roots. Then the number of Ising
vectors in V+L is

|L(4)| + 256×
∣∣{U ⊂ L |U ∼=

√
2E8}

∣∣.
Proof. Set m = |L(4)|+256×|{E ⊂ L | E ∼=

√
2E8}|. Theorem 2.3 shows that the

number of Ising vectors in V+L is less than or equal to m. Let us show that there
are exactly m Ising vectors in V+L , that is, the Ising vectors ω±(α) and ω(E, ϕ) are
distinct. By Lemma 1.5(1), ωε(α) = ωδ(β) if and only if α = β and ε = δ. Also
ωε(α) 6= ω(E, ϕ) for all α ∈ L(4), L ⊃ E ∼=

√
2E8 and ϕ ∈ Hom(E,Z/2Z).
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Let E1, E2 be sublattices of L such that E1 ∼= E2 ∼=
√

2E8. Let ϕi , i = 1, 2,
be two elements of Hom(Ei ,Z/2Z). Then it follows from Lemma 1.5(1) and
〈Ei (4)〉Z = Ei that ω(E1, ϕ1) = ω(E2, ϕ2) if and only if E1 = E2 and ϕ1 = ϕ2.
Therefore, there are exactly m Ising vectors in V+L . �
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HIGHEST-WEIGHT VECTORS FOR THE ADJOINT ACTION
OF GLn ON POLYNOMIALS

RUDOLF TANGE

Let G=GLn be the general linear group over an algebraically closed field k,
and let g= gln be its Lie algebra. Let U be the subgroup of G that consists
of the upper unitriangular matrices. Let k[g] be the algebra of polynomial
functions on g, and let k[g]G be the algebra of invariants under the con-
jugation action of G. For certain special weights, we give explicit bases for
the k[g]G-module k[g]Uλ of highest-weight vectors of weight λ. For five of
these special weights, we show that this basis is algebraically independent
over k[g]G and generates the k[g]G-algebra

⊕
r≥0 k[g]Urλ. Finally, we for-

mulate the question whether in characteristic zero, k[g]G-module genera-
tors of k[g]Uλ can be obtained by applying one explicit highest-weight vector
of weight λ in the tensor algebra T (g) to varying tuples of fundamental
invariants.

Introduction

Let GLn be the general linear group over an algebraically closed field k, and let
gln be its Lie algebra. We are interested in explicit formulas for highest-weight
vectors in the ring k[gln] of polynomial functions on gln under the conjugation
action. It is natural to take into account the fact that the highest-weight vectors of
a given weight form a module over the invariant algebra k[gln]

GLn . A crude method
would be to map the highest-weight vectors in the tensor algebra T (gln) (see, for
example, [Benkart et al. 1994]) into the symmetric algebra S(gln), which is GLn-
equivariantly isomorphic to k[gln]. Mostly one will be projecting to zero. For
example, in [Premet and Tange 2005, Section 5, Corollary 2], it was shown that
the lowest degree in k[gln] where the irreducible of highest weight n$1 occurs
is n(n − 1)/2. But the lowest degree in T (gln) where this irreducible occurs is
n−1. Our method involves differentiation of the fundamental invariants and applies
to any relevant weight, although we can only prove that it provides a k[gln]

GLn -
module basis for a special family of weights.

This research was funded by a research grant from The Leverhulme Trust.
MSC2010: primary 13A50; secondary 16W22, 20G05.
Keywords: highest-weight vectors, semi-invariants, adjoint action.
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Kostant [1963] showed that, for any reductive group G over C, the coordinate
rings of the fibres of the adjoint quotient are all isomorphic as G-modules to
the space H of harmonic functions, and determined the multiplicities of the ir-
reducibles in H . Hesselink [1980] obtained a completely general formula for the
graded character of H (or the coordinate ring of the nilpotent cone). For more
results on multiplicities in the tensor, symmetric and exterior algebra of the Lie
algebra we refer the reader to [Hanlon 1985; Stembridge 1987; Gupta 1987; Brylin-
ski 1989; Reeder 1997; Bazlov 2001] and the references in there.

The paper is organised as follows. In Section 1, we introduce some basic nota-
tion and recall some results from the literature. Section 2 contains the main results:
Theorem 1 gives explicit k[gln]

GLn -module bases for the space of highest-weight
vectors for a family of 2(n − 1)− 1 weights, and Theorem 2 extends this to all
the multiples of 5 of these weights. Theorems 1 and 2 generalise the results in
[Premet and Tange 2005, Section 5] for the weight n$1. See also [Dixmier 1976,
lemme 3.4] for the case of the universal enveloping algebra of sln . In Section 3,
we briefly consider the example GL3. Here one can actually determine k[gln]

GLn -
module bases for the space of highest-weight vectors for all relevant weights; that
is, one can completely determine the algebra k[gln]

Un , where Un consists of the
upper unitriangular matrices. In Section 4, we formulate the question whether
in characteristic zero, k[gln]

GLn -module generators of k[gln]
U
λ can be obtained by

applying one explicit highest-weight vector of weight λ in the tensor algebra T (gln)

to varying tuples of fundamental invariants.

1. Preliminaries

Throughout this paper k is an algebraically closed field and G =GLn , n ≥ 2, is the
general linear group of invertible n×n matrices. Its natural module is V = kn and
its Lie algebra is g= gln

∼= V ⊗V ∗. The standard basis elements of V are denoted
by e1, . . . , en and the dual basis elements are denoted by e∗1, . . . , e∗n . We identify
g= gln with End(V ), the endomorphisms of the vector space V . We denote by Ei j

the matrix which is 1 on position (i, j) and 0 elsewhere. Under the isomorphism
g∼= V ⊗V ∗, Ei j corresponds to ei ⊗ e∗j . The elements of the dual basis of Ei j are
denoted by ξi j . So the algebra k[g] of polynomial functions on g is a polynomial
algebra in the ξi j . The group G acts on g via the adjoint action (conjugation) and
therefore also on k[g]. For any group H and any k H -module W we denote the
space of H -fixed vectors in W by W H .

The Borel subgroup of G which consists of the invertible upper triangular ma-
trices is denoted by B and its unipotent radical, which consists of the upper unitri-
angular matrices, by U . We denote by T the maximal torus of G which consist of
the invertible diagonal matrices. The character group of T is denoted by X and its
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standard basis elements are denoted by ε1, . . . , εn . Recall that the positive roots
relative to B are the roots εi − ε j for i < j , and that λ ∈ X is dominant if and only
if λ1≥ λ2≥ · · · ≥ λn . Furthermore, λ∈ X occurs in the root lattice if and only if its
coordinate sum is 0. The all-zero and the all-one vector in X are denoted by 0 and
1 respectively. For i ∈ {1, . . . , n−1} the i-th fundamental weight $i ∈Q⊗Z X is
defined by

$i =

i∑
j=1

ε j −
i
n

1=
1
n

(
(n− i)

i∑
j=1

ε j − i
n∑

j=i+1

ε j

)
.

The Z-span of the fundamental weights contains the root lattice. For λ ∈ X and W
a T -module the weight space Wλ is defined by

Wλ = {x ∈W | t · x = λ(t)x for all t ∈ T }.

We denote the irreducible GLn(C)-module of highest weight λ by LC(λ). The
Weyl group of G relative to T is the symmetric group Symn which permutes the
coordinates. We denote the longest Weyl group element by w0. We have w0(εi )=

εn−i+1, put differently, w0(λ) is the reversed tuple of λ.
For i ∈ {1, . . . , n} we define si ∈ k[g] by

si (x)= tr
∧i
(x),

where
∧i
(x) denotes the i-th exterior power of x . Then the si are up to sign

the coefficients of the characteristic polynomial. Note that s1 = tr and sn = det.
Furthermore, the si are algebraically independent generators of k[g]G . See, e.g.,
[Jantzen 2004, Section 7].

The reader who only wants to understand the precise statements of the main
results can now continue to Section 2, read definitions (1) and (2) and then Theo-
rems 1 and 2.

We now state some auxiliary results that will be needed for the proofs of the
main results. The result below was mentioned to me by S. Donkin.

Lemma 1. dim k[g]U = dim B = n(n+ 1)/2.

Proof. For m ∈ {1, . . . , n} put

1m = det
(
(ξi j )n−m+1≤i≤n, 1≤ j≤m

)
.

Then 1m ∈ k[g]U for all m ∈ {1, . . . , n} and k[g][1−1
1 , . . . ,1−1

n ] = k[Bw0 B]. It
follows that

k[g]U [1−1
1 , . . . ,1−1

n ] = k[Bw0 B]U

and dim k[g]U = dim k[Bw0 B]U . Now k[Bw0 B]U ∼= k[B] via the isomorphism
that sends f ∈ k[B] to the function uw0b 7→ f (bu). �
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We recall the graded Nakayama lemma. For its proof we refer to [Passman
1991, Chapter 13], Lemma 4, Exercise 3, Lemma 3.

Lemma 2 [Passman 1991, Chapter 13]. Let S =
⊕

i≥0 Si be a positively graded
ring with S0 a field, let M be a graded S-module and let (xi )i∈I be a family of
homogeneous elements of M. Put S+ =

⊕
i>0 Si .

(i) If the images of the xi in M/S+M span the vector space M/S+M over S0,
then the xi generate M.

(ii) If M is projective and the images of the xi in M/S+M form an S0-basis of
M/S+M , then (xi )i∈I is an S-basis of M.

The closed subvariety of g which consists of the nilpotent matrices is denoted by
N. Since N is G-stable, G acts on the algebra k[N] of regular functions on N. The
two results below are actually valid, under some mild assumptions, for arbitrary
reductive groups, but we will not need this generality.

Proposition 1 [Kostant 1963, Theorem 11; Jantzen 2004, Section 7; Donkin 1988,
Theorem 2.2; Donkin 1990, Proposition 1.3b(i)].

(i) The vanishing ideal of N in k[g] is generated by s1, . . . , sn and for each λ the
restriction k[g]Uλ → k[N]Uλ is surjective and has kernel (k[g]G)+k[g]Uλ .

(ii) We have k[g]Uλ 6= 0 if and only if λ is dominant and lies in the root lattice.

(iii) If λ is dominant and lies in the root lattice, then dim k[N]Uλ = dim LC(λ)0 and
k[g]Uλ is a free k[g]G-module of rank dim LC(λ)0.

Note that dim LC(λ)0 = dim LC(−w0(λ))0, since the nondegenerate pairing be-
tween LC(λ) and LC(−w0(λ)) = LC(λ)

∗ restricts to one between LC(λ)0 and
LC(−w0(λ))0.

We will call a weight λ ∈ X primitive if it is nonzero, dominant, occurs in the
root lattice and cannot be written as the sum of two such weights. Note that k[g]
is a unique factorisation domain, since it is isomorphic to a polynomial ring.

Lemma 3. Let u ∈ k[g] be nonzero. Assume that its top degree term does not
vanish on N and is a B-semi-invariant of primitive weight λ. Then u is irreducible.

Proof. If the top degree term of u is irreducible, then so is u. So we may assume that
u is homogeneous. We now finish with the arguments from part 3 of the proof of
[Premet and Tange 2005, Proposition 3]. Let u = um1

1 · · · u
mr
r be the factorisation

of u into irreducibles. Then the ui are homogeneous. By a standard argument
using the uniqueness of the prime factorisation and the connectedness of B, we
get that the ui are B-semi-invariants. Let λ1, . . . , λr be their weights. Then these
are dominant by [Jantzen 2003, Proposition II.2.6] and we have λ =

∑r
i=1 miλi .

So, by the primitivity of λ, we get that for precisely one i , λi 6= 0 and for this i
we have mi = 1. We may assume i = 1. Then λ1 = λ and λ2 = · · · = λr = 0. So
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u2, . . . , ur are B-invariants and therefore G-invariants. Since u is nonzero on N,
we have by Proposition 1(i) that r = 1. �

2. The basic semi-invariants

For t ∈ {1, . . . , n− 1} we define the weights

(1)

λt
=

n∑
i=n−t+1

(ε1− εi )= (t, 0, . . . , 0,−1, . . . ,−1),

µt
=

t∑
i=1

(εi − εn)= (1, . . . , 1, 0, . . . , 0,−t) .

Note that λt and µt are dominant and in the root lattice. We have λ1
=µ1

= ε1−εn

and µt
=−w0(λ

t). Furthermore, we have λt
= t$1+$n−t and µt

=$t+ t$n−1.
A weight

∑n−1
i=1 mi$i occurs in the root lattice if and only if n |

∑n−1
i=1 imi . From

this we easily deduce that λt and µt are primitive.
All (Young) tableaux that we consider will have entries in {1, . . . , n}. Recall

that a tableaux is called standard if the entries in the rows are increasing (i.e., non-
decreasing) from left to right and if the entries in the columns are strictly increasing
from top to bottom.

Lemma 4. Let t ∈ {1, . . . , n− 1}.

(i) We have dim k[N]U
λt = dim k[N]U

µt =
(n−1

t

)
.

(ii) Assume t = 1 or n ≥ 3 and t ∈ {1, n − 2, n − 1}, let r ≥ 0 be an integer and
put s =

(n−1
t

)
. Then dim k[N]Urλt = dim k[N]Urµt =

(r+s−1
r

)
.

Proof. (i) We only have to consider the case of λt . The given dimension is by
Proposition 1 equal to dim LC(λ

t)0. Put ν := λt
+ 1 = (t + 1, 1, . . . , 1, 0, . . . , 0),

where the number of zeros is t . Then LC(ν)= det⊗LC(λ
t). So it suffices to show

that dim LC(ν)1 =
(n−1

t

)
. This dimension is well-known to be equal to the number

of standard tableaux of shape ν and weight 1, that is, each integer in {1, . . . , n}
must occur precisely once. The shape ν is a hook diagram as shown:

︷ ︸︸ ︷t + 1 boxes
n− t
boxes

1 . . .

...
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Clearly the box in the top left corner must contain 1 and the tableaux is completely
determined by the choices for the other boxes in the first column. So our standard
tableaux are in one-one correspondence with the n− t − 1-subsets of {2, . . . , n}.

(ii) We only have to consider the case of λt . By the same arguments as in (i), it
suffices to show that the number of standard tableaux of shape ν and weight r1 is(r+s−1

r

)
, where ν := rλt

+r1. So each integer in {1, . . . , n} must occur precisely r
times. First assume t = 1. Then s = n− 1 and the shape ν is a diagram as shown:

︷ ︸︸ ︷2r boxes
n− 1
boxes

︸ ︷︷ ︸
r boxes

1 . . . 1 . . .

. . .
...

...
. . .

Clearly the first r boxes in the top row must contain 1. If we ignore the first row,
then each column is a strictly increasing subsequence of {2, . . . , n} of length n−2.
So it is determined by an integer from {2, . . . , n} (the one that does not occur). If
we write these in the order of the columns, then the standardness implies that we
get an increasing sequence. This sequence is what goes in the final r boxes in the
first row and it determines the tableaux completely. The number of such sequences
is the same as the number of monomials of degree r in n−1 variables, so it equals(n+r−2

r

)
.

Now assume that t = n − 2. Then s = n − 1 and the shape ν is a diagram as
shown below. ︷ ︸︸ ︷(n− 1) r boxes

︸ ︷︷ ︸
r boxes

1 . . . 1 . . . . . .

. . .

Again the first r boxes in the top row must contain 1. Now the diagram is com-
pletely determined by the second row, which is an increasing subsequence of
{2, . . . , n}. So again we get

(n+r−2
r

)
standard tableaux. The case t = n − 1 is

trivial, since the shape ν is then a single row of length nr . �

We now define some basic B-semi-invariants in k[g]. For t ∈ {1, . . . , n−1} and
I ⊆ {2, . . . , n} with |I | = t we define

ut,I := det
(
(∂1i s j )n−t+1≤i≤n, j∈I

)
,

vt,I := det
(
(∂ins j )1≤i≤t, j∈I

)
.

(2)
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Here the indices from I are taken in their natural order and ∂i j is the partial deriv-
ative ∂/∂ξi j . Note that ut,I and vt,I are homogeneous of degree

(∑
j∈I j

)
− t .

Define the involution ϕ of the vector space g by ϕ(A) = P AT P , where P is
the permutation matrix corresponding to w0 and AT denotes the transpose of A.
Then ϕ(g · A) = P(g−1)T P · ϕ(A), where the dot denotes conjugation action. If
we denote the corresponding automorphism of k[g] also by ϕ, then this formula
also holds with A replaced by f ∈ k[g]. So ϕ(k[g]Uλ )= k[g]U

−w0(λ)
. In accordance

with this we have ϕ(ut,I )=±vt,I .
We set up some notation which will give another, more general, way to construct

the elements ut,I and vt,I . This will make clear why they are B-semi-invariants
(see the proof of Theorem 1(ii) below). If λ is a partition, then we denote its length
by l(λ). For λ+, λ− ∈ X we put [λ+, λ−] := λ+−w0(λ

−). It is easy to see that for
any λ∈ X dominant there exist unique partitions λ+ and λ− with l(λ+)+l(λ−)≤ n
and λ= [λ+, λ−]. In the sequel, when λ+ and λ− are introduced after λ, they are
supposed to have these properties. Let λ be a partition of t . We define the tableau
Tλ of shape λ by Tλ(i, j)=

(∑i−1
l=1 λl

)
+ j . Furthermore we define the subgroup Cλ

of the symmetric group Symt as the column stabiliser of Tλ. Define the element Aλ
in the group algebra k〈Symt 〉 by Aλ =

∑
π∈Cλ sgn(π)π . Finally, define eλ ∈ V⊗t

and e∗λ ∈ V ∗⊗t by

eλ =
l(λ)⊗
i=1

e⊗λi
i and e∗λ =

l(λ)⊗
i=1

e∗n−i+1
⊗λi .

Then, as is well-known (see, e.g., [Benkart et al. 1994]), Aλ · eλ and Aλ · e∗λ are
highest-weight vectors of weight λ and −w0(λ) respectively.

Now let λ = [λ+, λ−] be dominant and in the root lattice. Then λ+ and λ−

are partitions of the same number, t say and we define Eλ ∈ g⊗t as the element
corresponding to Aλ+ · eλ+ ⊗ Aλ− · e∗λ− ∈ V⊗t

⊗ V ∗⊗t under the isomorphism
g⊗t ∼= V⊗t

⊗ V ∗⊗t . By the above, Eλ is a highest-weight vector of weight λ.
For each x ∈ g we can extend the evaluation at x , considered as a linear map

g∗→ k⊆ k[g], to a derivation of degree−1 of the algebra k[g]. Then the evaluation
at Ei j extends to the derivation ∂i j . So we obtain a G-equivariant linear map
g→ End(k[g]) and therefore also a G-equivariant linear map

ψt : g
⊗t
→ End(k[g]⊗t) .

We denote the G-equivariant multiplication map k[g]⊗t
→ k[g] by ϑ .

Theorem 1. Let t ∈ {1, . . . , n−1} and let λt , µt , ut,I , vt,I be given by (1) and (2).

(i) The ut,I , I ⊆ {2, . . . , n} with |I | = t , form a basis of the k[g]G-module k[g]U
λt .

The same holds for the vt,I and µt .
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(ii) Any nontrivial k-linear combination of the ut,I , I ⊆ {2, . . . , n} with |I | = t ,
is an irreducible B-semi-invariant of weight λt . The same holds for the vt,I

and µt .

Proof. (i) Using the involution ϕ we see that we only have to prove the assertion
for µt and the vt,I . By Proposition 1 and Lemmas 2 and 4(i) it suffices to show that
the restrictions of the vt,I to N are linearly independent. For 31,32 ⊆ {1, . . . , n}
and A= (ai j )1≤i, j≤n ∈ g set A31,32 = (ai j )(i, j)∈31×32 , where the indices are taken
in their natural order. Furthermore, put X = (ξi j )1≤i, j≤n . If |31| = |32|, then we
have, as in [Premet and Tange 2005], the following basic fact which follows from
the Laplace expansion formulae for the determinant:

(3) ∂i j
(
det(X31,32)

)
=

{
± det(X31\{i}, 32\{ j}) when (i, j) ∈31×32,

0 when (i, j) /∈31×32.

For l ≤ n we have sl =
∑

3 det(X3,3) where the sum ranges over all l-subsets 3
of {1, . . . , n}.

For a sequence σ = (σ1, . . . , σs) of distinct integers in {1, . . . , n}we define Aσ ∈
End(V ) by Aσ (eσi )= eσi−1 for i ∈ {2, . . . , s} and Aσ (ei )= 0 for i /∈ {σ2, . . . , σs}.
Then Aσ is nilpotent and its restriction to the span of the eσi , 1≤ i ≤ s, is regular.

If 31,32 ⊆ {1, . . . , n} with |31| = |32|> 0 and det(X31,32)(Aσ ) 6= 0, then

• 31 ⊆ {σ1, . . . , σs−1} and 32 ⊆ {σ2, . . . , σs},

• σ j ∈31⇒ σ j+1 ∈32 for all j ∈ {1, . . . , s− 1},

• σ j ∈32⇒ σ j−1 ∈31 for all j ∈ {2, . . . , s}.

(4)

Let σ be as above with σ1 = n. Let i ∈ {1, . . . , n}, let 3 ⊆ {1, . . . , n} with
|3| = l and assume that

(
∂in det(X3,3)

)
(Aσ ) 6= 0. Then it follows from (3) and

(4) that i = σl , that 3 = {σ1, . . . , σl} and that
(
∂in det(X3,3)

)
(Aσ ) = ±1. So for

such a σ we have (∂insl)(Aσ ) 6= 0⇒ l ≤ s, i = σl and (∂insl)(Aσ )=±1.
So for σ = (σ1, . . . , σs) and τ = (τ1, . . . , τt) sequences of distinct integers in
{1, . . . , n} and π ∈ Symt with σ1 = n and (∂π1nsτ1) · · · (∂πt nsτt )(Aσ ) 6= 0 we have

(a) τi ≤ s for all i ∈ {1, . . . , t},

(b) σ ◦ τ = π ,

(c) (∂π1nsτ1) · · · (∂πt nsτt )(Aσ )=±1.

Note that (a) implies that σ({τ1, . . . , τt })= {1, . . . , t}, so the set {τ1, . . . , τt } is
determined by σ .

Now we choose for each subset I = {i1 > · · · > it } of {2, . . . , n} a sequence
σ(I ) of i1 ≥ t+1 distinct integers in {1, . . . , n} with σ(I )1= n and σ(I )i j = j for
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all j ∈ {1, . . . , t}. Then we get for I, J ⊆ {2, . . . , n} with |I | = |J | = t that

vt,I (Aσ(J ))=
{
±1 if I = J,
0 otherwise.

So the linear map f 7→ f (Aσ(J ))J : k[N]→ k(
n−1

t ) sends the family (vt,I |N)I to
a basis and therefore the restrictions of the vt,I to N are linearly independent.

(ii) Let I ⊆ {2, . . . , n} with |I | = t and write I = {i1 < · · ·< it }. Then it follows
immediately from the definitions that ut,I = ϑ(ψt(F) · si1 ⊗ · · ·⊗ sit ), where

F =
∑
π

sgn(π) E1,πn−t+1 ⊗ · · ·⊗ E1,πn ,

the sum over all permutations π ∈ Sym({n − t + 1, . . . , n}). Now λ+t = tε1 and
λ−t = ε1+ · · · + εt . So Aλ+t = id and Aλ−t =

∑
π∈Symt

sgn(π)π for eλ+t = e⊗t
1 and

eλ−t = e∗n−t+1⊗· · ·⊗e∗n . It follows that, under the isomorphism g⊗t ∼= V⊗t
⊗V ∗⊗t ,

F corresponds to Aλ+t · eλ+t ⊗ Aλ−t · e
∗

λ−t
. So F = Eλt . Similarly, we get vt,I =

ϑ(ψt(Eµt ) · si1 ⊗ · · · ⊗ sit ). Since the si are invariants, this shows that ut,I and
vt,I are B-semi-invariants of the given weights. Since λt and µt are primitive, the
assertion follows from Lemma 3 and the linear independence proved in (i). �

Remarks 1. 1. Kostant [1963, Remark 26] gave an explicit basis for the isotypic
component of the space of harmonics H corresponding to the highest root. So the
statement of Theorem 1 in the case of λ1 extends to all complex reductive groups.

2. Assume k =C, let t ≤ s and let λ= [λ+, λ−] be dominant and in the root lattice
with λ+ and λ− partitions of t . Then

(g⊗s)Uλ
∼= (V⊗s

⊗ V ∗⊗s
)Uλ

is a simple module for the walled Brauer algebra Bs,s(n), see [Benkart et al. 1994].
Note that in the definition of the vectors tτ,m,n in Definition 2.4 of that reference,
the symmetrisation can be omitted. Above we only considered the case s = t , the
lowest tensor power of g which contains LC(λ). Then (g⊗s)Uλ is an irreducible
Symt × Symt -module and the ideal of Bt,t(n) spanned by the diagrams with at
least one horizontal edge acts as 0.

3. Another natural definition of eλ and e∗λ is

eλ =
l(λ′)⊗
i=1

λ′i⊗
j=1

e j and e∗λ =
l(λ′)⊗
i=1

λ′i⊗
j=1

e∗n− j+1,

where λ′ denotes the partition of t whose shape is the transpose of that of λ. In
the definition of Aλ one then has to replace Tλ by its transpose (or Cλ by the row
stabiliser Rλ). Then Aλ · eλ and Aλ · e∗λ are again highest-weight vectors of weight
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λ and −w0(λ) and one can define Eλ as before. Note that this Eλ is Symt×Symt -
conjugate to the original one.

4. Assume k = C. Theorem 1 answers the so-called first occurrence question
for k[g] and the weights λt and µt : The lowest degree where LC(λ

t) (or LC(µ
t))

occurs in k[g] is
(∑t+1

i=2 i
)
− t = t (t + 1)/2.

Theorem 2. Assume t = 1 or n ≥ 3 and t ∈ {1, n − 2, n − 1}. Then the ut,I ,
I ⊆{2, . . . , n} with |I | = t , are algebraically independent over k[g]G and generate
the k[g]G-algebra

⊕
r≥0 k[g]Urλt . Furthermore, the same holds for the vt,I and µt .

Proof. Using the involution ϕ we see that we only have to prove the assertion
for µt and the vt,I . By Proposition 1 and Lemmas 2 and 4(ii) it suffices to show
that the restrictions of the vt,I to N are algebraically independent. If t = n − 1,
then this follows from the fact that vn−1,{2,...,n}|N is nonzero by Theorem 1(i) and
of degree > 0. Now we observe the following. If f1, . . . , fl ∈ k[N], then the
morphism ( f1, . . . , fl) :N→ kl is dominant if and only if the fi are algebraically
independent and its differential at a point x ∈ N is surjective if and only if the
differentials at x of the fi are linearly independent. So, by [Borel 1991, AG 17.3],
it suffices to show that the differentials of the vt,I |N are linearly independent at
some smooth point x ∈ N. For x ∈ N we have that Tx(N) is the intersection of
the kernels of the differentials dx si and x is a smooth point of N if and only if the
dx si are linearly independent. So it suffices to show that the differentials of the si

and the vt,I at some nilpotent element x are together linearly independent. We will
take x = A = Aσ , where σ = (n, n−1, . . . , 1) and the notation is as in the proof
of Theorem 1(i). Put

α =
(
(1, 1), . . . , (1, n), (n, 1), . . . , (n, n−2), (2, 1)

)
.

Let M be the Jacobian matrix of s1, . . . , sn and the vt,I and let Mα be the (2n−1)-
square submatrix of M consisting of the columns with indices from α. We will
show that det(Mα)(A)=±1. This will prove the required linear independence.

From (3) and (4) we deduce easily that (∂ni s j )(A) = 0 and (∂21s j )(A) = 0
for all i ∈ {1, . . . , n − 2} and j ∈ {1, . . . , n} and that (∂1i s j )(A) = ±δi j for all
i, j ∈ {1, . . . , n}. So it suffices to show that the matrix (∂αivt,J )(A)n+1≤i≤2n−1,J

is diagonal with the diagonal entries equal to ±1, when the subsets J are suitably
ordered.

Assume t = n− 2. For j ∈ {2, . . . , n} put w j = vt,{2,...,n}\{ j}. Put

τ( j)= (2, . . . , j − 1, j + 1, . . . , n).

Then we have

(5) ∂αmw j = ∂αm

∑
±(∂π1,nsτ( j)1) · · · (∂πn−2,nsτ( j)n−2) ,
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where the sum is over all π ∈ Sym({1, . . . , n−2}). We can expand this further by
applying the product rule for differentiation. Then each term in (5) produces n−2
terms, the differentiation ∂αm being applied to each factor in turn. As in the proof
of Theorem 1 we have

(6) (∂insl)(A) 6= 0 ⇒ (∂insl)(A)=±1 and i = σl = n− l + 1.

Now assume j ≥ 3, i.e., σ j ≤ n− 2. Then στ( j)1 = σ2 = n− 1. Since π never
takes the value n− 1, the only term in the expanded form of

(7) ∂αm

(
(∂π1,nsτ( j)1) · · · (∂πn−2,nsτ( j)n−2)

)
that can be nonzero at A is

(
∂αm (∂π1,ns2)

)
(∂π2,nsτ( j)2) · · · (∂πn−2,nsτ( j)n−2). By (6)

we must then have πi = στ( j)i for all i ∈ {2, . . . , n− 2} and π1 = σ j . Finally (3)
and (4) give us then that αm = (n, σ j ) and that the value of the term is ±1.

Now assume that j = 2. Then τ(2)= (3, . . . , n). So for a term in the expanded
form of (7) to be nonzero at A we must, by (6), have πi = στ(2)i for all but one
and therefore for all i ∈ {1, . . . , n − 2}. So π = (n − 2, . . . , 1). Now we check
that

(
∂nl(∂πi ,nsτ(2)i )

)
(A) = 0 for all l, i ∈ {1, . . . , n − 2} by considering a term

det(A3\{πi ,n},3\{l,n}) for 3 ⊆ {1, . . . , n} with |3| = τ(2)i = i + 2. Assume first
1 ∈ 3. Then πi = 1, since otherwise the first row of A3\{πi ,n},3\{l,n} would be
zero. So i = n − 2 and 3 = {1, . . . , n}. But then the column of index n − 1 in
A3\{πi ,n},3\{l,n} is zero. So 1 /∈ 3. The cases l < πi and l = πi are now easily
dealt with using (3) and (4). So assume πi < l. Then we get, using (3) and (4),
3 = {πi , . . . , l, n}. Then i + 2 = |3| = l − n + i + 3, so l = n − 1, which is
impossible. Finally we check that

(
∂2,1(∂πi ,nsi+2)

)
(A) = ±δi,n−2, by considering

a term det(A3\{2,πi },3\{1,n}) for 3 ⊆ {1, . . . , n} with |3| = i + 2. Since 1 ∈ 3
we must have πi = 1, so i = n− 2 and 3 = {1, . . . , n}. The value of this term is
then ±1.

In conclusion we have shown that, for m ∈{n+1, . . . , 2n−1} and j ∈{2, . . . , n},
(∂αmw j )(A)=±δm−n,w0( j).

Now assume t = 1. Then we put w j = vi,{ j} = ∂1,ns j and we show that, for
m ∈ {n+ 1, . . . , 2n− 1} and j ∈ {2, . . . , n}, (∂αmw j )(A)=±δm−n, j−1. Since this
case is much easier we leave it to the reader. �

Remarks 2. 1. Assume k = C, let t ∈ {1, n − 2, n − 1} and let r ≥ 0. Then,
by Theorem 2, the lowest degree where LC(rλt) (or LC(rµt)) occurs in k[g] is
r
(
(
∑t+1

i=2 i)− t
)
= r t (t + 1)/2.

2. Computer calculations suggest that, for t /∈ {1, n − 2, n − 1} and r ≥ 2,
dim k[N]Urλt <

(r+s−1
r

)
, where s = dim k[N]U

λt . So for such t one cannot expect
the ut,I to be algebraically independent over k[g]G , but one could still conjecture
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that they generate the k[g]G-algebra
⊕

r≥0 k[g]Urλt . Similar remarks apply to µt

and the vt,I .

3. With a bit more effort one can show that the matrix Mα(A) from the proof of
Theorem 2 is diagonal with the diagonal entries equal to ±1.

3. The case of GL3

In this section we describe the algebra k[g]U in the case of GL3. So throughout
this section n= 3, G=GL3 and g= gl3. We have λ1

=µ1
=$1+$2, λ2

= 3$1=

(2,−1,−1) and µ2
= 3$2 = (1, 1,−2). Note that a weight l1$1+ l2$2 is in the

root lattice if and only if 3 | (l1− l2). Put X = (ξi j )1≤i, j≤3. For i, j ∈ {1, 2, 3} we
denote by X(i, j) the matrix X with the i-th row and j-th column omitted and we
denote its determinant by |X(i, j)

|. We put

d1 = ξ21|X
(1,3)
| + ξ31|X

(1,2)
| = −u2,{2,3} ,

d2 = ξ31|X
(2,3)
| + ξ32|X

(1,3)
| = v2,{2,3} .

Lemma 5. Let λ = l1$1 + l2$2 be dominant and in the root lattice. Put a =
min(l1, l2). Then dim LC(λ)0 = a+ 1.

Proof. Put b = (l1 + 2l2)/3 and ν = λ + b1 = (l1 + l2, l2, 0). Then LC(ν) =

detb⊗LC(λ). So it suffices to show that there are a+1 standard tableaux of shape
ν and weight b1. This we leave as an exercise for the reader. One has to distinguish
the cases l1 ≥ l2 and l2 ≥ l1. �

Proposition 2. (i) Let λ= l1$1+l2$2 be dominant and in the root lattice and put
a = min(l1, l2). Put d = d(l1−l2)/3

1 if l1 ≥ l2 and put d = d(l2−l1)/3
2 otherwise. Then

the elements d ξ i
31|X

(1,3)
|
a−i , 0≤ i ≤ a, form a basis of the k[g]G-module k[g]Uλ .

(ii) The k-algebra k[g]U is generated by s1, s2, s3, ξ31, |X(1,3)|, d1 and d2. A defin-
ing relation is given by

d1d2− |X
(1,3)
|
3
− ξ31|X

(1,3)
|
2s1− ξ

2
31|X

(1,3)
|s2− ξ

3
31s3 = 0 .

Proof. (i) By Proposition 1 and Lemmas 2 and 5 it suffices to show that the given
elements are independent on N. Since they all have different degrees, it suffices to
show they are nonzero on N. One easily checks that they are all nonzero on0 0 0

1 0 0
1 1 0

 .
(ii) By (i) the 7 given elements generate k[g]U and by Lemma 1 dim k[g]U = 6. A
straightforward computation shows that the given equation holds and it is clearly
irreducible (by Gauss’s lemma, for instance). �
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Remark 3. Proposition 2 also shows that the k-algebra k[N]U is generated by ξ31,
|X(1,3)|, d1 and d2 with defining relation d1d2− |X

(1,3)
|
3
= 0.

4. The method in general

As the reader may have noticed after reading the proof of Theorem 1(ii) our method
for producing highest-weight vectors applies to any dominant weight in the root
lattice. So one may wonder whether we always get k[g]G-module generators. We
formulate this as a question. We assume that k=C and use the notation of Section 2
before Theorem 1.

Question. Let λ = [λ+, λ−] be dominant and in the root lattice with λ+ and λ−

partitions of t . Do the elements ϑ
(
ψt(Eλ) · si1 ⊗ · · · ⊗ sit

)
for 2 ≤ i1, . . . , it ≤ n

generate the k[g]G-module k[g]Uλ ? Equivalently, do their restrictions to N span
k[N]Uλ ?

Note that the only thing that varies here is the tuple (i1, . . . , it). Note also that
we allow repetitions in the arguments si j . As an example we consider the case n=4
and λ = 2$2 = (1, 1,−1,−1), a primitive weight. Then the Hesselink–Peterson
formula [Hesselink 1980] shows that k[N]Uλ has dimension 2 with a generator in
degree 2 and one in degree 4. We have

ϑ
(
ψt(Eλ) · si1 ⊗ si2

)
=±

∑
sgn(σ ) sgn(τ ) ∂σ1τ3si1 ∂σ2τ4si2 ,

where the sum is over all σ ∈ Sym({1, 2}) and all τ ∈ Sym({3, 4}). It follows that
ϑ
(
ψt(Eλ)·s2⊗s2

)
=±2 det(X{3,4},{1,2}), where X{3,4},{1,2} is defined as in the proof

of Theorem 1. Clearly this is nonzero on the nilpotent cone. Note that the choice
(s2, s2) is the only choice that gives the degree 2 generator. One can check that
(s3, s3) and (s2, s4) both produce semi-invariants of degree 4 that are nonzero on
N. In the case (s2, s4) it is nonzero on N in any characteristic.

By Theorem 1 the answer to our question is affirmative for the weights λt andµt .
The basis elements of the spaces k[g]Urλt and k[g]Urµt , r > 1 and t ∈ {1, n−2, n−1},
from Theorem 2 are not formed in accordance with our question.

One can probably formulate a more complicated question for k of arbitrary char-
acteristic, where one divides the expression ϑ

(
ψt(Eλ) ·si1⊗· · ·⊗sit

)
by a suitable

integer in case of repeated arguments.

References

[Bazlov 2001] Y. Bazlov, “Graded multiplicities in the exterior algebra”, Adv. Math. 158:2 (2001),
129–153. MR 2002c:17004 Zbl 0979.17003

[Benkart et al. 1994] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, and J. Stroomer,
“Tensor product representations of general linear groups and their connections with Brauer alge-
bras”, J. Algebra 166:3 (1994), 529–567. MR 95d:20071 Zbl 0815.20028



510 RUDOLF TANGE

[Borel 1991] A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics 126,
Springer, New York, 1991. MR 92d:20001 Zbl 0726.20030

[Brylinski 1989] R. K. Brylinski, “Limits of weight spaces, Lusztig’s q-analogs, and fiberings of
adjoint orbits”, J. Amer. Math. Soc. 2:3 (1989), 517–533. MR 90g:17011 Zbl 0729.17005

[Dixmier 1976] J. Dixmier, “Sur les algèbres enveloppantes de si(n, C) et af(n, C)”, Bull. Sci.
Math. (2) 100:1 (1976), 57–95. MR 55 #8131 Zbl 0328.17003

[Donkin 1988] S. Donkin, “On conjugating representations and adjoint representations of semisim-
ple groups”, Invent. Math. 91:1 (1988), 137–145. MR 89a:20047 Zbl 0639.20021

[Donkin 1990] S. Donkin, “The normality of closures of conjugacy classes of matrices”, Invent.
Math. 101:3 (1990), 717–736. MR 91j:14040 Zbl 0822.20045

[Gupta 1987] R. K. Gupta, “Characters and the q-analog of weight multiplicity”, J. London Math.
Soc. (2) 36:1 (1987), 68–76. MR 88i:17010 Zbl 0649.17009

[Hanlon 1985] P. Hanlon, “On the decomposition of the tensor algebra of the classical Lie algebras”,
Adv. Math. 56:3 (1985), 238–282. MR 88a:17011 Zbl 0577.17003

[Hesselink 1980] W. H. Hesselink, “Characters of the nullcone”, Math. Ann. 252:3 (1980), 179–182.
MR 82c:17004 Zbl 0447.17006

[Jantzen 2003] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys
and Monographs 107, American Mathematical Society, Providence, RI, 2003. MR 2004h:20061
Zbl 1034.20041

[Jantzen 2004] J. C. Jantzen, “Nilpotent orbits in representation theory”, pp. 1–211 in Lie theory,
edited by J.-P. Anker and B. Orsted, Progr. Math. 228, Birkhäuser, Boston, 2004. MR 2005c:14055
Zbl 1169.14319

[Kostant 1963] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math. 85
(1963), 327–404. MR 28 #1252 Zbl 0124.26802

[Passman 1991] D. S. Passman, A course in ring theory, Wadsworth & Brooks/Cole, Pacific Grove,
CA, 1991. MR 91m:16001 Zbl 0783.16001

[Premet and Tange 2005] A. Premet and R. Tange, “Zassenhaus varieties of general linear Lie alge-
bras”, J. Algebra 294:1 (2005), 177–195. MR 2006i:17016 Zbl 1097.17010

[Reeder 1997] M. Reeder, “Exterior powers of the adjoint representation”, Canad. J. Math. 49:1
(1997), 133–159. MR 98m:22021 Zbl 0878.20028

[Stembridge 1987] J. R. Stembridge, “First layer formulas for characters of SL(n,C)”, Trans. Amer.
Math. Soc. 299:1 (1987), 319–350. MR 88g:20088 Zbl 0613.20027

Received August 23, 2011. Revised February 22, 2012.

RUDOLF TANGE

SCHOOL OF MATHEMATICS

TRINITY COLLEGE DUBLIN

COLLEGE GREEN

DUBLIN

IRELAND

tanger@tcd.ie



CONTENTS

Volume 258, no. 1 and no. 2

Lukas Brantner and Frederick Manners: On the complexity of sails 1

Chao Xia with Guofang Wang 305

Qing Chen, Sen Hu and Xiaowei Xu: Construction of Lagrangian submanifolds in
CPn 31

Sangbum Cho and Darryl McCullough: Semisimple tunnels 51

Young-Jun Choi and Jae-Cheon Joo: Uniqueness theorems for CR and conformal
mappings 257

Zajj Daugherty: Degenerate two-boundary centralizer algebras 91

Chongying Dong and Jianzhi Han: Some finite properties for vertex operator
superalgebras 269

Hao Fang and Mijia Lai: On the geometric flows solving Kählerian inverse σk

equations 291

Guofang Wang and Chao Xia: An optimal anisotropic Poincaré inequality for
convex domains 305

Jianzhi Han with Chongying Dong 269

Sen Hu with Qing Chen and Xiaowei Xu 31

Masashi Ishida: Einstein metrics and exotic smooth structures 327

BoGwang Jeon: Heegaard genera in congruence towers of hyperbolic 3-manifolds 143

Jae-Cheon Joo with Young-Jun Choi 257

Anthony C. Kable: The Heisenberg ultrahyperbolic equation: The basic solutions as
distributions 165

Ming-chang Kang and Jian Zhou: Noether’s problem for Ŝ4 and Ŝ5 349
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